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In this paper, we explore the characteristics of reduced density matrix spectra in quantum field theories.
Previous studies mainly focus on the function PðλÞ ≔Pi δðλ − λiÞ, where λi denote the eigenvalues of the
reduced density matrix. We introduce a series of functions designed to capture the parameter dependencies
of these spectra. These functions encompass information regarding the derivatives of eigenvalues

concerning the parameters, notably including the function PαJ ðλÞ ≔
P

i
∂λi
∂αJ

δðλ − λiÞ, where αJ denotes

the specific parameter. Computation of these functions is achievable through the utilization of Rényi
entropy. Intriguingly, we uncover compelling relationships among these functions and demonstrate their
utility in constructing the eigenvalues of reduced density matrices for select cases. We perform
computations of these functions across several illustrative examples. Especially, we conducted a detailed
study of the variations of PðλÞ and PαJ ðλÞ under general perturbation, elucidating their physical impli-
cations. In the context of holographic theory, we ascertain that the zero point of the function PαJ ðλÞ
possesses universality, determined as λ0 ¼ e−S, where S denotes the entanglement entropy of the reduced
density matrix. Furthermore, we exhibit potential applications of these functions in analyzing the properties
of entanglement entropy.

DOI: 10.1103/PhysRevD.109.086016

I. INTRODUCTION

Entanglement has emerged as a novel tool for discerning
the structure of quantum field theories (QFTs) in recent
years. Typically, various measures are introduced to quan-
tify entanglement, with one of the most extensively studied
being the entanglement entropy (EE). In certain QFTs, the
entanglement entropy can be computed either analytically
or numerically [1–6]. EE characterizes the quantum
correlations between different types of spatial regions
within field theory. Interestingly, within the framework
of AdS/CFT [7–9], entanglement entropy has been found to
be related to minimal surfaces in the dual spacetime,
following a law similar to the area law observed in black
holes [10,11].
By partitioning the entire system into two parts, denoted

as A and its complementary Ā, one can introduce the
reduced density matrix ρA ≔ trĀρ, where ρ represents the
density matrix of the system. EE can then be considered as
a function of ρA, defined as the von Neumann entropy

SðρAÞ ≔ −trρA log ρA. In QFTs, the replica method via
Euclidean path integrals is commonly employed to evaluate
EE. It is necessary to initially compute the Rényi entropy,
defined as

SðnÞðρAÞ ≔
log trρnA
1 − n

; ð1Þ

for a positive integer n. After analytically continuing n to
complex numbers, the entanglement entropy is expressed
as SðρAÞ ¼ limn→1SðnÞðρAÞ.
In QFTs, the trace in ρA ¼ trĀρ is typically considered a

formal definition. Unlike in finite-dimensional examples,
obtaining ρA directly through the trace operation seems
unfeasible. Nevertheless, it is apparent that ρA encompasses
the complete information of the subsystem A. Conse-
quently, reconstructing ρA using entanglement measures
becomes a significant area of investigation.
The spectra of ρA is studied in many-body system as

a new topological order [12]. In two-dimensional con-
formal field theories (CFTs), the entanglement spectra can
also be obtained using Rényi entropy [13]; see also [14].
In [15,16], the authors further investigate the entanglement
spectra for the theory with holographic dual. An interesting
result is that there exists an approximated state for any
given states with holographic dual. Using the spectra
decomposition, it is also possible to construct the so-called
fixed area states in CFTs [17]. The approximated state, as
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we mentioned above, can be understood as one special
fixed area state. The fixed area states are introduced
in [18,19] motivated by the similarity between AdS/CFT
and quantum error correction (QEC) code [20]. Hence, the
entanglement spectra of ρA holds significance in compre-
hending the entanglement structure of QFTs, alongside
elucidating the relationship between geometry and entan-
glement. There are also many studies on entanglement
spectra in various directions; see, e.g., [21–26].
Generally, the Rényi entropy SðnÞðρAÞ encapsulates

information about the spectra present within the reduced
density matrix ρA. Numerous studies have investigated
methods to obtain the density of the spectrum from Rényi
entropy. For a specific theory and subsystem A, SðnÞðρAÞ is
anticipated to depend on dimensional or dimensionless
parameters, such as the subsystem’s size, time, and cou-
pling constants of the theory. It is presumed that the spectra
would be related to these parameters. Nevertheless, the
density of the eigenvalues may not adequately capture the
parameter-dependent nature of the spectrum.
In this paper, we introduce a series of functions designed

specifically to accomplish this objective; see details of the
definitions in Sec. II. Roughly, the density of eigenvalues
represents the probability distribution of the eigenvalues.
The functions presented in this paper aim to capture the
changes in eigenvalues concerning a specific parameter.
For example, we introduce the function

PαJðλÞ ≔
X
i

∂λi
∂αJ

δðλi − λÞ; ð2Þ

where αJ is any parameter. The function PαJ can be taken

as the average value of ∂λi
∂αJ

at the eigenvalue λ. These
functions can be computed using the Rényi entropy,
enabling an examination of the eigenvalue variations.
Additionally, we uncover intriguing relationships among
these functions. If the eigenvalues of ρA satisfy more
conditions, we can demonstrate the possibility of recon-
structing the form of the eigenvalues using the results
obtained from these functions. This has been carried out for
a single interval in the vacuum state of two-dimensional
CFTs. The eigenvalues obtained by our method are con-
sistent with the known results.
We have calculated these functions in several examples

within two-dimensional CFTs, including scenarios such as
the single interval in the vacuum state, short intervals in
arbitrary states, and obtaining a general result for the
perturbation state ρþ δρ. Based on these results, we have
discussed the inherent properties of these functions.
Additionally, we have made interesting observations
regarding theories with a holographic dual. In the semi-
classical limit, it has been found that the zero point
of PαJðλÞ is given by λ0 ¼ e−S, where S is the EE for
ρA. This particular value also appears in [16], where an

approximated state for ρA is constructed within the semi-
classical limit. However, the relationship between these two
results remains unclear.
We also delve into the potential application of these

functions in characterizing the phase transition of EE. It has
been observed that the shape of the function PαJ does
indeed mirror the variations in EE concerning the param-
eter. Our paper merely establishes a framework for studying
the parameter dependence of the entanglement spectra in
QFTs. On this basis, there exist numerous intriguing
questions worthy of exploration.
The remainder of the paper is organized as follows.

Section II introduces a series of functions, including P and
PαJ , which describe the entanglement spectra along with
their parameter dependencies and discusses their proper-
ties. Following this, Sec. III presents the calculation of P
and PL in the vacuum state of 2D CFTs as an illustrative
example. In Sec. IV, we delve into the calculation for an
arbitrary state of 2D CFTs with a short interval. Notably, it
reveals a shift in the zero point of Pl compared to the
vacuum state. Section V examines the scenario where the
density matrix experiences a perturbation, denoted as
ρ ¼ ρ0 þ δρ. This section investigates the alterations in
P and PαJ subsequent to the perturbation. We also provide
explanations for each term in the obtained results. In
Sec. VI, the paper explores the computation of P and
PαJ in holographic theory, employing the saddle point
approximation. Furthermore, it discusses the zero point of
PαJ within this context and find a universal result of the
zero point. Section VII extends the discussion to analyze
the derivative of entanglement entropy using the function
PαJ . Finally, Sec. VIII presents the concluding remarks.
Detailed calculations are provided in the appendixes.

II. GENERAL SETUP

Assume the spectra of ρA are fλig. We can define the
spectra density as

PðλÞ ≔
X
i

δðλi − λÞ: ð3Þ

Roughly, it can be understood as the number of degenerate
eigenstates for the eigenvalue λ.
By the definition, it is easy to know that it has property

Z þ∞

−∞
fðλÞPðλÞdλ ¼

X
i

fðλiÞ: ð4Þ

For example, when fðλÞ ¼ λ,
Rþ∞
−∞ λPðλÞdλ ¼Pi λi ¼ 1;

when fðλÞ ¼ −λ log λ,
Rþ∞
−∞ −λ log λPðλÞdλ ¼ −

P
i λi ×

log λi ¼ SA. From the above example, it can also be seen
that, when we obtain PðλÞ, the entanglement entropy SA
can be easily calculated, so it can be seen that the
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information of the entanglement spectra is greater than the
entanglement entropy.
Notice in fλig, λi > 0 and there is a maximum eigen-

value λm, so we can rewrite (4) toZ
λm

0

fðλÞPðλÞdλ ¼
X
i

fðλiÞ: ð5Þ

Generally, the eigenvalue λi can be taken as functions of
some parameters denoted by fαJg. To characterize the
relation we would like to introduce and explore a new
quantity

PαJðλÞ ≔
X
i

∂λi
∂αJ

δðλi − λÞ: ð6Þ

The function P̄αJðλÞ ≔
PαJ

ðλÞ
PðλÞ can be taken as the average

value of ∂λi
∂αJ

for the eigenvalue λ. It is obvious that we should
have the constraintZ

λm

0

dλPαJðλÞ ¼ 0; ð7Þ

where λm is the maximal eigenvalue of ρA. The above
constraint comes from the normalization of the reduced
density matrix. We also have interest at

PαJm ≔
X
i

∂
mλi
∂αmJ

δðλi − λÞ; ð8Þ

PαmJ
≔
X
i

�
∂λi
∂αJ

�
m
δðλi − λÞ; ð9Þ

for the integer m.
Most generally, we can also define the following

quantities:

PðαJ11…αJ1m1
Þ…ðαJn1…αJnmn

Þ ≔
X
i

∂
m1λi

∂αJ11…∂αJ1m1

� � �

×
∂
mnλi

∂αJn1…∂αJnmn

δðλi−λÞ; ð10Þ

for given integer n and fm1;…mng. We can define the
order N of the functions by counting the power of the
derivatives, N ≔

P
n
i¼1mi.

Especially, we can get

PαJ1…αJm
≔ PðαJ1…αJm Þ ¼

X
i

∂
mλi

∂αJ1…∂αJm
δðλi − λÞ; ð11Þ

PðαJ1 Þ…ðαJm Þ ¼
X
i

∂λi
∂αJ1

� � � ∂λi
∂αJm

δðλi − λÞ; ð12Þ

for a given integer m. When αJ1 ¼ αJ2 ¼ � � � ¼ αJm ¼ αJ,
(11) becomes (8), and (12) becomes (9).
By the definition, the above functions are determined

once all the eigenvalues are given. But in most cases,
especially examples in QFTs, we have very limited infor-
mation about the eigenvalues. Our motivation to define
these functions is to gain more information on the dis-
tribution and parameter dependence of the eigenvalues.
These functions appear to be independent, but we will
demonstrate later that there are connections between them,
which are implicit in their definitions.

A. Relations among the functions

All the functions that we defined in the last section can
be evaluated by the Rényi entropy. Recall the definition of
Rényi entropy

SðnÞ ¼ 1

1 − n
log TrAρnA ¼ 1

1 − n
log
X
i

λni : ð13Þ

By using the property (5), the above equation can be
rewritten as

X
i

λni ¼ eð1−nÞSðnÞ ;

X
i

Z
λm

0

λnδðλi − λÞdλ ¼ eð1−nÞSðnÞ ;

Z
λm

0

λnPðλÞdλ ¼ eð1−nÞSðnÞ : ð14Þ

Compare the form of Laplace transformation:

L½fðtÞ� ≔
Z

∞

0

entfðtÞdt: ð15Þ

We find that the above formula (14) is similar to the form of
Laplace transformation (15). For further calculation, let
λ ¼ e−b−t, where b ¼ − log λm.
Actually, from (13) we have b ¼ limn→∞SðnÞ. By using

the above replacement, it is easy to know λ ¼ 0 corre-
sponding t ¼ ∞ and λ ¼ λm corresponding t ¼ 0, so (14)
becomes

L½Pðe−b−tÞe−b−t� ¼ eð1−nÞSðnÞenb: ð16Þ

By using inverse Laplace transformation, we can obtain the
density of eigenvalue P:

Pðe−b−tÞ ¼ λ−1L−1½enbþð1−nÞSðnÞ �; ð17Þ

where L−1 is defined as
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fðtÞ ¼ L−1½FðnÞ� ¼ 1

2πi

Z
γ0þi∞

γ0−i∞
FðnÞentdn ð18Þ

and γ0 is chosen for the convergence of the integration.
So we can say that density of eigenvalue P and Rényi

entropy SðnÞ are each other’s (inverse) Laplace trans-
formation.
If taking derivative with respect to αJ for both sides of

the above equation (13), we have

X
i

nλn−1i
∂λi
∂αJ

¼ ð1 − nÞ ∂S
ðnÞ

∂αJ
eð1−nÞSðnÞ : ð19Þ

By using the definition (6), the above equation can be
rewritten as

Z
λm

0

dλnλn−1PαJðλÞ ¼ ð1 − nÞ ∂S
ðnÞ

∂αJ
eð1−nÞSðnÞ : ð20Þ

Let λ ¼ e−b−t, where b ¼ − log λm, and we have

Z
∞

0

dte−ntPαJðe−b−tÞ ¼
1 − n
n

enbþð1−nÞSðnÞ ∂S
ðnÞ

∂αJ
: ð21Þ

Similar as the case for density of eigenvalue P (17), one
could evaluate PαJ by using inverse Laplace transforma-
tion, that is,

PαJðe−b−tÞ ¼ L−1
�
1 − n
n

enbþð1−nÞSðnÞ ∂S
ðnÞ

∂αJ

�
: ð22Þ

Note that the expression in the square brackets is a function
of n. One could obtain P and PαJ once knowing the Rényi
entropy SðnÞ.
By using the property of inverse Laplace transformation,

one could derive the relations between the functions. Using
(17) and (22), we find

∂PðλÞ
∂αJ

¼ −
∂PαJðλÞ

∂λ
: ð23Þ

Further taking derivative with respect to aJ for both sides
of (19), other quantities (8) and (9) would appear. One
could obtain these quantities by a similar method as above.
For example, taking twice derivative we would obtain

X
i

nðn−1Þλðn−2Þi

�
∂λi
∂αJ

�
2

þ
X
i

nλðn−1Þi
∂
2λi
∂α2J

¼ ∂
2

∂L2
eð1−nÞSðnÞ :

ð24Þ

Similarly, we will have

Z
λm

0

nðn − 1Þλn−2Pα2J
ðλÞdλþ

Z
λm

0

nλn−1PαJ2ðλÞdλ

¼ ∂
2

∂α2J
eð1−nÞSðnÞ : ð25Þ

By using the property of inverse Laplace transformation
and (22), we find

∂PαJ

∂αJ
¼ PαJ2 −

∂Pα2J

∂λ
: ð26Þ

For higher power we can also obtain similar relations, as we
will show in the next section.

B. Consistent with definition

In fact, the relations of the functions are also consistent
with the definition of these functions. By the definition of
P, taking derivative with respect to αJ for P we have

∂P
∂αJ

¼
X
i

∂

∂αJ
δðλi − λÞ ¼

X
i

∂λi
∂αJ

δ0ðλi − λÞ: ð27Þ

P depends on the parameter αJ through λi. One should keep
in mind that λ is independent with the parameter. Similarly,
∂λi
∂αJ

is also independent with λ; thus, we find

∂P
∂αJ

¼ −
∂

∂λ

X
i

∂λi
∂αJ

δðλi − λÞ ¼ −
∂PαJ

∂λ
: ð28Þ

By the same logic, we can derive the relation (E1) as

∂

∂αJ
PαJðλÞ ¼

∂

∂αJ

X
i

∂λi
∂αJ

δðλi − λÞ

¼
X
i

∂
2λi
∂α2J

δðλi − λÞ þ
X
i

∂λi
∂αJ

∂λi
∂αJ

δ0ðλi − λÞ

¼
X
i

∂
2λi
∂α2J

δðλi − λÞ þ
X
i

�
∂λi
∂αJ

�
2

×

�
−

∂

∂λ
δðλi − λÞ

�

¼ PαJ2ðλÞ −
∂

∂λ
Pα2J

ðλÞ: ð29Þ

Most generally, we can get that
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∂

∂αK
PðαJ11…αJ1m1

ÞðαJ21…αJ2m2
Þ…ðαJn1…αJnmn

Þ

¼ PðαJ11…αJ1m1
αKÞðαJ21…αJ2m2

Þ…ðαJn1…αJnmn
Þ

þ PðαJ11…αJ1m1
ÞðαJ21…αJ2m2

αKÞ…ðαJn1…αJnmn
Þ þ � � �

þ PðαJ11…αJ1m1
ÞðαJ21…αJ2m2

Þ…ðαJn1…αJnmn
αKÞ

−
∂

∂λ
PðαJ11…αJ1m1

ÞðαJ21…αJ2m2
Þ…ðαJn1…αJnmn

ÞðαKÞ: ð30Þ

Please see Appendix A 1 for more details of the
calculations.
With relation (30), it is easy to get an interesting

conclusion about two parameters. Consider two unrelated
parameters αJ1 and αJ2 , and it is easy to get

∂

∂α2
PαJ1

¼ ∂

∂α1
PαJ2

: ð31Þ

C. With further assumptions

In the above discussions, we find the functions at the
order of N would have some relations. For example, for
N ¼ 2, Pα2J

and PαJ2 are not independent. In fact, this
means one cannot solve Pα2J

and PαJ2 separately by only
using Rényi entropy. To obtain them, we should have more
assumptions.
In general, ∂λi

∂αJ
should not depend on the eigenvalue λi.

But in some special case we find that ∂λi
∂αJ

can still be seen as

a function of λi, that is,
∂λi
∂αJ

¼ fðλi; αJÞ. We do not expect
this is true for general cases. In the appendixes, we use
simple examples to show this. For the special case we find
all the functions can be solved.
With the assumption, we have

PαJðλÞ ¼
X
i

fðλi; αJÞδðλi − λÞ

¼ fðλ; αJÞ
X
i

δðλi − λÞ ¼ fðλ; αJÞPðλÞ: ð32Þ

By using (32), we have the equation

∂λi
∂αJ

¼ fðλi;αJÞ ¼
PαJðλiÞ
PðλiÞ

; ð33Þ

where P and PαJ can be obtained by SðnÞ. Once knowing
SðnÞ, one could solve the equation with suitable conditions.
With these results, one could obtain more details of the
eigenvalues λi. By choosing more parameters αJ, one could
reconstruct the eigenvalues of ρA. In the following, we will
show some examples. On the contrary, one may assume the
eigenvalues λi satisfy the relation ∂λi

∂αJ
¼ fðλi; αJÞ. If the

differential equation has no proper solutions, one can
conclude this assumption is false.
The higher-order function can also be associated with P.

For example, by definition

Pα2J
ðλÞ ¼ fðλ; αJÞ2PðλÞ; ð34Þ

PαJ2ðλÞ¼
X
i

d
dαJ

fðλi;αJÞδðλi−λÞ

¼
X
i

�
∂

∂λi
fðλi;αJÞ

∂λi
∂αJ

þ ∂

∂αJ
fðλi;αJÞ

�
δðλi−λÞ

¼
X
i

�
∂fðλi;αJÞ

∂λi
fðλi;αJÞþ

∂

∂αJ
fðλi;αJÞ

�
δðλi−λÞ

¼
�
∂fðλ;αJÞ

∂λ
fðλ;αJÞþ

∂

∂αJ
fðλ;αJÞ

�X
i

δðλi−λÞ

¼
�
∂fðλ;αJÞ

∂λ
fðλ;αJÞþ

∂

∂αJ
fðλ;αJÞ

�
PðλÞ: ð35Þ

So we can write PαJðλÞ, Pα2J
ðλÞ, and PαJ2ðλÞ just by

fðλ; αJÞ and PðλÞ. We can test the self-consistency of
(32), (34), and (35) through the relation (E1).
More generally, we want to write PαmJ

ðλÞ and PαJmðλÞ by
fðλ; αJÞ and PðλÞ. We define a new derivation

D
DαJ

¼ fðλ; αJÞ
∂

∂λ
þ ∂

∂αJ
: ð36Þ

So PαJ2ðλÞ can be rewritten as PαJ2ðλÞ ¼ Dfðλ;αJÞ
DαJ

PðλÞ.
One could show that

PαmJ
ðλÞ ¼ fðλ; αJÞmPðλÞ; ð37Þ

PαJmðλÞ ¼
Dm−1fðλ; αJÞ

Dαm−1
J

PðλÞ; ð38Þ

wherem∈Z andm ≥ 2. See Appendix A 2 for more details
of the calculations.

III. EXAMPLES IN TWO-DIMENSIONAL CFTs

There are many known analytic results of Rényi entropy
of one interval for some states in two-dimensional CFTs.
Using these results, we could directly obtain the functions
discussed in previous sections. We will first evaluate P
and PαJ for αJ being the size of the interval L and central
charge c. With further assumption, one could obtain the
eigenvalues. The eigenvalues of this example can be
derived by conformal mapping method used in [27]. Our
results are consistent with the ones in [27].
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A. One interval on infinite line, vacuum state

Using the replica method, we can get the Rényi entropy
SðnÞðρAÞ of one interval on the infinite line in the vacuum
state of 2D CFTs [4,5]:

SðnÞ ¼ c
6

�
1þ 1

n

�
log

L
ϵ
; ð39Þ

where L is the length of system A and ϵ is the UV cutoff.
We have b ¼ − log λm ¼ c

6
logL=ϵ.

Using (17) and (22), we can get

PðλÞ ¼ 1

λ

� ffiffiffi
b

p
I1ð2

ffiffiffiffiffi
bt

p Þffiffi
t

p þ δðtÞ
�
;

PLðλÞ ¼ −
c
6L

�ðb − tÞI1ð2
ffiffiffiffiffi
bt

p Þffiffiffiffiffi
bt

p þ δðtÞ
�
;

PcðλÞ ¼ −
logL
6

�ðb − tÞI1ð2
ffiffiffiffiffi
bt

p Þffiffiffiffiffi
bt

p þ δðtÞ
�
; ð40Þ

where InðxÞ is the modified Bessel functions of the first
kind and we have the relation λ ¼ e−b−t. It is straightfor-
ward to check that (40) satisfy the relation (23), that is,

∂

∂L
PðλÞ ¼ −

∂

∂λ
PLðλÞ: ð41Þ

See Appendix B for the details. We also find the
relation (31):

∂

∂c
PLðλÞ ¼

∂

∂L
PcðλÞ: ð42Þ

See Appendix B for the details.
PLðλÞ as a function of λ can be used to reflect how

the eigenvalues change with the scale of the subsystem.
For the maximal eigenvalue λm, one could obtain ∂λm

∂L by
using − log λm ¼ c

6
logL=ϵ. One could also check that

∂λm
∂L ¼ P̃ðλmÞ. For λ ≠ λm, there is a zero point of the
function PL, which is given by t ¼ b or λ0 ¼ e−2b ¼ λ2m.
For λ < λ0, PLðλÞ > 0, which means that, as the scale of
the subsystem increases, the average eigenvalues smaller
than λ0 are increasing. While for λ > λ0, PLðλÞ < 0, the
average eigenvalues are decreasing. The physical signifi-
cance of the zero point is not very clear, but we can see that
the function PLðλÞ must have at least one zero because the
integral result of it should be zero. We plot the function
PðλÞ and PLðλÞ in Fig. 1.

B. One interval on cylinder, vacuum state

Consider the CFT is defined on a cylinder with circum-
ference R. The interval is A ¼ ½0; L� with length L. The
Rényi entropy for this case is given by

SðnÞ ¼ c
6

�
1þ 1

n

�
log

�
R
ϵπ

sin
πL
R

�
: ð43Þ

We have b ¼ − log λm ¼ c
6
log ðRϵπ sin πL

R Þ. It is straightfor-
ward to obtain the functions

PðλÞ ¼ 1

λ

� ffiffiffi
b

p
I1ð2

ffiffiffiffiffi
bt

p Þffiffi
t

p þ δðtÞ
�
;

PLðλÞ ¼ −
c
6

π cotðπLR Þ
R

�ðb − tÞI1ð2
ffiffiffiffiffi
bt

p Þffiffiffiffiffi
bt

p þ δðtÞ
�
: ð44Þ

One could check that
R λm
0 λPðλÞdλ¼1 and

R λm
0 PLðλÞdλ¼0.

For PLðλÞ we also have a zero point at t0 ¼ b or
λ0 ¼ e−2b ¼ λ2m. The figure of PLðλÞ is slightly different
from the case on an infinite line. If L < R=2, we have
PL > 0 for 0 < λ < λ0, while PL < 0 for λ0 < λ < λm. The
result is similar as the case on an infinite line. But for
L > R=2, the figure is flipped. We have PL < 0 for
0 < λ < λ0, while PL > 0 for λ0 < λ < λm. There exists
a critical point L ¼ R=2; the function PL is vanishing at
this point. We show the results in Fig. 2.

FIG. 1. The illustration of PðλÞ and PLðλÞ in the case of the vacuum state of 2D CFT, where the arrows represent the Dirac delta
function.
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C. Reconstruction of the eigenvalues
with further assumption

Without further assumption, one cannot obtain higher-
order functions, as we have shown in the previous section.
For the present example, we find the maximal eigenvalue
satisfies ∂λm

∂L ¼ P̄ðλmÞ. Let us assume for other eigenvalues

we also have ∂λi
∂L ¼ fðλi; LÞ. From the discussions in Sec. II

C, using (40), we have

∂λi
∂L

¼ − log λi − 2b
b

c
6L

λi: ð45Þ

Solving the above differential equation, we can get

λi ¼ e−
Ci

logL=ϵ−b; ð46Þ

where Ci are constants unrelated to L.

D. Eigenvalues of modular Hamiltonian
by conformal mapping

For the one interval example in the last sections,
one could reconstruct the eigenvalues of the modular
Hamiltonian by using the functions PL and P. For the
simple example, one could obtain the eigenvalues by the
methods explored in [27]. As the Rényi entropy and
entanglement entropy are UV divergence, we should
introduce some regulator to obtain the results. Let us focus
on the two-dimensional CFTs. In [27], the authors show
one could consider only the states that are projected out the
basis in a small spatial region of thickness ϵ around the
common boundary of A and Ā. In the Euclidean path
integral representation of the reduced density matrix ρA,
this is to introduce a hole around the boundary point of A.
Some suitable boundary conditions should be imposed on
the boundary of the hole. For the one interval example, the
topology of the manifold is an annulus.
Suppose A ¼ ½0; L�. The system is in the vacuum state on

the infinite line. The corresponding state is associated with

the Euclidean spacetime with a disk of radius ϵ removed at
end points of A, which can be mapped to the annulus by the
conformal mapping:

w ¼ log
z

L − z
; ð47Þ

where w is the coordinate of the annulus. The width of the
annulus is W ¼ fðL − ϵÞ − fðϵÞ ≃ 2 log L

ϵ ¼ 12b
c . The

modular Hamiltonian KA is locally a generator of rotation
around the end points of A. Under the conformal map (47),
KA is mapped to the time evolution operatorHw ≔

R
dvTvv

along the direction v ≔ ImðwÞ up to some constants,
and KA and Hw are unitarily equivalent. Thus, the eigen-
values of KA should be same as Hw. By using Tvv ¼
TðwÞ þ T̄ðw̄Þ, we have

Hw ¼
Z

dwTðwÞ þ
Z

dw̄ T̄ðw̄Þ: ð48Þ

Under the conformal transformation (47), we obtain

Hw ¼ KA þ c
12

Z
L−ϵ

ϵ
dx

L
xðL − xÞ ¼ KA þ b; ð49Þ

where the constant term is from the Schwartzian term and
we define

KA ≔
Z

L−ϵ

ϵ
dz

zðL − zÞ
L

TðzÞ þ
Z

L−ϵ

ϵ
dz̄

z̄ðL − z̄Þ
L

T̄ðz̄Þ;

ð50Þ

which is the regularized modular Hamiltonian of the single
interval on an infinite line.
For CFTs on the annulus with width W, the eigenvalues

of Hw are given by Δi− c
24

W . Thus, by using (49) the eigen-

values of KA are given by Δi− c
24

W − b. In Ref. [16], the author
shows the reduced density matrix ρA ¼ e−KA−2b by nor-
malization. Therefore, we expect the eigenvalues of ρA

should be e−
Δi−

c
24

W −b, which is just the form as (46).

IV. SHORT INTERVAL IN ARBITRARY STATE

Computing the Rényi entropy of an arbitrary state is
usually very challenging, but in some cases we can obtain
the result perturbatively using the operator product expan-
sion of the twistor operator [28–32]. In this section, we will
focus on the two-dimensional CFT with a short interval.

A. Rényi entropy for arbitrary state

Assume the length of the interval is l and the state is ρ.
For simplicity, we list only the contributions from the
operators in the vacuum conformal family, such as T, T̄,
and A, and assume the state is translationally invariant.

FIG. 2. The plots of PLðλÞ with various parameters in the
scenario of a single interval on a cylinder. We omit the
representation of the term δðλm − λÞ in the plot, as it is not
important for our current discussion.

PARAMETER DEPENDENCE OF ENTANGLEMENT SPECTRA IN … PHYS. REV. D 109, 086016 (2024)

086016-7



Up to Oðl4Þ the Rényi entropy can be expanded in terms
of l as1

SðnÞ ¼ c
6

nþ 1

n
log

l
a
þ nþ 1

n
k2l2

þ
�ðnþ 1Þðn2 − 1Þ

n3
k4 þ

ðnþ 1Þðn2 þ 11Þ
n3

k04

�
l4

þOðl6Þ; ð51Þ

with

k2 ¼ −
1

12

�hTiρ þ hT̄iρ
�
;

k4 ¼ −
1

288

�hAiρ þ hĀiρ
�þ 1

288

�hTi2ρ þ hT̄i2ρ
�
;

k04 ¼ −
1

720c

�hTi2ρ þ hT̄i2ρ
�
; ð52Þ

where hχiρ ≔ trðρχÞ for χ ¼ T; T̄;A. Note that k2, k4, and
k04 are independent with n.

B. Perturbative results of the functions P and Pl

If we retain only up to the second order, the result is
similar with the vacuum case, requiring only the replace-
ment of b ¼ c

6
log l

ϵ with b0 ¼ c
6
log l

ϵ þ k2l2, since their
dependence on n is the same:

SðnÞ ¼ nþ 1

n

�
c
6
log

l
a
þ k2l2

�
þOðl4Þ: ð53Þ

At the order of Oðl4Þ, we will obtain more intriguing
results. By definition, we have

b ≔ − log λm ¼ lim
n→∞

SðnÞ ¼ c
6
log

l
a
þ k2l2 þ k4l4 þ k04l

4;

ð54Þ

where λm is the maximal eigenvalue in this case. Let us also
define b0 ≔ c

6
log l

a.
By using (17) and (51), we obtain

PðλÞ ¼ λ−1
� ffiffiffiffiffi

b0
p ffiffi

t
p I1 þ δðtÞ þ k2I0l2 þ

��
2k4 − 10k04

�
I0

þ 1

2
k22t

1
2b

−1
2

0 I1 þ
�
−k4 þ 11k04

�
tb−10 I2

�
l4
�
; ð55Þ

where the argument of In is 2
ffiffiffiffiffiffiffi
b0t

p
and we have used

L−1
	
e
b0
n nk

 ¼ bð1þkÞ=2

0 t−ð1þkÞ=2I−ð1þkÞ
�
2
ffiffiffiffiffiffiffi
b0t

p �
: ð56Þ

Furthermore, by using (22) and (51), we have

PlðλÞ ¼ −
∂b
∂l

�
c
6
b
−1
2

0 t
1
2I1l−1 þ

ffiffiffiffiffi
b0

p ffiffi
t

p I1 þ δðtÞ þ
�
c
6
k2I0 þ 2k2t

1
2b

−1
2

0 I1 þ
c
6
k2tb−10 I2

�
lþ
��

−2k22 −
c
6
ð2k4 − 10k04Þ

�
I0

þ
�
−
c
6

1

2
k22 þ 4ð2k4 − 10k04Þ

�
t
1
2b

−1
2

0 I1 þ
�
2k22 þ

c
6
ð3k4 − 21k04Þ

�
tb−10 I2 þ

�
c
6

1

2
k22 − 4ðk4 − 11k04Þ

�
t
3
2b

−3
2

0 I3

−
�
c
6
ðk4 − 11k04Þ

�
t2b−20 I4

�
l3
�
; ð57Þ

where the argument of In is 2
ffiffiffiffiffiffiffi
b0t

p
.

It can be seen that the functions P and Pl depend on the
expectation value hχiρ. One could check that they satisfy

the relation ∂P
∂l ¼ − ∂Pl

λ .
One could also check the above results by the example of

the thermal state. Consider the thermal state with
ρ ¼ e−βH=ZðβÞ. The Rényi entropy is given by

SðnÞ ¼ c
6

�
1þ 1

n

�
log

�
β

πϵ
sinh

�
πl
β

��
; ð58Þ

where l represents the length of the interval, which is not
necessarily assumed to be small. With this result, one could
obtain PðλÞ and PlðλÞ for the thermal state. The results are
similar to the vacuum cases in Sec. III A. Then one could
expand the function PðλÞ and PlðλÞ in terms of l

β in the
region l=β ≪ 1. The results should be the same with (11)
and (57) up to Oðl4Þ by using the expectation values of
hχiβ ≔ trðe−βHχÞ=ZðβÞ. The details of the calculations can
be found in Appendix. D.

C. Zero point of Pl

For the vacuum cases, we find the function PL has one
zero point which is given by λ2m ¼ e−2b0. Here, we would
like to study the zero point of Pl for the short interval case.
We assume the zero point is given by the form λ̃0 ¼ e−t̃0−b,

1The extension of the calculation to arbitrary situations and
higher order is straightforward. In the following, we will use this
result for holographic CFTs, in which the contributions from the
vacuum conformal family are dominant.
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with t̃0 ¼ b0 þ t2l2 þ t4l4 þOðl6Þ, where b0 is the zero
point for the vacuum case. t2 and t4 should satisfy the
following equations:

t2 ¼ k2;

t4 ¼ 2k4 − 10k04 −
48

c
k4

I2
I1

þ 528

c
k04

I2
I1

− 3k4
I3
I1

þ 33k04
I3
I1
;

ð59Þ
where the argument of In is 2b0. For general theory, the
result is complicated. But for CFTs with holographic dual,
we have a large central charge c. For the function InðxÞ,
since limx→∞InðxÞ ¼ 1ffiffiffiffiffiffi

2πx
p ex, in the limit x → ∞ one

would have limx→∞
InðxÞ
ImðxÞ ¼ 1. Thus, for large c ≫ 1, we

have b0 ≫ 1 and

t̃0 ¼ b0 þ k2l2 − k4l4 þ 23k04l
4 þOð1=cÞ: ð60Þ

By using (51), the EE is given by

S ¼ lim
n→1

SðnÞ ¼ 2b0 þ 2k2l2 þ 24k04l
4 þOðl6Þ: ð61Þ

It is remarkable that the zero point t̃0 is associated with the
EE S and b ¼ S∞:

t̃0 ¼ S − bþOð1=c; l6Þ: ð62Þ

For the vacuum case, we have S ¼ 2b, and the zero point is
given by t0 ¼ b, which is consistent with the above results.
One could also check the above relation for higher order of
the short interval expansion. In the following section, we
will discuss the holographic CFTs. One would find the
above relation is actually correct for arbitrary states that are
dual to a bulk geometry.

V. PERTURBATION STATES

Consider the density matrix

ρ ¼ ρ0 þ δρ; ð63Þ

with the condition trδρ ¼ 0. One could obtain the Rényi
entropy

SðnÞ ¼ 1

1 − n
logðtrρnÞ

¼ SðnÞðρ0Þ þ
n trðρn−10 δρÞ
ð1 − nÞtrðρn0Þ

þOðδρ2Þ

¼ SðnÞðρ0Þ þ δSðnÞ þOðδρ2Þ; ð64Þ

where we define

δSðnÞ ≔
ntrðρn−10 δρÞ
ð1 − nÞtrðρn0Þ

: ð65Þ

In the following, we will keep only the leading order of the
perturbation.
On the other hand, by using ρ0 ¼

P
i λ

0
i jλ0i ihλ0i j, we can

rewrite (64) as

δSðnÞ ≔
n
P

iðλ0i Þn−1δλi
ð1 − nÞPiðλ0i Þn

; ð66Þ

where we define

δλi ≔ hλ0i jδρjλ0i i: ð67Þ

A. Density of eigenstates

Define λm ≔ e−b and λ0m ≔ e−b0 , where λm and λ0m
are maximal eigenvalues of ρ and ρ0, respectively.
By definition, we have b ¼ limn→∞SðnÞðρÞ and b0 ¼
limn→∞SðnÞðρ0Þ. Thus, by using (66), we have

lim
n→∞

SðnÞðρÞ ¼ lim
n→∞

ðSðnÞðρ0Þ þ δSðnÞÞ;
b ¼ b0 þ δb; ð68Þ

with

δb ≔ −
δλm
λ0m

;

δλm ≔ hλ0mjδρjλ0mi; ð69Þ

where jλ0mi denotes the eigenstate for the maximal eigen-
value λ0m. A useful form that we will utilize hereafter

is eδb ¼ 1þ δb ¼ λ0m
λm
.

Now we are ready to evaluate the function P. By using
Eq. (17), we have

Pðe−b−tÞ ¼ λ−1L−1½enbþð1−nÞSðnÞðρÞ�ðtÞ

¼
�
λ0m
λm

λ

�
−1
eδbL−1½enb0þð1−nÞSðnÞðρ0Þ�ðtÞ

þ λ−1δbL−1½nenb0þð1−nÞSðnÞðρ0Þ�ðtÞ
þ λ−1L−1½nenb0 trðρn−10 δρÞ�ðtÞ: ð70Þ

Because of the complexity of the above calculations, we
will discuss the inverse Laplace transform in the above
expression term by term. First, let us consider the first term.

Using λ ¼ e−b−t, since e−b0−t ¼ e−b−teδb ¼ λ0m
λm
λ, we have

�
λ0m
λm

λ

�
−1
eδbL−1½enb0þð1−nÞSðnÞðρ0Þ�ðtÞ

¼ ð1þ δbÞðe−b0−tÞ−1L−1½enb0þð1−nÞSðnÞðρ0Þ�ðtÞ

¼ P0

�
λ0m
λm

λ

�
þ δbP0

�
λ0m
λm

λ

�
; ð71Þ
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where P0 denotes the density of eigenstate for the state ρ0.
Note that, in the last, we substituted the variable P0 with
λ0m
λm
λ to adjust for the range of values. The reason is easy to

see in the above mathematical calculations, since the
inverse Laplace transform of L−1½enb0þð1−nÞSðnÞðρ0Þ�ðtÞ
is e−b0−tP0ðe−b0−tÞ.
On the other hand, this adjustment can be also explained

as follows: λ in PðλÞ ¼Pi δðλi − λÞ falls within the range
ð0; λm�, while λ0 in P0ðλ0Þ ¼

P
i δðλ0i − λ0Þ falls within the

range ð0; λ0m�. Hence, the purpose of this transformation is
to ensure that both sides of the equation share the same
variable range.
Let us go on discussing the remaining two inverse

Laplace transformation terms in (71). By using the formula

L−1fsL½f�ðsÞgðtÞ ¼ δðtÞfð0Þ þ f0ðtÞ; ð72Þ

we have

λ−1δbL−1½nenb0þð1−nÞSðnÞðρ0Þ�ðtÞ
¼ λ−1δbL−1

	
nL½e−b0−tP0ðe−b0−tÞ�


ðtÞ
¼ λ−1δb

�
δðtÞe−b0P0ðe−b0Þ þ e−b0−t

dP0ðe−b0−tÞ
dt

− e−b0−tP0ðe−b0−tÞ
�

¼ δbδðtÞP0ðe−b0Þ− δbλP0
0

�
λ0m
λm

λ

�
− δbP0

�
λ0m
λm

λ

�
; ð73Þ

where P0
0ðλÞ ≔ ∂P0ðλÞ

∂λ . It is worth noting that the final term
in the expression above cancels out with the second term in
formula (70).
To calculate the last term of (70), we define

Pδðλ0Þ ≔
X
i

δλiδðλ0i − λ0Þ; ð74Þ

which can be taken as the average expectation value of
the perturbation δρ in the eigenstates with eigenvalue
λ ¼ e−b−t. It can be related to trðρn−10 δρÞ by

trðρn−10 δρÞ ¼
X
i

ðλ0i Þn−1δλi

¼
Z

λ0m

0

dλ0λ0n−1
X
i

δλiδðλ0i − λ0Þ

¼
Z

∞

0

dte−nðb0þtÞPδðe−b0−tÞ; ð75Þ

where we use λ0 ≔ e−b0−t. One could obtain Pδðe−b0−tÞ by
inverse Laplace transformation once trðρn−10 δρÞ is known.
By using (65) and (66), we have

Pδðe−b0−tÞ ¼ L−1
�
1 − n
n

enb0þð1−nÞSðnÞðρ0ÞδSn
�
; ð76Þ

the form of which is similar to PαJ (22). Again using the
formula (72), we obtain

λ−1L−1½nenb0 trðρn−10 δρÞ�ðtÞ

¼ λ−1
�
δðtÞPδðe−b0Þ þ

dPδðe−b0−tÞ
dt

�

¼ λ−1δðtÞPδðe−b0Þ − P0
δ

�
λ0m
λm

λ

�
; ð77Þ

where P0
δðλÞ ≔ ∂Pδ

∂λ . We compare the terms in (73) and (77)
that contain δðtÞ and find

λ−1δðtÞPδðe−b0Þ ¼ −δbδðtÞP0ðe−b0Þ; ð78Þ
in the leading order of the perturbation.
Combining all the aforementioned results, we derive the

final expression. In summary, the function PðλÞ (70) can be
structured in the following form:

PðλÞ ¼ Pðe−b−tÞ ¼ P0ðe−b0−tÞ þ δPðe−b0−tÞ; ð79Þ

with

P0ðe−b0−tÞ ¼ P0

�
λ0m
λm

λ

�
;

δPðe−b0−tÞ ¼ −δbλP0
0

�
λ0m
λm

λ

�
− P0

δ

�
λ0m
λm

λ

�
: ð80Þ

B. Further discussion on the perturbation result

1. Normalization

One could promptly verify that (79) complies with the
normalization condition. Through direct calculations, we
have

Z
λm

0

λP0

�
λ0m
λm

λ

�
dλ ¼ 1 − 2δb;

−
Z

λm

0

λδbλP0
0

�
λ0m
λm

λ

�
dλ ¼ −δb

λ3m
λ0m

P0ðλ0mÞ þ 2δb;

−
Z

λm

0

λP0
δ

�
λ0m
λm

λ

�
dλ ¼ −

λ2m
λ0m

Pδðλ0mÞ

þ λm
λ0m

Z
λ0m

0

Pδðλ0Þdλ0

¼ −
λ2m
λ0m

Pδðλ0mÞ;

where in the last step we use the fact that trδρ ¼R λ0m
0 Pδðλ0Þdλ0 ¼ 0. Summing over the above results and
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using the relation (78), we arrive at the normalization
condition Z

λm

0

λPðλÞdλ ¼ 1: ð81Þ

Let us briefly analyze the implications of each term in the
above expression (79). P0 represents the unperturbed result
of the density of eigenstates. As perturbation affects the
range of values of eigenvalues, i.e., the maximal eigenvalue
changes from λ0m to λm. The first term P0 can be viewed as
the change in the density distribution with the alteration
in the range of the variable λ. As we can see from (81), it
does not satisfy the normalization. The second term in
δPðe−b0−tÞ can be seen as the adjustment of the density
distribution function itself to satisfy the normalization
requirement. We illustrate the above explanation in Fig. 3.

2. The number of eigenvalues

Since the function P can be seen as the density of eigen-
states, we can define the number of eigenstates larger than λ as

nðλÞ ¼
Z

λm

λ
Pðλ0Þdλ0: ð82Þ

Taking (79) into the integration (82), we have

nðλÞ ¼ n0

�
λ0m
λm

λ

�
þ δbλP0

�
λ0m
λm

λ

�
þ Pδ

�
λ0m
λm

λ

�
; ð83Þ

where n0 is the number of the unperturbed density matrix
defined by

n0ðλÞ ¼
Z

λ0m

λ
P0ðλ0Þdλ0: ð84Þ

It is important to note that integration typically leads to
divergence. For instance, in Sec. III A, one can readily
verify that the number of eigenstates is infinite. In essence,
N ≔ nðλ ¼ 0Þ can be regarded as an approximation to the
dimension of the density matrix ρA, which tends to be
infinite in QFTs. Nevertheless, formally, we observe that
the variation in dimension due to perturbations is linked to
the function Pδ, that is,

ΔN ≔ nð0Þ − n0ð0Þ ¼ Pδð0Þ: ð85Þ

Here, the number of the maximal eigenvalue is well defined
and generally finite. Taking λ ¼ λ into (83) and using (78),
we obtain

nðλmÞ ¼ n0ðλ0mÞ; ð86Þ

which means the number of the maximal eigenvalue would
be invariant at the leading-order perturbation.

C. The function PαJ

It is straightforward to calculate the function Pα as we
have done in the previous section. By using formula (22),
we have

PαJðe−b−tÞ ¼ L−1
�
1− n
n

enbþð1−nÞSðnÞðρÞ ∂S
ðnÞðρÞ
∂αJ

�

¼ L−1
�
1− n
n

enb0þð1−nÞSðnÞðρ0Þð1þ nδbþ ð1− nÞδSðnÞÞ∂ðS
ðnÞðρ0Þ þ δSðnÞÞ

∂αJ

�

¼ L−1
�
1− n
n

enb0þð1−nÞSðnÞðρ0Þ ∂S
ðnÞðρ0Þ
∂αJ

�
þL−1

�
n
1− n
n

enb0þð1−nÞSðnÞðρ0Þ ∂S
ðnÞðρ0Þ
∂αJ

δb

�

þL−1
�ð1− nÞ2

n
enb0þð1−nÞSðnÞðρ0ÞδSðnÞ

∂SðnÞðρ0Þ
∂αJ

�
þL−1

�
1− n
n

enb0þð1−nÞSðnÞðρ0Þ ∂δS
ðnÞ

∂αJ

�
þL−1½Oðδρ2Þ�: ð87Þ

Let us discuss the four terms in the above results separately.

FIG. 3. Illustration of the function PðλÞ in the perturbation
state. The black line is the unperturbed function P0. The range of
the eigenvalue would change under perturbation. The red line
illustrates the perturbation of the function P due to the alteration
in the range of the variable λ. But it does not satisfy the
normalization condition

R λm
0 dλPðλÞλ ¼ 1. The blue one includes

the adjustment to satisfy the normalization.
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The first term is the function PαJ for the unperturbed density matrix ρ0; denote it by P0
αJðe−b0−tÞ. By using the

formula (72), the second term is given by

L−1
�
n
1 − n
n

enb0þð1−nÞSðnÞðρ0Þ ∂S
ðnÞðρ0Þ
∂αJ

�
δb ¼ L−1½nL½P0

αJðe−b0−tÞ��δb

¼ δb

�
δðtÞP0

αJðe−b0Þ þ
dP0

αJðe−b0−tÞ
dt

�

¼ δbδðtÞP0
αJðe−b0Þ − δbλP00

αJ

�
λ0m
λm

λ

�
; ð88Þ

where P00
αJ ≔

∂P0
αJ

∂λ . The third term can be simplified as follows:

L−1
�ð1 − nÞ2

n
enb0þð1−nÞSðnÞðρ0ÞδSðnÞðρ0Þ

∂SðnÞðρ0Þ
∂αJ

�
¼ L−1

�ð1 − nÞ2
n

enb0þð1−nÞSðnÞðρ0Þ ntrðρn−10 δρÞ
ð1 − nÞtrðρn0Þ

∂SðnÞðρ0Þ
∂αJ

�

¼ L−1
�
ð1 − nÞenb0 trðρn−10 δρÞ ∂S

ðnÞðρ0Þ
∂αJ

�
: ð89Þ

One could further simplify the above term if the Rényi entropy SðnÞðρ0Þ is given. Similar terms will also appear in the fourth
term, albeit with opposite signs, allowing them to cancel each other out. The fourth term is considerably more intricate. In
order to articulate the outcomes, we need to introduce the following quantities:

PðδαJÞðλ0Þ ≔
X
i

∂δλi
∂αJ

δðλ0i − λ0Þ ð90Þ

PðδÞðαJÞðλ0Þ ≔
X
i

δλi
∂λ0i
∂αJ

δðλ0i − λ0Þ: ð91Þ

These two functions illustrate the relationship between the variation δλi and the parameter αJ. They can be computed once
∂trðρn−1

0
δρÞ

∂αJ
is known. With these definitions, we have

L−1
�
1 − n
n

enb0þð1−nÞSðnÞðρ0Þ ∂δS
ðnÞðρ0Þ
∂αJ

�

¼ L−1
�
1 − n
n

enb0þð1−nÞSðnÞðρ0Þ ∂

∂αJ

ntrðρn−10 δρÞ
ð1 − nÞtrðρn0Þ

�

¼ L−1
�
enb0

∂

∂αJ
½trðρn−10 δρÞ�

�
− L−1

�
enb0 trðρn−10 δρÞð1 − nÞ ∂S

ðnÞðρ0Þ
∂αJ

�

¼ L−1
�
enb0

∂

∂αJ

�X
i

ðλ0i Þn−1hijδρjii
��

− L−1
�
ð1 − nÞenb0 trðρn−10 δρÞ ∂S

ðnÞðρ0Þ
∂αJ

�

¼ L−1
�
enb0

X
i

ðλ0i Þn−1
∂hijδρjii
∂αJ

�
þ L−1

�
enb0

X
i

ðn − 1Þðλ0i Þn−2
∂λ0i
∂αJ

hijδρjii
�
− L−1

�
ð1 − nÞenb0 trðρn−10 δρÞ ∂S

ðnÞðρ0Þ
∂αJ

�

¼ L−1½L½PðδαJÞðe−b0−tÞ�� þ L−1½ðn − 1ÞL½PðδÞðαJÞðe−b0−tÞeb0þt�� − L−1
�
ð1 − nÞenb0 trðρn−10 δρÞ ∂S

ðnÞðρ0Þ
∂αJ

�

¼ PðδαJÞðe−b0−tÞ þ δðtÞeb0PðδÞðαJÞðe−b0Þ þ
�
eb0þt d

dt
PðδÞðαJÞðe−b0−tÞ þ eb0þtPðδÞðαJÞðe−b0−tÞ

�
− eb0þtPðδÞðαJÞðe−b0−tÞ

− L−1
�
ð1 − nÞenb0 trðρn−10 δρÞ ∂S

ðnÞðρ0Þ
∂αJ

�

¼ PðδαJÞ

�
λ0m
λm

λ

�
þ δðtÞeb0PðδÞðαJÞðe−b0Þ − P0

ðδÞðαJÞ

�
λ0m
λm

λ

�
− L−1

�
ð1 − nÞenb0 trðρn−10 δρÞ ∂S

ðnÞðρ0Þ
∂αJ

�
; ð92Þ
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where in the derivation we use the formula (72) again and

define P0
ðδÞðαJÞðλÞ ≔

∂PðδÞðαJ Þ
∂λ . As mentioned earlier, the final

term in the above results exactly cancels out with the result
from the third term (89).
We also notice that

δðtÞeb0PðδÞðαJÞðe−b0Þ ¼ −δðtÞδbP0
αJðe−b0Þ: ð93Þ

In summary, the final result can be expressed in the
following concise form:

PαJðe−b−tÞ ¼ P0
αJðe−b0−tÞ þ δPαJðe−b0−tÞ ð94Þ

with

P0
αJðe−b0−tÞ ¼ P0

αJ

�
λ0m
λm

λ

�
ð95Þ

and

δPαJðe−b0−tÞ ¼ −δbλP00
αJ

�
λ0m
λm

λ

�
þ PðδαJÞ

�
λ0m
λm

λ

�

− P0
ðδÞðαJÞ

�
λ0m
λm

λ

�
: ð96Þ

The aforementioned result for PαJðλÞ is very similar to
PðλÞ. Similar explanations can be provided for each term
in (94), akin to what we have done in the previous section.
We can also check that P and PαJ satisfy the consistent

relation (28). See Appendix E for the details.

D. A simple example of perturbation states

Let us consider the example studied in Sec. III A.
Suppose the density matrix ρ0 corresponds to the interval
with length l0, while the density matrix ρ ¼ ρ0 þ δρ
corresponds to the interval l ¼ l0 þ δl with δ ≪ l. Thus,
we can take δρ as perturbation and obtain

δSðnÞ ¼ c
6

�
1þ 1

n

�
δl
l0
; ð97Þ

δb ¼ b − b0 ¼
c
6

δl
l0
: ð98Þ

Now it is straightforward to obtain the function Pδ:

Pδðe−b0−tÞ ¼ L−1
�ð1 − nÞ

n
enb0eð1−nÞSðnÞðρ0ÞδSðnÞ

�
ðtÞ

¼ −
c
6

δl
l0

�ðb0 − tÞI1ð2
ffiffiffiffiffiffiffi
b0t

p Þffiffiffiffiffiffiffi
b0t

p þ δðtÞ
�
: ð99Þ

Further using (79), we have

PðλÞ ¼ P0

�
λ0m
λm

λ

�
− δbλP0

0

�
λ0m
λm

λ

�
− P0

δ

�
λ0m
λm

λ

�

¼ 1

λ

ffiffiffiffiffi
b0

p
I1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−b0 − log λ0
p þ δðλm − λÞ

þ c
6

δl
l0

�
I1

λ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið−b0 − log λ0Þb0

p þ I2
λ0

�
; ð100Þ

where λ0 ≔ λ0m
λm
λ. On the other hand, we can also expand

PðλÞ in (40) and keep the first order Oðδll0Þ. The result is the
same as (100). This can be seen as a consistent check of our
general result (79).
In this example, we can also check the number of

eigenstates (83). With some calculations, we have

nðe−b−tÞ ¼ n0ðe−b0−tÞ þ δbλP0ðe−b0−tÞ þ Pδðe−b0−tÞ

¼ n0ðe−b0−tÞ þ
ffiffi
t

p
I1ð2

ffiffiffiffiffiffiffi
b0t

p Þffiffiffiffiffi
b0

p δb; ð101Þ

where n0ðe−b0−tÞ ¼ I0ð2
ffiffiffiffiffiffiffi
b0t

p Þ. Let us consider the two
limits λ → 0 and λ → λm. We care about nð0Þ and nðλmÞ.
As expected, nð0Þ is divergent. Formally, we have

N ¼ nð0Þ− n0ð0Þ ¼ Pδð0Þ ¼ lim
t→∞

ffiffi
t

p
I1ð2

ffiffiffiffiffiffiffi
b0t

p Þffiffiffiffiffi
b0

p δb: ð102Þ

On the other hand, we also find

nðλmÞ ¼ n0ðλ0mÞ ¼ I0ð0Þ ¼ 1; ð103Þ

which is consistent with our previous discussion; the
number of maximal eigenvalues does not change at the
first-order perturbation. We anticipate that this outcome
holds true beyond the leading-order perturbation, owing
to the presence of a Dirac delta function δðλ − λmÞ in the
density of eigenstates PðλÞ. In this example, the maximal
eigenstate corresponds to the vacuum state on the annulus
following the conformal transformation (47). It is natural
for the vacuum state to be nondegenerate in this context.
Our results indicate that this nondegeneracy exhibits
robustness under first-order perturbations.

VI. GEOMETRIC STATES IN HOLOGRAPHIC
THEORY

In this section, our focus will be on holographic theory, a
framework wherein certain special states can be effectively
described by classical geometry in the semiclassical limit
G → 0. These states are referred to as geometric states.
In the semiclassical limit G → 0, quantum fluctuations are
suppressed. Certain nonlocal observables, such as entan-
glement entropy, may have a bulk geometric dual. Entan-
glement can be utilized as a probe to determine whether
a given state can be dual to bulk geometry. In fact,
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constructing states that cannot be dual to bulk geometry is
not a difficult task; refer to [33] for details.

A. The functions P and PαJ

The density of eigenstates P also has some interesting
features. By the formula (17), one has

Pðe−b−tÞe−b−t ¼ L−1½enbþð1−nÞSðnÞ � ¼ 1

2πi

Z
γ0þi∞

γ0−i∞
dnesn ;

ð104Þ

where

sn ≔ nðtþ bÞ þ ð1 − nÞSðnÞ: ð105Þ

One important feature of the geometric state is that the
Rényi entropy has a gravity dual and follows the area law
formula [34]:

n2∂n

�
n − 1

n
SðnÞ
�

¼ Bn

4G
; ð106Þ

where Bn denotes the area of the bulk codimension-2 brane.
The tension of the brane is related to the index n by
Tn ¼ n−1

4nG. In the limit n → 1, we would obtain the Ryu-
Takayanagi formula.
Note that, by the above holographic formula, one can see

that the Rényi entropy for the geometric state should be of
Oð1=GÞ. This permits us to use saddle point approximation
to evaluate the functions P and PαJ . By using saddle point
approximation and the holographic Rényi entropy formula,
one could derive

Pðe−b−tÞe−b−t ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

∂
2sn
∂n2 jn¼n�

s
e
Bn�
4G ; ð107Þ

where Bn� is the area of the cosmic brane with tension
μ ¼ n�−1

4Gn� and n
� is determined by the saddle point condition

∂nsnjn¼n� ¼ 0: ð108Þ

We can proceed with the evaluation of the function PαJ for
the geometric state. It needs to evaluate the inverse Laplace
transformation (22), that is,

PαJðe−b−tÞ ¼
1

2πi

Z
γ0þi∞

γ0−i∞
dnesαJ ;n ; ð109Þ

where

sαJ;n ≔ ntþ nbþ ð1 − nÞSðnÞ þ log
∂SðnÞ

∂αJ
þ log

1 − n
n

:

ð110Þ

For geometric states, we expect the Rényi entropy should
be of the order of Oð1=GÞ. Thus, in the semiclassical limit,
the last two logarithmic terms can be ignored. Therefore,
the saddle point approximation equation

∂nsαJ;n ≃ ∂nsn ¼ 0 ð111Þ

holds at the leading order of Oð1=GÞ. The solution is given
by n�. Taking n� back into sαJ;n, the function PαJðe−b−tÞ
can be approximated by

PαJðe−b−tÞ ≃
1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

∂
2sαJ ;n
∂n2 jn¼n�

vuut esαJ ;n� ∝ e
Bn�
4G
∂Sðn�Þ

∂αJ

1 − n�

n�
:

ð112Þ

Let us analyze the zero point of the function PαJ . The

function ∂SðnÞ
∂αJ

generally does not vanish except at certain
special values of αJ. For instance, consider αJ as the size of
the subsystem denoted by L. It can be demonstrated that,
for a pure state, ∂S

ðnÞ
∂L would vanish if L corresponds to half

of the entire system size; refer to the discussions in the next
section. Here, we assume that it is not at this critical point.
Therefore, the zero point of the function PαJ is given by
n� ¼ 1. The equation

∂nsnjn¼n�¼1 ¼ 0 ð113Þ

gives the solution t ¼ S − b or, equally, t ¼ S − S∞, where
S is entanglement entropy.
In Sec. IV B, we evaluate the function PL and discover

that its zero point is also determined by t ¼ S − b in the
large c limit. In fact, for a holographic theory, the central
charge c ∼Oð1=GÞ. Hence, the large c limit precisely
corresponds to the semiclassical limit. The zero point
of PL in the large c limit discussed in Sec. IV B serves
as a nontrivial validation of our general conclusion. It is
important to note that our findings in this section hold true
for arbitrary parameters αJ, except for the parameters c
or G. In the Refs. [16,17], the authors construct the so-
called fixed area state in CFTs. It is also noteworthy that the
fixed area state with t ¼ S − b is indeed quite special, as it
can be considered as an approximate state for the reduced
density matrix ρA in the large c limit. There might exist
profound connections between these intriguing results.

B. Higher dimension example

In [14], the authors consider the holographic Rényi
entropy for a sphere region in d-dimensional spacetime.
For the dual bulk theory being Einstein gravity, the holo-
graphic Rényi entropy is

SðnÞd ¼ n
n − 1

πVΣ

�
L̃
lP

�
d−1�

2 − xd−2n ð1þ x2nÞ
�
; ð114Þ
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where xn ¼ 1
dn ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2dn2 þ d2n2

p
Þ, VΣ denote the “co-

ordinate” volume of the hyperbolic plane, ld−1P ¼ 8πG, and
L̃2 gives the AdS curvature scale. Thus, we have

S ¼ lim
n→1

SðnÞd ¼ 2πVΣ

�
L̃
lP

�
d−1

;

b ¼ lim
n→∞

SðnÞd ¼ 2πVΣ

�
L̃
lP

�
d−1
�
1 −

d − 1

d

�
d − 2

d

�d−2
2

�
:

ð115Þ

SðnÞd can be rewritten as

SðnÞd ¼ n
n − 1

�
1 −

1

2
xd−2n ð1þ x2nÞ

�
S: ð116Þ

We care about the zero point of the function PαJ . In prin-
ciple, one could obtain the expression of PαJ by directly
computing the inverse Laplace transformation (22).
However, we cannot obtain an analytical result. Since we
are considering the holographic theory, one could use the
saddle point approximation. It can be found that the zero
point is given by t ¼ S − b. And further, by using (115), the
zero point can be written as

t ¼
��

1 −
d − 1

d

�
d − 2

d

�d−2
2

�
−1

− 1

�
b: ð117Þ

The corresponding zero point λ0 is given by

λ0 ¼ λ
ð1−d−1

d ðd−2d Þd−22 Þ−1
m ; ð118Þ

where λm ¼ e−b. If d ¼ 2, λ0 ¼ λ2m, which is consistent
with the result in Sec. III A. In the limit d → ∞, the zero

point λ0 → λmλ
1

e−1
m . It can be shown λ0 is a monotonically

increasing function of d. We plot the zero point λ0 as a
function of the dimension d in Fig. 4.

VII. ENTANGLEMENT ENTROPY
AND THE FUNCTIONS

In the preceding sections, we explored the properties of
functions like P, PαJ , and others. These functions inher-
ently encompass more information than just the entangle-
ment measure, such as the entanglement entropy. In this
section, our aim is to demonstrate how the properties of
these functions directly correlate with certain aspects of
entanglement entropy.

A. First derivative of entanglement entropy
with respect to the subsystem size

Recall the definition of entanglement entropy

S ¼ −
X
i

λi log λi: ð119Þ

The dependence of entanglement entropy on certain para-
meters is directly related to those functions we have
previously studied. Let us focus on the size of the
subsystem L. We have

∂S
∂L

¼ −
X
i

∂λi
∂L

log λi −
X
i

∂λi
∂L

;

¼ −
Z

λm

0

dλPLðλÞ log λ; ð120Þ

where we have used the fact
P

i
∂λi
∂L ¼ 0. Support the

function PL is given by the black line shown in Fig. 5,
which is similar to the example of a single interval in the
vacuum state on an infinite line (see Fig. 1). There is a zero
point λ0, PL > 0 for λ < λ0 and PL < 0 for λ0 < λ ≤ λm. It
can be shown that

∂S
∂L

¼ −
Z

λ0

0

dλPLðλÞ log λ −
Z

λm

λ0

dλPLðλÞ log λ

≥ −
Z

λ0

0

dλPLðλÞ log λ0 −
Z

λm

λ0

dλPLðλÞ log λ

¼
Z

λm

λ0

dλPLðλÞ log λ0 −
Z

λm

λ0

dλPLðλÞ log λ

¼
Z

λm

λ0

dλPLðλÞ log
λ0
λ
≥ 0; ð121Þ

where in the first step we use− log λ ≥ − log λ0 for 0 < λ <
λ0, in the second step we use

P
i
∂λi
∂L ¼

R λm
0 dλPLðλÞ ¼ 0,

and in the last step PL ≤ 0 and log λ0
λ ≤ 0 for λ0 ≤ λ ≤ λm.

FIG. 4. Illustration of the zero point λ varies with dimension d.
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While if the function PL is like the form of the red line in
Fig. 5, we can demonstrate, as previously done, that ∂S

∂L ≤ 0.
The above discussion shows that whether the entangle-

ment entropy S increases or decreases with the increase
of L depends on the characteristics of function PL. In
Sec. III B, we obtain the function PL for one interval with
length L on cylinder with circumference R. PL is taken as
the form of the black line in Fig. 5 for L < R

2
. This shows

that S is a monotonically increasing function of L in this
region, while S is monotonically decreasing function
of L in the region R

2
< L < R. There is a critical point

L ¼ R
2
, where ∂S

∂L ¼ 0. At this point we also have PL ¼ 0,
since cot π

2
¼ 0.

For one interval in arbitrary pure state, say, jψi, on a
cylinder, we have SðR − LÞ ¼ SðLÞ, which leads to

−S0ðR − LÞ ¼ S0ðLÞ: ð122Þ

Thus, one could obtain ∂S
∂L jL¼R

2
¼ 0. At the point L ¼ R

2
we

expect the function PL ¼ 0. By utilizing (122), one can
observe that the sign of ∂S

∂L differs between the two cases:
L < R

2
and L > R

2
. Hence, we anticipate that the functionPL

would resemble the black and red lines depicted in Fig. 5
for L < R

2
and L > R

2
, respectively. The above assertions can

be verified through specific explicit examples.
One more interesting example is one interval in thermal

state with β on cylinder with circumference R. For high-
temperature limit R=β, the gravity dual is described by
a Banãdos-Teitelboim-Zanelli black hole. By using the
RT formula, one could directly evaluate the holographic
entanglement entropy by choosing the global minimal
surface. It has been demonstrated that the holographic
entanglement entropy undergoes a phase transition at a
critical point L ¼ Lc. These two phases correspond to
distinct types of minimal surfaces, illustrated in Fig. 6.
For L < Lc, it is observed that S is a monotonically
increasing function of L, whereas for L > Lc, it behaves
as a monotonically decreasing function. Based on our
earlier discussions, we can conclude that, at the critical
point Lc, PLc

¼ 0. Consequently, the function PL serves as
a means to identify the phase transition of entanglement
entropy.

B. Second derivative of entanglement entropy
with respect to the subsystem size

In [35], the author introduce the so-called entropy c
function cðLÞ ≔ L ∂S

∂L. By the combination of the Lorentz

FIG. 5. Illustration of the function PL. The black line and red
line are two typical functions for PL. λ0 is the zero point of PL,
and λm is the maximal eigenvalue.

FIG. 6. (a) Shows two types of minimal surfaces γA and γAc ∪ γBH, which are shown in red and purple lines, respectively. We notice
that γA is homotopy with γAc ∪ γBH instead of γAc in this case. Since the result should take the minimum value in the extreme surfaces,
for L < Lc the S is given by γA, whereas for L > Lc the S is given by γAc ∪ γBH, which are shown in red and purple, respectively, in (b).
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symmetry and the strong subadditivity of entropy, it can be
shown that c0ðLÞ ≤ 0. This prompts us to consider the
quantity c0ðLÞ ¼ L ∂

∂L ðL ∂S
∂LÞ and its relation to the functions

PL, PL2 , and PL2
. By definition, we have

c0ðLÞ ¼ −L
X
i

∂λi
∂L

log λi

− L2

 X
i

∂
2λi
∂L2

log λi þ
X
i

�
∂λi
∂L

�
2

λ−1i

!

¼ −L
Z

λm

0

dλPL log λ

− L2

�Z
λm

0

dλPL2
log λþ

Z
λm

0

dλPL2λ−1
�
:

First, let us consider the contribution from the maximal
eigenvalue λm. Suppose the maximal eigenvalue is non-
degenerate. Its contribution is given by

− L
∂λm
∂L

log λm − L2

�
∂
2λm
∂L2

log λm þ
�
∂λm
∂L

�
2

λ−1m

�

¼ −L
�
1þ L

∂

∂L

��
∂λm
∂L

log λm

�
: ð123Þ

These terms come from the Dirac delta δðλ − λmÞ in the
functions PL, PL2 , and PL2

. Let us define the functions
without the Dirac delta terms by P̃L, P̃L2 , and P̃L2

.
Generally, the functions can be written as

PL ¼ P̃L þ ∂λm
∂L

δðλm − λÞ;

PL2 ¼ P̃L2 þ
�
∂λm
∂L

�
2

δðλm − λÞ;

PL2
¼ P̃L2

þ ∂
2λm
∂L2

δðλm − λÞ: ð124Þ

By using (E1) with αJ ¼ L, the contribution from other
eigenvalues is given by

− L
Z

λm

0

dλP̃L log λ − L2

Z
λm

0

dλ
∂P̃L

∂L
log λ

− L2P̃L2 log λjλm0 ; ð125Þ

where the last term is the boundary term at the eigenvalues
λm and 0. In summary, c0ðLÞ can be expressed as

c0ðLÞ ¼ −L
Z

λm

0

dλ

�
1þ L

∂

∂L

�
PL log λ

− L2P̃L2 log λjλm0 : ð126Þ

Let us consider the boundary term limλ→0L2P̃L2 log λ,
which can be determined by studying the behavior of PL2

as λ approaches zero. However, our knowledge about the
properties of this function is limited. An explicit example
might be found in the case of a single interval in the vacuum

state [see (III A)]. Using Eq. (45), we find that PL2ðλÞ ∼
λðlog λÞ2e2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−b log λ

p
as λ approaches zero. For this particu-

lar example, we observe that limλ→0L2P̃L2 log λ ¼ 0.
Starting from (123), c0ðLÞ can be expressed as an integra-
tion involving functions PL2 . Convergence of this integra-
tion is expected, given that c0ðLÞ is generally finite.
This expectation implies that

R
ϵ
0 dλPL2λ−1 should yield a

constant for any positive ϵ, ensuring convergence. Con-
sequently, we obtain PL2ðϵÞϵ−1 → C, where C is a con-
stant. Consequently, we derive

L2lim
λ→0

P̃L2ðλÞ log λ¼ L2lim
λ→0

P̃L2ðλÞλ−1λ log λ→ 0: ð127Þ

The other boundary term −L2P̃L2ðλmÞ log λm is typically
nonzero. Since we have 0 ≤ PL2 and 0 < λm < 1, this term
is positive.
The integration part in (126) closely resembles (120)

when replacing PL with Lð1þ L ∂

∂LÞPL. Similar to our
approach in the previous section, the nature of Lð1þ
L ∂

∂LÞPL is intricately connected to the sign of the integra-
tion result.

VIII. CONCLUSION AND DISCUSSION

In this paper, we introduce a series of functions designed
to characterize the dependence of the entanglement spec-
trum on parameters. These functions bear resemblance to
the density of eigenstate P extensively discussed in prior
literature. Our novel functions, such as PαJ and PαJ1αJ2 ,

encapsulate crucial information regarding ∂λi
∂αJ

and ∂
2λi

∂αJ1∂αJ2
.

The evaluation of these functions can be accomplished
through the utilization of Rényi entropy. Notably, functions
of the same order exhibit intriguing relationships, e.g.,
Eq. (E1). Furthermore, we demonstrate that these relation-
ships can be derived from their definitions in Sec. II B.
However, our study reveals limitations in obtaining all
these functions solely through the inverse Laplace trans-
formation method employed in this paper. It appears that
alternative methodologies or additional information beyond
Rényi entropy may be necessary to obtain a complete set of
these functions. We will delve into exploring these avenues
in the near future.
If we make the additional assumption that the derivative

of a given eigenvalue λi with respect to αJ remains a
function of λi, i.e.,

∂λi
∂αJ

¼ fðλi; αJÞ, an intriguing differential
equation (33) governing λi can be derived. Solving this
differential equation enables the reconstruction of the form
of λi. In our examination of a single interval within a
vacuum state, we explicitly demonstrate how to derive the
dependence of λi on the subsystem size L using the
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functions P and PL. Remarkably, this outcome aligns with
the methodology involving the mapping of the modular
Hamiltonian to a cylinder, presenting an interesting appli-
cation of these functions. However, it is crucial to highlight
a significant limitation in this process. The assumption that
∂λi
∂αJ

¼ fðλi; αJÞ may not hold universally across all scenar-
ios. Care must be exercised when employing this
assumption. An intriguing avenue for exploration involves
relaxing this assumption, such as considering whether ∂λi

∂αJ
depends on all the eigenvalues. Yet, pursuing this route
ultimately leads to a series of complex partial differential
equations that prove challenging to solve. Obtaining the
exact form of eigenvalues of entanglement Hamiltonian in
QFTs remains an extremely challenging problem. While
our current findings are constrained, we anticipate that our
framework serves as a potential method to reconstruct the
eigenvalues of the entanglement Hamiltonian using Rényi
entropy.
In several instances, the Rényi entropy can be obtained

using replica methods. Our paper showcases various
examples illustrating how to derive the functions intro-
duced in our study. These instances encompass scenarios
such as a single interval in a vacuum state, arbitrary states
for a short interval in two-dimensional CFTs, perturbation
states in the general case, and holographic QFTs. Our
primary focus lies on understanding the functions P and
PαJ within these examples.
Calculations in two-dimensional CFTs yield straight-

forward results. For perturbation states, we obtain exact
expressions at the leading order of the perturbation. The
final forms of P and PαJ offer insightful explanations.
These results become applicable when the Rényi entropy of
the perturbation state is known.
In the context of holographic theory, a fascinating

finding arises for the function PαJ. In the semiclassical
limit G → 0, where G represents the gravitational constant,
the zero point of this function is identified as λ0 ¼ e−S

or t0 ¼ S − S∞. Here, S denotes the EE, and S∞ signifies
the minimal entropy, defined as S∞ ≔ limn→∞SðnÞ.
Intriguingly, the value of λ0 or t0 also emerges in the
approximated state for ρA constructed in [16]. In that work,
the author observes the density of eigenstates approaching a
Dirac delta function at the value t0 ¼ S − S∞. While the

relationship between these two findings remains elusive,
they signify distinct features of the geometric states in holo-
graphic theory. Specifically, the entanglement spectra of
these geometric states exhibit peculiar properties near the
value t0. Further exploration into this phenomenon is
planned for our future investigations.
The functions introduced in our study are intricately

connected to the Rényi entropy and its derivatives through
Laplace transformations. In principle, they should equate
to the Rényi entropy since the Laplace transformation is
reversible. One might question the necessity of investigating
these functions. This parallels the field of signal processing,
where Fourier or Laplace transformations are employed to
convert signals into the dual space. Occasionally, the signal
in the dual space offers more intuitive insights. Similarly,
while the Rényi entropy encapsulates rich information
regarding entanglement spectra, the functions we introduced
serve as a method to extract this entanglement spectrum
information.
The functions associated with λ or t can be viewed as the

dual space counterparts of the Rényi index n. Specifically,
in the context of holographic theory, these functions have
proven useful in comprehending fixed area states and QEC
codes for AdS/CFT [17]. Particularly, these functions in the
dual space are anticipated to hold significant applications
in elucidating the properties of geometric states. They offer
an alternative perspective to understand and explore the
intricacies of entanglement spectra that might not be readily
apparent from the Rényi entropy alone.
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APPENDIX A: DETAILS OF THE
CALCULATIONS FOR GENERAL SETUP

1. The proof of general relation (30)

The proof is straightforward by using the definition and
property of delta function, which is shown as follows:

∂

∂αK
PðαJ11…αJ1m1

ÞðαJ21…αJ2m2
Þ…ðαJn1…αJnmn

Þ ¼
∂

∂αK

X
i

∂
m1λi

∂αJ11…∂αJ1m1

∂
m2λi

∂αJ21…∂αJ2m2

� � � ∂
mnλi

∂αJn1…∂αJnmn

δðλi − λÞ

¼
X
i

∂
m1þ1λi

∂αJ11…∂αJ1m1
∂αK

∂
m2λi

∂αJ21…∂αJ2m2

� � � ∂
mnλi

∂αJn1…∂αJnmn

δðλi − λÞ

þ
X
i

∂
m1λi

∂αJ11…∂αJ1m1

∂
m2þ1λi

∂αJ21…∂αJ2m2
∂αK

� � � ∂
mnλi

∂αJn1…∂αJnmn

δðλi − λÞ þ � � �
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þ
X
i

∂
m1λi

∂αJ11…∂αJ1m1

∂
m2λi

∂αJ21…∂αJ2m2

� � � ∂
mnþ1λi

∂αJn1…∂αJnmn
∂αK

δðλi − λÞ

þ
X
i

∂
m1λi

∂αJ11…∂αJ1m1

∂
m2λi

∂αJ21…∂αJ2m2

� � � ∂
mnλi

∂αJn1…∂αJnmn

∂

∂αK
δðλi − λÞ

¼
X
i

∂
m1þ1λi

∂αJ11…∂αJ1m1
∂αK

∂
m2λi

∂αJ21…∂αJ2m2

� � � ∂
mnλi

∂αJn1…∂αJnmn

δðλi − λÞ

þ
X
i

∂
m1λi

∂αJ11…∂αJ1m1

∂
m2þ1λi

∂αJ21…∂αJ2m2
∂αK

� � � ∂
mnλi

∂αJn1…∂αJnmn

δðλi − λÞ þ � � �

þ
X
i

∂
m1λi

∂αJ11…∂αJ1m1

∂
m2λi

∂αJ21…∂αJ2m2

� � � ∂
mnþ1λi

∂αJn1…∂αJnmn
∂αK

δðλi − λÞ

þ
X
i

∂
m1λi

∂αJ11…∂αJ1m1

∂
m2λi

∂αJ21…∂αJ2m2

� � � ∂
mnλi

∂αJn1…∂αJnmn

∂λi
∂αK

�
�
−

∂

∂λ
δðλi − λÞ

�

¼ PðαJ11…αJ1m1
αKÞðαJ21…αJ2m2

Þ…ðαJn1…αJnmn
Þ þ PðαJ11…αJ1m1

ÞðαJ21…αJ2m2
αKÞ…ðαJn1…αJnmn

Þ þ � � �

þ PðαJ11…αJ1m1
ÞðαJ21…αJ2m2

Þ…ðαJn1…αJnmn
αKÞ −

∂

∂λ
PðαJ11…αJ1m1

ÞðαJ21…αJ2m2
Þ…ðαJn1…αJnmn

ÞðαKÞ: ðA1Þ

2. The formula derivation of (37) PαmJ
and (38) PαJm

The derivation of PαmJ
is trivial, with our assumption

∂λi
∂αJ

¼ fðλi; αJÞ:

PαmJ
ðλÞ ¼

X
i

�
∂λi
∂αJ

�
m
δðλi − λÞ

¼ fðλ; αJÞmPðλÞ: ðA2Þ

Since the case where m ¼ 2 for PαJm we have already
deduced, the case of m > 2 can be proved by mathematical
induction. Since we assume that the formula holds for
m − 1, we have

PαJm−1
ðλÞ ¼ Dm−2fðλ; αJÞ

Dαm−2
J

PðλÞ;

PαJm−1
ðλÞ ¼ gðλ; αJÞPðλÞ;X

i

dm−1

dαm−1
J

fðλi; αJÞδðλi − λÞ ¼
X
i

gðλi; αJÞδðλi − λÞ;

dm−1

dαm−1
J

fðλi; αJÞ ¼ gðλi; αJÞ; ðA3Þ

where we define

gðλ; αJÞ ≔
Dm−2fðλ;αJÞ

Dαm−2
J

: ðA4Þ

So, in the case of m, we have

PαJmðλÞ ¼
X
i

d
dαJ

dm−1

dαm−1
J

fðλi; αJÞδðλi − λÞ;

PαJmðλÞ ¼
X
i

d
dαJ

gðλi; αJÞδðλi − λÞ

¼
X
i

�
∂gðλi; αJÞ

∂λi

∂λi
∂αJ

þ ∂gðλi; αJÞ
∂αJ

�
δðλi − λÞ

¼
X
i

�
∂gðλi; αJÞ

∂λi
fðλi; αJÞ þ

∂gðλi; αJÞ
∂αJ

�
δðλi − λÞ

¼
�
∂gðλ; αJÞ

∂λ
fðλ; αJÞ þ

∂gðλ; αJÞ
∂αJ

�X
i

δðλi − λÞ

¼ Dgðλ; αJÞ
DαJ

PðλÞ

¼ Dm−1fðλ; αJÞ
Dαm−1

J
PðλÞ: ðA5Þ

APPENDIX B: CONSISTENT CHECK
OF THE FUNCTIONS FOR

VACUUM STATE

In the main text, we obtain the functions P and Pl for the
one interval in the vacuum state of CFTs. In this section, we
would like to check the consistent relation (28). Since
t ¼ −b − log λ, we have ∂t

∂L ¼ − ∂b
∂L, so
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∂

∂L
PðλÞ ¼ 1

λ

∂

∂L

� ffiffiffi
b

p
I1ð2

ffiffiffiffiffi
bt

p Þffiffi
t

p þ δðtÞ
�

¼ 1

λ

�
∂

∂b

� ffiffiffi
b

p
I1ð2

ffiffiffiffiffi
bt

p Þffiffi
t

p
�
∂b
∂L

þ ∂

∂t

� ffiffiffi
b

p
I1ð2

ffiffiffiffiffi
bt

p Þffiffi
t

p
�

∂t
∂L

�
þ 1

λ

∂t
∂L

δ0ðtÞ

¼ 1

λ

�
c
6L

�
I1ð2

ffiffiffiffiffi
bt

p Þ
2
ffiffiffiffiffi
bt

p þ 1

2
ðI0ð2

ffiffiffiffiffi
bt

p
Þþ I2ð2

ffiffiffiffiffi
bt

p
ÞÞ
�
−

c
6L

�
bðI0ð2

ffiffiffiffiffi
bt

p Þþ I2ð2
ffiffiffiffiffi
bt

p ÞÞ
2t

−
ffiffiffi
b

p
I1ð2

ffiffiffiffiffi
bt

p Þ
2t3=2

��
−

c
6L

1

λ
δ0ðtÞ

¼ 1

λ

c
6L

I1ð2
ffiffiffiffiffi
bt

p Þ
2
ffiffiffiffiffi
bt

p þ 1

λ

c
6L

ffiffiffi
b

p
I1ð2

ffiffiffiffiffi
bt

p Þ
2t3=2

þ 1

λ

c
6L

1

2

t− b
t

ðI0ð2
ffiffiffiffiffi
bt

p
Þþ I2ð2

ffiffiffiffiffi
bt

p
ÞÞ− 1

λ

c
6L

δ0ðtÞ; ðB1Þ

−
∂

∂λ
PLðλÞ ¼

∂

∂λ
×

c
6L

�ðb− tÞI1ð2
ffiffiffiffiffi
bt

p Þffiffiffiffiffi
bt

p þ δðtÞ
�

¼ c
6L

∂

∂t

�ðb − tÞI1ð2
ffiffiffiffiffi
bt

p Þffiffiffiffiffi
bt

p
�
∂t
∂λ

þ c
6L

∂t
∂λ

δ0ðtÞ

¼ 1

λ

c
6L

I1ð2
ffiffiffiffiffi
bt

p Þ
2
ffiffiffiffiffi
bt

p þ 1

λ

c
6L

ffiffiffi
b

p
I1ð2

ffiffiffiffiffi
bt

p Þ
2t3=2

þ 1

λ

c
6L

×
1

2

t− b
t

�
I0ð2

ffiffiffiffiffi
bt

p
Þþ I2ð2

ffiffiffiffiffi
bt

p
Þ�− 1

λ

c
6L

δ0ðtÞ
¼ left: ðB2Þ

On the other hand, since we have (40), let us rewrite

PLðλÞ ¼ −
c
6L

�ðb − tÞI1ð2
ffiffiffiffiffi
bt

p Þffiffiffiffiffi
bt

p þ δðtÞ
�
¼ −

c
6L

PαJðλÞ;

PcðλÞ ¼ −
logL
6

�ðb − tÞI1ð2
ffiffiffiffiffi
bt

p Þffiffiffiffiffi
bt

p þ δðtÞ
�

¼ −
logL
6

PαJðλÞ; ðB3Þ

so we have

∂

∂c
PLðλÞ ¼ −

1

6L
PαJðλÞ −

c
6L

logL
6

∂

∂b
PαJðλÞ;

∂

∂L
PcðλÞ ¼ −

1

6L
PαJðλÞ −

logL
6

c
6L

∂

∂b
PαJðλÞ

¼ ∂

∂c
PLðλÞ: ðB4Þ

APPENDIX C: RECONSTRUCTION
OF THE EIGENVALUE

In Sec. III C, we use a further assumption that ∂λi
∂L ¼ fðλiÞ

and the functions P and PL to reconstruct the eigenvalues
of ρA. In principle, one could also choose other para-
meters, such as c. But one would obtain the wrong results
as we will show below. Using (40) and the assumption
∂λi
∂c ¼ fðλiÞ, we have

∂λi
∂c

¼ − log λi − 2b
b

logL
6

λi; ðC1Þ

which can be solved as

λi ¼ e−
C̃i
c −b; ðC2Þ

where C̃i are constants unrelated to c. This is inconsistent

with the form e−
Δi−

c
24

W −b that is derived in Sec. III D. By the
normalization of ρA, we have

X
i

e−
Δi−

c
24

W −b ¼ 1: ðC3Þ

Using this, one could find that ∂Δi
∂c should satisfy the

constraint

X
i

∂Δi

∂c
e−

Δi
W ¼ −Web−

c
24W

�
∂b
∂c

−
1

24W

�
; ðC4Þ

which means ∂Δi
∂c is not only a function ofΔi but depends on

other Δj (j ≠ i). Therefore, the assumption ∂λi
∂c ¼ fðλiÞ is

incorrect.

APPENDIX D: DETAILS OF THE
CALCULATIONS FOR SHORT INTERVAL

For the thermal state, we have

hTiβ ¼ hT̄iβ ¼ −
π2c
6β2

; hAiβ ¼ hĀiβ ¼ π4cð5cþ 22Þ
180β4

:

ðD1Þ

Thus, we obtain

k2 ¼
π2c
36β2

; k4 ¼ −
11π4c
12960β4

; k04 ¼ −
π4c

12960β4
:

ðD2Þ

Taking the above results into (55), we have
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P ¼ λ−1
� ffiffiffiffiffi

b0
p ffiffi

t
p I1 þ δðtÞ þ ðk2l2 þ ð2k4 − 10k04Þl4ÞI0

þ 1

2
k22l

4

ffiffi
t

pffiffiffiffiffi
b0

p I1

�

¼ λ−1
� ffiffiffiffiffi

b0
p ffiffi

t
p I1 þ δðtÞ þ

�
π2c
36β2

l2 −
π4c

1080β4
l4
�
I0

þ π4c2

2596β4
l4

ffiffi
t

pffiffiffiffiffi
b0

p I1

�
; ðD3Þ

where the argument of In is 2
ffiffiffiffiffiffiffi
b0t

p
, the same as below. The

Rényi entropy of the thermal state is given by

SðnÞ ¼ c
6

�
1þ 1

n

�
log

�
β

πϵ
sinh

�
πl
β

��
; ðD4Þ

so we can get P by

P0 ¼ λ−1L−1½enbTþð1−nÞSðnÞT �

¼ 1

λ

� ffiffiffiffiffi
bT

p
I1ð2

ffiffiffiffiffiffiffi
bTt

p Þffiffi
t

p þ δðtÞ
�

ðD5Þ

with

bT ¼ c
6
log
�
β

πϵ
sinh

�
πl
β

��
: ðD6Þ

Expanding P0 up to the order ð lβÞ4, we find

P0 ¼ λ−1
� ffiffiffiffiffi

b0
p ffiffi

t
p I1 þ δðtÞ þ cπ2ðI1 þ

ffiffiffiffiffiffiffi
b0t

p
I2Þl2

36β2
ffiffiffiffiffiffiffi
b0t

p

þ ½5π4c2tI1 − 12π4cðI1 þ
ffiffiffiffiffiffiffi
b0t

p
I2Þ�l4

12960β4
ffiffiffiffiffiffiffi
b0t

p
�

þOðl5Þ: ðD7Þ

By using the relation In−1ðxÞ − Inþ1ðxÞ ¼ 2nInðxÞ
x , we have

I0ð2
ffiffiffiffiffiffiffi
b0t

p
Þ − I2ð2

ffiffiffiffiffiffiffi
b0t

p
Þ ¼ 2I1ð2

ffiffiffiffiffiffiffi
b0t

p Þ
2
ffiffiffiffiffiffiffi
b0t

p ;

I1ð2
ffiffiffiffiffiffiffi
b0t

p
Þ þ

ffiffiffiffiffiffiffi
b0t

p
I2ð2

ffiffiffiffiffiffiffi
b0t

p
Þ ¼

ffiffiffiffiffiffiffi
b0t

p
I0ð2

ffiffiffiffiffiffiffi
b0t

p
Þ: ðD8Þ

Thus, we find

P0 ¼ λ−1
� ffiffiffiffiffi

b0
p ffiffi

t
p I1 þ δðtÞ þ

�
π2c
36β2

l2 −
π4c

1080β4
l4
�
I0

þ π4c2

2596β4
l4

ffiffi
t

pffiffiffiffiffi
b0

p I1

�
¼ P: ðD9Þ

One could also check the results for Pl by the same
method.

APPENDIX E: CONSISTENT CHECK
OF THE FUNCTIONS FOR PERTURBATION

STATES

Before checking the relation (23) of (79) and (94), we
want to find the relation between Pδ and PðδαJÞ and PðδÞðαJÞ
first. By the definitions, we have

∂

∂αJ
PδðλÞ ¼

∂

∂αJ

X
i

δλiδðλ0i − λÞ

¼
X
i

∂δλi
∂αJ

δðλ0i − λÞ þ
X
i

δλi
∂λ0i
∂αJ

δ0ðλ0i − λÞ

¼ PðδαJÞðλÞ −
∂

∂λ
PðδÞðαJÞðλÞ: ðE1Þ

By using (79), (94), and (E1),

∂

∂αJ
PðλÞ ¼ ∂

∂αJ

�
P0

�
λ0m
λm

λ

�
− δbλ

∂P0

∂λ

�
λ0m
λm

λ

�
−
∂Pδ

∂λ

�
λ0m
λm

λ

��

¼ ∂P0

∂αJ

�
λ0m
λm

λ

�
þ
∂P0ðλ

0
m
λm
λÞ

∂
λ0m
λm
λ

∂
λ0m
λm
λ

∂αJ
−
∂δb
∂αJ

λ
∂P0

∂λ

�
λ0m
λm

λ

�
− δbλ

∂
2P0

∂λ∂αJ

�
λ0m
λm

λ

�

þO

�
δρ2Þ − ∂

2Pδ

∂λ∂αJ

�
λ0m
λm

λ

�
þOðδρ2Þ

¼ −
∂P0

αJ

∂λ

�
λ0m
λm

λ

�
þ δbλ

∂
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