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Parameter dependence of entanglement spectra in quantum field theories
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In this paper, we explore the characteristics of reduced density matrix spectra in quantum field theories.
Previous studies mainly focus on the function P(1) :== Y, 6(4 — 4;), where 4; denote the eigenvalues of the
reduced density matrix. We introduce a series of functions designed to capture the parameter dependencies
of these spectra. These functions encompass information regarding the derivatives of eigenvalues

concerning the parameters, notably including the function P, (1) = Zi%é(/l — 4;), where a; denotes
the specific parameter. Computation of these functions is achievable through the utilization of Rényi
entropy. Intriguingly, we uncover compelling relationships among these functions and demonstrate their
utility in constructing the eigenvalues of reduced density matrices for select cases. We perform
computations of these functions across several illustrative examples. Especially, we conducted a detailed
study of the variations of P(1) and P,, () under general perturbation, elucidating their physical impli-
cations. In the context of holographic theory, we ascertain that the zero point of the function P, (2)
possesses universality, determined as 4, = e~5, where S denotes the entanglement entropy of the reduced
density matrix. Furthermore, we exhibit potential applications of these functions in analyzing the properties

of entanglement entropy.
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I. INTRODUCTION

Entanglement has emerged as a novel tool for discerning
the structure of quantum field theories (QFTs) in recent
years. Typically, various measures are introduced to quan-
tify entanglement, with one of the most extensively studied
being the entanglement entropy (EE). In certain QFTs, the
entanglement entropy can be computed either analytically
or numerically [1-6]. EE characterizes the quantum
correlations between different types of spatial regions
within field theory. Interestingly, within the framework
of AdS/CFT [7-9], entanglement entropy has been found to
be related to minimal surfaces in the dual spacetime,
following a law similar to the area law observed in black
holes [10,11].

By partitioning the entire system into two parts, denoted
as A and its complementary A, one can introduce the
reduced density matrix p, := trzp, where p represents the
density matrix of the system. EE can then be considered as
a function of p,, defined as the von Neumann entropy
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S(pa) = —trpy logps. In QFTs, the replica method via
Euclidean path integrals is commonly employed to evaluate
EE. It is necessary to initially compute the Rényi entropy,
defined as

" log trp’}
s )(PA) = an’ (1)

for a positive integer n. After analytically continuing n to
complex numbers, the entanglement entropy is expressed
as S(pA) - 1imn—>ls<n)(pA)‘

In QFTs, the trace in p4 = trjp is typically considered a
formal definition. Unlike in finite-dimensional examples,
obtaining p, directly through the trace operation seems
unfeasible. Nevertheless, it is apparent that p, encompasses
the complete information of the subsystem A. Conse-
quently, reconstructing p, using entanglement measures
becomes a significant area of investigation.

The spectra of p, is studied in many-body system as
a new topological order [12]. In two-dimensional con-
formal field theories (CFTs), the entanglement spectra can
also be obtained using Rényi entropy [13]; see also [14].
In [15,16], the authors further investigate the entanglement
spectra for the theory with holographic dual. An interesting
result is that there exists an approximated state for any
given states with holographic dual. Using the spectra
decomposition, it is also possible to construct the so-called
fixed area states in CFTs [17]. The approximated state, as

Published by the American Physical Society


https://orcid.org/0000-0002-9353-1075
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.086016&domain=pdf&date_stamp=2024-04-15
https://doi.org/10.1103/PhysRevD.109.086016
https://doi.org/10.1103/PhysRevD.109.086016
https://doi.org/10.1103/PhysRevD.109.086016
https://doi.org/10.1103/PhysRevD.109.086016
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

WU-ZHONG GUO and JIN XU

PHYS. REV. D 109, 086016 (2024)

we mentioned above, can be understood as one special
fixed area state. The fixed area states are introduced
in [18,19] motivated by the similarity between AdS/CFT
and quantum error correction (QEC) code [20]. Hence, the
entanglement spectra of p, holds significance in compre-
hending the entanglement structure of QFTs, alongside
elucidating the relationship between geometry and entan-
glement. There are also many studies on entanglement
spectra in various directions; see, e.g., [21-26].

Generally, the Rényi entropy S (p,) encapsulates
information about the spectra present within the reduced
density matrix p,. Numerous studies have investigated
methods to obtain the density of the spectrum from Rényi
entropy. For a specific theory and subsystem A, S (p,) is
anticipated to depend on dimensional or dimensionless
parameters, such as the subsystem’s size, time, and cou-
pling constants of the theory. It is presumed that the spectra
would be related to these parameters. Nevertheless, the
density of the eigenvalues may not adequately capture the
parameter-dependent nature of the spectrum.

In this paper, we introduce a series of functions designed
specifically to accomplish this objective; see details of the
definitions in Sec. II. Roughly, the density of eigenvalues
represents the probability distribution of the eigenvalues.
The functions presented in this paper aim to capture the
changes in eigenvalues concerning a specific parameter.
For example, we introduce the function

Py (2) = 32602, - 4), 2)

7 50{J

where a; is any parameter. The function P, can be taken
as the average value of (% at the eigenvalue 1. These

functions can be computed using the Rényi entropy,
enabling an examination of the eigenvalue variations.
Additionally, we uncover intriguing relationships among
these functions. If the eigenvalues of p, satisfy more
conditions, we can demonstrate the possibility of recon-
structing the form of the eigenvalues using the results
obtained from these functions. This has been carried out for
a single interval in the vacuum state of two-dimensional
CFTs. The eigenvalues obtained by our method are con-
sistent with the known results.

We have calculated these functions in several examples
within two-dimensional CFTs, including scenarios such as
the single interval in the vacuum state, short intervals in
arbitrary states, and obtaining a general result for the
perturbation state p + dp. Based on these results, we have
discussed the inherent properties of these functions.
Additionally, we have made interesting observations
regarding theories with a holographic dual. In the semi-
classical limit, it has been found that the zero point
of P,,(4) is given by Ay = e~5, where S is the EE for
pa- This particular value also appears in [16], where an

approximated state for p, is constructed within the semi-
classical limit. However, the relationship between these two
results remains unclear.

We also delve into the potential application of these
functions in characterizing the phase transition of EE. It has
been observed that the shape of the function P, does
indeed mirror the variations in EE concerning the param-
eter. Our paper merely establishes a framework for studying
the parameter dependence of the entanglement spectra in
QFTs. On this basis, there exist numerous intriguing
questions worthy of exploration.

The remainder of the paper is organized as follows.
Section II introduces a series of functions, including P and
P, which describe the entanglement spectra along with
their parameter dependencies and discusses their proper-
ties. Following this, Sec. III presents the calculation of P
and P; in the vacuum state of 2D CFTs as an illustrative
example. In Sec. IV, we delve into the calculation for an
arbitrary state of 2D CFTs with a short interval. Notably, it
reveals a shift in the zero point of P; compared to the
vacuum state. Section V examines the scenario where the
density matrix experiences a perturbation, denoted as
p = po + op. This section investigates the alterations in
P and P,, subsequent to the perturbation. We also provide
explanations for each term in the obtained results. In
Sec. VI, the paper explores the computation of P and
P,, in holographic theory, employing the saddle point
approximation. Furthermore, it discusses the zero point of
P,, within this context and find a universal result of the
zero point. Section VII extends the discussion to analyze
the derivative of entanglement entropy using the function
P,,. Finally, Sec. VIII presents the concluding remarks.
Detailed calculations are provided in the appendixes.

II. GENERAL SETUP

Assume the spectra of p, are {4;}. We can define the
spectra density as

’P(/'L) = Z(S(ﬂl - /1) (3)

Roughly, it can be understood as the number of degenerate
eigenstates for the eigenvalue A.
By the definition, it is easy to know that it has property

T rwP@aL =Y (2). )

For example, when f(1) = 4, [TXAP(A)dA =>4 = 1;
when f(1) = =4 logA, [T —Alog AP(A)dA ==Y, 4; X
log A4; = S 4. From the above example, it can also be seen
that, when we obtain P(4), the entanglement entropy S 4
can be easily calculated, so it can be seen that the
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information of the entanglement spectra is greater than the
entanglement entropy.

Notice in {4;}, 4; > 0 and there is a maximum eigen-
value 4,,, so we can rewrite (4) to

j’l7l
/ FA)P(
0

Generally, the eigenvalue 4; can be taken as functions of
some parameters denoted by {a;}. To characterize the
relation we would like to introduce and explore a new
quantity

Jda = f(k). (5)

Po,(4) = Z %5(1,- -2). (6)

The function P, (1) := ij(g(;)

value of 0(1; for the eigenvalue A. It is obvious that we should

can be taken as the average

have the constraint

/ " dAP,,(2) =0, (7)
0

where 4,, is the maximal eigenvalue of p,. The above
constraint comes from the normalization of the reduced
density matrix. We also have interest at

—Z(M 54 — A), (8)

PW=-§;(§3)ma&—x» )

for the integer m.
Most generally, we can also define the following
quantities:

om,
P(aj”...(ljlml)..,((ljnlmajnmn):: Zaal .“aaj
amﬁl<
d o4, —4), (10
dal 50{] ( ! ) ( )

nl nmpy

for given integer n and {m,...m,}. We can define the
order N of the functions by counting the power of the
derivatives, N = >"" , m;.

Especially, we can get

o2
Paj] Oy, = P(a-’l "'a/m) = Zfé(ﬂl B A)’ (11)

o o
Play,)..ls,) = Zaaj g, Oi=A (1)
1 1 m

for a given integer m. When a;, = a;, =--- =aq,
(11) becomes (8), and (12) becomes (9).

By the definition, the above functions are determined
once all the eigenvalues are given. But in most cases,
especially examples in QFTs, we have very limited infor-
mation about the eigenvalues. Our motivation to define
these functions is to gain more information on the dis-
tribution and parameter dependence of the eigenvalues.
These functions appear to be independent, but we will
demonstrate later that there are connections between them,
which are implicit in their definitions.

:aj,

m

A. Relations among the functions

All the functions that we defined in the last section can
be evaluated by the Rényi entropy. Recall the definition of
Rényi entropy

S —

1
log Tr ", =
—log Trup)

1
log S (13
_nogzi:, (13)

By using the property (5), the above equation can be
rewritten as

S = el

A —n)Sn)

> s - Ada = =S,
i 0

A
/ PP
0

Compare the form of Laplace transformation:

eI=ns", (14)

cvmw=A“wvmm. (15)

We find that the above formula (14) is similar to the form of
Laplace transformation (15). For further calculation, let
A= e where b = —log4,,.

Actually, from (13) we have b = lim,_, ., S"). By using
the above replacement, it is easy to know 1 =0 corre-
sponding ¢t = oo and A = 4,, corresponding ¢ = 0, so (14)
becomes

L[P(e7r")e ] = ell-nS" end, (16)
By using inverse Laplace transformation, we can obtain the
density of eigenvalue P:

fp( —b— t) — )lp-t [ nb+(1- n)S(”>]’ (17)

where £7! is defined as
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£(1) = LV F(n)] = / " Fnyerdn  (18)

271 Jyy-ico

and y, is chosen for the convergence of the integration.
So we can say that density of eigenvalue P and Rényi
entropy S are each other’s (inverse) Laplace trans-
formation.
If taking derivative with respect to @; for both sides of
the above equation (13), we have

o, as™)
Z 1 2= (1-n)

(1=n)s™ 19
7 aaj aal ¢ ' ( )

By using the definition (6), the above equation can be
rewritten as

I 08 "
/ din"'"P, (1) = (1 —n) e1-ms™ (20)
0 ! oa; ©
Let A = e7"~, where b = —log,,, and we have
/oo dte=""P (e—b—t) _ l-n enb+(1-n)st oS 1)
0 “ n da;

Similar as the case for density of eigenvalue P (17), one
could evaluate P,, by using inverse Laplace transforma-
tion, that is,

enb-‘r(l n)st aS(n) )
n da;

Py, (e77) = 7! (22)

Note that the expression in the square brackets is a function
of n. One could obtain 7 and P, once knowing the Rényi
entropy S,

By using the property of inverse Laplace transformation,
one could derive the relations between the functions. Using
(17) and (22), we find

oP(2) _ 0P, (A) ' (23)
oa; 04
Further taking derivative with respect to a; for both sides
of (19), other quantities (8) and (9) would appear. One
could obtain these quantities by a similar method as above.
For example, taking twice derivative we would obtain

no*; &
— 1A A" el1=ms",
Zn(n Vi (005]) +Z da3 TR

L

(24)

Similarly, we will have

. A
/ nn = 1)I2P o (2)d + / ni =P, (3)da
0 0
2
_ 9 — =S, (25)

By using the property of inverse Laplace transformation
and (22), we find

0P,
da; 0 0A

apaz
i (26)

For higher power we can also obtain similar relations, as we
will show in the next section.

B. Consistent with definition

In fact, the relations of the functions are also consistent
with the definition of these functions. By the definition of
‘P, taking derivative with respect to «; for P we have

an—Z—éﬂ—/l Z;M (4 —=2). (27)

‘P depends on the parameter a;; through 4;. One should keep

in mind that 1 is independent with the parameter. Similarly,

‘M' is also independent with A; thus, we find

P 0O P,

day ~ "o 2eaa, TN =

(28)

By the same logic, we can derive the relation (EI) as

d 04,
aaj & (/1) aal aaj (/11 A)

0A; 04;
A Ai— A
; 7 )+Zaa]@(lj ( )
A
5(A
- 60{3 Z(&og)
d
— 2 5(h —
0
:Pajz(/l) _apai(i) (29)

Most generally, we can get that
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0

a(XK (ay,, ey, )ay,, SR )--(ay,, g, )

(“JH ATy, K

+P

)(aJZI "'aj2m2 )"'(ajnl "'a-lnmn )

(@, Ty G <y ag )@y, -, )

+P
d

o (a, AT Mauy, By )--(ay,,

(ay,, ey, )ay,, T ).(ay,, - ag)

(30)

ey, Mag):
Please see Appendix A1 for more details of the
calculations.

With relation (30), it is easy to get an interesting
conclusion about two parameters. Consider two unrelated
parameters a; and «;,, and it is easy to get

O p, =2p,. (31)

oo, 1 Oay” M

C. With further assumptions

In the above discussions, we find the functions at the
order of N/ would have some relations. For example, for
N =2, 73&5 and P,, are not independent. In fact, this
means one cannot solve Pa3 and P, separately by only
using Rényi entropy. To obtain them, we should have more
assumptions.

In general should not depend on the eigenvalue 4,.

But in some spec1a1 case we find that can still be seen as

a function of J;, that is, aa' =f(d,a J) We do not expect

this is true for general cases. In the appendixes, we use
simple examples to show this. For the special case we find
all the functions can be solved.

With the assumption, we have

(lj Zf ;Lz’aJ ;L _’1)

= f(ha))> 8(ki = 1) = f(A.ay)P(A). (32)
By using (32), we have the equation
a/11' _ o Paj (’11)
aaj - f(/li’al) - P(/L) ’ (33)

where P and P,, can be obtained by S, Once knowing

St one could solve the equation with suitable conditions.
With these results, one could obtain more details of the
eigenvalues 4;. By choosing more parameters «;, one could
reconstruct the eigenvalues of p,. In the following, we will
show some examples. On the contrary, one may assume the

eigenvalues A; satisfy the relation % (A, ay). If the

differential equation has no proper solutions, one can
conclude this assumption is false.

The higher-order function can also be associated with P.
For example, by definition

Pu(4) = f(4.a;)*P(4), (34)

Z
Z(
Z( of i)

< /1&]

)8(4i—2)

/11,a‘]

(%ﬂﬂ)“%—@
@)t .ﬂ%aﬂ)&%—@

ay)+ —f,la,>z(5a )
fﬂﬂﬂ+a;fuﬂﬁ)P&) (35)

So we can write Py (1), Pp(4), and Py, (4) just by

f(4,a;) and P(1). We can test the self-consistency of
(32), (34), and (35) through the relation (E1).
More generally, we want to write P, (1) and P, (1) by

f(4,a;) and P(4). We define a new derivation

D 0 0

D—a, =fhay) = a,1 60:, (36)
So P,,,(4) can be rewritten as P, (1) = %{;”)P(l).
One could show that
Pon(4) = (4, a,)"P(4), (37)
Dm—l ﬂ,
P, () = 2 Eo) gy, (38)

m—1
Da

where m € Z and m > 2. See Appendix A 2 for more details
of the calculations.

III. EXAMPLES IN TWO-DIMENSIONAL CFTs

There are many known analytic results of Rényi entropy
of one interval for some states in two-dimensional CFTs.
Using these results, we could directly obtain the functions
discussed in previous sections. We will first evaluate P
and P, for a; being the size of the interval L and central
charge c. With further assumption, one could obtain the
eigenvalues. The eigenvalues of this example can be
derived by conformal mapping method used in [27]. Our
results are consistent with the ones in [27].
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FIG. 1.
function.

A. One interval on infinite line, vacuum state

Using the replica method, we can get the Rényi entropy

S<">(pA) of one interval on the infinite line in the vacuum
state of 2D CFTs [4,5]:

. L
s =< <1 +> log =,
6 n €

where L is the length of system A and € is the UV cutoff.
We have b = —log4,, = ¢logL/e.
Using (17) and (22), we can get

(39)

PQ) = % [LI 1\(/22\/5) 4 6(1‘)} ,
PL(A) = —é [—(b — t)ég‘/z’—t) + 5@},
P.) = _loiL [(b - t)\i%%/ﬁ) n 50)} (40)

where 7,(x) is the modified Bessel functions of the first
kind and we have the relation 1 = e~>~' It is straightfor-
ward to check that (40) satisfy the relation (23), that is,

0
-—P,

S PL(3). (1)

0

—P(1) =

AL
See Appendix B for the details. We also find the
relation (31):

(42)

See Appendix B for the details.

Pr(4) as a function of 4 can be used to reflect how
the eigenvalues change with the scale of the subsystem.
For the maximal eigenvalue 4,,, one could obtain %’1{ by

using —log4,, = ¢logL/e. One could also check that

A

PL(®)

Am

The illustration of (1) and Py (4) in the case of the vacuum state of 2D CFT, where the arrows represent the Dirac delta

Oy
P)

= P(Ay). For A# 4, there is a zero point of the
function P, which is given by t = b or Ay = ™20 = A2,
For A < 4y, P.(4) > 0, which means that, as the scale of
the subsystem increases, the average eigenvalues smaller
than A, are increasing. While for 1 > 1y, P (1) <0, the
average eigenvalues are decreasing. The physical signifi-
cance of the zero point is not very clear, but we can see that
the function P; (1) must have at least one zero because the
integral result of it should be zero. We plot the function
P(4) and P (A) in Fig. 1.

B. One interval on cylinder, vacuum state

Consider the CFT is defined on a cylinder with circum-
ference R. The interval is A = [0, L] with length L. The
Rényi entropy for this case is given by

1 R . nL
<1 —l——) log <—s1n—).
n en R

c

S(n)
6

(43)

We have b = —log4,, = log (ZsinZk). It is straightfor-
ward to obtain the functions
1 [vV/bI,(2V/bt)
PA) == |———=+0(1)|,
=3 [ a0
cmcot(ZE) [(b — 1)1,(2v/bt)
q) = — STk 5(r)|. (44
Py = - 7R (OB 50y

One could check that [;” 2P(2)dA=1and [;" P, (2)dA=0.

For P; (1) we also have a zero point at 7y =b or
Ao = €720 = 2. The figure of P, (1) is slightly different
from the case on an infinite line. If L < R/2, we have
Pr > 0for0 < 4 < 4y, while P; < Ofor iy < A < 4, The
result is similar as the case on an infinite line. But for
L > R/2, the figure is flipped. We have P; <0 for
0 <4 <Ay, while P, >0 for 1y < A < 4,,. There exists
a critical point L = R/2; the function P, is vanishing at
this point. We show the results in Fig. 2.
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AL(A)
\
— 1=01R
L=0.4R
A — L=0.5R
o ————
— L=0.9R

FIG. 2. The plots of P, (4) with various parameters in the
scenario of a single interval on a cylinder. We omit the
representation of the term §(4,, — 1) in the plot, as it is not
important for our current discussion.

C. Reconstruction of the eigenvalues
with further assumption

Without further assumption, one cannot obtain higher-
order functions, as we have shown in the previous section.

For the present example, we find the maximal eigenvalue

satisfies a/le = P(4,,). Let us assume for other eigenvalues

P
we also have % = f(4;, L). From the discussions in Sec. I

C, using (40), we have

04;  —logl; — ZbL

L- b 6L Aj. (45)

Solving the above differential equation, we can get
C; b
A = e e (46)

where C; are constants unrelated to L.

D. Eigenvalues of modular Hamiltonian
by conformal mapping

For the one interval example in the last sections,
one could reconstruct the eigenvalues of the modular
Hamiltonian by using the functions P; and P. For the
simple example, one could obtain the eigenvalues by the
methods explored in [27]. As the Rényi entropy and
entanglement entropy are UV divergence, we should
introduce some regulator to obtain the results. Let us focus
on the two-dimensional CFTs. In [27], the authors show
one could consider only the states that are projected out the
basis in a small spatial region of thickness ¢ around the
common boundary of A and A. In the Euclidean path
integral representation of the reduced density matrix py,
this is to introduce a hole around the boundary point of A.
Some suitable boundary conditions should be imposed on
the boundary of the hole. For the one interval example, the
topology of the manifold is an annulus.

Suppose A = [0, L]. The system is in the vacuum state on
the infinite line. The corresponding state is associated with

the Euclidean spacetime with a disk of radius ¢ removed at
end points of A, which can be mapped to the annulus by the
conformal mapping:

Z
w—logL_Z, (47)
where w is the coordinate of the annulus. The width of the
annulus is W = f(L —¢) — f(e) ~2 logt =126 The
modular Hamiltonian K, is locally a generator of rotation
around the end points of A. Under the conformal map (47),
K, is mapped to the time evolution operator H,, := [ dvT,
along the direction »:=Im(w) up to some constants,
and K, and H,, are unitarily equivalent. Thus, the eigen-
values of K, should be same as H,. By using T,, =
T(w) + T(w), we have

H, = / dwT (w) + / awT(w). (48)

Under the conformal transformation (47), we obtain

C L—e
HWZKA+_ dx

=) = K,+b, (49)

x(L —x)

where the constant term is from the Schwartzian term and
we define

Ky = 1“ dzwnz) + lH dz@T(z),

(50)

which is the regularized modular Hamiltonian of the single
interval on an infinite line.
For CFTs on the annulus with width W, the eigenvalues
%. Thus, by using (49) the eigen-
A~

values of K4 are given by —;* — b. In Ref. [16], the author

shows the reduced density matrix p, = e X472/ by nor-
malization. Therefore, we expect the eigenvalues of p,

Ai—ﬁ_

should be e=w

of H, are given by

b which is just the form as (46).

IV. SHORT INTERVAL IN ARBITRARY STATE

Computing the Rényi entropy of an arbitrary state is
usually very challenging, but in some cases we can obtain
the result perturbatively using the operator product expan-
sion of the twistor operator [28—32]. In this section, we will
focus on the two-dimensional CFT with a short interval.

A. Rényi entropy for arbitrary state

Assume the length of the interval is / and the state is p.
For simplicity, we list only the contributions from the
operators in the vacuum conformal family, such as T, 7,
and A, and assume the state is translationally invariant.
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Up to 10(14) the Rényi entropy can be expanded in terms
of [ as

1.1 1
O a log—+ T ko I?
6 n a n
(n+1)(n* = 1) (n+1)(n* +11)
n3 k4 T n3 ki‘ l4
+ 0(1°), (1)
with
1 _
ky = 5 (1), +(T),).
1 < 1 7
ke = =55 (A), + (A),) + 5 (T2 4+ (T)2),
1 _
6 = = 2500 (T3 + (7). 52

where (y), == tr(py) for y = T, T, A. Note that k,, k4, and
k), are independent with n.

B. Perturbative results of the functions P and P,

If we retain only up to the second order, the result is
similar with the vacuum case, requiring only the replace-
ment of b=¢logl with b’ =<logl+ kyl?, since their
dependence on 7 is the same:

+1 l
S(”) — n " <%]0g;+ kzlz) + 0([4) (53)

At the order of O(I*), we will obtain more intriguing
results. By definition, we have
[
b= —log 4, = lim $®) = glog— F ko l? + kgl + K1,
n— o0 a
(54)

where 4,, is the maximal eigenvalue in this case. Let us also

define by := ¢log é

By using (17) and (51), we obtain

b
P(A) =171 vho I+ 8(t) + kool + {(2k4 — 10k, 1,

Vi
|
+ 5kgﬁboill + (kg + 11k;)rb5112} 14} . (59)
where the argument of 7, is 21/byt and we have used
£ [ernk] = bRy (24/bor). (56)

Furthermore, by using (22) and (51), we have

obfc 1. /by c [ c _ c
P == [gbozmll ! +7t01' +5(1) + [gkzlo 4 2kBby, +gk2tbo‘lz}l+ [(—2@ — £ (2k - 10kg)>10

1 _1 1 3
+ (—f—kg 42k, — 10kg)) Ayl + (2k§ n % (3k, — 21k'4)> th5' I, + (g§k§ — Ak, — 11kg)>z%b0213

62

(o)W I}

-

where the argument of 7, is 2+/byt.
It can be seen that the functions P and P, depend on the
expectation value (y),. One could check that they satisfy

the relation 2 = —%.

One could also check the above results by the example of
the thermal state. Consider the thermal state with
p = ePH/Z(B). The Rényi entropy is given by

€ 1 s zl
St = G <1 +Z> log {%smh<g>}, (58)

'The extension of the calculation to arbitrary situations and
higher order is straightforward. In the following, we will use this
result for holographic CFTs, in which the contributions from the
vacuum conformal family are dominant.

(kg — 11kg)> z2b0—214} 13} :

(57)

|
where [ represents the length of the interval, which is not
necessarily assumed to be small. With this result, one could
obtain P(4) and P;(A) for the thermal state. The results are
similar to the vacuum cases in Sec. III A. Then one could
expand the function P(4) and P,(4) in terms of % in the
region [/ < 1. The results should be the same with (11)
and (57) up to O(I*) by using the expectation values of
(1) = tr(e™Py)/Z(p). The details of the calculations can
be found in Appendix. D.

C. Zero point of P,

For the vacuum cases, we find the function P; has one
zero point which is given by 12, = e~?%. Here, we would
like to study the zero point of ‘P, for the short interval case.

We assume the zero point is given by the form 4y = e~ 77,
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with 7y = by + t,> + t41* + O(1°), where b, is the zero
point for the vacuum case. #, and 7, should satisfy the
following equations:

t2 - k2,

48 I, 528

ta = 2k, ~ 10K, = —ky 2 +—k 3k4 +33k
C

411 411

(59)

where the argument of [, is 2b,. For general theory, the
result is complicated. But for CFTs with holographic dual,
we have a large central charge c¢. For the function 7,(x),
since lim,_, o1, (x) = ﬁe", in the limit x — co one

Ly )
T

would have lim,_, *
have by > 1 and

= 1. Thus, for large ¢ > 1, we

Ra)

fo = by + ko l? — kyl* + 23k, 14 + O(1/c).  (60)

By using (51), the EE is given by

S = th( ") = 2by + 2k, P + 24K, 14 + O(1°).  (61)

It is remarkable that the zero point 7, is associated with the
EE S and b = §*:

fy=S—b+0(1/c.1°). (62)

For the vacuum case, we have S = 2b, and the zero point is
given by ¢, = b, which is consistent with the above results.
One could also check the above relation for higher order of
the short interval expansion. In the following section, we
will discuss the holographic CFTs. One would find the
above relation is actually correct for arbitrary states that are
dual to a bulk geometry.

V. PERTURBATION STATES
Consider the density matrix
p = po+6p, (63)

with the condition trép = 0. One could obtain the Rényi
entropy

1
§(n) — log(trp™)
-n
tr(pn 15 )
= s (pg) + B P) 4 ()
O = o)
— S0 (pg) + 5" + O(8p?), (64)
where we define
t n—15
55t o= 26— 0P) (65)

(1 =n)tr(pg)

In the following, we will keep only the leading order of the
perturbation.

On the other hand, by using py = >_; A9/2%)(1?], we can
rewrite (64) as
(AN=15).
55t o= M) 0% (66)
(1 =n)>(4)
where we define
S 5= (16pI0) (67
A. Density of eigenstates
Define A,, :== e™® and 19 :=e%, where A, and 19,

are maximal eigenvalues of p and p,, respectively.
By definition, we have b = lim,_,S" (p) and b, =
lim,,_, oS (py). Thus, by using (66), we have

lim S (p) = lim (S™(py) + 6S™),

b = by + ob, (68)

with
O
ob == — o

S 1= (Anlopl ). (69)
where |2),) denotes the eigenstate for the maximal eigen-
value 29. A useful form that we will utilize hereafter
is e =1+6b=

Now we are ready to evaluate the function P. By using
Eq. (17), we have

7)( —b— t) — )lp-t [ nb+(1— n)SU(p)Kt)

10
= <_m,1) % L1 [enbot(1=m)S™ (p0)] (1)

Am
+ A718b.L [ne bt (=S )] (1)
+ A7 L7 [neotr (pi=16p)] (1). (70)

Because of the complexity of the above calculations, we
will discuss the inverse Laplace transform in the above
expression term by term. First, let us consider the first term.

by=t — o=b=1 ,0b

. —h— . - 0
Using 1 =e b=t since e = %/1, we have
m

A0 N\~
<_m/1> e 1 [ nbo+(1— n)S(”)(pO)](t)
Am

_ (1 +5b)(e_"0 ) 11 [ nbo+(1— n)5<”)(/)0)](t)

2 P
2770(/1—'"/1) -I—ébPO(/l—m/l), (71)
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where P denotes the density of eigenstate for the state p.
Note that, in the last, we substituted the variable P, with
j—%/l to adjust for the range of values. The reason is easy to
since the
inverse Laplace transform of £=![enbot(1=n5"(0)](f)
is e"P=IPy (e bo=t).

On the other hand, this adjustment can be also explained
as follows: 1in P(4) = >, 6(4; — A) falls within the range
(0, 4,,], while 2’ in Py(V) =, 6(AY — 2') falls within the
range (0, 29,]. Hence, the purpose of this transformation is
to ensure that both sides of the equation share the same
variable range.

Let us go on discussing the remaining two inverse
Laplace transformation terms in (71). By using the formula

see in the above mathematical calculations,

LHLIf()}(0) = 8()f(0) + (1), (72)

we have

/1_1 5b£_l [nenngr(l—n)S(”)(Po)] ([)
= 7' 8bL7 [nL]eb Py (e~ (1)

dPy(e ")

= A715b [5(t)e‘b0730(e_b°) e

_ e—ho—zpo(e—bo—r)]
29 29
= b5(t)Py(e~b0) — 5bAP) (f"x) —8bP, <i—’"1> . (73)

57’0( )

where P} (1) := . It is worth noting that the final term

in the expression above cancels out with the second term in
formula (70).
To calculate the last term of (70), we define

XY= sh6(A = 1), (74)

which can be taken as the average expectation value of
the perturbation dp in the eigenstates with eigenvalue
A= e~"7". It can be related to tr(pi~'5p) by

Z(ﬂ?)n_lfui

/10
= [ " arary sa.6(20 -
| o
- / " dremnbot ) Py(emhor), (75)

0

tr(pg~'op) =

where we use 1’ := e¢~%~". One could obtain Ps(e~?~") by
inverse Laplace transformation once tr(p{i~'p) is known.
By using (65) and (66), we have

Psle™!) = L7 [—1 T gyt (1-ms '”<ﬂo>55”] (76)
n

the form of which is similar to P,, (22). Again using the
formula (72), we obtain

AL [neote (pg " 0p) (1)

e—bo—z
=1 {5@)735((”0) 1 2Pele7) o )}

/10
= 2715(t)Ps(eb0) — P% </1 ) (77)
where Pj(4) := ‘Wﬁ . We compare the terms in (73) and (77)
that contain &(¢ ) and find

16(t)Ps(e”

in the leading order of the perturbation.

Combining all the aforementioned results, we derive the
final expression. In summary, the function (1) (70) can be
structured in the following form:

°) = =8b5(t)Po(e~), (78)

P(A) = Ple™b") = Py(ebo7) + 6P(e P71,  (79)

with

/10
Po(e_bo_t) = P(J (ﬂ,m ﬂ.) s

29, 29
SP(e~h0 ) = 5191730(/1 > P, <l”’ ) (80)

B. Further discussion on the perturbation result

1. Normalization

One could promptly verify that (79) complies with the
normalization condition. Through direct calculations, we

have
10
/ /1730( Ly} )dﬂ: 1—26b,
0 j'm

A : ,121 23 0
- A8bIP), /1 d/lz—éb—OPO(/lm)+25b,

m

P 2
—A AP </1'" )d/l Agl P5(29,)

2,
+/1—g” A Ps(A)dN

/12
= Ao Pé ()“0 )

where in the last step we use the fact that trép =
fo Ps(A')dA = 0. Summing over the above results and
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P

FIG. 3. Tllustration of the function P(4) in the perturbation
state. The black line is the unperturbed function P,. The range of
the eigenvalue would change under perturbation. The red line
illustrates the perturbation of the function P due to the alteration
in the range of the variable A. But it does not satisfy the
normalization condition [} dAP(4)A = 1. The blue one includes
the adjustment to satisfy the normalization.

using the relation (78), we arrive at the normalization
condition

/ 5 AP(A)dA = 1. (81)
0

Let us briefly analyze the implications of each term in the
above expression (79). P, represents the unperturbed result
of the density of eigenstates. As perturbation affects the
range of values of eigenvalues, i.e., the maximal eigenvalue
changes from A9, to /,,. The first term P, can be viewed as
the change in the density distribution with the alteration
in the range of the variable 1. As we can see from (81), it
does not satisfy the normalization. The second term in
5P(e ") can be seen as the adjustment of the density
distribution function itself to satisfy the normalization
requirement. We illustrate the above explanation in Fig. 3.

2. The number of eigenvalues

Since the function P can be seen as the density of eigen-
states, we can define the number of eigenstates larger than /4 as
|

[1—n as™ (p)
~b-1y — p-I nb+(1-n)S™ (p)
P e = [0 o)
] et (=mS™ o) (1 4 ngb + (1 = n)5S™)
n
_ e [ s o 5P 0] L
| n day

)2 (n) -
bt ) i (ms ) g 95 (P0) (f’o)]+ o [_1 b+ (1-m)S ()

n Jday

Let us discuss the four terms in the above results separately.

1
n

n(l) = A i P(A)dA . (82)

Taking (79) into the integration (82), we have

2 29 29
n(d) = ng (f”z) + 8bAP, </1—’”/1> +P; (—’"z), (83)

m m /1 m

where n is the number of the unperturbed density matrix
defined by

0
j'm

no(4) = Po(A)dA'. (84)

A

It is important to note that integration typically leads to
divergence. For instance, in Sec. III A, one can readily
verify that the number of eigenstates is infinite. In essence,
N := n(4 = 0) can be regarded as an approximation to the
dimension of the density matrix p,, which tends to be
infinite in QFTs. Nevertheless, formally, we observe that
the variation in dimension due to perturbations is linked to
the function Py, that is,

AN = n(0) = ny(0) = P5(0). (85)

Here, the number of the maximal eigenvalue is well defined
and generally finite. Taking 4 = 4 into (83) and using (78),
we obtain

n(4) = no(Zp,). (86)

which means the number of the maximal eigenvalue would
be invariant at the leading-order perturbation.

C. The function P,,

It is straightforward to calculate the function P, as we
have done in the previous section. By using formula (22),
we have

(™ (po) +85™)
(30(]

_ ()
Lm0 (-5 (o) 95 (P0) 51,}

00!1
355"
n Jda,

} +L710o(5p?)].  (87)
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The first term is the function P,, for the unperturbed density matrix py; denote it by P(,J( ~P0~). By using the
formula (72), the second term is given by

(n)
£ [ L2 gt 1-msi ) 95 (0) (”0)} 5b = L [nL [P, (e )]]6b
n o !
AP, (et
= &b (5(;)735; (e7bo) + ’(e))
dt
oy
= 6b5(1)PY, (e70) — 5bAPY, (/lm > (88)
0
where 792] = m;j’ . The third term can be simplified as follows:

1|0 n)* b+ (1S () 5S0) s (po)] _ -1 |- n)® oot (1=m)S® (5p) ntr(pg~"3p) 9™ (py)
n o n (I =n)tr(py) day

(n)
=L {(1 — n)e"otr(pp='6p) LS@;JPO)} . (89)

One could further simplify the above term if the Rényi entropy S (po) is given. Similar terms will also appear in the fourth

term, albeit with opposite signs, allowing them to cancel each other out. The fourth term is considerably more intricate. In
order to articulate the outcomes, we need to introduce the following quantities:

) 064, ,
Pl (1) 3= 3 5 00 =) (90)

). (91)

(ay)

These two functions illustrate the relationship between the variation §4; and the parameter ;. They can be computed once

%;5’)) is known. With these definitions, we have
o L7 b (1mysi ) 995 (o)
n da;

_ o1 [Lm sty 0 1o\ 3p)
| n day (1 —n)tr(pf)

i ()
=L [t —a‘; [tr(pg_lép)@ —c! {e”botr(p(’)’_lép)(l — B0 a(j’)‘))]
i )
= L1 -el’lb(] ()ZJ |:§l (/1?)"_1<i|5p|i>:|:| — -1 |:(1 _ n)e"”otr(pg_lép) aSaa(Jpo)]
[ i[8p|i ()
=L _6""“ Ei (ﬂ?)"‘lia%Z' q +L7 {6””0 E (n = D))" 3 o 3, (110011 >} - L7 [(1 — n)e"ur(pg~'op) Laagp())]
()
= L7L[P(say) (e + L7H(n = DL[P 5 (€70 = L7! [(1 = n)e"tr(pg~'op) —aSaaiPO)}

d
= P(ﬁa,)(e_bo_t) + 5(1‘)6}70’])(5)({)[])(6_}’0) + |:eb0+t_7) )(ay) (e—ho ) + ebOHP )(ay) ( —bo_l)j| - eh0+t7j(§)((z,)(e_b0_t)

dt

ast
- L {(1 = n)e"tr(pg'5p) 7(/)0)}
00!]
AO

A by ebo / 1 b re( Hn—1 55(")(/’0)
= Py (72) 4 80P o e) = Pl (522) = £ (1 = memmutoap) L)) (92)
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where in the derivation we use the formula (72) again and

define P, 1(4) = %. As mentioned earlier, the final

term in the above results exactly cancels out with the result
from the third term (89).
We also notice that

5(t)eb077(5)(aj) (e_bo) = —5(t>5b7)2j (e_bo). (93)

In summary, the final result can be expressed in the
following concise form:

Po,(e771) = Py, (e7707") + 6Py, (e7™7")  (94)
with

0
P, (e7ho7!) = PY, GM) (95)

and

(29, 20
8P4, (e™007") = —6bIPY, <7’1> +Poa) (71)

(P 9
~Poa\z ) (96)

The aforementioned result for P, (1) is very similar to
P(A). Similar explanations can be provided for each term
in (94), akin to what we have done in the previous section.

We can also check that P and P, satisfy the consistent
relation (28). See Appendix E for the details.

D. A simple example of perturbation states

Let us consider the example studied in Sec. IIT A.
Suppose the density matrix p, corresponds to the interval
with length [,, while the density matrix p = pg+ dp
corresponds to the interval [ = [y + 6/ with 6 < [. Thus,
we can take dp as perturbation and obtain

1\ 6l
ssm =< (1. 1) 2 7
> 6( +”)lo’ &7)
col
ob=b—-—by=——. 8
0= er 98)

Now it is straightforward to obtain the function Ps:

Ps(e~07!) = L7 [—(] —r) e”b‘)e(l_")s(")(/’(’)éS(")} (1)
n

__col[(by = 1)1, (2v/byt)
61, Vbt

Further using (79), we have

+ 5(:)] . (99)

0 0 0
P = Py (ﬂm — 5biP, (j /1> _p (j’" z)

c51[ I, 12]7 (100

+-— +5
61y Li'\/(=by —log XYy #

where A = j—%/l. On the other hand, we can also expand
P(A) in (40) and keep the first order 0(‘;—01). The result is the

same as (100). This can be seen as a consistent check of our
general result (79).

In this example, we can also check the number of
eigenstates (83). With some calculations, we have

n(e™b=") = ny(e ") + 6bAPy(ebo=") + Ps(ebo=")

e o VHCVED

Vbo

where ny(e=?07") = I(21/byt). Let us consider the two
limits A - 0 and A — 4,,. We care about n(0) and n(4,,).
As expected, n(0) is divergent. Formally, we have

Vi1 (2v/bot)

(101)

On the other hand, we also find
n(Am) = no(Ay) = 1o(0) = 1, (103)

which is consistent with our previous discussion; the
number of maximal eigenvalues does not change at the
first-order perturbation. We anticipate that this outcome
holds true beyond the leading-order perturbation, owing
to the presence of a Dirac delta function (4 — 4,,) in the
density of eigenstates P(4). In this example, the maximal
eigenstate corresponds to the vacuum state on the annulus
following the conformal transformation (47). It is natural
for the vacuum state to be nondegenerate in this context.
Our results indicate that this nondegeneracy exhibits
robustness under first-order perturbations.

VI. GEOMETRIC STATES IN HOLOGRAPHIC
THEORY

In this section, our focus will be on holographic theory, a
framework wherein certain special states can be effectively
described by classical geometry in the semiclassical limit
G — 0. These states are referred to as geometric states.
In the semiclassical limit G — 0, quantum fluctuations are
suppressed. Certain nonlocal observables, such as entan-
glement entropy, may have a bulk geometric dual. Entan-
glement can be utilized as a probe to determine whether
a given state can be dual to bulk geometry. In fact,
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constructing states that cannot be dual to bulk geometry is
not a difficult task; refer to [33] for details.

A. The functions P and P,,

The density of eigenstates P also has some interesting
features. By the formula (17), one has

’P(e—”_’)e_”_’ _ E—l[enhjt(l—n)s(”)} — L/yoﬂw dne’r,
2ri 7o—ico
(104)
where
=n(t+b)+ (1 -n)S". (105)

One important feature of the geometric state is that the
Rényi entropy has a gravity dual and follows the area law

formula [34]:
-1 B
25 (2 ) =Zn
" ( n 4G

where B, denotes the area of the bulk codimension-2 brane.
The tension of the brane is related to the index n by
T, = ZnGl In the limit n — 1, we would obtain the Ryu-
Takayanagi formula.

Note that, by the above holographic formula, one can see
that the Rényi entropy for the geometric state should be of
O(1/G). This permits us to use saddle point approximation
to evaluate the functions 7 and P,,. By using saddle point
approximation and the holographic Rényi entropy formula,
one could derive

(106)

1 2 n*
SRS -
T

on? |n:n*

where B,,* is the area of the cosmic brane with tension
and n* is determined by the saddle point condition

'u74Gn

Oy =0. (108)

Vl|l’l n*

We can proceed with the evaluation of the function P,, for
the geometric state. It needs to evaluate the inverse Laplace
transformation (22), that is,

Ly L s
Py, (e7077) = %/y(,—ioo dne’ur, (109)
where
() 1-n
Sq,n 7= nt +nb + (1 —n)S" + log + log
! day n
(110)

For geometric states, we expect the Rényi entropy should
be of the order of O(1/G). Thus, in the semiclassical limit,
the last two logarithmic terms can be ignored. Therefore,
the saddle point approximation equation

ansaj,n ~ 0,5, =0 (111)

holds at the leading order of O(1/G). The solution is given
by n*. Taking n* back into s,, ,, the function P, (e™"™")
can be approximated by

(112)

Let us analyze the zero point of the function P, . The

funcnon generally does not vanish except at ceﬂaln

special values of a;. For instance, consider a; as the size of

the subsystem denoted by L. It can be demonstrated that,

for a pure state, BL) would vanish if L corresponds to half

of the entire system size; refer to the discussions in the next
section. Here, we assume that it is not at this critical point.

Therefore, the zero point of the function P,, is given by
n* = 1. The equation
ansn|n:n*:1 =0 (113)

gives the solution t = § — b or, equally, t = S — S, where
S is entanglement entropy.

In Sec. IV B, we evaluate the function P; and discover
that its zero point is also determined by ¢ = S — b in the
large ¢ limit. In fact, for a holographic theory, the central
charge ¢ ~ O(1/G). Hence, the large ¢ limit precisely
corresponds to the semiclassical limit. The zero point
of P, in the large ¢ limit discussed in Sec. IV B serves
as a nontrivial validation of our general conclusion. It is
important to note that our findings in this section hold true
for arbitrary parameters a;, except for the parameters ¢
or G. In the Refs. [16,17], the authors construct the so-
called fixed area state in CFTs. It is also noteworthy that the
fixed area state with = § — b is indeed quite special, as it
can be considered as an approximate state for the reduced
density matrix p, in the large ¢ limit. There might exist
profound connections between these intriguing results.

B. Higher dimension example

In [14], the authors consider the holographic Rényi
entropy for a sphere region in d-dimensional spacetime.
For the dual bulk theory being Einstein gravity, the holo-
graphic Rényi entropy is

my N L4t _ d=2
S _n—l”V2<1P> (2 — x4

(1+x2)), (114)
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where x,, = 2- (1 + V1 = 2dn* + d*n?), Vy denote the “co-
ordinate” volume of the hyperbolic plane, /4~! = 87zG, and
L? gives the AdS curvature scale. Thus, we have

. N\ d-1
S =limS" = 22V <—> :
n—1 lp

; A d—1[(d-2\%
v= gy =2mvs(1) (- (7))
n—oo P
(115)

S can be rewritten as

(n) n
S P—
d n—1

(1 - Lama +x3,))s. (116)

We care about the zero point of the function P, . In prin-
ciple, one could obtain the expression of P, by directly
computing the inverse Laplace transformation (22).
However, we cannot obtain an analytical result. Since we
are considering the holographic theory, one could use the
saddle point approximation. It can be found that the zero
pointis given by t = § — b. And further, by using (115), the
zero point can be written as

r= [(1 —% <¥>%>_1 - 1};;. (117)

The corresponding zero point 4 is given by

pﬂ(%)%)—l

do =577 : (118)

where A,, = e™?. If d =2, Ay = A2, which is consistent
with the result in Sec. IIT A. In the limit d — oo, the zero

1

point 4y — 4,,4%". It can be shown 4, is a monotonically
increasing function of d. We plot the zero point 4, as a
function of the dimension d in Fig. 4.

VII. ENTANGLEMENT ENTROPY
AND THE FUNCTIONS

In the preceding sections, we explored the properties of
functions like P, Paj, and others. These functions inher-
ently encompass more information than just the entangle-
ment measure, such as the entanglement entropy. In this
section, our aim is to demonstrate how the properties of
these functions directly correlate with certain aspects of
entanglement entropy.

....'....................'............'....
.
.

. - 1 -
. [m,/\,,,/\,,, e ]

e%ox_i\ d

7 a

FIG. 4. TIllustration of the zero point A varies with dimension d.

A. First derivative of entanglement entropy
with respect to the subsystem size

Recall the definition of entanglement entropy

S==Y 1log . (119)

The dependence of entanglement entropy on certain para-
meters is directly related to those functions we have
previously studied. Let us focus on the size of the
subsystem L. We have

dS o2, o,
A DAL D D

i

l’n
= —/ dAP (1) log 4, (120)

0

where we have used the fact ), % = 0. Support the
function P; is given by the black line shown in Fig. 5,
which is similar to the example of a single interval in the
vacuum state on an infinite line (see Fig. 1). There is a zero
point 4y, P; > O0for A < Agand P, < Ofordyg <A <2, It
can be shown that

A Am
»__ / " diPL(A) log 4 — / dAPL (1) log A
oL 0 Ao

A A
> - / " dAPL () log Ao — / dAPy (1) log A
0 A

0

. Am
= / dAPy (1) log 4 —/ dAPy () log A
A

0 }Hl

. o
= dAPy (1) log " >0, (121)

Ao
where in the first step we use —log 4 > —log 4o for0 < 1 <
Ay, in the second step we use Zi%: f(;l”’ dAP; (1) =0,
and in the last step P; <0 and log’%0 <O0for iy <A< 4,
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Pr(A)

Ao

FIG. 5. [Illustration of the function P;. The black line and red
line are two typical functions for P;. 4 is the zero point of Py,
and 4,, is the maximal eigenvalue.

While if the function P; is like the form of the red line in
Fig. 5, we can demonstrate, as previously done, that g—i <0.

The above discussion shows that whether the entangle-
ment entropy S increases or decreases with the increase
of L depends on the characteristics of function P;. In
Sec. III B, we obtain the function P; for one interval with
length L on cylinder with circumference R. Py is taken as
the form of the black line in Fig. 5 for L < 123. This shows
that S is a monotonically increasing function of L in this
region, while § is monotonically decreasing function
of L in the region §< L < R. There is a critical point

L =% where % = 0. At this point we also have P; =0,

since cot% =0.

A

>

o

Yac

For one interval in arbitrary pure state, say, |w), on a
cylinder, we have S(R — L) = S(L), which leads to

~S'(R—L)=S(L). (122)

Thus, one could obtain % | 1=t = 0. At the point L = 125 we
expect the function P; = 0. By utilizing (122), one can
observe that the sign of g—f differs between the two cases:
L <%and L > £ Hence, we anticipate that the function P,
would resemble the black and red lines depicted in Fig. 5
forL < % and L > %, respectively. The above assertions can
be verified through specific explicit examples.

One more interesting example is one interval in thermal
state with # on cylinder with circumference R. For high-
temperature limit R/f, the gravity dual is described by
a Banados-Teitelboim-Zanelli black hole. By using the
RT formula, one could directly evaluate the holographic
entanglement entropy by choosing the global minimal
surface. It has been demonstrated that the holographic
entanglement entropy undergoes a phase transition at a
critical point L = L.. These two phases correspond to
distinct types of minimal surfaces, illustrated in Fig. 6.
For L <L, it is observed that § is a monotonically
increasing function of L, whereas for L > L, it behaves
as a monotonically decreasing function. Based on our
earlier discussions, we can conclude that, at the critical
point L, P; = 0. Consequently, the function P, serves as
a means to identify the phase transition of entanglement
entropy.

B. Second derivative of entanglement entropy
with respect to the subsystem size

In [35], the author introduce the so-called entropy c
function ¢(L) :== L. By the combination of the Lorentz

AC
@

FIG. 6.

(b)

(a) Shows two types of minimal surfaces y, and y,c U ygy, which are shown in red and purple lines, respectively. We notice

that y, is homotopy with y,c U ygy instead of y,. in this case. Since the result should take the minimum value in the extreme surfaces,
for L < L the S is given by y,, whereas for L > L, the S is given by y4c U ygy, Which are shown in red and purple, respectively, in (b).
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symmetry and the strong subadditivity of entropy, it can be
shown that ¢’(L) < 0. This prompts us to consider the
quantity ¢/(L) = L - (L %) and its relation to the functions
Pr, P2, and Pp,. By definition, we have

04;
d(L) = _LZG_LlIOg Ai

#A; YA
- L2 (Z aLz IOg )“i + Z(i) j’i l)

1

Am
= —L/ dAP; log A
0

j'rll j’lﬂ
—L? (/ diPy, log A+ / d/IPLzA‘l) )
0 0

First, let us consider the contribution from the maximal
eigenvalue 4,,. Suppose the maximal eigenvalue is non-
degenerate. Its contribution is given by

oA *A oA, 2
— L= —1? " Jog A Zm) )l
L 0g A, (aLz Ogm+< ) m>

oL
0\ [0,

These terms come from the Dirac delta 6(4 —4,,) in the
functions P, P;2, and P, ,. Let us define the functions
without the Dirac delta terms by 75L, 75L2, and 75L2.
Generally, the functions can be written as

(123)

- 2
= 25Ny — ),
Pr="PL+ oL (A = 4)
3 04, \ 2
PLZ = PLZ + <0_L) 6(/1,” - i),
- P,
PLZ — PLZ +W5(/‘Lm —ﬂ) (124)

By using (El) with a; = L, the contribution from other
eigenvalues is given by

I o An  OP
—L/ dﬂPLlogi—Lz/ dﬁﬂlogﬂ
— L2P,2 log A}, (125)

where the last term is the boundary term at the eigenvalues
A, and 0. In summary, ¢’(L) can be expressed as

j'Wl a
c’(L):—L/ dﬁ<1+L>PLlog/l
0 oL

— L¥P> log Al (126)

Let us consider the boundary term limﬁ_,oLzﬁLz log 4,
which can be determined by studying the behavior of P, -

as A approaches zero. However, our knowledge about the
properties of this function is limited. An explicit example
might be found in the case of a single interval in the vacuum

state [see (III A)]. Using Eq. (45), we find that P;2(4) ~

A(log 2)2e*V =102 4 a5 ) approaches zero. For this particu-
lar example, we observe that limboLzﬁLz log 1 =0.
Starting from (123), ¢/(L) can be expressed as an integra-
tion involving functions P;.. Convergence of this integra-
tion is expected, given that ¢/(L) is generally finite.
This expectation implies that [§ dAP;247" should yield a
constant for any positive €, ensuring convergence. Con-
sequently, we obtain P;>(e)e~! — C, where C is a con-
stant. Consequently, we derive

L@in&f?y () log A = Lzynolf?y (A)A"Alog A= 0. (127)

The other boundary term —L275L2 (A,,) log 4,, is typically
nonzero. Since we have 0 < P;2 and 0 < 4,, < 1, this term
is positive.

The integration part in (126) closely resembles (120)
when replacing P, with L(1 + L£)P,. Similar to our
approach in the previous section, the nature of L(1 +
L %)7’1‘ is intricately connected to the sign of the integra-
tion result.

VIII. CONCLUSION AND DISCUSSION

In this paper, we introduce a series of functions designed
to characterize the dependence of the entanglement spec-
trum on parameters. These functions bear resemblance to
the density of eigenstate P extensively discussed in prior
literature. Our novel functions, such as Pa; and Pay a,,,

04 and PA; )
day dajlt)ajz

The evaluation of these functions can be accomplished
through the utilization of Rényi entropy. Notably, functions
of the same order exhibit intriguing relationships, e.g.,
Eq. (E1). Furthermore, we demonstrate that these relation-
ships can be derived from their definitions in Sec. II B.
However, our study reveals limitations in obtaining all
these functions solely through the inverse Laplace trans-
formation method employed in this paper. It appears that
alternative methodologies or additional information beyond
Rényi entropy may be necessary to obtain a complete set of
these functions. We will delve into exploring these avenues
in the near future.

If we make the additional assumption that the derivative
of a given eigenvalue A; with respect to @; remains a
, g{—’z = f(4;, ay), an intriguing differential
equation (33) governing A; can be derived. Solving this
differential equation enables the reconstruction of the form
of ;. In our examination of a single interval within a
vacuum state, we explicitly demonstrate how to derive the
dependence of A; on the subsystem size L using the

encapsulate crucial information regarding

function of 4;, i.e.
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functions P and P; . Remarkably, this outcome aligns with
the methodology involving the mapping of the modular
Hamiltonian to a cylinder, presenting an interesting appli-
cation of these functions. However, it is crucial to highlight

a significant limitation in this process. The assumption that
0k _
o=
ios. Care must be exercised when employing this
assumption. An intriguing avenue for exploration involves

(4;, ;) may not hold universally across all scenar-

relaxing this assumption, such as considering whether ;%

depends on all the eigenvalues. Yet, pursuing this route
ultimately leads to a series of complex partial differential
equations that prove challenging to solve. Obtaining the
exact form of eigenvalues of entanglement Hamiltonian in
QFTs remains an extremely challenging problem. While
our current findings are constrained, we anticipate that our
framework serves as a potential method to reconstruct the
eigenvalues of the entanglement Hamiltonian using Rényi
entropy.

In several instances, the Rényi entropy can be obtained
using replica methods. Our paper showcases various
examples illustrating how to derive the functions intro-
duced in our study. These instances encompass scenarios
such as a single interval in a vacuum state, arbitrary states
for a short interval in two-dimensional CFTs, perturbation
states in the general case, and holographic QFTs. Our
primary focus lies on understanding the functions P and
P,, within these examples.

Calculations in two-dimensional CFTs yield straight-
forward results. For perturbation states, we obtain exact
expressions at the leading order of the perturbation. The
final forms of P and P, offer insightful explanations.
These results become applicable when the Rényi entropy of
the perturbation state is known.

In the context of holographic theory, a fascinating
finding arises for the function Pa;. In the semiclassical
limit G — 0, where G represents the gravitational constant,
the zero point of this function is identified as 1y = e~5
or ty = S — §%. Here, S denotes the EE, and S* signifies
the minimal entropy, defined as S% :=lim,_S™.
Intriguingly, the value of A, or f, also emerges in the
approximated state for p, constructed in [16]. In that work,
the author observes the density of eigenstates approaching a
Dirac delta function at the value 7y = S — S*°. While the

|

"

relationship between these two findings remains elusive,
they signify distinct features of the geometric states in holo-
graphic theory. Specifically, the entanglement spectra of
these geometric states exhibit peculiar properties near the
value f,. Further exploration into this phenomenon is
planned for our future investigations.

The functions introduced in our study are intricately
connected to the Rényi entropy and its derivatives through
Laplace transformations. In principle, they should equate
to the Rényi entropy since the Laplace transformation is
reversible. One might question the necessity of investigating
these functions. This parallels the field of signal processing,
where Fourier or Laplace transformations are employed to
convert signals into the dual space. Occasionally, the signal
in the dual space offers more intuitive insights. Similarly,
while the Rényi entropy encapsulates rich information
regarding entanglement spectra, the functions we introduced
serve as a method to extract this entanglement spectrum
information.

The functions associated with A or ¢ can be viewed as the
dual space counterparts of the Rényi index n. Specifically,
in the context of holographic theory, these functions have
proven useful in comprehending fixed area states and QEC
codes for AdS/CFT [17]. Particularly, these functions in the
dual space are anticipated to hold significant applications
in elucidating the properties of geometric states. They offer
an alternative perspective to understand and explore the
intricacies of entanglement spectra that might not be readily
apparent from the Rényi entropy alone.
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APPENDIX A: DETAILS OF THE
CALCULATIONS FOR GENERAL SETUP

1. The proof of general relation (30)

The proof is straightforward by using the definition and
property of delta function, which is shown as follows:

", ",

0 0
P(aj ety Ny ety )o@y, 0, ) T § :
(30!1( 11 1my 21 2my nl nimp ()a,( - aa]l

500~ 4)

..aa‘/lml 0(1]2] . ..()aj2m2 a(l_]nl .. .0ajnm"

oMt ", 0" A

T (- 2)

; J“...aajlmlaa[( anZ]...aajzmz 00,']]”...00”%”

am"A omti] 0" A;
+Z i i i S(hi—A) +---
~ day,...0a; Oday, ..0q, dag  day,...0q;
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oM A. o™ ). gt
+ ; R — 8= 1)
7 605]“ aocjlml anZI...anZmz OaJ’,l...da]nMnaaK
"™ A; "™ A; 0" k; 0
+y L ... L 5= )
i agay,,- 'aajlml aay,, .. 'aafzmz day,, .- 'aajnmn K
aml+1/1 ™). 9" ),
-y T
; 00(]” .. .a(l_,lm‘ daK anZI .. .anZMQ dajnl .. .aa‘]’]m”
0" A; oty " A;
+Z ’ — ———5(4; - ) +
an“ aajlml OaJZI...anZmzaaK 0(11"1 ...aa]m”
™M A "2 am,,Jrl/lA
3T e
50(J11 aocjlml anZI .. .aajmz annl .. .aa]nmn 0aK
+ Z d 1/1[ d 2/’{,’ » d "/11' aﬂt « |: 0 é(ﬂ —l):|
F da]ll ...aajlml 00:,21...0a12mz dajnl...aalnmu aaK 04

ajll "'ajlm] @

+P

(@, ey, Jauy, = Elyy )-(ay,,

2. The formula derivation of (37) ’Pa;z and (38) P,,,
The derivation of P is trivial, with our assumption
% = f (li’ ay ):

(A2)

Since the case where m =2 for P, ~we have already
deduced, the case of m > 2 can be proved by mathematical
induction. Since we assume that the formula holds for
m — 1, we have

D" 2f()a
Pa./m—l (/D = Darft—Z J)
J

Pay,, (4) = g(4, a;)P(4),

P(4),

dmn- 1
Zda’” - f (A a)8(4; = 2) Zg Aivay)8(A; — A),
dm—l
d _1f(il’al>_g(ll’af) (A3)
ay
where we define
D" 2f(2,a;)
g4, a;) = T Dar? (A4)

+P

K)((XIZI "'a‘]2mz )"'<a‘]nl "'ajnmn)

g, ag)

a, )_|_

SN "'ajlm] )(0!/21 "'aJZInzaK)"'<a‘]nl “ T nmy

0

a (ay,, ey, )(ay,, ey, )--(ay, T )(ak)*

So, in the case of m, we have

d dm 1
,Pajm(j') = Zdaj dam lf(j'ﬂal) (/1 _}’)’
d
P, (2) = Z 9k 0))8(2 = 4)
)“19 a] aﬂ (/11'7 aJ)
( day )5% =4
( /11,6!] /1”0{])4_%":1))5(%_,1)

<( )(

_ Dg(4,a;)
D(IJ

_ D" f(Aay)

Do)

0g(/1 % >Za,1 ~2)
P(4)

P(4). (AS)

APPENDIX B: CONSISTENT CHECK
OF THE FUNCTIONS FOR
VACUUM STATE

In the main text, we obtain the functions P and P, for the
one interval in the vacuum state of CFTs. In this section, we
would like to check the consistent relation (28). Since

_ _ _ b
t=—-b—logl, we have & aL = =5} S0
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@
@‘

Vi Vi
{%( (10(2\/_)+12(2\/—))>

_le 1(2\/_) 1 ¢ VbI,(2Vbt)
A6L 2/bi  A6L

>~ |

lclt—

21372 16L2

0 0 ¢ [((b=0)I,(2Vbt)
&PL(x)_axa<T+5(r)>
c 0 [(b=1)I,(2Vbt) c ot

_6Lat( Jbi )aﬁéuu‘s(t)

1l 11(2\/Z7;)+1 ¢ \/011(2\/“)

Q6L 2/bt  AG6L 2702 /16L
x5 =2 (10(VB) + B2V - 530
= left. (B2)

On the other hand, since we have (40), let us rewrite

¢ [(b—=1)I,(2vbr) o«
P == [P 50| = - 2P0,
log L [(b—1)1,(2V/bt) ]
P.(A) = - +6(t
(= - REE [CZ0UEVR g
log L
=Ly ) (B3)
so we have
d 1 c logL o
% L(l) - _6773(11(}“) 6L 6 ob ,Paj()“)’
0 1 logL ¢ 0
oL e = =7 Pa,(A) === 7= Po, (4)
0
=— A). B4
2P (B4)
APPENDIX C: RECONSTRUCTION
OF THE EIGENVALUE
In Sec. III C, we use a further assumption that % = f(4)

and the functions P and P, to reconstruct the eigenvalues
of p,. In principle, one could also choose other para-
meters, such as c¢. But one would obtain the wrong results
as we will show below. Using (40) and the assumption

% = f(4), we have

lP(\fh(%/_))aL+at<f11(2\/_))aL}

¢ <b(10(2\/E) +1,(2v/b1))

1 ot

S (t
AOL ()

\/EI‘(Z\/E)H < Lsw

6L 21 2P 6L
21y (2VB0) + L2V ~ 5 ), (B1)
6/11' - log /11' - 2b log L
o . Cl
ac b 6 /1[3 ( )
which can be solved as
A= et (C2)

where C; are constants unrelated to ¢. This is inconsistent

A5
with the form e=% 7 that is derived in Sec. Il D. By the
normalization of p,, we have

Aﬁﬁ
E e~ w P =1.

i

(C3)

Using this, one could find that 2
constraint

o, s b 1
Lot = —Webaiv 1. (C4
25 o <ac 24W> (€4)

which means ‘)()AC" is not only a function of A; but depends on
f(%) is

other A j (j # i). Therefore, the assumption % =
incorrect.

c’ should satisfy the

APPENDIX D: DETAILS OF THE
CALCULATIONS FOR SHORT INTERVAL

For the thermal state, we have

n’c - mte(5¢ +22)
6F (A)p=(A)p = TIR0p

(D1)

<T>/5 = <T>/3 = -

Thus, we obtain

e 11z%c pale

/ ——
129604*"

k = —, =, =
27 362 4 1296084 4
(D2)

Taking the above results into (55), we have
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Vbo By using the relation 7 —1 20,09 e h
P — ) { \/EO Iy + 8(1) + (ol + (2k, — 10k2)l4)10 y using the relation 7,,_;(x) — I, (x) = we have
21,(2+/byt
lk214£1 10(2 bot) — 12(2 bo ) ( 0 ) s
2 Vb ! 2Bt
1 /bo 7[2C 5 7T4C 4 11(2\/ bot) + \/ b0l12(2 bot) =\ botlo(z bot) (Dg)
=1 711 +(S(t)+ Wl _1080ﬂ4l IO

Thus, we find

Vi }
+ =1/, (D3)
2596 7l Vb N 2 4
/ ’ P =" {ﬂll—i-&(t)%—(”c [ 14)10

3642 1080
where the argument of 7, is 2+/byt, the same as below. The vt P 4
Rényi entropy of the thermal state is given by 4 \[ }

+2596ﬁ4 Vo !
1 po. xl
W —(122) 1002 sinn (™
S 6( —i—n) ogLesm 7l

D4) =P. (D9)
so we can get P by

—~

One could also check the results for P, by the same
method.

")

P! e [ nbr+(1 —n)S( ]

Vb7l (21/brt) APPENDIX E: CONSISTENT CHECK
=7 ( i +6( )) (Ds) OF THE FUNCTIONS FOR PERTURBATION
STATES
with Before checking the relation (23) of (79) and (94), we
want to find the relation between Ps and P s,,) and P5)(a,)
by = Elog ﬁsinh zl ) (D6) first. By the definitions, we have
6 e s
0
Expanding 7' up to the order (7)*, we find aa Z‘Sﬁ 82 =)
7
P =) @11 +6(1) + er(li + Vhoth)P Pl A)
Vi 36%\/bt 6aJ da;
Srtc?tly — 127t (1) + /botl,)|I* d
[57%c*tl, ﬂCE 1 otl>)] :73(&1])(/1)__7)( y )(ﬂ)- (E1)
129608%\/bot ol
+0(P). (D7) By using (79), (94), and (E1),
|
—’P( )= 9 1p ﬂg’ —ébﬂa—PO Zn 5\ _9Ps ’131/1
oa, da; | ° ,1," 04 \4, 01 \4,
Py (20 0Py ) 0% o5b Py (4, PPy (10
_ o () +L _90b,9P0 (Fn ;) _ 5y 00 (P
ooy \ A, ah y) 00:, oay; 04 \4, 0loay \ A,
*Ps
—+ 0<5p ) — TP </1 /1) + 0(8p%)
oPY /20 P /10 073(5 ) 5277(5)( ) 20
== (S ) ba— (2] = | - =5 E2
(o) v () - 5 -= (2) =)

and
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0P, 0 P oPy, (29 P P 5)(ay) (A
- A)=——|PY [ZA2) —oba—2 (222 B e ]
oA Q oA {P </1m ) oA <zm )+P<5“f> (xm ) oA (lm ﬂ
aPa, (% aPa, (4 FPa, (1
=—(146b) =22 ob—"L (")) +6b(1 4 6b iy el
(v T () v (520) vt o e (124)

IP (50,) (Pom
—[(1+5b)T Ea - (1+6b)
Py, (A9 PPy, (A
—_—_—_%(m Shi—% | Zm o
oA (zm >+ 04? (lm
0
=—"P().
a0079( )

PPy (A,
Az \a,

) ~ F%a» _PP)ay
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