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In this paper, we use a five-dimensional Einstein-dilaton-two-Maxwell holographic QCD model to
investigate the dissociation effects of J=Ψ and ϒð1SÞ states in an anisotropic medium by calculating their
spectral functions. First, we present the holographic quarkonium masses at zero temperature via physics-
informed neural networks. Then, at a finite temperature, we derive the spectral functions, representing
heavy vector mesons as peaks, and observe that with increasing anisotropy, temperature, chemical
potential, and warp factor, the peak height diminishes while its width expands, indicating an accelerated
dissociation process. Additionally, the results indicate the anisotropy induces a stronger dissociation effect
in the direction parallel to the polarization compared to the perpendicular, revealing the anisotropy’s
directional influence.

DOI: 10.1103/PhysRevD.109.086010

I. INTRODUCTION

Heavy quarkonium is the bound state of a heavy quark
and its antiquark, such as J=Ψ and ϒð1SÞ, which are
composed of charm and bottom quarks, respectively. In
heavy ion collisions, heavy flavor quarks, either newly
produced or excited from the vacuum, play an irreplaceable
role in the evolution of the quark-gluon plasma (QGP),
interacting strongly with the QGP medium constituents or
even becoming part of the QGP itself, positioning heavy
flavor hadrons as unique probes into the properties of the
QGP and the nature of strong interaction [1–8]. Historically,
the notion of quarkonium suppression can be traced back to
the work of Ref. [9], where the bound state created in the
early stages of the heavy ion collision eventually disinte-
grates into unbound quarks when traversing the QGP
medium, leading to a decrease in the dilepton spectrum
due to the color screening. Thus, investigating heavy
quarkonium mesons, which undergo dissociation in the
QGP medium that influences their final yields and spectra,
is crucial for comprehending the formation and evolution
of QGP.
The experiments have revealed that the QGP exhibits the

properties of a strongly coupled fluid, challenging the
applicability of perturbative methods and necessitating

nonperturbative approaches [10,11]. One of the theoretical
frameworks is gauge/gravity duality, also known as holog-
raphy, which relates a strongly coupled gauge theory to a
weakly coupled gravity theory in a higher dimensional
space [12–14]. Utilizing this approach, one can employ
classical gravity solutions to compute nonperturbative
quantities in gauge theory, which are traditionally chal-
lenging using perturbative methods. Various holographic
models have been successfully applied to study heavy
flavor physics in QGP. In Refs. [15,16], scalar glueballs and
scalar mesons at finite temperature are examined within the
holographic QCD framework. In studies [17–19], the soft-
wall model is employed to examine the effect of a back-
ground magnetic field on vector meson melting, while the
spectrum of vector mesons in finite temperature plasma
and their dependence on temperature and momentum are
analyzed, respectively. Using a consistent AdS/QCD
approach, the masses and decay constants of charmonium
and bottomonium states are described in works [20,21].
References [22–25] present a holographic bottom up model
for the thermal behavior of heavy vector mesons inside a
plasma at finite temperature and density, while the meson
dissociation in the medium is represented by the decrease in
the height of the spectral function peaks. The quasinormal
modes for charmonium and bottomonium, which are
gravity solutions representing the quasiparticle states in
the thermal medium, have been studied, and a consistent
description of the dissociation process is found in [26–28].
In Ref. [29], the authors investigate the impact of temper-
ature, chemical potential, and rotation on the dissociation of
J=Ψ in magnetized, rotating QGP matter, highlighting an
augmented dissociation effect and increased effective mass
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in the QGP phase. Further illuminating works are detailed
in Refs. [30–33].
However, most of the existing studies of heavy quarko-

nium have assumed that the QGP is isotropic and homo-
geneous, i.e., that it has no preferred direction, and this is
not necessarily true in realistic situations. Experimental
data evidence from heavy ion collisions suggests an early
stage local anisotropy in QGP, with the system predomi-
nantly expanding along the collision axis [34,35]. To
understand how the anisotropy of QGP modifies its
properties and observables, in this paper, we investigate
the spectral functions of heavy quarkonium mesons in an
anisotropic background. A bottom-up approach is used to
consider the five-dimensional gravity dual of a strongly
coupled anisotropic QGP with finite temperature and
chemical potential, where a spatial anisotropy in the x1
direction is specified by the parameter ν that reduces to the
isotropic case when ν ¼ 1. Our paper has the following
structure. In Sec. II, we review the anisotropic black brane
solutions obtained in [36], supported by the Einstein-
dilaton-two-Maxwell action. The detailed calculation of
the spectral functions is presented in Sec. III. The final
section presents our results and discussions.

II. ANISOTROPIC HOLOGRAPHIC MODEL

In the following, we briefly review the anisotropic
holographic model introduced in [36], which is based on
the five-dimensional Einstein-dilaton-two-Maxwell sys-
tem. The Einstein frame action of the system, denoted as
S, is formulated as

S ¼
Z

d5x
16πG5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνÞ

q �
R −

f1ðϕÞ
4

F2
ð1Þ

−
f2ðϕÞ
4

F2
ð2Þ −

1

2
∂μϕ∂

μϕ − VðϕÞ
�
: ð1Þ

The chemical potential and anisotropy are introduced by
twoMaxwell fields Fð1Þ and Fð2Þ, with field strength tensors

Fð1Þ
μν ¼ ∂μAν − ∂νAμ and Fð2Þ

μν ¼ qdy1 ∧ dy2, respectively.
The dilaton field ϕ, with potential VðϕÞ, couples to these
two Maxwell fields through the gauge kinetic functions
f1ðϕÞ and f2ðϕÞ. To describe the anisotropic background
holographically, we adopt the black brane metric ansatz in
the following form [36]:

ds2 ¼ L2bðzÞ
z2

�
−gðzÞdt2 þ dx21 þ z2−

2
νðdx22 þ dx23Þ þ
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μ ¼ AtðzÞδ0μ: ð3Þ

Here, bðzÞ ¼ ecz
2=2 represents the anti–de Sitter (AdS)

deformation factor, with c signifying the deviation from

conformality. gðzÞ is the blackening function, and L is the
characteristic length scale (set to 1 for convenience). A
nonzero time component, Atð0Þ ¼ μ, of the first Maxwell
field Fð1Þ, serves as the chemical potential in the dual
system. By solving the equation of motion derived from
the aforementioned action, the function gðzÞ can be
determined as

gðzÞ ¼ 1 −
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2
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where

GðxÞ ¼
X∞
n¼0

ð−1Þnxn
n!ð1þ nþ 1

νÞ
: ð5Þ

In this anisotropic five-dimensional solution, the
anisotropy parameter ν serves as an arbitrary dynamical
exponent. However, in accordance with the experimental
multiplicity data provided in Ref. [37], ν is confined within
the range of 1 to 4.5 [36,38].
Consequently, the temperature can be obtained as

follows:

Tðzh; μ; c; νÞ ¼
g0ðzhÞ
4π

¼ e−
3cz2

h
4

2πzh

������
1

Gð3
4
cz2hÞ

þ μ2cz
2þ2

ν
h e

czh
4

4
�
1 − e

cz2
h
4

�
2

 
1 − e

cz2
h
4
Gðcz2hÞ
Gð3

4
cz2hÞ

!������: ð6Þ

For chemical potentials below the critical value, μ < μcr,
the temperature function TðzhÞ is multivalued, while for
μ ≥ μcr, it is single valued (see Ref. [36] for the detailed
thermodynamics of this holographic model).

III. SPECTRAL FUNCTION

In this study, we investigate the spectral functions for
heavy quarkonium, which are calculated using the phe-
nomenological model [23] that represents heavy quarko-
nium by a vector field Vm ¼ ðVμ; VzÞ (μ ¼ 0, 1, 2, 3) dual
to the electric current operator Jμ ¼ Ψ̄γμΨ. The calculation
is carried out using the membrane paradigm [39], with the
bulk action for the vector field described by

S ¼ −
Z

d5x
ffiffiffiffiffiffi
−g

p e−ϕðzÞ

4g25
FmnFmn; ð7Þ
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where Fmn ¼ ∂mVn − ∂nVm. This phenomenological
model includes parameters κ, Γ, M, and α for quark mass,
string tension, nonhadronic decay, and constituent quark
mass effect to describe the heavy quarkonium states within
the dilaton field [40],

ϕðzÞ ¼ ðκzÞ2−α þMzþ tanh

�
1

Mz
−

κffiffiffi
Γ

p
	
: ð8Þ

The values of these parameters for charmonium and
bottomonium are, respectively,

κc ¼ 1.8 GeV;
ffiffiffiffiffi
Γc

p
¼ 0.53 GeV;

Mc ¼ 1.7 GeV; αc ¼ 0.54;

κb ¼ 9.9 GeV;
ffiffiffiffiffi
Γb

p
¼ 1.92 GeV;

Mb ¼ 2.74 GeV; αb ¼ 0.863: ð9Þ

The equation of motion obtained from the bulk action is

∂
m

 ffiffiffiffiffiffi−gp
eϕðzÞ

Fmn

!
¼ 0; ð10Þ

and the conjugate momentum of the gauge field with
respect to the z-foliation is given by

jμ ¼ −
ffiffiffiffiffiffi−gp

Fzμ

eϕðzÞ
: ð11Þ

Assuming a plane wave resolution for the vector field, we
propose its propagation in the direction of anisotropy.
Because the anisotropy is in the x1 axis direction, these
solutions should not be influenced by the perpendicular
coordinates x2 and x3. This allows us to separate the
equations of motion (10) into two distinct channels: one
longitudinal channel depicting fluctuations along ðt; x1Þ
and a transverse one showing fluctuations along the spatial
directions ðx2; x3Þ, which will yield different flow equa-
tions for the vector field components. The relevant longi-
tudinal components t, x1, and z of Eq. (10) in this case read

−∂zjt −
ffiffiffiffiffiffiffiffiffi
bðzÞp

e−ϕðzÞz
−2þν
ν

gðzÞ ∂x1Fx1t ¼ 0; ð12Þ

−∂zjx1 þ
ffiffiffiffiffiffiffiffiffi
bðzÞp

e−ϕðzÞz
−2þν
ν

gðzÞ ∂tFx1t ¼ 0; ð13Þ

∂x1j
x1 þ ∂tjt ¼ 0: ð14Þ

Applying the Bianchi identity enables us to achieve

∂zFx1t −
eϕðzÞz−1þ2

νffiffiffiffiffiffiffiffiffi
bðzÞp

gðzÞ ∂tj
x1 −

eϕðzÞz−1þ2
νffiffiffiffiffiffiffiffiffi

bðzÞp ∂x1j
t ¼ 0: ð15Þ

We designate the longitudinal conductivity in terms of

σLðω; p⃗; zÞ ¼
jx1ðω; p⃗; zÞ
Fx1tðω; p⃗; zÞ

; ð16Þ

∂zσLðω; p⃗; zÞ ¼
∂zjx1

Fx1t
−

jx1

F2
x1t

∂zFx1t: ð17Þ

Employing Kubo formula, we establish a connection
between the five-dimensional conductivity at z ¼ 0 and
the retarded Green’s function,

σLðωÞ ¼
−GL

RðωÞ
iω

: ð18Þ

For a plane wave solution with momentumP ¼ ðω; 0; 0; 0Þ,
we use Eq. (13), Eq. (14), and Eq. (15) to derive the flow
equation for the longitudinal channel,

∂zσL ¼ iω

gðzÞ ffiffiffiffiffiffiffiffiffi
bðzÞp

e−ϕðzÞz1−2
ν

ðσ2L − bðzÞe−2ϕðzÞz2−4
νÞ: ð19Þ

Using a similar process, we can obtain the flow equation for
the transverse channel,

∂zσT ¼ izω

gðzÞ ffiffiffiffiffiffiffiffiffi
bðzÞp

e−ϕðzÞ

�
σ2T −

bðzÞe−2ϕðzÞ
z2

	
: ð20Þ

The regularity condition at the horizon is employed to solve
the equations with ∂zσLðTÞ ¼ 0, and the spectral function
can then be obtained from the imaginary part of the retarded
Green’s functions,

ρðωÞ≡ −ImGRðωÞ ¼ ωReσðω; 0Þ: ð21Þ

Notably, under the condition that the anisotropy parameter
νwas set to 1, the metric became isotropic, resulting in both
flow equations (19) and (20) having the same form.

IV. RESULTS AND DISCUSSION

Using the dilaton model with (8), we start by inves-
tigating the holographic quarkonium masses of the char-
monium and bottomonium at zero temperature, following
the phenomenological approach presented in Ref. [23].
Adopting the gauge Vz ¼ 0, the equation for the transverse
components has normalizable solutions in momentum
space, given by
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∂zðe−B∂zVnÞ þm2
ne−BVn ¼ 0; ð22Þ

where B ¼ ϕðzÞ − 1
2
logðbðzÞz2 Þ andmn are the meson masses.

We can rewrite Eq. (22) as a Schrödinger-like equation,

−ψ 00
n þUðzÞψn ¼ m2

nψn;

UðzÞ ¼ 1

4
ðB0Þ2 − 1

2
B00; ð23Þ

with the Bogoliubov transformation Vn ¼ eB=2ψn, and
solving this equation results in the quarkonium masses [41].
Physics-informed neural networks (PINNs) is an inno-

vative approach that embeds physical laws directly into
neural network training by treating these laws as regulari-
zation terms or constraints within the loss function. It
presents a powerful methodology across diverse domains,
including fluid dynamics and quantum mechanics, offering
some advantages over conventional numerical methods,
such as mitigating the curse of dimensionality, minimizing
numerical error accumulation, and processing differential
equations without specific requirements, provided their
solutions are finite and regular [42–45]. Jin et al. have
recently developed a PINNs algorithm that simultaneously

learns eigenvalues and eigenfunctions through a scanning
mechanism, effectively solving the quantum eigenvalue
problem for finite wells, harmonic oscillators, and hydro-
gen atom systems by progressively identifying multiple
eigenvalues in a single training session [46,47].
In this study, we present an extension of the JMP

algorithm to tackle more complex potential function
scenarios, generalizing its application to solve the mass
of quarkonium. Further details on the JMP algorithm used
in our calculations are provided in the Appendix. Figures 1
and 2 depict the evolution of the loss function and show the
successful recognition of the four lowest eigenvalues of
charmonium and bottomonium by our neural network.
The neural network identifies eigenvalues by searching

for plateaus, which correspond to distinct depressions in
the loss function, with a jump caused by changing c to
encourage finding the next eigenvalue. The summarized
results of the neural network for charmonium and botto-
monium are shown in Tables I and II, respectively, with the
experimental data read from PDG [48] for comparison.
The spectral functions for heavy vector mesons at finite

temperature and with anisotropy are calculated numerically
by solving the Eqs. (19) and (20) with the boundary

FIG. 1. The network’s training process for charmonium. Left: The total loss function versus training epochs. Right: The predicted
eigenvalues of the network are represented by dotted horizontal lines over training epochs.

FIG. 2. The network’s training process for bottomonium. Left: The total loss function versus training epochs. Right: The predicted
eigenvalues of the network are represented by dotted horizontal lines over training epochs.
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conditions described in previous sections, using the model
parameters given in (9). In Figs. 3 and 4, we show the
numerical results of spectral functions for the J=Ψ state and
ϒð1SÞ state across various anisotropy parameters, as
derived from the model under consideration, showcasing
the anisotropy both parallel and perpendicular to the
polarization. The peak features of the curve in the spectra
represent quasiparticle states, the peak position denotes the
quasiparticle mass, and its width is inversely proportional
to the decay rate, indicating the stability of these emergent
quasiparticles.
Our results show that increasing the anisotropy param-

eter ν lowers the height and broadens the width of the
spectral function peak for both charmonium and bottomo-
nium in parallel and perpendicular scenarios, while also
shifting the peak position. An increased peak width and

decreased peak height denote an augmented dissociation
effect, suggesting that the presence of anisotropy accel-
erates the dissociation of heavy quarkonium states, which is
in agreement with the calculations of [49]. A physical
interpretation of the observation that a larger anisotropy
favors quarkonium dissociation is that, at fixed temper-
ature, the screening length between a quark-antiquark pair
diminishes with an increase in the anisotropy for any
orientation of the dipole, thereby promoting quarkonium
dissociation [50,51]. Another intuitive physical picture is
that a larger anisotropy can induce larger thermodynamic
forces and thus favor quarkonium dissociation.
Comparing the spectral functions of J=Ψ and ϒð1SÞ

states with the anisotropy parallel and perpendicular to the
polarization at μ ¼ 0 GeV, T ¼ 0.4 GeV, c ¼ −0.3 GeV2,
and ν ¼ 1.1 in Fig. 5, we find that the anisotropy has a
stronger dissociation effect when it is parallel to the
polarization than when it is perpendicular, since the
anisotropy parameter has a greater influence on the aniso-
tropic direction.
In Figs. 6 and 7, as temperature T rises, the spectral

function exhibits a significant reduction in peak height
and broadening, whether the anisotropy is parallel or
perpendicular to the polarization, indicating an enlarged
dissociation effect with temperature for both J=Ψ and
ϒð1SÞ.
Similar to the temperature effect, as illustrated in Figs. 8

and 9, an increase in the chemical potential μ leads to a
decrease in the peak height and a wider width of the spectral
function, regardless of the polarization direction, indicating
its role in enhancing the dissociation process. This is
consistent with previous studies that have shown that finite
temperature and density effects lead to the melting of heavy
quarkonium states [22–25].
Further, to elucidate the influence of the warp factor

coefficient, we set parameters at T ¼ 0.3 GeV, μ ¼
0.1 GeV, and ν ¼ 1.1, with the spectral function variations
for distinct c values presented in Figs. 10 and 11. Elevating

TABLE I. Holographic masses of the charmonium S-wave
resonances, with experimental values from PDG [48] serving
as a benchmark.

State
Holographic model

(MeV)
Charmonium experimental

(MeV)

J=Ψ 2526.49 3096.916� 0.011
Ψð2SÞ 3730.02 3686.109� 0.012
Ψð3SÞ 4281.93 4039� 1
Ψð4SÞ 4754.54 4421� 4

TABLE II. Holographic masses of the bottomonium S-wave
resonances, with experimental values from PDG [48] serving as a
benchmark.

State
Holographic model

(MeV)
Bottomonium experimental

(MeV)

ϒð1SÞ 9611.38 9460.3� 0.26
ϒð2SÞ 10071.76 10023.26� 0.32
ϒð3SÞ 10469.23 10355.2� 0.5
ϒð4SÞ 10800.61 10579.4� 1.2

FIG. 3. Spectral functions for J=Ψ at T ¼ 0.3 GeV, μ ¼ 0.1 GeV, and c ¼ −0.3 GeV2 for different anisotropic parameter. Left: The
anisotropy is perpendicular to the polarization. Right: The anisotropy is parallel to the polarization.
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the warp factor coefficient diminishes the peak height and
expands the spectral function width in both parallel and
perpendicular cases, as depicted across various spectral
functions in the figures. This suggests that larger warp
factor coefficients enhance the dissociation effect.
In this work, we presented the calculation of the spectral

function for heavy quarkonium within anisotropic black

brane solutions for a bottom-up QCD model. Using numeri-
cal calculations, we investigated how the spectral functions
of charmonium and bottomonium, revealing the bell shape
peaks interpreted as vector mesons in the dual theory,
depend on various parameters such as anisotropy, temper-
ature, chemical potential, and warp factor coefficient. Our
results reveal that an increased anisotropy accelerates the

FIG. 4. Spectral functions for ϒð1SÞ at T ¼ 0.3 GeV, μ ¼ 0.1 GeV, and c ¼ −0.3 GeV2 for different anisotropic parameter. Left:
The anisotropy is perpendicular to the polarization. Right: The anisotropy is parallel to the polarization.

FIG. 5. Spectral functions for J=Ψ and ϒð1SÞ with the anisotropy parallel and perpendicular to the polarization at μ ¼ 0 GeV,
T ¼ 0.4 GeV, c ¼ −0.3 GeV2, and ν ¼ 1.1. Left: Spectral functions for J=Ψ. Right: Spectral functions for ϒð1SÞ.

FIG. 6. Spectral functions for J=Ψ at ν ¼ 1.1, μ ¼ 0.1 GeV, and c ¼ −0.3 GeV2 for different temperature. Left: The anisotropy is
perpendicular to the polarization. Right: The anisotropy is parallel to the polarization.
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dissociation of bound states, with a more pronounced effect
when the anisotropy is parallel rather than perpendicular to
the polarization. The intuitive physical picture is that a larger
anisotropy can induce stronger thermodynamic forces like
shear force, for instance, and thus, enhance the quarkonium
dissociation.

We also find that as the temperature, chemical potential,
and warp factor coefficient rise, the quasiparticle state
becomes more unstable, as evidenced by the diminishing
peak height and broadening spectral function. Further
studies should encompass the influence of rotation on the
dissociation effect, as a substantial angular momentum

FIG. 7. Spectral functions for ϒð1SÞ at ν ¼ 1.1, μ ¼ 0.1 GeV, and c ¼ −0.3 GeV2 for different temperature. Left: The anisotropy is
perpendicular to the polarization. Right: The anisotropy is parallel to the polarization.

FIG. 8. Spectral functions for J=Ψ at T ¼ 0.3 GeV, ν ¼ 1.1, and c ¼ −0.3 GeV2 for different chemical potentials. Left: The
anisotropy is perpendicular to the polarization. Right: The anisotropy is parallel to the polarization.

FIG. 9. Spectral functions for ϒð1SÞ at T ¼ 0.3 GeV, ν ¼ 1.1, and c ¼ −0.3 GeV2 for different chemical potential. Left: The
anisotropy is perpendicular to the polarization. Right: The anisotropy is parallel to the polarization.
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generated by the noncentral heavy ion collisions, and we
will leave this for further research.
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APPENDIX

Figure 12 illustrates the framework of the JMP algo-
rithm, which solves the eigenvalue problem by learning
from its own predictions [46,47].
The output of the neural network is denoted by Nðz;m2

nÞ,
and the predicted eigenfunction is given by

ψnðzÞ ¼ ð1 − e−ðz−zLÞÞð1 − e−ðz−zRÞÞNðz;m2
nÞ; ðA1Þ

where the left and right boundaries are zL and zR. To
address Eq. (23), the network is optimized through the
minimization of a loss function L,

FIG. 10. Spectral functions for J=Ψ at T ¼ 0.3 GeV, μ ¼ 0.1 GeV, and ν ¼ 1.1 for different warp factor coefficient. Left: The
anisotropy is perpendicular to the polarization. Right: The anisotropy is parallel to the polarization.

FIG. 11. Spectral functions for ϒð1SÞ at T ¼ 0.3 GeV, μ ¼ 0.1 GeV, and ν ¼ 1.1 for different warp factor coefficient. Left: The
anisotropy is perpendicular to the polarization. Right: The anisotropy is parallel to the polarization.

FIG. 12. The structure of the neural network.
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L ¼ hð−ψ 00
nðzÞ þUðzÞψnðzÞ −m2

nψnðzÞÞ2iz þ Lreg;

Lreg ¼
1

ψnðzÞ2
þ 1

ðm2
nÞ2

þ e−m
2
nþc: ðA2Þ

In our investigation, we used PyTorch to implement a fully
connected neural network with two hidden layers, each
comprising 100 neurons, optimized using the Adam algo-
rithm with a learning rate of 8 × 10−3 and sigmoid
activation function, with the training set constructed by
2000 random points within the ½zL; zR� interval.
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