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Quantum flux operators in higher spin theories
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We construct Carrollian higher spin field theories by reducing the bosonic Fronsdal theories in flat
spacetime to future null infinity. We extend the Poincaré fluxes to quantum flux operators, which generate
Carrollian diffeomorphism, namely supertranslation and superrotation. These flux operators form a closed
symmetry algebra once including a helicity flux operator, which follows from higher spin superduality
transformation. The superduality transformation is an angle-dependent transformation at future null
infinity, which generalizes the usual electromagnetic duality transformation. The results agree with the

lower spin cases when restricted to s =0, 1, 2.
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I. INTRODUCTION

Recently, Carrollian manifolds [1,2] have received much
attention due to their relations to null geometries. It has been
shown that various physically interesting symmetries could
be embedded into the geometric symmetry of Carrollian
manifold [3-5], including the BMS groups [6-12],
Newman-Unti group, etc. Moreover, the Carrollian diffeo-
morphism, which preserves the null structure of Carrollian
manifolds, is nontrivial [13—15] since one can construct
corresponding quantum flux operators at future null infinity
for lower spin (s =0, 1, 2) theories. The quantum flux
operators are obtained by analyzing the Poincaré flux
densities, which are radiated to future null infinity. They
form a faithful representation of Carrollian diffeomorphism
for scalar field theory up to an anomalous term, which is the
intrinsic central charge of the theory. For massless theories
with nonzero helicity, the superrotation calls for super-
duality transformation, and one should also consider the
corresponding helicity flux operators. The results can
also be extended to various null hypersurfaces in general
dimensions [16].

In this paper, we will study the quantum flux operators
associated with Carrollian diffeomorphism for higher
spin (HS) theories (s > 2) in four dimensions. Although
there is no nontrivial § matrix for flat space massless HS
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theories [17-21], it is still valuable to study the HS theories
on null hypersurfaces. At first, while there exist extensions
of HS supertranslation and superrotation in the literature
[22-25], it would be nice to show that the symmetry
algebra found in the previous paper [15] still remains valid
for general spin theories. Indeed, we find a similar
helicity flux operator in the HS theory, which corresponds
to superduality transformation at the null boundary.
Actually, the electromagnetic duality, originating from
the exploration of magnetic monopole by Dirac [26], has
been extended to various vector theories [27-30], p-form
gauge theories [31-33], gravitational theories [34-41],
supersymmetric theories [42—45], and HS theories [46-53].
The superduality transformation is an angle-dependent
generalization of the wusual duality transformation.
Secondly, there are consistent interacting HS gauge theo-
ries in AdS (dS) spacetime [54—57], and the result in this
paper is expected to be valid for more general null hyper-
surfaces. Third, interacting HS theories in flat spacetime
indeed exist [58—66], and this work may provide insight on
the analysis of these theories at future null infinity. Finally,
the construction of Carrollian HS theories is an interesting
topic in its own right.

The structure of the paper is as follows. In Sec. I, we will
introduce the basic ingredients of the Carrollian manifold
and review the coordinate systems we adopt in this article.
In Sec. III, we will introduce minimal background on the
Fronsdal theory in the flat spacetime. In Sec. IV, we will
reduce the bulk HS theories to future null infinity and find
the boundary equation of motion as well as the symplectic
form. We will construct quantum flux operators and
compute the Lie algebra they generate in the following
section. The helicity flux operator is discussed in Sec. VL.
We will conclude in Sec. VII, and technical details are
relegated to several appendices.

Published by the American Physical Society
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II. CARROLLIAN MANIFOLD
AND COORDINATE SYSTEMS

In this work, we will use the Greek alphabet
u,v,p,0,A k to denote tensor components in Cartesian
coordinates. For example, the Minkowski spacetime R!?
can be described in Cartesian coordinates x* = (, x')

ds* = —di* + dx'dx’ = n,,dx"dx", (2.1)
where u = 0, 1, 2, 3 denotes the spacetime components, and
i =1, 2, 3 labels the spatial directions. We will also use the
Greek alphabet a, f3, y, 6 to represent components in retarded
coordinates. As an illustration, the metric of the Minkowski
spacetime in retarded coordinates x* = (u, r, 0, ¢) is
ds* = —du® = 2dudr+r*y,5d0*d08, A,B=12. (2.2)
The capital Latin alphabet A, B, - - - will be used to represent
the components of tensors on S? in spherical coordinates.
The future null infinity ZT is a three-dimensional Carrollian
manifold

It =RxS?, (2.3)

with a degenerate metric

ds2. =7y = yapd0*do®, (2.4)
which could be obtained by choosing a cutoff » = R, using a
Weyl scaling to remove the conformal factor in the induced
metric and taking the limit R — oo with the retarded time u
fixed. The spherical coordinates &' = (0, ¢) are used to
describe the unit sphere whose metric reads explicitly as

(o snto)
8=\ 0 sinto)

We will also use the notation Q = (0, ¢) to denote the
spherical coordinates in the context. The covariant derivative
V, is adapted to the metric y,5, while V, adapts to the
Minkowski metric in Cartesian frame. The integral measure
on Z7 is abbreviated as

/dudQE/wdu/ Q.
—0 2

where the integral measure on S? is

/dQE/Sde:[)”sinedHAhdqﬁ. (2.7)

The Levi-Civita tensor on S% s
€ = %GABdGA A\ dGB, with

(2.5)

(2.6)

denoted as

€9¢ = —€¢9 = Sin9, €9 — €¢¢ =0. (28)
The Dirac delta function on S? is
5(Q-Q) = sin~! 05(0—0)5(p—¢'). (2.9)

Besides the metric (2.4), there is also a distinguished null
vector
X =0y, (210)
which generates the retarded time direction. The Carrollian
diffeomorphism is generated by the vector field
Ery = f(u.Q)9, + Y4 (Q)y, (2.11)
where f = f(u,Q) is any smooth function of Z*, while
Y4 = YA(Q) is time independent and only a smooth vector
field on S2. The Carrollian diffeomorphism generated by
& = f(u,Q)o, is called general supertranslation (GST),
while the one generated by & = Y4(Q)d, is referred to
special superrotation (SSR).

In the following, we may also use stereographic project
coordinates on S, which are defined by

7= C0t§€i¢, 7= coti e i, (2.12)
and the metric of S? becomes
Y = 2ydzdz, y= # (2.13)
(1+27)?
The volume form reads
d*z = —iydz A dz, (2.14)
with the Levi-Civita tensor being
€z = —€;, = —IY, €..=¢€:=0. (2.15)
The Dirac delta function is defined by
8W(z-2)=iy'8(z-2)s(z-7).  (2.16)
In this coordinate system, any rank s symmetric

traceless tensor T,(,) can only have two nonvanishing
components

(2.17)

Here, we use the short notation

1
Tais) = T(aa,) = a Z T g Aoy +Anis) (2.18)

‘reSy
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to represent a rank s symmetric tensor when it causes no
confusion. The element of the permutation group S is
denoted as 7 in the above equation. The round brackets
(+-+) represent complete symmetrization for the indices

inside them. Similarly, the square brackets [---] imply
complete antisymmetrization; e.g.,
1
Tiup =5 (Ta — Tpa)- (2.19)

We will also use the abbreviation

1
VATA(S—I) = ;ZVAITAI”'AHAH]'“AS = V(A]TAZ"'A,r)’
i=1
(2.20)

which is a slight abuse of notation. Here, the same lower (or
upper) indices As are totally symmetrized automatically.
One should not be confused with the Einstein summation
convention where lower and upper indices are denoted by
the same letter.

III. METRICLIKE FORMULATION

In this section, we shall review the metriclike formu-
lation of free massless fields of arbitrary spin s. We shall
mainly concentrate, however, only on bosonic fields [67] in
flat spacetime, while leaving the fermionic HS fields [68]
and HS fields in AdS or dS [69] spacetime for future
study [70]. As a generalization of the electromagnetism and
linearized Finstein gravity, a spin s HS gauge theory
(s > 2) is described by a totally symmetric and doubly

Therefore, a double prime f;’ (s=4) is the double trace of the
HS field

Fotomgy = 1O ). (3.3)
A totally symmetric rank s field has'
d—1)!
ciy, = doD (3.4)

s+d-1 S'(d— 1)‘

independent components in general d dimensions.
Therefore, the number of independent components of a
spin s field is

Cilamt — Cis: (3.5)

In four dimensions, this number reduces to 2(1 + s2). The
spin s field satisfies the Fronsdal equation

1
Futs) = O uts) =50 uom1yp +55(5 = 1)0u0uf 55 =0,
(3.6)

which is invariant under the linearized gauge trans-
formation
0f uts) = $9ubu(s-1)» (3.7)

where the rank s — 1 tensor £, is totally symmetric and
traceless

traceless Fronsdal field f) Suls=1) = Slurpr)s 5;4(s—3) =0. (3.8)
Futs) = Furom = Flpron)s f,/:(s—4) =0, (3.1) The corresponding action is
where we use a prime to denote the trace of the HS field Sif] = / d*xLlf], (3.9)
/ — u(2)
Fuis=2) =1 fuio)- (32) yhere the Lagrangian density is
|
1 2 1 au(s—1) 1 / vpu(s—=2)
E[f} = _E (apfﬂ(s)) + Esaafﬂy(s—l)aﬁf - ES(S - 1>al/fﬂ(s_2)apf
1 1
+ Zs(s = 1)(0,f} 50 + gs(s = 1) (s = 2)(*fy,)* (3.10)

The action reduces to the Pauli-Fierz action for s = 2 and the Maxwell action for s = 1. The Lagrangian density may be

expressed as a compact quadratic form

LIf] = L) f 00, o)

(3.11)

where the rank 2s -+ 2 tensor L#(9)7(5) is symmetric in the index sets y(s) and v(s) separately. It is also doubly traceless

with respect to these two sets of indices

'In Appendix A, we review this result in detail.
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L//pﬂ(s—4)0'l/(s) =0, L//py(s)o‘l/(s—4) =0. (3_12)
It may be obtained by taking the symmetric and doubly traceless part of the following rank 2s + 2 tensor
[ ppsvy v L pvs 4 L o oy 7
L 1 sV \:_57/] nll...n.vx+§sn l;/l 17/]22...;7sx
+ %S(S — 1)(_;7W1;7W2;71/1’/2 — ,7141/17]1/'/2,7/41/42 + 11/"/]/[/41/42117/1”2>1/]ﬂ37/3 .. .nﬂsvs
1
+ Es(s — 1)(s — 2) (;7.””]}7”’[ + g )nﬂzﬂ_snl/zl’_snml/a e, (3.13)
with respect to two sets of indices p(s) and v(s) separately. K, (-3 =0, €, (s—a) =0 (3.21)
Gauge fixing condition. We may choose the following
gauge fixing condition Considering a solution f,(,), which is not traceless
s—1
gﬂ(s—l) = Ffuis—1y — Taﬂf;(s—l) =0, (3.14) 8;(3_2) #0, (3.22)
to reduce the Fronsdal equation to we may always find a tensor k,(,_;) such that
azf,,(s) =0. (3.15)
kUKuy(s—2) = _5814(5_2)~ (323)

The gauge fixing condition (3.14) is always possible. More
explicitly, we may start from a general field configuration
with G, ;1) # 0 and choose the gauge parameter &,(,_)
such that

s—1

Guts—1) + 0 y(s—1yp — 5 6,,5f;4<s_2) =0. (3.16)
This is equivalent to the equation
azéﬂ(s‘—l) = _gﬂ(S—1>’ (317)

whose solution always exists after imposing appropriate
initial and boundary conditions. The residue gauge para-
meter should satisfy the equation

0?&,5-1) = 0, (3.18)

which could be used to set the Fronsdal field to be traceless
f;(s—z) =0. (3.19)

This is always possible since the solution of (3.15) and
(3.18) is

k2 =0,
(3.20)

Futs) = Eus) ()™, &1y =Ky(sm1) (k) ™,

in terms of plane waves. There is no more constraint on the
polarization tensors &,(,) and k,(,_1) except that k,,_p) is
traceless and ¢, is doubly traceless

Therefore, we can always set the HS field to be transverse
and traceless. The remaining number of degrees of freedom
for the polarization tensor g, is

(CLy L —Cll ) —(Cly,—Cl ) =25 +1, ford=4.
(3.24)

Similarly, the remaining number of degrees of freedom for
the polarization tensor k() is 2s — 1. We may impose a
further condition

n”f,,ﬂ(s_l) = 0, (325)
to reduce the number of degrees of freedom to 2. This is the
number of propagating degrees of freedom in four dimen-
sions. When we reduce the theory to future null infinity, the
fundamental field F() that encodes the radiation infor-
mation has exactly two independent components (see the
next section). The condition (3.25) in retarded coordinates
becomes

fr(l(s—l) =0. (326)
Such a condition requires
Era(s—1) + Sk(rKa(s—l)) =0, (327)

which has 2s — 1 components and will exhaust the degrees
of freedom of k,(s_1)-
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IV. ASYMPTOTIC EQUATION OF MOTION AND
SYMLECTIC FORM

Near 7%, we may impose the falloff condition

o k)
_ Z F u(s)
P

k=1

(4.1)

for the HS field in Cartesian coordinates. We will abbre-
viate the leading coefficient as

(4.2)

The transformations between retarded and Cartesian coor-
dinates are

a _axa et o 1 A s

W= —n, 85 + m, 5% — ;YﬂéA, (4.3a)
TH _axﬂ IENTS ST " SA
J“_axa_m 84 + n'y — rYh 8y, (4.3Db)

where these newly appearing vectors can be found in
Appendix B. The components of the HS field in retarded
coordinates can be expressed as

Fats) = I ) Futs) - (4.4)
where we have used the notation
ju(-v)a<s) =Jm g T (4.5)
By introducing the symbols
N, = —n,6% + m, 8% — Yo%, (4.6a)
NH, = mHSY + S, — Y464, (4.6b)

we may define an infinite tower of fields Fg?s> on Z+
through the relation

NS kvals) R
Fuy = Y TN Foh,
=1

(4.7)

where N u(s) used the same convention as (4.5). Similar
to (4.2), we will always denote

_ ()
Forp = Fam. (4.8)
Combining (4.4) with (4.7), we find
k)
Fats) = P VagNPy Y~ r Fy. (4.9)

Using the identities in Appendix B, the falloff conditions
(4.1) are transformed to

(o]

m(xs m)
f A(m)a(s—m)

=1
= rm_lFA(m>&(S_m) +O(rm_2), m=0,1,---,s
(4.10)

»

where the indices @ may be chosen as u or r. Note that
when m = s, the falloff condition for the totally angular
components is

Faw) =1 Fag +--, (4.11)

which agrees with the lower spin cases (s =0, 1, 2).

A. Asymptotic expansions
of gauge conditions and EOM

As has been mentioned, we may impose the following
gauge conditions:
P funs-)=0: fly =0, nfi- =0, (4.12)
for free HS gauge theory without sources. In retarded
coordinates, the third condition leads to

Fl =0, k=12, (4.13)
Moreover, the traceless condition (3.19) becomes
~2fura(s=2) T Frrats=2) + 7272 fapa(s—2) = 0, (4.14)
and it follows that
J’ABfABa(s-z) =0. (4.15)

This is the traceless condition on the sphere S?, which is
equivalent to

yABZr kFﬁugc( 2):0:>VABFE”); =0, k=1,2,---.
=1

C(s-2)
(4.16)

The transverse condition (3.25) is

1 A
0=0fius-1) = | —n"0, + m“0, —— Y4V

r
(4.17)

where
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Na<s)ﬂ<s_1)y = Na<s_l)ﬂ(s_1)Na5y. (418)

Using the identities which are shown in Appendix B, we
find

als— k
(k=2)Net=,( _ F

ua(s—1) Aa(s—1)

k=12, (4.19)

By multiplying the inverse tensor N*~1g ) the above
equation becomes

(k—2) 1<,4ﬁ)(s 1) (5—1)52 ;()s 2)A +VCF B(s—1) =0.
(4.20)
(1) For (s —1) =u(s —1), we find
(k —2)F! () = —VCF Cu(s—1)" (4.21)

The components F EZE)S) are completely fixed by

(k) c
Fuy =713 2v F Ca(s—1)> (4.22)
|
2 2
P fouis) = {—2@,0, =0, +02+= a + VAVA

Dt 2k = DN Ff +
k=1

This leads to an infinite tower of equations for the boundary
fields

Nk=-2)Fy"

k=1
(a(s))) =0.

(k)
2(k - l)Fﬁ(S) + (k-

+N/; VAVA(N“ u(s) (4.27)

It is obvious that there is no dynamical equation for the
mode with k = 1, while all the descendants with k > 2 are
determined through the boundary equations after imposing
suitable initial conditions.

B. Symplectic form

We can find the presymplectic form from the variation

principle
oS = /EOM+/(d3x)ﬂ®”, (4.28)

where

as— k
—i—VA[N ( 1)#(5_1)1_7( ) ]ZO,

except for k = 2. When k = 2, we have

VCF (5-1) = 0, (4.23)
and F iz()s) is free.
(2) In general, (s — 1) = A(m)u(s — 1 — m), the equa-
tion (4.20) leads to
FY L gepl
A(m)u(s—m) k—2—m CA(m)u(s—1-m)’
m=1,2,---,5s—1 (4.24)

except for k =2 + m.
Therefore, at least for k =1, all the components like
Fq(s—1) are either zero or determined by the symmetric
and traceless one Fy(y).
Asymptotic equation of motion. We still need to solve the
EOM (3.15). From the identity

2 2 1
0% = -20,0, — -0, +0%+—0,+—VAVA, (4.25)
r r r?
we find
als S —k (k)
N () ()ZI" Fa(s)>
k=1
als k=1 als k—1
(k= 1) (k = 2N, F 4 vAv, (Neto)  F& >)} . (4.26)
e = 2Lpﬂ(s)(w(s>5f;4(s)aﬁfl/(x)' (429)

The symplectic form can be obtained by a further variation

Q5 (57:6f: 1) = 2 / (&), LR 5F, 0 A 3,6f )
)

(4.30)

where we have chosen a hypersurface $ to evaluate the
symplectic form. The symplectic form at Z™ is the limit

Q(6F;6F;F)= lim

r—oo,ufixed

Q> (5f35f3f)
=2 / dudQm,LP*OMISE o A (=n,)8F ()
— / dudQSF (o) ASFAV), (4.31)

where $, is the constant r slice. It follows that the
fundamental commutators are

086012-6



QUANTUM FLUX OPERATORS IN HIGHER SPIN THEORIES

PHYS. REV. D 109, 086012 (2024)

i
[FA(S) (u,Q), Fp(s) (u', Q)] :EXA(.V)B(S)G(M —u')5(Q-Q),
(4.32a)

. i
[FA(s) (u,Q), FB(S) (u', Q)] :EXA(.\')B(A‘)é(u —u')6(Q-9'),

(4.32b)

. . l
[F a5 (1,92), F gy (1, Q)] :EXA(S)B(s)g(u —u')o(Q-Q'),

(4.32¢)
where the function a(u — u’) is
1
alu—u') = 5 [0 —u)—0(u—u')]. (4.33)

and the rank 2s tensor Xj(5)p(s) 1S constructed by
1 -
XawBis) = M ZSXAI---AJB”(])...B”(SJ — traces, (4.34)
TE D

where

XAIMAJBIMBX = 7YA,B, """ VA,B,- (4-35)

It should be symmetric and traceless among the indices of
the same letter”

Xa(s)B(s) = X(A4,)(B,-B,)»

Xy opis) = 1P X s 5)8(5) = 0. (4.36)
The explicit form of XA®)B() js?
[s/2]
XA)B(s) — Z a(p. q; S)y(A,AZ ey Ay
p.q=0
X X?il]“rl"'As)(BZq—l"'B‘},Ble e YBZq—lBZq), (437)
with the coefficients a(p, g;s) being
s!2s —=2p = 2]
cg) = (=1)Pt+a
alpa:s) = (=) S ) Bs — )
112s — 2g — 2|1
s![2s ~2q = 2] (4.38)

" 24g1(s — 29)1(25 — 2)11”

The commutators (4.32) can also be derived from canonical
quantization, which we have checked in Appendix E.

*This property will be referred to as doubly symmetric trace-
less (concerning two sets of indices). We hope it will not cause
confusion with the symmetric and doubly traceless Fronsdal
ﬁe12d Sus)-

“We have derived this formula in Appendix D.

After defining the vacuum |0) through the annihilation
operator in the boundary theory, we obtain the correlation
functions

(O F a(s) (u, Q) Fg() (', ) |0) = X g )5y Bl =) 5(Q— '),

(4.39a)
. S(Q- Q)
(O] F 4(5) (u, Q) F (5 (', ')|0) = X ()85 Ir(u =i —ie)’
(4.39b)
. S(Q—-Q)
F QF ' QY —_X
(O] F a5 (1, Q) F gy (1, Q)| 0) AOBO) o u—wd —ic)’
(4.39¢)
: . S(Q-9)
O|F Q)F " QN 0)=-X _—
(0 A(s)(”v ) B(s)(”v )10) A(s)B(s)4ﬂ_<u_u,_l.€)27
(4.39d)
where the function f(u — ') is defined by
© dw . )
— ) — bl —lm(u—u’—le)' 4.40
plu—u)= [T (4.40)

V. QUANTUM FLUX OPERATORS

For any conserved current j#, one may construct the
corresponding flux across a hypersurface $ through the
formula

fMZAWWﬂ (5.1)

To find the Poincaré fluxes, the conserved current should be
chosen as

Jp =T, (5.2)
where T is the stress tensor of the theory, and € is the
Killing vectors of Minkowski spacetime. To discuss the
fluxes radiated to Z, we may choose constant r slices ),

in retarded coordinates and then take the limit » — co while
keeping the retarded time u finite

lim, = lim (5.3)
r—oo, u finite
It follows that the Poincaré fluxes at Z are
Fy = lim, / (dx),T", & (5.4)
9,

We may read out the flux density operators from the fluxes
arrived at Z* per unit time and per unit solid angle. The
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quantum flux operators are the (generalized) Fourier trans-
formation of the normal-ordered flux density operators.
However, the definition of the stress tensor in HS theories is
rather subtle. The conserved gauge invariant Bel-Robinson
tensor [71,72], a direct generalization of the canonical
stress tensor, is not the quantity we sought for s > 2 since it
has 2s derivatives. Though there are various discussions
on the gauge invariant conserved currents in the literature
[73-77], it is believed [78] that there is no gauge invariant
stress tensor for s >2 due to the no-go theorem of
Weinberg and Witten [20]. However, there are gauge
noninvariant conserved currents, akin to the Landau-
Lifshitz pseudotensor [79] in general relativity, which give
rise to the gauge invariant conserved charges [80].
Nevertheless, we will treat the HS fields as ordinary matter
and use the formula

-2 oS

T, = \/_—_géfg/"” (5.5)

N

T
2

1
po — _E’/]paayfy(s)a fﬂ( ) =+

to obtain the “stress tensor”. It turns out that this “stress
tensor” leads to reasonable flux operators at Z+.

A. Fluxes
Substituting the Fronsdal action into (5.5), we find

-2 6§
Tpe=—"=5"
-9 590 g=n

QLM (s)kv(s)
= ”pa'c[f] - 2—alfﬂ(s)akfy(s) |g—>;7~

29’°

(5.6)

With the conditions (3.14) and (3.19), only the first two
terms in the Lagrangian density contribute to the stress
tensor

ﬂpaalefuzy(s—l)ayzfym(s_l) =+ apfy(s)aafﬂ(s)

=+ savfpy(s—l)ayfaﬂ(s_l) - s[a/)fy/,t(s—l)aufﬁ(s_l) + (p < 6)]

v vip(s—2
= (s = 1)0,, £y 0y f

The stress tensor can be expanded asymptotically near Z*

(5.8)

where the first few orders are
|

Xc = 2FA(S)VCFA(S> + 2(FCA(S—1)VDFDA(S_I) - FCA(S—l)vDFDA(S_I))

— ZS(SFMA(s—l)FCA(S_l) + FA(&)VAFCA(S_U + FuA(S—l)FCA(S_l) _ FuA(s—l)FCA(S_l)),

and the explicit form of X;, X,, as well as Xpc are not
important in this work. For more details on the calculation,
we refer to Appendix C. We may compute the Poincaré

fluxes generated by Killing vectors &

Fy = lim, / (dPx), 17, (5.11)
9,

For the spacetime translation generator labeled by a
constant vector c#,
& = ct,, (5.12)

we find energy and momentum fluxes

(5.7)
|
f/(;? = npngFA(s)FA(s), (5.9a)
() _ d
t/,(,— = npngXl + n(ngXC + Yﬁ;Yg)XBC + EXPO., (59b)
where
(5.10)
Fe, = c”/dude"tﬁ)
= ct / dudQn, F 5 FAW). (5.13)
For the Lorentz transformation generator,
fa, = a)ﬂy(xyau - xl/aﬂ) <
o = o"[(rn, + um,)8; — (rn, + um,)d;), (5.14)

with @ being a constant antisymmetric tensor; the angular
momentum and center-of-mass fluxes are
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QUANTUM FLUX OPERATORS IN HIGHER SPIN THEORIES

PHYS. REV. D 109, 086012 (2024)

Fe = lim+/~6 dudQm’T ,,&,
s / dudQum? (i, 5 — in, &%) 152
+ o / dudQm? (n,,5 — n,53)15)
= " / dudQ%VAY;‘UFA(S)FA“)

1

At the second line, we decompose tf;) as (5.9b). The total
derivative term containing X, has no contribution after
integration by parts. The terms proportional to n,n, or

Y fp Y g) are also vanishing due to the identities
m’ (n,6] — n,é;)n,n, =0, (5.16a)
mPYA = 0. (5.16b)
Using the relation,
Fustemt) = - VF cngemn (5.17)

the angular momentum and center-of-mass fluxes become
Fe = o / dudQ 3V CYG Fy(p FA)
- " / dudQY?: [F 5 Vp FA®)

- S(FCA(s—1)VCF?)(S_l> - Fg<s_l)chCA<s—l))]'
(5.18)

From the Poincaré fluxes, we find the following two flux
density operators:

T(M,Q) = :FA<S)FA(S): , (5198.)

1

MA (M,Q) :EPAB(S)CD(S)( . FB<X)VCFD(S) —FB(K)vCFD(S) . )

(5.19b)

The tensor Pp(s)cp(s) 1S doubly symmetric traceless

P as(s)cn(s) = Pas,--8,)cD, D, = Pas,..B,c(D,-D,)» (5.20a)

Pap(s)cn?®® = Pagycnsr”® =0, (5.20Db)

and can be obtained from the following tensor:

Pyp,.5.cD, D,
= (YacYs,p, + SYaB,YCD, = SYaD,YCB,)YBoD, " VB.D, -
(5.21)

We have discussed this tensor extensively in Appendix D.
We have added the normal ordering symbol :---: to
remove the annihilation operators to the right-hand side of
the creation operators. Similar to the lower spin cases, two
smeared quantum flux operators can be defined as

T, = / dudQf (u, Q)T (u, Q), (5.22a)

My = / dudQY (u, Q)M 4 (1, Q), (5.22b)

where the function f and vector Y4 can be time and angle
dependent.

B. Supertranslations and superrotations

The commutators between the quantum flux operators
(5.22) and the fundamental field F () are

(T 4. Fag) (. Q)] = —if (u, Q)F 5 () (u, Q), (5.23a)
My, Fyp)(u, Q)] = =idy () (Vi Fru,Q)
+%/du’a(u’ - u)AAm(Y; F;u',Q),
(5.23b)
where

D) (Y Fu, Q) = YPVEFES pppcae)

1
+5 VEYPFEOPppcags)-  (5:24)

The rank 2s + 2 tensor pap(s)cp(s) 18

(Pas(s)cn(s) + Pap(s)cs(s) = YacXp(s)n(s)-
(5.25)

N —

PAB(s)CD(s) =

After integration by part, the quantum flux operator My
can be rewritten as

Myz/dudQ: FAO (0, Q) Ay (Y Fyu, Q). (5.26)

When the test functions f and Y# are time independent,
the quantum flux operators can be interpreted as super-
translation and superrotation generators. In the literature,
the supertranslation and superrotation vectors &y are
expanded as

086012-9
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vA
& =f0,+5 Ly, vira, — S0t (5.27a)
1 1 u
gy = —MVAYAau - —rvAYA6, + —vaCv . Y@,
2 2 4
n <YA —%VAVBYB> Oy + -, (5.27b)

in asymptotically flat spacetime. The Lie derivative of the
spin s field along the direction of &y y is

Lefuts) = & 0pf uts) + 50,8 f u(s—1)p- (5.28)
We can read out the variations of the fundamental field
under supertranslation and superrotation from the leading

order of the components f () as

OrF as) fFA (5.29a)
1 B 1 B

OyFas) = EMVBY Fai) — 5(5 - 1)VpY Fags)
+ YBVBFA(S) + SFA(s—l)CvAYC (529b)

For the supertranslation of the field Fy ), we find

We conclude that the quantum flux operator i7 ; is the
generator of supertranslation for f being time independent.
For the superrotation of the field F (), we should replace
the variation (5.29b) induced by Lie derivative with the
covariant variation [14,15]

FyFps)

= 8y Fp(s) — ST p(Y)Fap(s-1),  (5:31)

where the connection is a symmetric traceless tensor

L ou(y) =

5 (VaYp+ VpY, -

7ABVCYC)-
(5.32)

FAB(Y) =

Nl*—‘

After some algebra, we find

O, = [ dudQg(u,Q):

dudQg(u,Q):

/
/ dudQq(u,Q):
/

FDB(S—I) FE

FDA(S—I)FEB(S—I) .

FyFas) = ilMy, Fa)l +ilT poyvoye. Fa)l. - (5.33)
for Y4 being time independent. In this case, after sub-
tracting a term related to supertranslation, the quantum flux
operator iMy should be regarded as the generator of
superrotation. As a consistency check, one can show that
T, and My may also be derived from the Hamilton
equation 6Hg = ig€ using the above variations.

In [13-15], the supertranslation and superrotation gen-
erators have been extended through quantum flux operators
by including the time dependencies for the functions f and
vectors Y. However, closing the algebra requires ¥ = 0,
and then we realize the Carrollian diffeomorphism (inter-
twined with superduality transformation), which will be
shown in the next subsection for the higher spin theory. It
has also been extended in general dimensions and general
null hypersurfaces in [16].

C. The algebra among flux operators

Now it is straightforward to compute the commutators
for the quantum flux operators

(T4,.Ts,) =Cr(f1.f2) +iT f j,p 7, (5.34a)
. , i

77 My] = =T s + My + 5505,
+7 Q;{ AV, f)» (5.34b)
[MY’MZ] = CM(Y7 Z) + lM[yz] + iSOO(Y,Z) —I—NM(Y’Z>’
(5.34¢)
[T4.0,] =iOp,. (5.34d)
[My.Oy] = Cyo(Y.g) + iOypy,, + Nyo(Y.g). (5.34e)
[Oq] ) O,(jz} =Col(91,92) + No(g1, 92)- (5.34f)

The results are quite similar to the lower spin cases. We will
discuss these commutators term by term.
(1) New local operators. The operator O, is

B(s—1) - €ED

- €EDYAB, """ YAB

sPs

A FEG): Qm(s)- (5.35)

086012-10
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where the rank 2s tensor Qy(s)p(s) is doubly symmetric
traceless

Ou(s)B(s) = Q(A,--4,)(B,B,)>

72D 0 5)8(5) = 7P Qa(s)8(s) = 0. (5.36)
It can be obtained from the tensor €g 4,74, * " * ¥a,5, USING
the formula in Appendix D. This operator is the helicity
flux operator associated with HS duality transformation,
which will be discussed in the next section. The other new
operator Q) is defined as

Q, = / dudQh(u, Q): FAOF, 1. (5.37)

Its commutator with the fundamental field Fy() is non-
local, and we do not find a physical interpretation for this
operator. Therefore, we will not pay more attention to it in
the following.
(2) The central terms come from two-point functions for
the quantum flux operators

i6)(0)

Crltvfa) === Lyjpiy (3389)

Cy(Y,Z)= /dudu'deQ’YA(u,Q)ZBl(u',Q’)

x AV (Q-Q(u—u),  (5.38b)

Cuo(Y.g) = —2582)(0) / dudu' dQY* (u, Q)

AE{% = Pap(s)cnis) Persom s [XEOTW§(Q - Q)VEVY (XPOTW5(Q - )

_ vC(XD(s)F’(S)5(Q _ Q/))VG’ (XB(S)H’(S)(S(Q _ Q’))] .

The identity operator Z; is defined by

I, = /dude(u,Q). (5.41)

The divergence of the Dirac delta function §*)(0) has been
regularized to é using the Riemann zeta function or heat
kernel method [16].

(3) Nonlocal terms. The nonlocal terms are

Ny(Y,Z) = %/ dudu'dQa(u' — u)A ) (Vi F;u')

x AY)(Z, Fyu), (5.42a)

Nyo(Y,9) = ;/ dudu' dQa(u' — u)A ) (9; Fs u)

x ANV Foul), (5.42b)

i .
No(g1.92) = 5/ dudu'dQa(u’ — u)Ay ) (91: F; ')

x AYC) (g, Fu). (5.42¢)

086012-11

x VBg(u',Q)eapn(u—u'), (5.38¢)
Colg1. g2) = 46@)(0) / dudu'dQn(u —u')
X g1 (1, Q)gp (', Q), (5.38d)
where
n_ Pu—u) =g P —u) -
nu—u') = 8w(u—u' —ie)?  Sn(u' —u—ie)?’
(5.39)
and
(5.40)

“

Here, the tensor AA(S)(g; F;u) is a shorthand of
Ay (g5 F5u,Q), and one should distinguish it from
AA(S)(Y ; Fyu,Q), which is the superrotation varia-
tion of the fundamental field Fy(,). Actually, it is
defined as

Ay (g F3u,Q) = g(u7Q)QA(s)B(s)FB(S)7 (5.43)
which relates to the commutator
[Og7 FA(s) (Lt, Q)] = _iAA(s) (g; F;u, Q)
+%/du’a(u’ —u)
X Ay (G5 F3u', Q). (5.44)

There is a closed algebra for ¥ = g = 0, which is
similar to the intertwined algebra in the lower spin
cases

(T4, T1,] =Cr(f1. f2) +iT 4 4, p,5,»  (5.452)

[Tf, My] = _iTYAVAf’ (545b)
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My, Mz = iMy 7 +isO,y ), (5.45¢)
17,0, =0, (5.45d)
My, O] = iOyay, (5.45¢)
0,,.0,]=0. (5.45f)

This algebra is one of the main results of this paper.
The spin s on the right-hand side of (5.45c) can be
absorbed into the definition of O, and the resulting
algebra is isomorphic to each other for s # 0.

VI. DUALITY TRANSFORMATION

In this section, we will confirm that the operator O, is the
helicity flux operator associated with special superduality
transformation.

Curvature tensor. For a HS field f (), we may define a
curvature tensor [52]

sviovepir, = —20000 G O fots), (6.1)
where the tensor &2/ is
5 = 538, — 626, (6.2)
and
Op(s) =0y, =0, (6.3)
Due to the antisymmetric property of 5Zf
5 =~ = —6 = &), (6.4)

the curvature tensor is antisymmetric under the exchange of
indices y; and v;

Ry piny, = ~Ruwowsuppvys 1= 12,0008 (6.5)

It is also invariant under the exchange of any pair of indices
(uiv;) and (ujv;)

Ry = Ry iL,j=12,---,s. (6.6)
The cyclic identity
Ry vlvs =0, (6.7)
and the Bianchi identity
Ry v uors = 0, (6.8)

are also satisfied similar to the Riemann tensor. The
Fronsdal equation is equivalent to the vanishing of the
“Ricci” tensor

R

L = 0. (6.9)

H1Vi oo H
The dual of the curvature tensor is defined through the
Levi-Civita tensor

- 1

Rﬂ]”lﬂzvz"'ﬂsvs = Eeﬂll’lpo'

R (6.10)

o
Mol fls?

and has the same symmetry as the curvature tensor. It also
obeys the Bianchi identity

aU’Rﬂlﬂl]le/z"'MsVs = O’ (611)
and satisfies the equation of motion
Rﬂl”lllzbz'“#xl’xnblyz =0. (612)

Duality transformation and the corresponding flux. The
duality transformation is a rotation between the curvature
tensor and its dual

R - R

M1V Hyls

-y, COS P+ Rmvl-'-mm sing,  (6.13a)

Rﬂ]’/l"'ﬂsljs

— —R sing + R cosg, (6.13b)

MV psl MYy pgls

with ¢ a constant angle. We may introduce a dual Fronsdal
field ]‘#(S), which has the same symmetry as the Fronsdal
field and relate it to the dual curvature tensor

— 101 P50 7
RM]”I”Z”Z"'#S”S - _26/411/1 e 5/4sl/s ap(x)fn(x)-

(6.14)

Thus, the duality transformation may be induced by
rotating the fields f and f

f;,(s) = fu(s) COS@ + fﬂ(x) sin ¢, (6.15a)
f,/;(s) = —fu(s) Sing + fﬂ(&) cos @, (6.15b)

whose infinitesimal transformations are
Sefut) = €fur Oefuts) = —€fuio.  (6.16)

with € a small positive parameter.
Similar to the vector and gravitational cases, we intro-
duce a symmetric Fronsdal action

(ST + SLAD- (6.17)

N[ =

Sif.f1=

086012-12
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There is a parallel dual gauge transformation generated by a
symmetric traceless tensor EM(S_,)

(ﬂlgﬂz“'ﬂx)'

From Noether’s theorem, we can find a conserved current
associated with the global duality transformation

, 1 oc[f] 1 aLlf] .-
P —
]dua]ity 200 fﬂ Sfﬂ(x) + zaa }”(S> 5efﬂ(s)
= L/w( sJow (f O’fﬂ fy(x) a(i?ﬂ(é‘))’ (619)

In the last step, we have omitted the constant parameter e.
We may expand the dual Fronsdal field as

[So]

7 —k pra(s 7ok
k=1
near Z* and impose the gauge fixing conditions
a’/}‘vp(s—l) =0, };(s_2> =0, I’l”fw(s_l) =0. (621)

Then the helicity flux which radiates to Z+ is

hm+/$ (dSX)yjl:luality = /dudQFA(A)FA(S)

/ dudQFA®) Q5 FEY).
(6.22)

We can read out the helicity density operator

O(M,Q) = FA(S)QA(S)B(S)FB(S):, (623)
and construct the helicity flux operator
0, = /dung(u, Q)0(u, Q). (6.24)

This operator is exactly the same as (5.35). According to
the terminology of [15], it becomes the generator of duality
transformation for g = const and generates special super-
duality transformation when g = g(Q).

Why helicity flux? Now let us show why we call O,
helicity flux operator by substituting the mode expansion of
the fundamental field in Appendix E into O,. We focus on
the special case g = 1

Oyt = / dudQQABIN )

© da
[) Varw / Vara me f,,

. [—ia)C”(S);w’ﬂmYZ(&)) Yf,me—iwu + h.C.] [Cﬂ’(s);(u’f’.m’ YA’((‘Z)) Yt”,m’e_iw’u + h.C-} .

_l'/dQQﬂ(S)ﬂ’(S)/oo
0

where the tensor Q*()#() is the Cartesian version of

QABA(s)
S (s) — $)A'(s (s) ' (5)
QUM (8) = QAWA( )YZ(S) YZ’(s)' (6.26)
Equivalently, it is constructed from
Yw =YaYlysp and €, =YiYleup. (6.27)

The next step is using the bulk creation and annihilation
operators to express the boundary ones [see (E11)], and we

obtain
© @k
Opy =—i

*(l (l
X g €, ba kb

(l(l

W ()

(6.28)

T *
dw§ : : : C//(s);m,f’,m’ Cu(s):wtm Yf,m Yf’m”

‘m ¢'m'

(6.25)

We work in a representation where the particles have either
right-hand or left-hand helicity. What follows is

QMK (s) (Qk>€;?5) (k) ga:(s> (k) = iag‘a/,

a=R,L,
"

(6.29)

where o3 is the third Pauli matrix. Therefore, we find

d3k - +
Op1 = W(bR,kbR,k — by 4 bLi)

3
= /%(”Rk - ”L,k)?

where ngx = blT{ /L,kbR/L,k is the particle number with
right/left-hand helicity. Therefore, O,_; is the difference

between the numbers of particles with right-hand and left-
hand helicity.

(6.30)
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VII. DISCUSSION AND CONCLUSION

In this paper, we have reduced the bosonic Fronsdal
theory in Minkowski spacetime to future null infinity Z+.
The boundary HS theory is characterized by the funda-
mental field F4(,) with a nontrivial symplectic form. All the
descendants are determined by the fundamental field by
the boundary constraint equations up to initial data. This
extends the lower spin Carrollian field theories to general
spin s. The symmetry algebra (5.45), which is formed by
extending Poincaré and helicity flux operators, shows the
same structure as the ones in the lower spin theories.
All the flux operators are quadratic in the fundamental
fields and could be interpreted as generators of super-
translation, superrotation, and superduality transformation,
respectively. The superduality transformation is the angle-
dependent extension of the HS duality transformation
(6.15) at the null boundary. In Table I, we list the corres-
pondences between the bulk global symmetry transforma-
tions and the boundary local transformations. These results
lead us to the conjecture that each bulk global symmetry
transformation may extend to a boundary local symmetry
transformation at the null hypersurfaces. These local sym-
metry transformations are related to the radiative flux
operators from bulk to boundary. It would be interesting
to check this conjecture in the future. There are still many
open questions to explore.

(1) Further extension of the Carrollian diffeomorphism.
There are HS extensions of BMS symmetry in the
literature [22,24,81,82] where the supertranslation
and superrotation are large HS gauge transformations.
The HS BMS algebra has been extended further
for Carrollian conformal scalar theory [25], which
is expected to be dual to a nontrivial interacting HS
theory in the bulk [66]. On the other hand, we work
out the quantum flux operators following from Car-
rollian diffeomorphism, which relates to spacetime
geometry and differs from the ones concerning HS
gauge fields. It would be interesting to see whether it is
consistent to combine HS supertranslation and super-
rotation with Carrollian diffeomorphism.

(i) General null hypersurfaces. The symmetry algebra
found in this work should be valid for general null
hypersurface, as has been shown in [16] for scalar
theory. The general null hypersurface is intriguing
since one may consider massive or nonflat spacetime
HS theories.

TABLE I. Bulk global transformations are extended to boun-
dary local transformations.

Bulk global transformations  Boundary local transformations

Translation
Lorentz rotation
Duality transformation

Supertranslation
Superrotation
Superduality transformation

(iii) Superduality transformation. As has been mentioned
in the introduction, duality transformations are
found in various gravitational and gauge theories.
It would be better to discuss their associated super-
duality transformations on null boundaries. Besides,
it is rather interesting to discuss the physical origin
of superduality transformation and its various con-
sequences.
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APPENDIX A: NUMBER OF INDEPENDENT
COMPONENTS

In this appendix, we will review the number of inde-
pendent components for a symmetric tensor in d dimen-
sions. The results can be found in any book on the
representation of Lie groups, and we use the review
reference [83]. For a d-dimensional vector space V, the
symmetric tensors of rank s form a vector space Sym*V.
The number of independent degrees of freedom is equal to
the dimension of the space dim(Sym*V). The symmetric
tensor forms an irreducible representation of the general
linear group GL(d,R) and corresponds to the Young
diagram with one row of length s as shown in Fig. 1.

The dimension of any irreducible representation V, of
GL(d,R) associated with Young diagram 1=
(A1, 42, ..., 4,) is given by the formula

—i+j
dim(V;) = Hhook length’ (A1)

FIG. 1. Young diagram for a rank s symmetric tensor.

A

Ar

FIG. 2. Young diagram of type 1 = (4,45, ..., 4,).
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where (i, j) denotes the box in the ith row and jth column @ _ sa_ sa S o

in the gfouflg diagram, as shown in Fig. 2. The product is MmNy = 0 = S, MmN’ = . (B3c)
over all boxes in the diagram, and the hook length is the
number of squares directly below or to the right of the
square (i, j), counting itself only once. For the symmetric

AN, = 5% —28%,  i,Nt, =54 +258,  (B3d)

THNE — S T NH — ST — sS4
representation Sym*V, there is only one row with s boxes. MmNy = 3L, N O = Oa, (B3e)
Therefore, the dimension dim(Sym*V) is and

. dd+1)---(d+s-1)
dlm(SymSV) = S(S _ 1) ool = Cfi-&-s—l' (A2) vANaﬂ = MA(53_5?) _mﬂ5z7
VNH, = —=Y4 &l —y4pm" S5, (B4a)

YEVANT, = 64(5% - 6).

APPENDIX B: IDENTITIES INVOLVING ngA N, = —88st, n*V,N%, = —6%, (B4b)

COORDINATE TRANSFORMATION

In the context, we defined the four vectors in Minkowski as well as
spacetime as follows:
7 U r of
J# NP, = 848 + 5,8) + ropd,

=&+ (r—1)88,
= rdh + (1= r)[545, + 5,50). (BSa)

n=(1,n"), w*=(-1,n"), m*=(0,n"), m"=(1,0),
(B1)

where n' is the normal vector of the unit sphere S2. The

vectors Y4 are related to the first three vectors by NE,N¥g = &5, N# N, =&,
NONPE = —828) — G06% + 6¢8) + P50, (BSb)

A_ A, _ _\JAi _ _VUA
Yy =-Vin, = -Vin, = -Vim

" (B2)
NHFRVAN®, = —556% + y 465 (8% — 59),
These vectors satisfy various identities that are collected pTAT W pOA T VA% ( )
in [16]. In this appendix, we can derive more identities NGV NP = 5% (&) - &) - & (52 - 52). (B5c¢)

associated with N*, and N*#, in the following:

YANO, = =67, YANM, =~ (B3a) APPENDIX C: ASYMPTOTIC EXPANSION
OF STRESS TENSOR NEAR 7+
nN®, = 57, n,N* o = —8g, (B3b) The partial derivatives of the HS gauge field are
|
= - a; a, j-(k a; a, (k=1 a o, (k=1
avfu(s) = Zr k[_”va "'Nﬂ}Fi()s) - (k - 1)’”va "'NﬂxFr(l(s)) - Yf}vA(Nul "'Nﬂ«\-FL(:) ))] (Cl)
k=1

Therefore, we find the following quadratic terms consisting of the stress tensor:

2F 5 FA®)

Oufu@ 1) = == 53—+, (C2a)
n no"FA N FA(S) 1 . . .
aﬂfﬂ(S)ava) = % + 3 [2npnaFA(s)F(2)A<S) + 2n(l,m,,)FA(S)FA(S)
+ 2”(pY§>FA(s>vBFA(S> + 2sn([’Y§)(FMA(S—I)FBA(S_H - FBA(S—])FMA(S_I))] +--- (C2b)

L u(s=1 1 : Als—1 d Als—1 d A(s—1
aufpﬂ(s—l)a fﬁu( ) = ﬁ 2npno'FuA(s—1)FM (=1 + 2n(ng) E (FLtA(S—l)FC( )) + Y/I)ngE (FBA(S—I)FC( )> T+

(C2c)
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a/)f{)’ﬂ(s_l)aafpﬂ(s_l) _

1 ,
v s—1
apfﬂ(S—Uavfor( : - ﬁ [nﬂnU(SFuA(s—l)Fu

+ anzB;(SFuA(s—l)FB

+ nﬁy/lngBA(s—l)FuA(s_l)

, s _ 1 d
allfp,u(s—Z)aV o - r3 du

APPENDIX D: DOUBLY SYMMETRIC
TRACELESS TENSOR ON §2

We will study the doubly symmetric traceless tensors
Xa(s)B(s)> Qa(s)B(s) and Pyp()cp(s) 1n this appendix.

The trace-free representation of the fully symmetric rank
k tensor Tg(k) is given by the formula [84,85] in three
dimensions and [86] in general dimensions

[k/2]
. Kild + 2k — 2(p + 2)]1!
0 =14 + Z(—l)p 27 ;[(/: 2 )'(d(ij;k 1] 41!
p:] p p . ..
X ’7<a1a2 .. _nazp,laszZszmak)’ (Dl)
where Tf,(k_zl’ ) is obtained by taking the trace of Tg(k) p
times
T;217+|--.ak — ﬂalazf/]a3a4 . r]azp_]azp Slazmak’ (DZ)

and n““ is the metric of the manifold. Note that the
formula can be simplified to

/2] K\[d + 2k = 2(p + 2)]!!

- ;(_l)p 27 p\(k — 2p)\(d + 2k — 4)!!

Ta(k)

% ’7<a1a2 . 'ﬂazf”lazl’TZZpﬂmak), (D3)

In our case, i.e., d = 2, k = s, the trace-free part of a fully

symmetric, rank s tensor Tgm

, 18
/2 "
TA(s) = Z a(p; s)y(AlAz .. .yAz,;flAz,)T?ZP“ Y, (D4)
p=0

where

A(s—1)

A(s—1)

2F 4o FAW®)

%+ . (C2d)
 Fa VA FS)
- FuA(s—l)F[?(S_l) + FCA(S—I)VCF[?(S_I))

+ nﬂm(,FA(A,)FA(S) + YEYEFCA(S—I)FI?“_U] =+, (CZC)
[Na/)FaA(s—l)NﬂaF/}A(s_l)] + e (CZf)
s!2s=2p=2|!!

i8)=(=1)P , p=0,1,---,[s/2].
alpis) = (=1 = —yn P /2]
(D5)

For later convenience, we extend the definition of a(p; s) to
p = —1 with
a(—1;5) =0. (D6)

In [86], this is checked up to rank 8 by computer. It may be
proved by noticing the identity

A A Ar A 2pi1Ay)
yAlAzy( 1 2...}/ 2p-1 2pT2

= b(P, S)}/(AzAA - }’AZF—IAZI;T?ZPH“‘AX)

+ C(p + 1;s)7/(A3A4 “en 7/A2/)+IA2/7+2T2§:I3.”AS)’ (D7)
with
4p(s —p)
b(p;s) = ———= D
(i) = "7 (Dsa)
-2 -2p—1
(pt1is) = EZ2P)=2p=1) gy

s(s—1)

The coefficients a(p;s),b(p;s) and c(p;s) satisfy the
identity

a(p;s)b(p;s)+a(p—1;s)e(p;s)=0, p=0,1,---,[s/2].
(D9)

Note that we have used a(—1; s) = 0 in the above equation.
Therefore, the trace vanishes
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[s/2]
YAIAZTAI.-~AS = Z a(p; s) [b(p; s)},(A3A4 .

p=0

—

s/2

=) [a(p;s)b(p;

p=0
=0.

.

1. Doubly symmetric tensor X))
Now we will prove the formula (4.37) in the context.
Introducing the notation

XA2p+l ABZqH ‘B

=Yy Vs sy VBB '?’qu,leqX(A' ~A;)(B1-By) (D11)

this is obtained by taking traces p and ¢ times for
the indices As and Bs, respectively. When p = g =0,
we have
Xy BB = XAi-A) BBy (D12)
We use the vielbeins ¢4 to decompose the metric y*#
B = efdeBa, (D13)
and thus,

1By ... AB, — A
],A yxx_ea

It follows that

eA eBian ... pBsas (D14)

_ 1
F(Ar-A)(ByB,) — ; ZyAﬂ(nBl .. .}/AJ(S)BS
‘mEeS,
LS g
‘meSsy
= V/axll.'.‘:g:eB'&‘ eBils (DI15)
|
[s/2] -Ay)
XA()B(s) — Za(p;s)y(AlA2 R szglﬂ -ay
p=0
[s/2] A,
= 3 alp:s)algss)y @ .y oA
p.q=0
[s/2]
= Z a(p,q;S)V(
p.q=0

}/AZIJ—IAZFTﬁzl’*lmAS) + C(p + 1’ s)y(A3A4 ..

) +alp = Lis)e(pis)ly ot

AlA; . }/Aw 1AszAz"’+I As )(Bz‘”'mB"yBle ..

A A 21)+3“'AS>
.}/ 2p+1 2p+27‘2+l ]

. yAZp—]AZp 7"’;2p+1 AS)

(D10)

In the first step, the indices A - - - A, are symmetrized using
the permutation group S,. In the second step, we use the
formula (D13). In the last step, we define the symmetric
tensor

al a\ ;Z a; e&s ’ (D16)
‘mEeS,
where
AA, (Ay-Ay) A A,
Vi Sy Syt (D17)

Therefore, the indices B - - -
cally. We may rewrite

B, is symmetrized automati-

K (AAg) (B B) — Vgl::g"’VBI"'Bx&I'“&x. (D18)
1 s
Ap-Ay -
The pth trace of V..’ is
Agpy1As Ap--Ag
Viaea, =YAA " YAy Ay, Vo - (D19)
We could find the following product:
Agpy1As g BogyrBsay-+-a
Visaya, Ve
. Ap--A, BB, -,
=My YAy ayy Vaya VBB, VB By, VT
SArpirABygi1B,
= Xy AP (D20)

Then the trace-free part of the tensor X(41~4)(BiB:) with

respect to A(s) and B(s) is

[s/2]

. BB B, B, v/Bagr1-Bs)ai-ay
E a(q,s)y( B2y PPy
q=0

(BiB; . . . yBay-1By Bagir+Bs)aras
pidy -y /4 y IV‘I

. }/BZq—lBZq)’ (D21)
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with the coefficients a(p, g;s) being

s![2s —=2p = 2] s1[2s —2q — 2]
qis) = : cs) = (=1)P+a . D22
alp-qis) = alpis)alass) = (=1 S s S 3V 1 29g1(s = 2q) (2 )11 (b22)
[
As a consistency check, we will list the tensors XAW)B(s) With the formula (D21), we find
for several cases of lower spin in the following.
(1) s = 2. The tensor XA142)(B182) g
XA1A:B1By — l(yAlBlyAZBZ + yAlBZ}/AZBl) (D23) XA1A2BB, :l(yAlBlyAZBZ _|_yA132}/A231 ) _lyAlAZ}/BlBZ‘
2 ’ 2 2
whose traces are (D25)
Xﬁl()Bz — ]/BIBZ’ XS,IIAZ — ]/A'AZ, Xl.l =2
(D24) (2) s = 3. The tensor X“A14:43)(B1B:B3) ig
|
X (A1A:43)(B1ByB3) — l (yAlBlyAszyA3B3 + yAlBl}/A3BZyAZB3 + yAzBlyAleyAsBs
3!
+ yAzBl yA3BzyAlB3 + }/A3BIJ/AZBZ}/A]BS + },A3BIYA132},A233)’ (D26)
and its various traces are
~?,i(§313283 _ yA,»(BlszBg)’ X(()I?IIAZAB)Bi _ y(AlAzyA3)B,»’ i=1,2.3, (D27a)
Ap 4
X\ = 37 =123 (D27b)
Therefore, the doubly symmetric traceless tensor X41424:815:85 should be
A AsAsBiBsBy _ (A1 AsA 3 543) (B ByBs) _ 3 5B3)(A1dA) 9 43)(B
XA142438, B, B3 :X( 1A243)(B B, B3) _Zy(A]A2X130 15253 _Z}/(BIBZX031 14243 _|_R}/(A|A2X131 lszBs). (DQS)
(3) s = 4, the symmetric tensor X414:)(BiBa) jg
- 1
X(Ar-A)(BiBy) — a0 (yMBryAaBayAsBsyAsBs 1 permutations of A;A,A3A,), (D29)
and its various traces are
Xflhg.fBleBg& _ b []/B,B2 (pABsyABs - yAiBayAiBs) | yBiBs (yABayA By | yAiBiyA By
’ 12
BB (pABayABs | yABsyABy) BB (yAB1yA By ABayABL )
-y BoBa (ABIyABs L yABsyABL) B3 (yABLyAB oy AiBayABy )] ’ (D30a)
- 1
X P = 2 (PPl PPl g BB, (D30b)
XgllAzAgAAB,.Bj _ 1 [yAlAz(yBiA3yBjA4 By BAY) A (yBiday B |y Bidiy B
' 12
A (B BiAs g Bidsy BiAs) | yads (4B BiAs |y Bisy Bidr)
A (pBATyBiAs g Bidsy BALY L yAsAs (yBidiyBiAs |y Bifey B, >] ’ (D30c)
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)’“(OA‘]zAzA3A4 _ % (},AIAZ 7/A3A4 + yA1A3},A2A4 + yA1A4 },AZA3 )

(D30d)
~AA BB 1o B A, B A
Xy 1:g[yA,AJyBkB,+3(yA,BkyAIB[+},A,BIYA]B,()]’
(D30e)
gAid _ 4 aa,
X1_2 _gy i, (D30f)

XA1A2A3A4B,ByB3By Y (A1A2A3A4)(B1ByB3By) _ ¥

X5 =3 Bibi, (D30g)
< 8
The doubly  symmetric traceless  tensor

XAAaAABIBBIBs should be

(A,Azj‘(?i)A4)BleBsB4 _ 5‘(104111‘\2143144(33347/3[82)

+ y(AlAZX';‘?]Azt)(BleyBgBA‘) + %},(AIAZYA3A4)X23’10323334 + %},(31327/3334))?13,121‘\21431‘\4

— %y(AIAZ}/A3A4)}/<BIBZX§’3IB4> - % (31323/3334)7/(1‘\11425(’?’3{‘4)
+iy(A|A27A3A4)},(B|BzyBsBA)_ (D31)
24
2. Other doubly symmetric traceless tensors 0BG) c)XB(s)a(s) = Qas)c(s),  (D37a)
and related identities
In (5.20), we also defined a doubly symmetric traceless O5(s)a(s) = —Qa(s)as)-  (D37b)

tensor Pyp(s)cp(s)- Using the identity

YacYBD + SYaBYcD — SYapYcB = YACYBD T S€Ac€BD>
(D32)

we find

PABI---BSCD,---DS = (J’ACYBID, + S€AC€B,D1)7/BZD2 * " YB,D,»
(D33)

and the doubly symmetric traceless tensor becomes

PAB(S)CD(S) = J/ACXB(s)D(s) - seACQB(s)D(s)- (D34)

There are various identities associated with the tensor
Xa(s)B(s)» Qa(s)B(s)» a0d P ap(s)cD(s)-
(1) To calculate the commutator between Tf and the
fundamental field F (), we need the identity

Xa(s)p(s) FE®) = Fy(y). (D35)

(2) To compute the commutator between My and the
fundamental field F;), we need the identity

B(s)

Pup(sieps)X” YV E(s) = Par(s)ep(s)- (D36)

(3) To calculate the commutator between O, and the
fundamental field F ), we need the identities

086012-19

(4) By exchanging the indices A and C in the tensor
Pyp(s)cp(s)» We find the tensor pap(s)cp(s)

1
PAB(s)CD(s) = 5 (Pas(s)cn(s) + Pan(s)ca(s))

= }/ACXB(S)D(S)' (D38)

(5) To obtain the commutator [Tf,My], we used the
following identities:

Ba)(fYsF) = fAu(Y3 F)
1 '
+ 5 YDVCfFB('\)PDB(s)CA(s)»
(D39a)

Ap) (Y5 fF) = fAr)(Ys F) + YPVLfF ),
(D39b)

pAB(s)CD(s)FB(S)FD(S) = J/ACFB(S)FB(s)’ (D39C)

Papis)cn(sy FPOFBS) =y c FBO Py
i~ B(s—1
- S€AC€DEFD ( )FEB(S—I)'

(D39d)
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(6) For the commutator [My, O], we need the integral which follows from the algebraic identity
identity
Ors)1ats)Pons)c™™ + Q)85 PpE(s)c™™

aQ FBO)AAC) (Y, F
/ Qups)9 (V3 F) = 2v¢cp Qk(s)B(s)- (D41)

= - / dQQ (s p(s) FAO AW (Y; gF),  (D40)

(7) For the commutator [My, M], we need the identity

Api)(YiA(ZiF)) = D) (Z: A(Y3 F)) = Ap () ([Y. Z): F) = s0(Y. Z) Qp(s)a(s) FE). (D42)
To prove this formula, we may rewrite the left-hand side as
LHS = terms with F + terms with VF + terms with VVF. (D43)
The terms with the second derivative of F are

ZOYPVVHFES) pepon® ppsicais) — (Y < Z) = ZPYC [V, VplF
= _ZDYCRE]CDFEAT--AA - ZDYCREAACDFA,WA‘HE

= _SYCZDRCDE(AIFA2~-~AS)E- (D44)

The terms with only the first derivative of F are
. , 1
YPVCEZOVHFES) pirou® ) popsycars) + 5Y DVHZOVEFES) P n® ppsisicacs)

1
+ 5ZGVCYDVHFE(S)PDB(s)CA(s).DGE(s)HB(S):| — (Y < Z) - [Y. Z]PVFEpppiocacs)
—0. (D45)

The terms linear in F are

1 1 1
3 YV VAZOFEO Popmacs) + ZVCYDVHZGFE(S)PGE(s)HB<S)PDB(.s)CA(s):| -(Y< 2)- EVC[Y, ZIPFBOIPppicacs)
= terms with VVY or VVZ 4 terms with VYVZ, (D46)
where the first part can be turned into commutators
1 1
terms with VVY or VVZ = 5YCVCVHZGFB<S>PGB(S)HA(S> - 5ZCVCVHYGFB(S)PGB(S)HA(S)
1 1
-5 YHVCVHZDFB(S)PDB(s)HA(s) + 5ZHVCVHYDFB(S)PDB(s)CA(s)

1
=3 YOV, VHIZPFBSIP g ags) — (Y < Z)

1 ‘
= 5 YCZERDECHFB<A)PDB(s)HA(s) - (Y < Z)
N

> YCZE(RDEC(AI + Repea, )FAZ---AA.)D - (Y < 2). (D47)

Utilizing the Bianchi identity Rypcp) = 0, we find that the above results are canceled by (D44). With the identity

B(s)

PGrsa ) Ppgisicas) = Poes)c® Pon(symas)» (D48)
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the terms with VY and VZ are

1
terms Wltth and VZ = EVEYFVGZIFB(S> (YIEPFB(S)GA(S) — yFGPIB(S)EA(S))

s .
= D) VEYFVGZIFB(S)(VFGQE - 71E€FG)QA(s)B(s)

N
— __VAYBVCZD( BC AD _|_€AC BD +€BD AC +€AD BC)Q (S)B(S)FB(S)

50(Y. Z) Qpyai FPY. (D49)
[
We have used the Fierz identity doubly symmetric traceless tensors in this coordinate
system are
YaBécp + Yac€pp + Yapepc = 0. (D50)
X(9)2(s) = Xa(s)zls) =7 (D54a)

Therefore, we finish the proof of the identity (D42).
(8) To compute the central charge in the commutator

[7,,T,], we need the square of X, () Paetyca) = 1° (Yac — iseac), (D54b)

XA(S)B(S)XA(S)B(S) =2. (DSI)
Prz(s)ca(s) = 1 (Yac + isexc), (D54c¢)
(9) To compute the central charge Cy;(Y, g), we need
the identity

Q(oyzts) = ~Qalsyats) = i’ (D54d)
Pap(s)cp(s) Q5P = —2se4c,  (D52)

which follows from the identities Pax(s)Ca(s) = Paz(s)Cels) = YacT- (D54e)

A(s)B(s) — A(s)B(s)
AWB()Q WEe) =0, Qas)8() Q WEe) = 2. For example, the square of X ,)p(,) can be found to be

(D53)

XA(S)B(S)XA(S)B(S) = XZ(S)Z(S)XZ<S)Z(S) + XZ(S)Z(S)XZ(S)Z(S) —2

3. Tensors and identities in stereographic (D55)

project coordinates

The previous identities may be checked in stereographic ~ One can also use the coordinate transformation to find the
project coordinates. The nonvanishing components of the = doubly symmetric traceless tensors, e.g.,
|

~0z(s) 0z(s) 07(s) az(s) [ 9z(s) 0z(s)  0z(s) dz(s)

XA(S)B(S) - aQA(s) agB(s) XZ(“')Z(S) + agA(s) aaB(s) Xi(S)ZU) =7 agA(s) agB(s) + aeA(s) aeB(s) ’ (D56a)
_0z(s) 9z(s) OZ(S) oz(s) [ 0z(s) 0z(s) OZ(S) oz(s )

QA(S)B(X) = 30A6) 9pBG) Qz (s)z(s) + 90°) 9eB0) QZ( )a(s) = W 90°5) 9eB0) 09A 90B) (D56b)

In terms of the projective stereographic coordinates, the flux density operators are simplified greatly

T(u.z.%) = 2y FF, (D57a)
M. (u,2,7) = % (1—s5)y(FV,F - FV.F) + % (1+ 8)y~(FV,F - FV,F), (D57b)
M. (u,2.3) = % (1+ 5)y~S(FV.F — FV.F) + % (1= s)y*(FV.F - FV.F), (D57¢)
O(u,z.z) = iy (FF — F F). (D57d)
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APPENDIX E: CANONICAL QUANTIZATION

1. Mode expansion

We can also use the mode expansion to quantize the
fundamental field. After imposing the De Donder gauge,
the EOM becomes a wave equation whose solution can be
expanded in terms of plane waves

&Pr 1
o) =2 | oays
# (k)ba.ke—imﬂrik»x -+ 8: (k)b;keiwt—ikx]’

(E1)

X [8/4{();)

()

where E(s) (k) is the polarization tensor. Here, the creation
and annihilation operators satisfy the canonical commutator

[ba,k’ bf

i) = (27)38,,560) (k = K),

(E2)
while other commutators vanish. One can choose appro-
priate polarization tensors such that they obey the following
completeness relation

Here, y,, has been defined as

1 _ _

Yuw = N — z [n/t(k)nl/(k) + nﬂ(k)nv(k)} = YABYﬁYf(Qk)’
(ES)

with

_ k;

ny(k) = (=Ln;(k)), 7, (k)= (1.n;(k)), ni(k):|k—|-
(E6)

In the context, our polarization tensor satisfies

b =0 Ky =0 ey =0, (E7)

which imply the corresponding properties of (E3). The
property of being symmetric and traceless is obvious due to
the construction of X, ,,(,), while the others are satisfied by
the definition of y,,, namely k*y,, = 0 and

YA =Y20.x* =Yin* =0=y,, =yap¥2Y2 =0. (E8)
v r ner Y rv rtv
ZE a/i (k) = X}l(S)l/(S)’ (E3)
ap As in the context, we impose the falloff
v~vhere Xyu(s)u(s) 18 the doubly symmetric traceless part of Fﬂ<s)(u, Q)
Xﬂl"'ﬂ\-l/l“'l/s fﬂ(s)(t’x) = Ty + O(}’_z), (E9)
XKooy = Yy " Vg (E4)  which leads to
|
o \/5 .
Fo(u,Q) = dadQ e (k)byre™ Y, (Q)Y, , () + h.c.
(1.9 ;Z/O k[mﬂzi (k)b Y, (Q)Y, (D)
©  dw ;
(s)wem€ Y e m(€2) +hec, E10
A e R (E10)
with
it = (s | AN a0 Bty
T T / koZe k)DL LY (). (E11b)
Converting to retarded frame, we obtain
Fy()(, Q) = Fu) (u, Q)(=YY) - - (=Y})
© dw K i(s) —iou
/ \/F (=1)* c,<s)a,meA( )Yfm(Q)e +h.c.]. (E12)
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It is straightforward to compute the commutation relation between boundary creation and annihilation operators

- ww

] — / *a
[C“S);w-f-'"’Ci’(s);w'ftm]_m/ Ay,

(K7, (e ()Y, () [bag. bl ]

C() a)’)/koX fm(Qk)Yf’ m/(Qk) (E13)
Now we are prepared to calculate the fundamental commutator

© dw dw i(s) i (S)

Fu(u,Q), Fgo(u/, Q)] = g
.. Py 0] = [Ty v
X Zyﬁm (Q)e—iwuZY*/’m/ (Q/)eia)/u’ [Ci(s);wfvm’ C:'r’(s);a/,f’,m’] + h.c.
‘m o'm'
_i o 5(Q — Q/ Y’(‘) Yi/(“')X' .
= 20‘(” u')( ) A(s) " B(s)ils)i'(s)
i
I
which agrees with our previous result from boundary a -
symplectic form. z/;g" (k) pel () = (E18)
We can also use the mode expansion to derive the a’
antipodal matching conditions and the transverse condition
_ 2 -2
Fiy@Q)=—Fy (@0, Fi(0.Q)=F(@.Q"). ke (k) = 0. (E19)
(E15) A natural choice is
up to the first 2 orders, where QF = (7 — 0, 7 + ¢) is the 1 1
antipodal point of Q = (0, ¢) on the sphere, and + (-) eR = \/—5(0 1,1,0), e = —2(0, 1,-i,0), (E20)
denotes fields at Z* (Z7). This result has also been checked
using Green’s function for retarded and advanced solutions (. 1 210 o atisfy the condition
of the wave equation with source.
e (Q)e (ke (k) = io, (E21)

2. Polarization tensors

In this subsection, we discuss the polarization tensors in
HS theory.

Spin one and special momentum. For simplicity, we
consider the case of s = 1 and take a special momentum
k, = |k[(1,0,0, 1), which is followed by

0 0

Yw = 1 u —

We need the polarization vectors to satisfy the orthogon-
ality and completeness relations

pegee)es (k) = &+, (E17)

and thus agree with (6.29).

General momentum. For a general momentum k,, the
construction of the polarization vectors may be rather
complicated. However, we find that the properties that
they need to satisfy happen to be the ones of Y/, namely

Yﬁ Y, f}’AB = (E22)

y/un
PYRYE = Yays = pA8 (E23)

and n”Yﬁ =0, except for (E21). Therefore, one can
introduce the vielbeins

1 1
e = — , e =
2 <sin‘19> 2

such that

(L)
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5% ehel = yAB. (E25)

It follows that the polarization vectors can be expressed as

e = eleh =Y. (E26)
One can invert the relation to obtain
ex = Yies, el = egyABE“ﬂ. (E27)
With the choice (E26), we find
eYaYE = ePYLYLYYE = P = —ePege,  (E28)
o é””e};“e‘f = ¢, (E29)

which is not the last property (E21) superficially. However,
one can combine the polarization vectors to get

1 . 1
eR = 5(8’14 + ie}), e = 75 & (ey —ier),  (E30)
which satisfy
é””e;"‘e,/f zagﬂ, a,p=R,L, (E31)

as we want.
General spin. The key point to derive the HS polarization
tensors is noting that (E30) can be rewritten as

& = 2[(1+ Y0 + (1= i) sin0Y]
%(1 L)Y, + T, E%(l LY. (E32a)
e :%[(1 —)Y)+(1+i) sm9Y'/]
%(1 —l)(Yﬂ—if]ﬂ)gE%(] -V, (E32b)
where we have defined
Yit = YBeph = (0.77), (E33)
which can also be interpreted as a Hodge dual
TA _§A 1 A a1 oA
Y =Yg, = <0v§€ijijk)v ya,= 5 I (E34)

One can easily find

0
- —cosdcos ¢ —isin
' SPTIIG|  (as)
—cos@sing + icos ¢

sin @

and its complex conjugate 3—)”, which agree with the
expression in the literature, such as [87]. Now we can
construct the polarization tensors for the HS theory

(1+14) (1+1i)
):8/41”'8!4:: 28 yﬂlu.yﬂs: 28

=) o o (1—i)f-
Lo L"'L.:( J Vi Vs _ ! Sl) Vuis)-

(E36b)

A nice property is that these expressions are automatically
symmetric and traceless, since we have

;,IﬂI/(Y” + i?y)A(Yu + i?y)B

=Y, +i¥ ) Y, +iY,)P =0, (E37a)
WW(Y/J - i?M)A(Yu - i?u)B
=y(Y,—i¥Y)A(Y,-iY¥,)P =0, (E37b)

due to the identities n*Y4 = ¥4 = 'Yy = i*¥4 =0
and
YA YB =7A. VB = 4B YA YB = A8 (E38)
Now we need to check the orthogonality and complete-
ness relations, as well as (6.29). The orthogonality relation
is straightforward

(s)v(s) pxa oo _ sad
X* gu(x)gu(s) = 0", (E39)
since we have
Vﬂyj)ﬂyy == 27 }/lu/yﬂyy = }’Wj}ﬂj}y =0. (E40)
The completeness relation reads
*R R *L L
Eu(s)Ev(s) T Eus) Euls)
=27V Vi Vo, Fee] =Xy, (B4

which is a bit difficult to prove. For s = 1, we know that it
is satisfied
VY, +ece. =2y, (E42)

For s = 2, we find
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Xﬂ(2>y(2) = (yﬂlylyﬂZVZ + VYo, — }//41/427/7/17/2)

_— N = N =

= Z D_)/llj)ﬂzyl/]yl/z + C'C']‘

1 _ _ _ _ _ _
x5 [(ymyvl +cc) VN, +cc)+ VD, +cc)(V,V,, +cc.) = (VY +cc)(V, V0, + c.c.)]

(E43)

In general, we find that the right-hand side of the completeness relation is

DST[J//‘II/I .- .yﬂsvs] = Z‘SDST[()_JMJ/Dl +cc)e-- (3—/,‘:37,/& +c.c.)l,

(E44)

which contains a same number of ) and ). The notation “DST][- - -]” represents the doubly symmetric traceless part of the
expression inside the square brackets. To be doubly symmetric traceless, we must have

DST(J,, Y, +ce) - T,V +ee) Py, TV, -V, +ec.

due to the relations (E40). Then the overall coefficient is easily to be determined.

At last, we can check

Q}l(s)”’(s)e*(l 8(1/’(5) — ic

u(s)

where we need to use

YAV, = Ya(Y, —iV,)0 =14 —ieq’.

and thus,

1. 1
EG”yﬂyyZE

(E45)

@, ad =R]L, (E46)
(E47)

MBYLYRY, Y, = i. (E48)
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