
Classicality and uniqueness in the loop quantization of Bianchi I spacetimes

Meysam Motaharfar,1,* Parampreet Singh ,1,2,† and Eklavya Thareja1,‡
1Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA

2Center for Computation and Technology, Louisiana State University,
Baton Rouge, Louisiana 70803, USA

(Received 27 November 2023; accepted 20 March 2024; published 11 April 2024)

In loop quantum cosmology, ambiguities in the Hamiltonian constraint can result in models with varying
phenomenological predictions. In the homogeneous isotropic models, these ambiguities were settled, and
the improved dynamics was found to be a unique and phenomenologically viable choice. This issue has
remained unsettled on the inclusion of anisotropies, and in the Bianchi I model there exist two
generalizations of isotropic improved dynamics. In the first of these, labeled as μ̄ quantization, the edge
length of holonomies depends on the inverse of the directional scale factor. This quantization has been
favored since it results in universal bounds on energy density and anisotropic shear, and can be viably
formulated for noncompact as well as compact spatial manifolds. However, there exists an earlier
quantization, labeled as μ̄0 quantization, where edge lengths of holonomies depend on the inverse
of the square root of directional triads. This quantization is also nonsingular and so far believed to
yield a consistent physical picture for spatially compact manifolds. We examine the issue of the
physical viability of these quantizations for different types of matter in detail by performing a large
number of numerical simulations. Our analysis reveals certain limitations which have so far remained
unnoticed. We find that while being nonsingular, the μ̄0 quantization suffers from a surprising problem
where one of the triad components and associated polymerized term retains Planckian character even at
large volumes. As a result, not only is the anisotropic shear not preserved across the bounce, which is most
highlighted in the vacuum case, but the universe can exhibit an unexpected cyclic evolution. These
problematic features are absent from the μ̄ quantization leaving it as the only viable prescription for loop
quantizing the Bianchi I model.
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I. INTRODUCTION

The existence of singularities in Einstein’s theory of
general relativity (GR) [1–4] is one of the strongest
motivations for the hunt of a theory of quantum gravity.
It has been expected that a quantum theory of spacetime
would result in a resolution of the big bang and black hole
singularities. This expectation has been found to be true in
the framework of loop quantum cosmology (LQC) where
techniques of loop quantum gravity (LQG) have been
applied to cosmological spacetimes [5]. A key prediction
of LQC is that the big bang singularity is replaced with a
quantum bounce as spacetime curvature approaches the
Planck regime [6–8]. In fact, in the case of a spatially flat,
homogeneous, and isotropic universe sourced with a
massless scalar field, there exists a universal upper bound
on the eigenvalues of the energy density operator deter-
mined by the area gap in the quantum geometry [9] and the

probability for the occurrence of the bounce turns out to be
unity in the consistent histories formulation of quantum
mechanics [10]. The result of singularity resolution has
been generalized to several spacetimes, including in the
presence of spatial curvature [11–14], inflationary potential
[15], anisotropies [16–18] and in the presence of Fock
quantized inhomogenities [19]. Using an effective descrip-
tion of underlying quantum geometry, the phenomenologi-
cal implications of LQC for various models have been
extensively studied [20–22], including potential signatures
in the CMB. Bounds on the energy density, expansion, and
shear scalars in different models have been found [23–25],
and strong curvature singularities have been shown to be
generically resolved in isotropic models [26,27], as well as
anisotropic models [28–31]. These results in cosmological
models have also been generalized to black hole spacetimes
where the central singularity is resolved in the Planck
regime [32].
Because of the underlying quantization ambiguities,

there are distinct choices of quantum Hamiltonian con-
straint in LQC which can result in different phenomeno-
logical implications. An important exercise is to use various
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consistency requirements to restrict these choices and
possibly find a unique choice. It turns out that in the case
of isotropic universes, there indeed is a unique quantiza-
tion, the so-called μ̄-scheme or the “improved dynamics,”
which leads to a consistent infrared and ultraviolet behavior
and is independent of problems associated with the
rescaling of fiducial cell when one considers spatial non-
compact manifolds [24,33]. In the μ̄ scheme, when one
equates the physical area of the loop with the minimum
allowed area on the quantum geometry, one obtains
μ̄ ∝ jpj−1=2 where p is the isotropic triad. An early attempt
to generalize this to Bianchi I spacetime replaced the
isotropic triad with a directional triad pi in the expression
of “μ̄i”. This approach was first developed by Chiou [34],
later studied in more detail by Chiou and Vandersloot [35]
and thoroughly investigated by Mena Marugan and col-
laborators [36,37]. We refer to this quantization as the μ̄0
quantization in this paper. The resulting quantization shares
similar features with an exactly solvable model in isotropic
LQC but has limitations in the sense that there is no
freedom in scaling the individual directions of the fiducial
cell, leading to a restricted topology like a 3-torus [33]. The
energy density and anisotropic shear scalar are unbounded
in μ̄0 quantization, and there is no universal quantum
gravity scale for singularity resolution. However, for
compact spatial manifolds with torus topology, the
unboundedness of energy density and anisotropic shear
can be addressed using the inverse triad modifications.
Interestingly, Chiou and Vandersloot also discussed an
alternative scheme (see appendix C of [35]) where the edge
lengths were chosen such that μ̄i ∝ 1=ai where ai denotes
the directional scale factor. This quantization also agrees
with μ̄-scheme in the isotropic limit and was developed in
detail by Ashtekar and Wilson-Ewing [16]. This prescrip-
tion, hereafter referred to as the “μ̄ quantization, success-
fully overcomes the limitation of restriction to compact
manifolds and results in universal bounds on energy density
and anisotropic shear [33]. For these reasons, the μ̄
quantization is favored over the μ̄0 quantization in the
literature, though the latter can be justified as a plausible
alternative when one considers spatially compact mani-
folds. Due to this reason, there have been two possible
choices for loop quantization of Bianchi I spacetime.
In this manuscript, assuming the validity of effective

description, we take a closer look at the viability of these
prescriptions guided by the requirement that any quantum
theory of gravity to be viable must consistently recover the
classical GR and its physical properties in the classical
regime. Due to loop quantum effects, the singularity is
resolved in both μ̄ and μ̄0 quantizations and the universe
reaches a large volume compared to the Planck volume
across the nonsingular bounce. However, this is necessary
but not sufficient to conclude that spacetime has become
classical. In fact, spacetime only becomes classical when
it also recovers all the physical properties of classical

dynamics. Let us here note that an important physical
observable in Bianchi I is the anisotropic shear scalar,
which measures the deviation from isotropic spacetime.
The anisotropic shear is a constant of motion in the classical
Bianchi I spacetime, however, in loop quantum cosmo-
logical models, the big bang singularity is replaced with a
quantum bounce, during which the anisotropic shear is not
conserved due to quantum gravity effects. Such a bounce
connects the expanding branch to the contracting branch
before the big bang, whereby the large classical universe
contracts, bounces back, and expands into the large
classical universe. Therefore, if the universe is classical
before and after the bounce at large volumes, one expects
that the anisotropic shear scalar will be preserved across the
bounce when it is compared at the same volume before and
after the bounce in the absence of an anisotropic matter
source such as magnetic fields. Though this issue was
investigated in Ref. [35] the conclusions were not clear. It
was analytically demonstrated that if the values of triads are
large before and after the bounce, the anisotropic shear is
preserved across the bounce as in the classical Bianchi I
spacetime. But the pertinent question is whether all direc-
tional triads necessarily become large across the bounce?
And whether this implies that the quantum gravity mod-
ifications to the Hamiltonian constraint do not die even at
macroscopic volumes? Note that in an anisotropic space-
times since the physical volume v ¼ ðp1p2p3Þ1=2 it is quite
possible for volume to take a macroscopic value with one
of the triads taking a small value. In fact, in a classical
Bianchi I vacuum spacetime, this picture is generic. But
whether or not this implies a breakdown of classicality
in a particular quantization is far more clear. Due to the
complicated form of Hamilton’s equations, this is difficult
to answer analytically, and one must perform numerical
simulations to understand the behavior of the anisotropic
shear across the bounce without making any additional
assumptions on the nature of solutions.
While earlier investigations seem to suggest that for the

compact topologies, phenomenological differences in the μ̄
and the μ̄0 quantization is not important, we re-examine this
issue in more detail for different types of matter employing
a large number of numerical simulations using HPC for the
cases of vacuum, massless scalar, dust, and radiation in
the effective spacetime description. Investigating the time
evolution of directional connections, we find that for the μ̄
quantization, if the universe starts from a large classical
regime, it bounces and expands back to a large classical
regime generically. The quantum gravity modifications to
the classical Hamiltonian constraint are important only in
the bounce regime and die quickly away from this regime.
However, in the case of μ̄0 quantization, starting from large
values of triads in the prebounce regime, we find that one of
the triads always remains in the quantum regime during the
postbounce evolution of the universe. This is a surprising
result so far remaining elusive in previous investigations.
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While the postbounce volume becomes large, the universe
does not become classical even at large volumes because of
one of the polymerized terms in the Hamiltonian constraint
never becomes classical. Interestingly, in an anisotropic
evolution, even in μ̄ scheme, one triad can be small after the
bounce, but this happens in the regime when classical
dynamics has been fully recovered.
Since in the μ̄0 scheme, the anisotropic universe remains in

the quantum regime after the bounce, it is reasonable to
suspect the conservation of an anisotropic shear scalar across
the bounce.Hence, comparing thevalueof theprebounceand
postbounce anisotropic shear scalar at a large volume regime
while satisfying the Hamiltonian constraint with excellent
accuracy, we find that the anisotropic shear is preserved
across the bounce in the case of the μ̄quantization for vacuum
spacetime and also includingmassless scalar fields, dust, and
radiation matter components. However, we find that the
anisotropic shear is not conserved across the bounce in the
case of μ̄0 quantization, and it has a usually larger postbounce
value in comparison to the prebounce value. Moreover, we
find that for particular initial conditions, the universe goes
through an unexpected cyclic evolution in the case of adding
dust or radiation, which is closely related to the quantum
behavior of one of the triads. Ourwork shows that care needs
to be exercised to understand the large volume behavior in
anisotropic models, and one cannot take for granted the
classicality condition in the effective dynamics of Bianchi I
LQCmodels. Our result implies that μ̄0 quantization does not
yield a classical behavior on one of the two sides of the
bounce and is thus not a viable scheme. This leaves the μ̄
quantization as a unique choice for the loop quantization of
Bianchi I spacetime.
The manuscript is structured as follows. In Sec. II we

provide a brief overview of the classical dynamics of
Bianchi I cosmology in terms of symmetry-reduced
Ashtekar-Barbero variables, namely triads and correspond-
ing directional connections. We then establish their rela-
tionship to the familiar metric variables. In Sec. III, we
present the loop quantization of the classical theory for both
μ̄ quantization and μ̄0 quantizations at the level of effective
dynamics and explore their physical properties. Section IV
is dedicated to elaborating on the numerical methodology,
presenting the numerical results for the classicality con-
dition, and discussing the implications of not satisfying this
condition in the case of μ̄0 quantization, including violation
of the conservation of anisotropic shear scalar across the
bounce and unexpected cyclic evolution of the universe.
Note that in this section, we use Planck units. Finally, we
give a summary of the results and conclusion in Sec. V.

II. CLASSICAL DYNAMICS OF BIANCHI I
SPACETIME

The loop quantization program is based on the classical
gravitational phase space variables, namely the Ashtekar-
Barbero connection Ai

a and the triads Ea
i (where

i ¼ 1; 2; 3). Hence, it is useful to briefly review the
dynamics of Bianchi I spacetime, a spatially flat homo-
geneous (but anisotropic) universe, in a canonical frame-
work and then relate it to the conventional metric variables.
To this end, we consider the homogeneous (orthogonal)
Bianchi I spacetime with a spatial manifold T 3 and lapse
function N ¼ 1 given by

ds2 ¼ −dt2 þ a21dx
2 þ a22dy

2 þ a23dz
2; ð2:1Þ

where a1, a2 and a3 are directional scale factors, while the
mean scale factor can be defined as a ≔ ða1a2a3Þ1=3.
Upon isotropization, i.e., when a1 ¼ a2 ¼ a3 ¼ a, metric
(2.1) reduces to the Friedmann-Lemaître-Robertson-
Walker (FLRW) metric describing a spatially flat, homo-
geneous, and isotropic universe. The Ashtekar-Barbero
variables Ai

a and Ea
i reduce to connections ci and triads pi

with only one independent component per spatial direc-
tion upon symmetry reduction and imposing the Gauss
and the spatial-diffeomorphism constraints. The triads are
kinematically related to the directional scale factors as
follows

jp1j ¼ a2a3; jp2j ¼ a1a3; jp3j ¼ a1a2: ð2:2Þ

The modulus sign arises because of the orientation of the
triad. However, without losing generality, we here assume
a positive sign for the orientation of directional triads.
From these relations, one can find that directional scale
factors are related to triads, i.e., a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2p3=p1

p
(and

similarly a2 and a3 with cyclic permutation). Moreover, in
the phase space, the triads and connections satisfy the
following Poisson bracket

fci; pjg ¼ 8πGγδij; ð2:3Þ

where γ ≈ 0.2375 is the Barbero-Immirzi parameter,
which is fixed by black hole thermodynamics in LQG.
The classical Hamiltonian constraint for matter content
minimally coupled to the gravitational sector, in terms of
directional connections ci and triads pi, reads as

Hcl ¼ Hg þHm ¼ −
1

8πGγ2v
ðc1p1c2p2 þ c2p2c3p3

þ c3p3c1p1Þ þHm; ð2:4Þ

where Hm is matter part of Hamiltonian and v ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

p ¼ a1a2a3 is physical volume of a unit comov-
ing cell.1 Given the classical Hamiltonian Hcl, the

1In noncompact models in LQC, one introduces a fiducial cell
to define a symplectic structure whose coordinate lengths enter
the relation between triads and scale factors. We assume the
coordinate lengths of this fiducial cell to be unity.
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dynamical equations for triads and connection compo-
nents are determined using Hamilton’s equations

ṗi ¼ fpi;Hclg ¼ −8πGγ
∂Hcl

∂ci
;

ċi ¼ fci;Hclg ¼ 8πGγ
∂Hcl

∂pi
; ð2:5Þ

where a dot denotes the derivative with respect to the
cosmic time t. The first set of equations leads to ci ¼
γȧi ¼ γHiai which together with the Hamiltonian con-
straint Hcl ≈ 0 result in the following Friedmann equation
for Bianchi I spacetime

H1H2 þH2H3 þH3H1 ¼ 8πGρ; ð2:6Þ

where we considered a perfect fluid with a barotropic
equation of state ω ¼ P=ρ while ρ ¼ Hm=v and P ¼
−∂Hm=∂v are energy density and pressure of matter
content, respectively. Moreover, Hi denotes directional
Hubble parameters, which are related to the time deriv-
atives of triad components, such as

H1 ≡ ȧ1
a1

¼ 1

2

�
ṗ2

p2

þ ṗ3

p3

−
ṗ1

p1

�
; ð2:7Þ

(and similarly for H2 and H3). Likewise, using the
dynamical equations for directional connections, ci, one
can find the second Friedmann equation as follows

H2
1 þH2

2 þH2
3 þ Ḣ2 þ Ḣ3 ¼ −8πGP; ð2:8Þ

(and its cyclic permutation). One can check that Eqs. (2.6)
and (2.8) reduce to the first and second Friedmann
equations for FLRW spacetime

H2 ¼ 8πG
3

ρ; Ḣ ¼ −4πGðρþ PÞ; ð2:9Þ

in the limit H1 ¼ H2 ¼ H3 ¼ H ¼ ȧ
a where H is the mean

Hubble parameter defined as

H ≡ 1

3
ðH1 þH2 þH3Þ: ð2:10Þ

From Hamilton’s equations (2.5) and after some algebra, it
can be found that

d
dt

ðpiciÞ ¼ 8πGγv2
�
ρþ pi

∂ρ

∂pi

�
; ð2:11Þ

assuming isotropic matter content, i.e., pi
∂ρ
∂pi

¼ pj
∂ρ
∂pj

,

Eq. (2.11) thus yields

d
dt

ðpici − pjcjÞ ¼ 0; ð2:12Þ

which can be integrated to give

pici − pjcj ¼ γαij; ð2:13Þ

with αij being a constant anti-symmetric 3 × 3 matrix
satisfying by construction α12 þ α23 þ α31 ¼ 0 and factor
of γ is for convenience. Writing in terms of directional
Hubble parameters, one obtains

Hi −Hj ¼
αij

a1a2a3
¼ αij

a3
: ð2:14Þ

Given Eq. (2.14), one can write generalized Friedmann
equations which contain the information about the aniso-
tropic shear. From Eq. (2.10), one can find that

H2¼ 1

3
ðH1H2þH2H3þH3H1Þ

þ 1

18
½ðH1−H2Þ2þðH2−H3Þ2þðH3−H1Þ2�;

ð2:15Þ

while the first term is related to energy density through
Friedman equation (2.6) and second term can be written in
term of mean scale factor using Eq. (2.14) as follow

H2 ¼ 8πG
3

ρþ Σ2

a6
; ð2:16Þ

where Σ2 ¼ ðα212 þ α223 þ α231Þ=18 is a constant of motion,
i.e., Σ̇ ¼ 0. To investigate the formation of singularities
and their structures in Bianchi I spacetime, it is useful to
define the expansion rate and the anisotropic shear scalar.
The expansion rate is given by the trace of the expansion
tensor

θ ¼ H1 þH2 þH3 ¼ 3H; ð2:17Þ

while anisotropic shear scalar σ2, which measures the
deviation from isotropic spacetime, is a traceless part of
the expansion tensor, which in terms of directional Hubble
parameters Hi is given by

σ2¼ σμνσμν¼
1

3
ððH1−H2Þ2þðH2−H3Þ2þðH3−H1Þ2Þ:

ð2:18Þ

Note that the above two relations are kinematical rela-
tions, so they are independent of whether the underlying
theory is GR or LQC. From Eq. (2.18), anisotropic shear
scalar is related to Σ, i.e., σ2 ¼ 6Σ2=a6. Hence, one can
derive generalized Friedmann equations as follows [38]:
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H2 ¼ 8πG
3

ρþ σ2

6
; Ḣ ¼ −4πGðρþ PÞ − σ2

2
: ð2:19Þ

These equations reduce to the Friedmann equations given
in (2.9) for a flat, isotropic universe when σ2 ¼ 0. Using
above dynamical equations, one finds that at vanishing
scale factors ρ, θ and σ2 diverge, leading to the divergence
of curvature invariants and the breakdown of geodesic
evolution at the singularities. From the first generalized
Friedmann equation together with the conservation
law, i.e.,

ρ̇þ 3Hðρþ PÞ ¼ 0; ð2:20Þ
which implies ρ ∝ a−3ð1þωÞ, one realizes that the aniso-
tropic shear behaves as the energy density of a perfect fluid
with the equation of state ω ¼ 1 (similar to a massless
scalar field). This means that the early universe could be
isotropized in the presence of matter content with an
equation of state ω < −1=3 (such as a scalar field with
plateaulike potential in inflationary scenarios [39–41]) in
expanding universe andω ≫ 1 (such as a scalar field with a
negative potential in ekpyrotic scenarios [42,43]) in a
contracting universe. Moreover, the presence of anisotropy
makes the structure of singularities much richer. Although
in an isotropic universe the big bang singularity is always
pointlike, in Bianchi I spacetime the geometrical nature of
the singularity depends on whether all three directional
scale factors approach zero, leading to different types of
singularities, namely, pointlike, cigarlike, barrel-like, and
pancake singularities. However, the pointlike and cigarlike
singularities are the most prevalent ones. In fact, if the
energy density term dominates over the anisotropic term
in the first equation of (2.19) near the singularity, the
approach to the singularity can be pointlike, otherwise, it
will be cigarlike (see [44] for more discussion).

III. EFFECTIVE DYNAMICS OF BIANCHI I
MDOEL IN LQC: μ̄ VS μ̄0 QUANTIZATION

Despite the fact that the complete theory of LQG has yet
to be developed, its techniques can still be employed to
examine symmetry-reduced spacetimes. In practice, LQC
utilizes methods and concepts from LQG to perform
quantization of cosmological spacetimes with reduced
symmetries. To quantize, the classical Hamiltonian con-
straint is formulated using the fundamental variables of
quantum theory, which are the holonomies of the con-
nections evaluated along closed loops and the fluxes of
the triads (which are directly proportional to the triads).
Consequently, a discrete quantum difference equation
arises, which governs the evolution of the universe.
Interestingly, the quantum difference equation is nonsin-
gular and leads to the continuous Wheeler-DeWitt equation
when the spacetime curvature becomes small. However, it
was demonstrated that the underlying quantum dynamics of

various cosmological spacetimes, such as the isotropic
model [45–47] and the Bianchi I model [36,37,48] can
be accurately captured by a continuum effective description
under some reasonable assumptions. In fact, the effective
Hamiltonian for Bianchi I LQC can be obtained by
replacing the classical directional connections ci with
bounded trigonometric functions, i.e., ci → sinðμ̄iciÞ=μ̄i,
therefore,

H ¼ −
1

8πGγ2v

�
sinðμ̄1c1Þ

μ̄1

sinðμ̄2c2Þ
μ̄2

p1p2

þ cyclic permutations

�
þHm; ð3:1Þ

where μ̄i are real functions of triads (which are assumed to
have positive orientation) that measure the discreteness of
spacetime, and Hamiltonian constraint reduces to classical
Hamiltonian constraint in the limit μ̄ici ≪ 1 (more spe-
cifically, when μ̄ici ∼ nπ). Hereafter we call this condition
the “classicality condition.” In the early development of
LQC, μ̄i was a constant, which was called the μ0 scheme,
however, later it was shown that such a scheme cannot
recover classical GR at large volumes in the case of an
isotropic LQC model [6]. Then, it was argued that μ0
should proportional to inverse of scale factor, i.e., μ̄ ∝
1=

ffiffiffiffiffiffijpjp
or equivalently μ̄ ∝ 1=a in the isotropic spacetime,

leading into the so-called μ̄ scheme or “improved dynam-
ics”. To extend the μ̄ scheme to Bianchi I spacetime with
three triads, there is some ambiguity, which has resulted in
two different quantizations so far: μ̄0 and μ̄ quantizations.

A. The μ̄0 scheme

In the case of μ̄0, the holonomy edge lengths depend on
just one of the triads, therefore,

μ̄01 ¼ λ

ffiffiffiffiffi
1

p1

s
; μ̄02 ¼ λ

ffiffiffiffiffi
1

p2

s
; μ̄03 ¼ λ

ffiffiffiffiffi
1

p3

s
; ð3:2Þ

where λ2 ¼ Δ ¼ 4
ffiffiffi
3

p
πγl2Pl with Δ being the minimum

eigenvalue of the area operator in LQG. This model reduces
to its isotropic model, i.e., μ̄01 ¼ μ̄02 ¼ μ̄03 ¼ μ̄ ¼ λ=

ffiffiffiffi
p

p
when p1 ¼ p2 ¼ p3 ¼ p. Given the holonomy edge
lengths, the effective Hamiltonian for μ̄0 quantization can
be rewritten as

Hðμ̄0Þ ¼ −
1

8πGγ2λ2

�
sinðμ̄01c1Þ sinðμ̄02c2Þ

p1p2ffiffiffiffiffi
p3

p

þ cyclic permutations

�
þHm: ð3:3Þ

With this effective Hamiltonian, one can find the dynamical
equations via Hamilton’s equations, as in classical space-
time. Resulting Hamilton’s equations for μ̄0 quantization
read as
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ṗ1 ¼
p1

γλv
cosðμ̄01c1Þðp

3
2

2 sinðμ̄02c2Þ þ p
3
2

3 sinðμ̄03c3ÞÞ; ð3:4Þ

ċ1 ¼ −
1

γλ2

�
sinðμ01c1Þsinðμ02c2Þ

p2ffiffiffiffiffi
p3

p −
1

2
sinðμ02c2Þsinðμ03c3Þ

p2p3

p
3
2

1

þ sinðμ03c3Þsinðμ01c1Þ
p3ffiffiffiffiffi
p2

p
�

þ c1
2γλv

cosðμ01c1Þ½p
3
2

2 sinðμ02c2Þ þ p
3
2

3 sinðμ03c3Þ� þ 8πG
∂Hm

∂p1

: ð3:5Þ

The other four equations (two for triads and two for connections) can easily be derived by cyclic permutation of Eqs. (3.4)
and (3.5). From the Hamiltonian constraint, i.e., Hðμ̄0Þ ≈ 0, the energy density is given by

ρ ¼ 1

8πGγ2λ2

�
sinðμ̄01c1Þsinðμ̄02c2Þ

ffiffiffiffiffiffiffiffiffiffi
p1p2

p
p3

þ sinðμ̄02c2Þsinðμ̄03c3Þ
ffiffiffiffiffiffiffiffiffiffi
p2p3

p
p1

þ sinðμ̄03c3Þsinðμ̄01c1Þ
ffiffiffiffiffiffiffiffiffiffi
p3p1

p
p2

�
; ð3:6Þ

where we used the fact thatHm ¼ ρv. From the expression for energy density, one realizes that there are some terms that are
proportional to triads, and hence they are unbounded. This means that the μ̄0 quantization does not result in a universal
quantum gravity scale, as is the case in isotropic spacetime (see Ref. [33] for a comprehensive discussion about this issue).
Using Hamilton’s equations for triads and Eq. (2.7), the directional Hubble parameters are given by

H1 ¼
1

2γλv
ðp3

2

1 sinðμ̄10c1Þðcosðμ̄20c2Þ þ cosðμ̄30c3ÞÞ þ p
3
2

2 sinðμ̄20c2Þðcosðμ̄30c3Þ − cosðμ̄10c1ÞÞ

þ p
3
2

3 sinðμ̄30c3Þðcosðμ̄20c2Þ − cosðμ̄10c1ÞÞÞ; ð3:7Þ

and similar equations can be derived for H1 and H2 using cyclic permutation. Using Hamilton’s equations for triads, the
expansion rate reads as

θ ¼ 1

2γλv
ðp3

2

1 sinðμ̄10c1Þðcosðμ̄20c2Þ þ cosðμ̄30c3ÞÞ þ p
3
2

2 sinðμ̄20c2Þðcosðμ̄10c1Þ þ cosðμ̄30c3ÞÞ

þ p
3
2

3 sinðμ̄30c3Þðcosðμ̄10c1Þ þ cosðμ̄20c2ÞÞÞ; ð3:8Þ

while having the directional Hubble parameter, one can also find the shear scalar using Eq. (2.18) as follows

σ2 ¼ 1

3γ2λ2v2
½ðcosðμ̄01c1Þðp

3
2

2 sinðμ̄02c2Þ þ p
3
2

3 sinðμ̄03c3ÞÞ − cosðμ̄02c2Þðp
3
2

3 sinðμ̄03c3Þ þ p
3
2

1 sinðμ̄01c1ÞÞÞ
2

þ ðcosðμ̄02c2Þðp
3
2

3 sinðμ̄03c3Þ þ p
3
2

1 sinðμ̄01c1ÞÞ − cosðμ̄03c3Þðp
3
2

1 sinðμ̄01c1Þ þ p
3
2

2 sinðμ̄02c2ÞÞÞ
2

þ ðcosðμ̄03c3Þðp
3
2

1 sinðμ̄01c1Þ þ p
3
2

2 sinðμ̄02c2ÞÞ − cosðμ̄01c1Þðp
3
2

2 sinðμ̄02c2Þ þ p
3
2

3 sinðμ̄03c3ÞÞÞ
2�: ð3:9Þ

One can see from the expressions for expansion rate and
shear scalar that there are some terms proportional to
triads that are not bounded, meaning that expansion rate
and shear scalar are also unbounded, similar to the energy
density. However, one should note that the discreteness of
spacetime also leads to other modifications in the Planck
regime in LQC. The most important one is the inverse
scale factor modification, which comes from the require-
ment of having a well-defined operator for the inverse of
some power of scale factor, which in its spectra contains
the zero eigenvalue. We can see from the expressions for
expansion rate and shear anisotropic scalar that there are
some inverse volume prefactors that will be modified
upon applying the inverse scale factor correction. Hence,

one can argue that taking into account the inverse scale
factor modifications in the case of μ̄0 quantization may
result in a bounded energy density and an anisotropic
shear scalar.2

B. The μ̄ scheme

The unboundedness of energy density and shear
anisotropy in the absence of inverse scale factor

2The inverse scale factor modifications can result in nontrivial
modifications in certain situations. See for eg. [49,50] where they
play an important role for initial conditions of the universe and
the tunneling wave function proposal.
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modification for the μ̄0 scheme was one of the motivations
which led to the development of another quantization—the
μ̄ schemewhich results in a universal quantum gravity scale
for the observable quantities for both compact and non-
compact manifolds. In fact, it was realized that one can also
use loop quantization techniques if the holonomy edge
lengths depend on inverse of directional scale factors
similar to isotropic LQC [16] resulting in the μ̄ quantization

of Bianchi I spacetime. In fact, the holonomy edge lengths
in μ̄ quantization take the following form

μ̄1¼ λ

ffiffiffiffiffiffiffiffiffiffi
p1

p2p3

r
; μ̄2 ¼ λ

ffiffiffiffiffiffiffiffiffiffi
p2

p1p3

r
; μ̄3¼ λ

ffiffiffiffiffiffiffiffiffiffi
p3

p1p2

r
: ð3:10Þ

Hence, the effective Hamiltonian for μ̄ quantization can be
rewritten as follows

Hðμ̄Þ ¼ −
v

8πGγ2λ2
ðsinðμ̄1c1Þsinðμ̄2c2Þ þ cyclic permutationsÞ þHm; ð3:11Þ

from which one can derive the corresponding Hamilton’s equations for μ̄ quantization given by

ṗ1 ¼
p1

γλ
cosðμ̄1c1Þðsinðμ̄2c2Þ þ sinðμ̄3c3ÞÞ; ð3:12Þ

ċ1 ¼ 8πGγ
∂Hm

∂p1

−
v

2γλ2p1

½μ̄1c1 cosðμ̄1c1Þðsinðμ̄2c2Þþ sinðμ̄3c3ÞÞ− μ̄3c3 cosðμ̄3c3Þðsinðμ̄1c1Þþ sinðμ̄2c2ÞÞ

− μ̄2c2 cosðμ̄2c2Þðsinðμ̄3c3Þþ sinðμ̄1c1ÞÞþðsinðμ̄1c1Þsinðμ̄2c2Þþ sinðμ̄2c2Þsinðμ̄3c3Þþ sinðμ̄3c3Þsinðμ1c1ÞÞ�: ð3:13Þ

Similarly, the other four equations for triads and connections can be obtained by a cyclic permutation of Eqs. (3.12)
and (3.13). Using Hamiltonian constraints, the expression for energy density reads as

ρ ¼ 1

8πGγ2λ2
ðsinðμ̄1c1Þsinðμ̄2c2Þ þ sinðμ̄2c2Þsinðμ̄3c3Þ þ sinðμ̄3c3Þsinðμ̄1c1ÞÞ: ð3:14Þ

One realizes that although the energy density diverges in the classical GR near the singularities, it is universally bounded in
LQC in the case of μ̄ quantization, i.e.,

ρ ≤ ρmax ¼
3

8πGγ2λ2
≃ 0.41ρPl; ð3:15Þ

where ρmax is the maximum energy for which the bounce occurs. Now, using Eq. (2.7) and Hamilton’s equations for triads,
one can find the directional Hubble parameter as

H1 ¼
1

2γλ
ðsinðμ̄1c1Þðcosðμ̄2c2Þ þ cosðμ̄3c3ÞÞ þ sinðμ̄2c2Þðcosðμ̄3c3Þ − cosðμ̄1c1ÞÞ

þ sinðμ̄3c3Þðcosðμ̄2c2Þ − cosðμ̄1c1ÞÞÞ; ð3:16Þ

and similar equations can be found forH2 andH3 by cyclic permutation. Using Hamilton’s equations for μ̄ quantization, the
expansion rate can be written as follows:

θ ¼ 1

2γλ
ðsinðμ̄1c1Þðcosðμ̄2c2Þ þ cosðμ̄3c3ÞÞ þ sinðμ̄2c2Þðcosðμ̄1c1Þ þ cosðμ̄3c3ÞÞ

þ sinðμ̄3c3Þðcosðμ̄1c1Þ þ cosðμ̄2c2ÞÞÞ; ð3:17Þ

and using directional Hubble parameters and Eq. (2.18), one reaches the following equation for a anisotropic shear scalar

σ2 ¼ 1

3γ2λ2
½ðcosðμ̄1c1Þðsinðμ̄2c2Þ þ sinðμ̄3c3ÞÞ − cosðμ̄2c2Þðsinðμ̄3c3Þ þ sinðμ̄1c1ÞÞÞ2

þ ðcosðμ̄2c2Þðsinðμ̄3c3Þ þ sinðμ̄1c1ÞÞ − cosðμ̄3c3Þðsinðμ̄1c1Þ þ sinðμ̄2c2ÞÞÞ2
þ ðcosðμ̄3c3Þðsinðμ̄1c1Þ þ sinðμ̄2c2ÞÞ − cosðμ̄1c1Þðsinðμ̄2c2Þ þ sinðμ̄3c3ÞÞÞ2�: ð3:18Þ
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Unlike the classical theory, the shear scalar is universally
bounded in LQC for μ̄ quantization. The upper bound on
shear scalar is given by

σ2 ≤ σ2max ¼
10.125
3γ2λ2

≃ 11.57l−2Pl : ð3:19Þ

The boundedness of energy density, the expansion rate,
and the shear scalar strongly indicate that singularities are
avoided in Bianchi I LQC. In fact, it has been demon-
strated that, for arbitrary matter, the effective spacetime of
the Bianchi I model in LQC does not contain strong
curvature singularities [28]. Additionally, numerical sim-
ulations indicate that these singularities are replaced by a
bounce, and in the context of Bianchi I spacetimes, this
bounce is accompanied by Kasner transitions in the
geometry of the spacetime [44]. Although the existence
of bounce is a generic feature of effective Bianchi I
spacetimes similar to their isotropic counterparts, there are
significant differences due to the presence of anisotropies.
In contrast to the isotropic case, the relationship between
the energy density and anisotropic shear in the Bianchi I
model can lead to neither ρ nor σ2 reaching their
maximum values, ρmax and σ2max, at the bounce. Due to
the very complicated expressions for dynamical equa-
tions, finding a modified generalized Friedmann equation
containing loop quantum gravity effects is not possible.
However, exhaustive numerical analysis for different
matter types in Ref. [51] showed that there is a parabolic
relation between energy density at the bounce and the
value of anisotropic shear scalar at the bounce.
To summarize this section, let us note that although

these two quantizations are quite different on the theo-
retical grounds, it has long been believed that both of them
result in the same physical properties at large volume
regimes where quantum effects are negligible. In fact, one
expects that the quantum universe will become classical at
large volumes if the classicality condition is satisfied.
Therefore, as it was discussed in Ref. [35], although the
anisotropic shear is not a constant of motion during the
quantum bounce phase, it is conserved when it is
compared at the large volume regime before and after
the bounce. However, as we will discuss in the next
chapter, this is not always the case. The goal of the next
section is to carry out an exhaustive numerical inves-
tigation to check whether Bianchi I loop quantum cos-
mological models become classical.

IV. NUMERICAL ANALYSIS

Due to the occurrence of the bounce, the universe can be
extended to the contracting branch before the big bang in
loop quantum cosmological models. This implies that the
universe may start in a large classical regime, contract,
reach a quantum bounce turnaround point, and then expand
into a large classical regime. Hence, one expects to recover

the physical properties of classical Bianchi I spacetime at
large volume regimes in both prebounce and postbounce
branches. As we discussed in section II, one of the most
important properties of classical Bianchi I spacetime is the
conservation of anisotropic shear, assuming isotropic mat-
ter content. Although, this conservation breaks down
during the quantum evolution of the bounce phase, as it
is clear from Eq. (3.9) for μ̄0 quantization and (3.18) for μ̄
quantization, one expects to recover such conservation by
comparing anisotropic shear before and after the bounce at
large volumes if the universe becomes classical and
effective spacetime is approximated by classical Bianchi I
spacetime. In fact, if one assumes the classicality con-
ditions, the effective dynamics equations reduce to
Friedmann equations for classical Bianchi I spacetime with
conserved anisotropic shear [35]. As we will notice,
although one can consider this assumption kinematically,
the dynamics of the system does not always allow the
universe to become classical, satisfying classicality con-
ditions as it is in the case of μ̄0 quantization. Hence, as we
will discuss below, such quantum behavior not only results
in the violation of anisotropic shear conservation at large
volume regimes but also induces some peculiar behavior,
such as an unexpected cyclic evolution of the universe in
the case of μ̄0 quantization.

A. Classicality condition

The first consistency check for any loop quantum
cosmological model is whether it recovers the classical
GR. In the Bianchi I LQC model, one expects that
Hamilton’s Eqs. (3.4) and (3.5) for μ̄0 quantization and
Eqs. (3.12) and (3.13) for μ̄ quantization reduce into the
corresponding Friedmann Eqs. (2.6) and (2.8) for classical
Bianchi I spacetime once the classicality condition, i.e.,
jμ̄icij ≪ 1, is satisfied. To confirm that, we fix the initial
values of triads in the contracting branch to be at a
comparably large volume, then we determine one of the
directional connections (in this case c3) using the
Hamiltonian constraint, i.e., Hðμ̄Þ ¼ 0 for μ̄ qunatization,
and Hðμ̄0Þ ¼ 0 for μ̄0 quantization, and fix the other two
connection components while forcing all three directional
connections to satisfy classicality conditions. To solve the
six dynamical equations given in Eqs. (3.4) and (3.5) for μ̄0
quantization, and Eqs. (3.12) and (3.13) for μ̄ quantization,
respectively, we use NUMBALSODA package which is for
solving ordinary differential equation initial value prob-
lems, and then we apply the DOP853 algorithm, which is an
explicit Runge-Kutta of order 8(5,3) by Dormand and
Prince with adaptive step size control. The advantage of this
algorithm is that it uses a higher order correction to adapt
the step size, and as such, it controls the error propagating
in the system of equations. Moreover, one can change the
values of absolute and relative tolerances to reduce the error
in the Hamiltonian constraint. We choose the relative and
absolute tolerances to be 10−14 and 10−11, respectively.
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However, we adjust their values depending on the initial
conditions if higher accuracy is needed.
In Fig. 1, we plotted an example evolution with time

evolution of all three directional scale factors and also the

mean scale factor for p1 ¼ 1000, p2 ¼ 2000, p3 ¼ 3000,
c1 ¼ −0.13, and c2 ¼ −0.12 for μ̄ quantization in the case
of vacuum Bianchi I spacetime. As it is obvious, the
approach to the singularity is cigarlike in the sense that one
of the directional scale factors always contracts and two
others expand. In Fig. 2, we plotted the evolution of μ̄ici
versus time, from the top right, bottom left, and bottom
right panels. It is clear that the universe begins in the
classical regime while jμ̄icij ≪ 1 in the contracting branch
and then it becomes classical in the expanding branch, i.e.,
jμ̄icij ∼ π. The solution remains reliable as the Hamiltonian
constraint is consistently satisfied with high accuracy
throughout the universe’s time evolution (as shown in
the top left panel of Fig. 1). Therefore, the classical
cigarlike universe in prebounce branch evolves into a
classical cigarlike universe in the postbranch and, since
the universe becomes classical in the postbounce branch,
the effective dynamics is valid even when one of the
directional scale factors becomes small, which happens in
the classical regime. These results indicate that in the case
of μ̄ quantization, the universe starts in a large classical
regime, bounces due to quantum geometry effects, and then
becomes classical at large volumes as expected.

FIG. 1. Evolution of directional scale factors and mean scale
factor versus time with p1 ¼ 1000, p2 ¼ 2000, p3 ¼ 3000,
c1 ¼ −0.13, c2 ¼ −0.12 for vacuum Bianchi I spacetime in
the case of μ̄ quantization. The big bang singularity is resolved
and the universe becomes classical before and after the bounce.

FIG. 2. Evolution of effective Hamiltonian constraint and μ̄ici versus time with p1 ¼ 1000, p2 ¼ 2000, p3 ¼ 3000, c1 ¼ −0.13, and
c2 ¼ −0.12 for vacuum Bianchi I spacetime in the case of μ̄ quantization. As can be interpreted from this figure the polymerized
corrections are negligible before and after the bounce.
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On the other hand, in Fig. 3, we plotted the time
evolution of directional scale factors and the mean scale
factor in the case of μ̄0 quantization for the same initial
conditions used for μ̄ quantization. Again, the approach to

singularity is cigarlike as it is in a vacuum Bianchi I
spacetime. We then plotted the time evolution of classi-
cality condition for μ̄0 quantization with the same initial
conditions used for μ̄ quantization in Fig. 4. In this case,
although μ̄01c1 and μ̄03c3 (top right and bottom right panels
in Fig. 4) become classical after the bounce, μ̄02c2 (bottom
left panel in Fig. 4) does not become classical and remains
in the quantum regime after the bounce. One can also check
that the Hamiltonian constraint is always satisfied with
great accuracy in the top left panel of Fig. 4. Hence, we
surprisingly found that the μ̄0 quantization of vacuum
Bianchi I spacetime fails to recover classical GR at a large
volume regime, while it is the case for μ̄0 quantization.
Furthermore, given that the universe does not transition to a
classical regime in the postbounce branch, one may also
raise questions about the validity of effective dynamics,
especially when one of the directional scale factors
becomes less than unity, as it is the case here. Note that
this precisely the case in one of the quantizations for the
Kruskal spacetimes (the Boehmer-Vandersloot quantiza-
tion) in LQC which is also based on improved dynamics
(see Sec IVD of [52]). However, one may question the
robustness of these results, arguing that the phase space of

FIG. 3. Evolution of directional scale factors and mean scale
factor versus time with p1 ¼ 1000, p2 ¼ 2000, p3 ¼ 3000,
c1 ¼ −0.13, c2 ¼ −0.12 for vacuum Bianchi I spacetime in
the case of μ̄0 quantization.

FIG. 4. Evolution of Hamiltonian constraint and μ̄0ici versus time with p1¼1000, p2¼2000, p3¼3000, c1 ¼ −0.13, and c2 ¼ −0.12
for vacuum Bianchi I spacetime in the case of μ̄0 quantization. Unlike the case of μ̄ quantization, one of the μ̄0ici does not reach classical
value even long after the bounce.
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the initial conditions is vast. To address this issue, we show
that such quantum behavior results in the violation of
conservation of anisotropic shear scalar for a large number
of simulations while randomizing the initial conditions in
the next section.

B. Conservation of anisotropic shear

If the universe becomes classical after the bounce, one
expects that the anisotropic shear will be preserved across
the bounce, as it is in classical spacetime. However, from
the above discussion one may suspect the conservation of
anisotropic shear for μ̄0 quantization since we realize that
the universe does not become classical after the bounce.
To extract a robust result, we need to compare the
prebounce to the postbounce anisotropic shear in the
large volume regime for several simulations while sweep-
ing the phase space of the initial conditions. We choose
the initial conditions in such a way that the universe starts
from a contracting branch at the large volume regime,
bounces, and then re-expands in the large volume regime.
We fix the initial value of triads in the contracting branch
to be at a comparably large volume, then we determine
one directional connection using the Hamiltonian con-
straint, Hðμ̄Þ ¼ 0 for μ̄ quantization or Hðμ̄0Þ ¼ 0 for μ̄0
quantization, and finally randomize two other directional
connections while forcing all three directional connec-
tions to satisfy classicality conditions, i.e., jμ̄icij ≪ 1.
To do that, we use NUMBALSODA package together with
the NUMBA package to parallelize and speed up the
code so that it could be run on HPC in the case of a
large number of simulations. Furthermore, we use the
interpolate module in SciPy package with the cubic
method to find the value of anisotropic shear at the same
volume before and after the bounce. Finally, we ran the

code for a large number of simulations and excluded
those simulations in which the Hamiltonian constraint
exceeded 10−9 during the evolution, and kept the values
for prebounce and postbounce anisotropic shear for 500
simulations.
In Fig. 5, we plotted the ratio of postbounce to prebounce

anisotropic shear versus prebounce anisotropic shear for
p1 ¼ 10000, p2 ¼ 20000 and p3 ¼ 30000 for μ̄ quantiza-
tion (left panel) and μ̄0 quantization (right panel) for the
vacuum spacetime. Each dot in the plot corresponds to one
simulation, and each plot contains 500 simulations. From
the left panel in Fig. 5, one can see that the anisotropic
shear has the same value before and after the bounce in the
large volume regime with great accuracy. However, from
the right panel in Fig. 5, it is obvious that the postbounce
anisotropic shear has a larger value than the prebounce
anisotropic shear, even in the large volume regime,
indicating the violation of conservation of anisotropic
shear in classical Bianchi I spacetime with μ̄0 quantization.
In order to check the robustness of the results, we ran the
code to include isotropic matter contents such as massless
scalar field, dust, and radiation. We fixed the energy
density of matter such that fρϕ0; ρd0; ρr0g ¼ 10−6 (in
Planck units) for all three matter contents. Since these
matter components are isotropic, one expects to observe
conservation of the anisotropic shear in the classical
regime at large volume regime in these cases. Note that
in the case of massless scalar field, the classical singu-
larity can either be pointlike or cigarlike depending on
initial conditions.
We plotted the postbounce anisotropic shear versus the

prebounce anisotropic shear for a massless scalar field,
dust, and radiation, and for the case that one of con-
nections is positive (c1 < 0, c2 < 0, and c3 > 0) in Fig. 6,
and for the case that all connections are negative (c1 < 0,

FIG. 5. The ratio of postbounce to prebounce anisotropic shear versus prebounce anisotropic shear for μ̄ quantization (left) and μ̄0
quantization (right).
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c2 < 0, and c3 < 0) in Fig. 7 in the case of μ̄ quantization.
One can see that the anisotropic shear values for all
simulations lie on the diagonal, meaning that prebounce
and postbounce anisotropic shear have the same value,
whereby anisotropic shear is conserved in the μ̄ quanti-
zation of Bianchi I LQC. On the other hand, we plotted
the postbounce anisotropic shear versus the prebounce
anisotropic shear again for the massless scalar field, dust,
and radiation and for the case that one of connections is
positive (c1 < 0, c2 < 0 and c3 > 0) in Fig. 8, and for the
case that all connections are negative (c1 < 0, c2 < 0 and
c3 < 0) in Fig. 9 in the case of μ̄0 quantization. One can
see from these results that the anisotropic shear has a
larger value after the bounce compared to the prebounce
anisotropic shear value. Moreover, as the value of
anisotropic shear increases, it seems that the ratio of
postbounce to prebounce anisotropic shear reaches a

constant value. We should also point out that in the case
of a massless scalar field it seems that the anisotropic
shear is conserved for a small value of Σ2, however, that is
because the scale factor dependence of a massless scalar
field behaves as anisotropic shear and the universe
becomes isotropic due to domination of massless scalar
field over anisotropic shear term for the considered initial
conditions.
To understand this behavior in detail, we also plotted

the time evolution of difference of directional Hubble
parameters, i.e., ðHi −HjÞ, for p1 ¼ 1000, p2 ¼ 2000,
p3 ¼ 3000, c1 ¼ −0.13 and c2 ¼ −0.12 for vacuum
Bianchi I spacetime for μ̄ qunatization (left panel of
Fig. 10) and for μ̄0 quantization (right panel of Fig. 10).
From these plots, it is obvious that the difference of
directional Hubble parameters before and after the bounce
has the same value in the case of μ̄ quantization, while in

FIG. 7. Post-bounce versus prebounce anisotropic shear for μ̄ quantization with different matter contents (massless scalar field, dust,
and radiation). We set p1 ¼ 10000, p2 ¼ 20000, p3 ¼ 30000 with c1 > 0, c2 > 0 and c3 > 0. The initial value of energy densities are
taken to be fρϕ0; ρd0; ρr0g ¼ 10−6.

FIG. 6. Post-bounce versus prebounce anisotropic shear for μ̄ quantization with different matter contents (massless scalar field, dust,
and radiation). We set p1 ¼ 10000, p2 ¼ 20000, p3 ¼ 30000 with c1 > 0, c2 > 0 and c3 < 0. The initial value of energy densities are
taken to be fρϕ0; ρd0; ρr0g ¼ 10−6. The shear scalar Σ2 is preserved across the bounce.
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FIG. 8. Post-bounce versus prebounce anisotropic shear for μ̄0 quantization with different matter contents (massless scalar field, dust,
and radiation). We set p1 ¼ 1000, p2 ¼ 20000, p3 ¼ 30000 with c1 < 0, c2 < 0, and c3 > 0. The initial value of energy densities are
taken to be fρϕ0; ρd0; ρr0g ¼ 10−6. The shear scalar Σ2 is not preserved across the bounce.

FIG. 9. Post-bounce versus prebounce anisotropic shear for μ̄0 quantization with different matter contents (massless scalar field, dust,
and radiation). We set p1 ¼ 1000, p2 ¼ 20000, p3 ¼ 30000 with c1 < 0, c2 < 0, and c3 < 0. The initial value of energy densities are
taken to be fρϕ0; ρd0; ρr0g ¼ 10−6.

FIG. 10. Evolution of difference of directional Hubble parameters, i.e., (Hi −Hj), versus time for μ̄ quantization (left) and μ̄0 quantization
(right) with p1 ¼ 1000, p2 ¼ 2000, p3 ¼ 3000, c1 ¼ −0.13, and c2 ¼ −0.12. Note the contrasting asymmetry for the μ̄0 prescription.
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the case of μ̄0 quantization, ðH3 −H1Þ (black dashed
line in the right panel of Fig. 10), has different value in
the prebounce and postbounce branches whereby the
anisotropic shear is not conserved. Moreover, we also

plotted the time evolution of dΣ2

dt for μ̄ quantization (left
panel in Fig. 11) and μ̄0 quantization (right panel in
Figs. 11) from which one can see that Σ2 become
constant after the bounce in the case of μ̄ quantization
while in the case of μ̄0, Σ2 is not a constant of motion.
To conclude, we find that the anisotropic shear is not
conserved in the case of μ̄0 quantization in large volume
regimes, where the universe tends to become classical.
This violation of anisotropic shear conservation is
closely related to the fact that one of the triads remains
in the quantum regime and does not become classical
even in the large volume regime. This implies that μ̄0
quantization fails to recover GR in the classical regime,
contrary to as was believed in the earlier studies of
this model.

C. Nonclassical cyclic behavior of μ̄0 prescription

In the previous section, we surprisingly found that the
anisotropic shear is not conserved in the case of μ̄0

quantization of Bianchi I LQC, which was related to
the fact that the universe does not become classical after
the bounce. To better understand such an unexpected
result, we did extensive numerical analysis for different
initial conditions while tracking all relevant quantities
and adding different matter content such as a massless
scalar field, dust, and radiation. Adding dust and radia-
tion, we realized that, for particular initial conditions, the

loop quantum Bianchi I universe with μ̄0 prescription goes
through some cyclic evolution, which is not expected
since radiation and dust cannot produce a recollpsing
turnaround point in a classical Bianchi I spacetime
leading into a cyclic universe. As illustrative examples,
we plotted the evolution of scale factors and the mean
scale factor in Fig. 12 for p1 ¼ 1000, p2 ¼ 2000,
p3 ¼ 3000, c1 ¼ c2 ¼ −0.03, and ρr ¼ 10−6 for radiation
matter content and in Fig. 14 with ρm0 ¼ 10−6 for dust
matter content. One can see that the universe starts from a
contracting branch, bounces back, and then goes through

FIG. 11. Evolution of dΣ2

dt versus time for μ̄ quantization (left) and μ̄0 quantization (right) with p1 ¼ 1000, p2 ¼ 2000,
p3 ¼ 3000, c1 ¼ −0.13, and c2 ¼ −0.12. The time derivative of shear scalar does not vanish even after a very long time
for μ̄0 prescription.

FIG. 12. Evolution of directional scale factors and mean scale
factor versus time for p1 ¼ 1000, p2 ¼ 2000, p3 ¼ 3000,
c1 ¼ c2 ¼ −0.03, in presence of radiation with ρr0 ¼ 10−6 in
the μ̄0 quantization of Bianchi I spacetime. Nonclassical cyclic
behavior is observed in directional scale factors.
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cyclic evolution after the bounce. In Fig. 13, we plotted
the time evolution of anisotropic shear and μ̄0ici for the
same initial conditions used in Fig. 12. From the top left
panel in Fig. 13, it is obvious that the anisotropic shear

peaks several times after the bounce, since it goes through
several bounces while the maximum anisotropic shear
increases for the next bounce. From the top right and
bottom left panels in Fig. 13, one can see that the μ̄01c1 and
μ̄02c2 start at classical regime, i.e., jμ̄0icij ≪ 1 and become
classical after the bounce, i.e., jμ̄0icij ∼ π. However, from
the bottom right panel in Fig. 13, one can find that
although μ03c3 was classical before the bounce at large
volume, it did not become classical after the bounce at
large volume. Similar behaviors are also observed in the
case of dust matter content as it is illustrated in Fig. 15.
However, we could not observe such cyclic behavior by
adding a massless scalar field, which means that the
cyclic behavior is sensitive to the equation of state. We
believe that this cyclic behavior in the presence of dust
and radiation is tied to the fact that one of the triads
remains in the quantum regime during the evolution of the
universe. Therefore, the μ̄0 quantization of Bianchi I
spacetime does not recover the GR limit since not only
the anisotropic shear is not conserved in the classical
regime, but there is also some unexpected nonclassical
cyclic behavior.

FIG. 13. Evolution of anisotropic shear and μ̄0ici versus time for p1¼1000, p2 ¼ 2000, p3 ¼ 3000, c1 ¼ c2 ¼ −0.03, and ρr0 ¼ 10−6

in the μ̄0 quantization of Bianchi I spacetime.

FIG. 14. Evolution of directional scale factors and mean scale
factor versus time for p1 ¼ 1000, p2 ¼ 2000, p3 ¼ 3000,
c1 ¼ c2 ¼ −0.03, in presence of dust with ρm0 ¼ 10−6 in the
μ̄0 quantization of Bianchi I spacetime.
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V. CONCLUSIONS

To quantize homogeneous Bianchi I spacetime using
techniques from LQG, one faces the same quantization
ambiguities as in any other quantum theory. Such quan-
tization ambiguities lead to two different effective descrip-
tions for Bianchi I LQC; first, μ̄ quantization, which is
consistently written down for noncompact as well as
compact manifolds, and in which the energy density and
anisotropic shear are universally bounded, second, μ̄0
quantization, which is nonsingular and consistent with
compact spatial topology. It has been so far believed that
both of these quantizations recover GR in large volume
regimes where the universe becomes classical. This means
that an effective description of Bianchi I spacetime should
recover the properties of the classical Bianchi I spacetime
in the classical regime. One of the most important proper-
ties of classical Bianchi I spacetime is that an anisotropic
shear scalar is a constant of motion. However, this quantity
is no longer conserved during the quantum evolution of the
universe near the bounce. The presence of the bounce
indicates that the universe can start at a large classical
regime, contract, bounce back, and expand to a large
classical regime again. Therefore, one expects that the
anisotropic shear to be conserved when it is compared in a

large volume regime before and after the bounce, where the
universe is in a classical regime. In other words, one would
expect that anisotropic shear would be conserved across
the bounce. This issue was analytically investigated in
Ref. [35] in which it was shown that assuming a large
volume limit or classicality condition, i.e., jμ̄icij ≪ 1, the
effective dynamics recover GR and anisotropic shear is
conserved across the bounce. However, since Hamilton’s
equations are quite complicated given the LQG effects,
assuming the classicality condition to hold requires further
evidence. In fact, it is possible that the dynamical laws do
not allow the universe to become classical after the bounce,
which we show is the case for the μ̄0 scheme.
To address the question whether loop quantum cosmo-

logical Bianchi I spacetime becomes classical, we revisit
the homogeneous Bianchi I model at the level of effective
dynamics for both μ̄ and μ̄0 quantization. We numerically
solved six coupled first-order Hamilton’s equations by
fixing the triads at a comparably large volume and fixing
one of the directional connection components using
Hamiltonian constraint while randomizing the other two
directional connection components, forcing all three to
satisfy classicality conditions. We found that the universe
starts at the classical regime, bounces, and then expands

FIG. 15. Evolution of anisotropic shear and μ̄0ici versus time for p1 ¼ 1000, p2 ¼ 2000, p3 ¼ 3000, c1 ¼ c2 ¼ −0.03, and
ρm0 ¼ 10−6 in the μ̄0 quantization of Bianchi I spacetime.
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back to the classical regime in the case of μ̄ quantization.
Surprisingly, we find that although the universe is in the
classical regime before the bounce, it does not become
classical in the expanding branch, since one of the triads and
associated trigonometric term in the Hamiltonian constraint
always remains in the quantum regime in the case of μ̄0
quantization. This implies that the classicality condition is
not satisfied when the universe is at a large volume after the
bounce. The analysis done in Ref. [35] is no longer valid,
and one may suspect the conservation of anisotropic shear
across the bounce. To address this issue, we compared the
anisotropic shear before and after the bounce at the same
volume for a large number of simulations. In the case of μ̄
quantization, we found that the anisotropic shear is con-
served, as expected, with great accuracy before and after the
bounce when the universe becomes classical at large volume
regime. On the other hand, the anisotropic shear is not
conserved across the bounce for μ̄0 quantization. In fact, such
a violation of the conservation of anisotropic shear is closely
related to the fact that the universe does not become classical
after the bounce. In other words, since the universe is still in
the quantum regime, it does not recover the classical
properties of Bianchi I spacetime, i.e., a conserved aniso-
tropic shear. To check the robustness of this result, we
included a massless scalar field, dust, and radiation matter

fields, which are isotropic matter contents, and one would
expect that the anisotropic shear would be conserved across
the bounce in these cases indeed. Again, we find that the
anisotropic shear is not conserved across the bounce in all
three cases for μ̄0 quantization. Doing an exhaustive numeri-
cal analysis, we find that for particular initial conditions,
including dust or radiation, the loop quantized Bianchi I
spacetime with μ̄0 prescription exhibits some unexpected
cyclic behavior. Although we could not observe such cyclic
behavior by adding massless scalar field which means that
the cyclic behavior is sensitive to the equation of state. We
believe that such peculiar cyclic behavior is again due to the
fact that the universe remains in the quantum regime after the
bounce. Based on these results, we conclude that the μ̄0
quantization of Bianchi I spacetime does not become
classical at large volume regime. Finally, only the μ̄ is a
unique loop quantization of Bianchi I spacetime which is
physically viable, for both compact and noncompact spatial
manifolds.

ACKNOWLEDGMENTS

This work is supported by the NSF Grant No. PHY-
2110207. Authors acknowledge the support of HPC
resources at LSU.

[1] R. P. Geroch, What is a singularity in general relativity?,
Ann. Phys. (N.Y.) 48, 526 (1968).

[2] S. W. Hawking and R. Penrose, The singularities of gravi-
tational collapse and cosmology, Proc. R. Soc. A 314, 529
(1970).

[3] A. Borde and A. Vilenkin, Eternal inflation and the initial
singularity, Phys. Rev. Lett. 72, 3305 (1994).

[4] A. Borde, A. H. Guth, and A. Vilenkin, Inflationary space-
times are incomplete in past directions, Phys. Rev. Lett. 90,
151301 (2003).

[5] A. Ashtekar and P. Singh, Loop quantum cosmology: A
status report, Classical Quantum Gravity 28, 213001 (2011).

[6] A. Ashtekar, T. Pawlowski, and P. Singh, Quantum nature of
the big bang, Phys. Rev. Lett. 96, 141301 (2006).

[7] A. Ashtekar, T. Pawlowski, and P. Singh, Quantum nature of
the big bang: An analytical and numerical investigation. I.,
Phys. Rev. D 73, 124038 (2006).

[8] A. Ashtekar, T. Pawlowski, and P. Singh, Quantum nature of
the big bang: Improved dynamics, Phys. Rev. D 74, 084003
(2006).

[9] A. Ashtekar, A. Corichi, and P. Singh, Robustness of key
features of loop quantum cosmology, Phys. Rev. D 77,
024046 (2008).

[10] D. A. Craig and P. Singh, Consistent probabilities in loop
quantum cosmology, Classical Quantum Gravity 30,
205008 (2013).

[11] L. Szulc, W. Kaminski, and J. Lewandowski, Closed FRW
model in loop quantum cosmology, Classical Quantum
Gravity 24, 2621 (2007).

[12] A. Ashtekar, T. Pawlowski, P. Singh, and K. Vandersloot,
Loop quantum cosmology of k ¼ 1 FRW models, Phys.
Rev. D 75, 024035 (2007).

[13] K. Vandersloot, Loop quantum cosmology and the k ¼ −1
RW model, Phys. Rev. D 75, 023523 (2007).

[14] L. Szulc, Open FRW model in loop quantum cosmology,
Classical Quantum Gravity 24, 6191 (2007).

[15] K. Giesel, B. F. Li, and P. Singh, Towards a reduced phase
space quantization in loop quantum cosmology with an
inflationary potential, Phys. Rev. D 102, 126024 (2020).

[16] A. Ashtekar and E. Wilson-Ewing, Loop quantum cosmol-
ogy of Bianchi I models, Phys. Rev. D 79, 083535 (2009).

[17] A. Ashtekar and E. Wilson-Ewing, Loop quantum cosmol-
ogy of Bianchi type II models, Phys. Rev. D 80, 123532
(2009).

[18] E. Wilson-Ewing, Loop quantum cosmology of Bianchi
type IX models, Phys. Rev. D 82, 043508 (2010).

[19] L. J. Garay, M. Martin-Benito, and G. A. Mena Marugan,
Inhomogeneous loop quantum cosmology: Hybrid quanti-
zation of the Gowdy model, Phys. Rev. D 82, 044048
(2010).

[20] I. Agullo and P. Singh, Loop quantum cosmology, in 100
Years ofGeneral Relativity, edited byA.Ashtekar and J. Pullin

CLASSICALITY AND UNIQUENESS IN THE LOOP … PHYS. REV. D 109, 086013 (2024)

086013-17

https://doi.org/10.1016/0003-4916(68)90144-9
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1103/PhysRevLett.72.3305
https://doi.org/10.1103/PhysRevLett.90.151301
https://doi.org/10.1103/PhysRevLett.90.151301
https://doi.org/10.1088/0264-9381/28/21/213001
https://doi.org/10.1103/PhysRevLett.96.141301
https://doi.org/10.1103/PhysRevD.73.124038
https://doi.org/10.1103/PhysRevD.74.084003
https://doi.org/10.1103/PhysRevD.74.084003
https://doi.org/10.1103/PhysRevD.77.024046
https://doi.org/10.1103/PhysRevD.77.024046
https://doi.org/10.1088/0264-9381/30/20/205008
https://doi.org/10.1088/0264-9381/30/20/205008
https://doi.org/10.1088/0264-9381/24/10/008
https://doi.org/10.1088/0264-9381/24/10/008
https://doi.org/10.1103/PhysRevD.75.024035
https://doi.org/10.1103/PhysRevD.75.024035
https://doi.org/10.1103/PhysRevD.75.023523
https://doi.org/10.1088/0264-9381/24/24/003
https://doi.org/10.1103/PhysRevD.102.126024
https://doi.org/10.1103/PhysRevD.79.083535
https://doi.org/10.1103/PhysRevD.80.123532
https://doi.org/10.1103/PhysRevD.80.123532
https://doi.org/10.1103/PhysRevD.82.043508
https://doi.org/10.1103/PhysRevD.82.044048
https://doi.org/10.1103/PhysRevD.82.044048


(World Scientific, Singapore, 2017), 10.1142/97898132200
03_0007.

[21] B. F. Li, P. Singh, and A. Wang, Phenomenological im-
plications of modified loop cosmologies: an overview,
Front. Astron. Space Sci. 8, 701417 (2021).

[22] B. F. Li and P. Singh, Loop quantum cosmology: Physics of
singularity resolution and its implications, arXiv:2304.
05426.

[23] B. Gupt and P. Singh, Contrasting features of anisotropic
loop quantum cosmologies: The role of spatial curvature,
Phys. Rev. D 85, 044011 (2012).

[24] A. Corichi and P. Singh, Is loop quantization in cosmology
unique?, Phys. Rev. D 78, 024034 (2008).

[25] P. Singh and E.Wilson-Ewing, Quantization ambiguities and
bounds on geometric scalars in anisotropic loop quantum
cosmology, Classical Quantum Gravity 31, 035010
(2014).

[26] P. Singh and F. Vidotto, Exotic singularities and spatially
curved loop quantum cosmology, Phys. Rev. D 83, 064027
(2011).

[27] S. Saini and P. Singh, Generic absence of strong singular-
ities and geodesic completeness in modified loop quantum
cosmologies, Classical Quantum Gravity 36, 105014
(2019).

[28] P. Singh, Curvature invariants, geodesics and the strength of
singularities in Bianchi I loop quantum cosmology, Phys.
Rev. D 85, 104011 (2012).

[29] S. Saini and P. Singh, Resolution of strong singularities
and geodesic completeness in loop quantum Bianchi II
spacetimes, Classical Quantum Gravity 34, 235006
(2017).

[30] S. Saini and P. Singh, Generic absence of strong singular-
ities in loop quantum Bianchi IX spacetimes, Classical
Quantum Gravity 35, 065014 (2018).

[31] S. Saini and P. Singh, Geodesic completeness and the lack of
strong singularities in effective loop quantum Kantowski–
Sachs spacetime, Classical Quantum Gravity 33, 245019
(2016).

[32] A. Ashtekar, J. Olmedo, and P. Singh, Regular black holes
from loop quantum gravity, in Regular Black Holes:
Towards a New Paradigm of Gravitational Collapse, edited
by C. Bambi (Springer Singapore, 2023).

[33] A. Corichi and P. Singh, A geometric perspective on
singularity resolution and uniqueness in loop quantum
cosmology, Phys. Rev. D 80, 044024 (2009).

[34] D.W. Chiou, Loop quantum cosmology in Bianchi type I
models: Analytical investigation, Phys. Rev. D 75, 024029
(2007).

[35] D.W. Chiou and K. Vandersloot, The behavior of non-linear
anisotropies in bouncing Bianchi I models of loop quantum
cosmology, Phys. Rev. D 76, 084015 (2007).

[36] M. Martin-Benito, G. A. Mena Marugan, and T. Pawlowski,
Loop quantization of vacuum Bianchi I cosmology, Phys.
Rev. D 78, 064008 (2008).

[37] M. Martin-Benito, G. A. M. Marugan, and T. Pawlowski,
Physical evolution in loop quantum cosmology: The exam-
ple of vacuum Bianchi I, Phys. Rev. D 80, 084038 (2009).

[38] C. G. Tsagas, A. Challinor, and R. Maartens, Relativistic
cosmology and large-scale structure, Phys. Rep. 465, 61
(2008).

[39] A. D. Linde, A new inflationary universe scenario: A
possible solution of the horizon, flatness, homogeneity,
isotropy and primordial monopole problems, Phys. Lett.
108B, 389 (1982).

[40] A. H. Guth, The inflationary universe: A possible solution to
the horizon and flatness problems, Phys. Rev. D 23, 347
(1981).

[41] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Sponta-
neous creation of almost scale-free density perturbations in
an inflationary universe, Phys. Rev. D 28, 679 (1983).

[42] P. J. Steinhardt, N. Turok, and N. Turok, A cyclic model of
the universe, Science 296, 1436 (2002).

[43] E. I. Buchbinder, J. Khoury, and B. A. Ovrut, New ekpyrotic
cosmology, Phys. Rev. D 76, 123503 (2007).

[44] B.Gupt andP.Singh,QuantumgravitationalKasner transitions
in Bianchi I spacetime, Phys. Rev. D 86, 024034 (2012).

[45] P. Diener, B. Gupt, and P. Singh, Chimera: A hybrid
approach to numerical loop quantum cosmology, Classical
Quantum Gravity 31, 025013 (2014).

[46] P. Diener, B. Gupt, and P. Singh, Numerical simulations of a
loop quantum cosmos: Robustness of the quantum bounce
and the validity of effective dynamics, Classical Quantum
Gravity 31, 105015 (2014).

[47] P. Diener, B. Gupt, M. Megevand, and P. Singh, Numerical
evolution of squeezed and non-Gaussian states in loop
quantum cosmology, Classical Quantum Gravity 31,
165006 (2014).

[48] P. Diener, A. Joe, M. Megevand, and P. Singh, Numerical
simulations of loop quantum Bianchi I spacetimes, Classical
Quantum Gravity 34, 094004 (2017).

[49] M. Motaharfar and P. Singh, Tunneling wave function
proposal with loop quantum geometry effects, Phys. Rev.
D 107, 066026 (2023).

[50] M. Motaharfar and P. Singh, Quantum gravitational non-
singular tunneling wavefunction proposal, Phys. Sci. Forum
7, 44 (2023).

[51] A. M. McNamara, S. Saini, and P. Singh, Novel relationship
between shear and energy density at the bounce in non-
singular Bianchi I spacetimes, Phys. Rev. D 107, 026003
(2023).

[52] A. Ashtekar, J. Olmedo, and P. Singh, Quantum extension of
the Kruskal spacetime, Phys. Rev. D 98, 126003 (2018).

MOTAHARFAR, SINGH, and THAREJA PHYS. REV. D 109, 086013 (2024)

086013-18

https://doi.org/10.1142/9789813220003_0007
https://doi.org/10.1142/9789813220003_0007
https://doi.org/10.3389/fspas.2021.701417
https://arXiv.org/abs/2304.05426
https://arXiv.org/abs/2304.05426
https://doi.org/10.1103/PhysRevD.85.044011
https://doi.org/10.1103/PhysRevD.78.024034
https://doi.org/10.1088/0264-9381/31/3/035010
https://doi.org/10.1088/0264-9381/31/3/035010
https://doi.org/10.1103/PhysRevD.83.064027
https://doi.org/10.1103/PhysRevD.83.064027
https://doi.org/10.1088/1361-6382/ab1274
https://doi.org/10.1088/1361-6382/ab1274
https://doi.org/10.1103/PhysRevD.85.104011
https://doi.org/10.1103/PhysRevD.85.104011
https://doi.org/10.1088/1361-6382/aa91f6
https://doi.org/10.1088/1361-6382/aa91f6
https://doi.org/10.1088/1361-6382/aaad79
https://doi.org/10.1088/1361-6382/aaad79
https://doi.org/10.1088/0264-9381/33/24/245019
https://doi.org/10.1088/0264-9381/33/24/245019
https://doi.org/10.1103/PhysRevD.80.044024
https://doi.org/10.1103/PhysRevD.75.024029
https://doi.org/10.1103/PhysRevD.75.024029
https://doi.org/10.1103/PhysRevD.76.084015
https://doi.org/10.1103/PhysRevD.78.064008
https://doi.org/10.1103/PhysRevD.78.064008
https://doi.org/10.1103/PhysRevD.80.084038
https://doi.org/10.1016/j.physrep.2008.03.003
https://doi.org/10.1016/j.physrep.2008.03.003
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1103/PhysRevD.28.679
https://doi.org/10.1126/science.1070462
https://doi.org/10.1103/PhysRevD.76.123503
https://doi.org/10.1103/PhysRevD.86.024034
https://doi.org/10.1088/0264-9381/31/2/025013
https://doi.org/10.1088/0264-9381/31/2/025013
https://doi.org/10.1088/0264-9381/31/10/105015
https://doi.org/10.1088/0264-9381/31/10/105015
https://doi.org/10.1088/0264-9381/31/16/165006
https://doi.org/10.1088/0264-9381/31/16/165006
https://doi.org/10.1088/1361-6382/aa68b5
https://doi.org/10.1088/1361-6382/aa68b5
https://doi.org/10.1103/PhysRevD.107.066026
https://doi.org/10.1103/PhysRevD.107.066026
https://doi.org/10.3390/ECU2023-14101
https://doi.org/10.3390/ECU2023-14101
https://doi.org/10.1103/PhysRevD.107.026003
https://doi.org/10.1103/PhysRevD.107.026003
https://doi.org/10.1103/PhysRevD.98.126003

