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Recently, an infinite family of one-parameter generalizations of the Veneziano amplitude were
bootstrapped using as input assumptions an integer mass spectrum, crossing symmetry, high-energy
boundedness, and exchange of finite spins. This new result was dubbed the hypergeometric Veneziano
amplitude, with a real-valued deformation parameter r. For concreteness we work in a setup where the
lowest-mass state is a tachyon of mass m2

0 ¼ −1 and using the partial-wave decomposition and the
positivity of said decomposition’s coefficients we are able to bound the deformation parameter to r ≥ 0

and, also, to obtain an upper bound on the number of spacetime dimensions D ≤ 26, which is the critical
dimension of bosonic string theory.

DOI: 10.1103/PhysRevD.109.086008

I. PROLOGUE

Bootstrapping scattering amplitudes of massless and
massive particles, see [1] for a recent summarized expo-
sition to advances and developments of the S-matrix
bootstrap, is an old theme in theoretical high-energy
physics. The idea behind it is to provide an alternative
approach to understanding and examining physics theories.
Concretely, we can formulate specific mathematical ques-
tions about the S-matrix and attempt to answer this kind of
questions, rather than resorting to Lagrangian descriptions
and sophisticated geometrical approaches. This, in turn,
implies that we can understand the theories of interest as
being fixed by constraints and conditions that are imposed
on scattering amplitudes.
In order to employ any bootstrap algorithm, we have to

choose a set of assumptions and conditions and then
impose them on a landscape of objects. For the purposes
of bootstrapping scattering amplitudes such a set can
consist of crossing symmetry, polynomial residues, and
high-energy boundedness.
An explicit four-point amplitude that satisfies the above

and is a meromorphic function, except for its simple poles,
was constructed by Veneziano [2] and is given by:

Mðs; tÞ ¼ Γð−ð1þ α0sÞÞΓð−ð1þ α0tÞÞ
Γð−ð1þ α0sÞ − ð1þ α0tÞÞ : ð1:1Þ

Today we know, of course, that it describes the 2 → 2

scattering of open-string tachyons of mass α0m2
0 ¼ −1.1

It is worthwhile stressing that a scattering amplitude
violating the requirement of tame ultraviolet behavior is an
indication for the breakdown of unitarity and causality of
the theory [3,4]. Very robust expressions have been derived
describing bounds for theories that are gapped; the Regge
and the Froissart bounds.
The Veneziano amplitude has been studied quite exten-

sively, with the recent works of [5,6] focusing on the
coefficients of the partial-wave decomposition of the
amplitude and discussing its unitarity from tree-level
considerations, as well as the critical dimension of string
theory. Questions regarding its uniqueness were posed
since the early days of its discovery.
Along this particular line of investigation, an answer was

given in [7–9] that is nowadays known as the Coon
amplitude. This is another amplitude that satisfies the
criteria of polynomial boundedness, finite-spin exchange,
and meromorphicity. It comes with logarithmic Regge
trajectories, and for many years it was disregarded by
virtually everyone. Recently, however, it has received
revived activity [10–16]. The Coon amplitude is a defor-
mation of the Veneziano in terms of one-parameter and it
exhibits a mass spectrum with discrete levels converging to
an infinite density at an accumulation point that is followed
by a branch cut.
While the works of [10,17] raise concerns regarding the

status of unitarity of the Coon amplitude, it was realized
in [18] that string theory admits amplitudes behaving like
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1We work with conventions in which α0 ¼ 1 for open string
theory.
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that since they arise from the of open-string scattering with
open strings having their endpoints on a D-brane in AdS.
With the Coon amplitude being able to provide us with

an explicit and consistent generalization of the Veneziano
amplitude, people have been revisiting the question of
constructing more general four-point amplitudes that
are consistent with the principles of the S-matrix bootstrap
[19–22]. This can, also, be phrased as a question to the
uniqueness of string theory. Phrased in simple terms, since
string theory amplitudes satisfy particular constraints, are
they the only objects doing so?
In this work we focus our attention on an infinite

generalization of the Veneziano amplitude, recently derived
in [22]. Similarly to the Coon amplitude, it is, also, written
as a one-parameter deformation and has been dubbed the
hypergeometric Veneziano amplitude; this name will
become perfectly clear in the next section. Using the
partial-wave decomposition of the amplitude, we wish to
impose the positivity of the coefficients in order derive
bounds on the allowed values for the parameter r and the
spacetime dimensions D.2

The approach we take here, in order to derive bounds on
the allowed values of the deformation parameter r and the
spacetime dimension D, is to examine the positivity of
the coefficients of the partial-wave decomposition of
the amplitude. To do so, we compute the residues of the
amplitude at the location of its poles. Then, we proceed to
decompose the residues in a basis spanned by Gegenbauer
polynomials, which is valid for any number of spacetime
dimensions, D ≥ 3.3 As we have already mentioned, the
task at hand is to find the numbers that multiply these
polynomials, since their non-negativity is tied to the
unitarity of the underlying theory. We proceed by utilizing
the orthogonality relations that these polynomials obey,
and we obtain a relation for the partial-wave coefficients as
an integral of those special polynomials and some non-
trivial function. Using the generating functions for the
special polynomials we can define a “pseudogenerating
function.” After some algebraic manipulations, which
consist of writing our expressions as power series expan-
sions we, effectively, have two polynomial expansions for
the original equation of the partial-wave coefficients. From

that we can read off the terms of appropriate scaling in
order to derive the coefficients.
In addition to the above, we also resort to some

experimental guess-work, in order to derive additional
analytic expressions for the partial-wave coefficients of
subleading Regge trajectories. This means that, starting
from the original expression for the partial-wave coeffi-
cients given as an integral of the special polynomials times
some nontrivial function, we compute the integral for some
values, we make a guess for the general form of the answer
and we proceed to verify our claim by checking explicitly
some nontrivial values.4

The main results of this work is the derivation of
unitarity bounds for the deformation parameter r and
the number of allowed spacetime dimensions, D. For
the former we show r ≥ 0, while for the latter we derive
D ≤ 26. These results agree with the numerical evaluation
of the partial-wave coefficients presented in [22]. In
addition to these conclusions, we derive an analytic
expression for the partial-wave coefficients in general D
dimensions. Our representation of the coefficients is dis-
tinct, but equivalent, from the form presented in [22].
Furthermore, we provide analytic expressions for the
partial-wave coefficients on several Regge trajectories,
and the structure of those coefficients on any Regge
trajectory. These results have not appeared before.
The structure of this work is the following: in Sec. II we

set-up our notation and conventions. We move on to Sec. III,
where we specialize the discussion in the D ¼ 4 case and
we derive the partial-wave coefficients for the leading
Regge trajectory, an;nþ1. We, also, provide expressions
for the partial-wave coefficients of the subleading Regge
trajectories, an;n−γ, with γ ¼ f0; 1;…; 10g. Finally, we
rewrite the original integral representation of the partial-
wave coefficients as multiple sums. In Sec. IV we analyse
the partial-wave coefficients for general dimensions. We
proceed to analyse the positivity constraints of those
coefficients in Sec. V and derive bounds on the parameter
r and the spacetime dimensions D. We conclude in Sec. VI.

II. GENERALITIES AND SETUP

The new infinite family of hypergeometric amplitudes is
given by [22]

Aðs; tÞ ¼ Γð−s − 1ÞΓð−t − 1Þ
Γð−s − t − 2Þ 3F2ð−s − 1;−t − 1; r;

− s − t − 2; 1þ r; 1Þ; ð2:1Þ

2The authors of [22] have discussed constraints and bounds
resulting from unitarity using a numerical evaluation of the
partial-wave coefficients. More specifically, starting from the
integral representation of the coefficients, they were able to re-
express them as a double-sum and upon an explicit numerical
evaluation they were able to constrain the allowed values for the
deformation parameter, r, and the number of allowed spacetime
dimensions, D. Our analysis is a more systematic examination of
the partial-wave coefficients.

3In the special cases of D ¼ 4 and D ¼ 5 the Gegenbauer
polynomials reduce to the Legendre polynomials and the Cheby-
shev polynomials of the second kind.

4In this context, by nontrivial we mean some values that were
not used in order to claim the answer of the partial-wave
coefficients.
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where in the above 3F2ða; b; zÞ is the generalized hyper-
geometric function.5,6

It is obvious that the amplitude, Aðs; tÞ, has poles in s at
s ¼ n ¼ −1; 0; 1… and of course the same is true for t.
We start by calculating the residues at the s poles. We

have

Res
s¼n

Aðs; tÞ ¼ −
r!

ðnþ rþ 1Þ! ðtþ 2þ rÞnþ1: ð2:2Þ

From the Gegenbauer expansion for arbitrary dimensionsD
we know

Res
s¼n

Aðs; tÞ ¼ −
Xnþ1

l¼0

an;lC
ðαÞ
l

�
1þ 2t

nþ 4

�
; ð2:3Þ

where in the above the parameter α is related to the
spacetime dimensions D via α ¼ D−3

2
. Now we can just

equate Eqs. (2.2) and (2.3) to get

r!
ðnþ rþ 1Þ! ðtþ 2þ rÞnþ1 ¼

Xnþ1

l¼0

an;lC
ðαÞ
l

�
1þ 2t

nþ 4

�
:

ð2:4Þ

We can use the fact that the Gegenbauer polynomials
satisfy the following orthogonality condition

Z þ1

−1
dxCðαÞ

l ðxÞCðαÞ
l0 ðxÞð1 − x2Þα−1

2 ¼ 2Kðl; αÞδll0 ; ð2:5Þ

where in the above we have defined

Kðl; αÞ ¼ πΓðlþ 2αÞ
22αl!ðlþ αÞΓ2ðαÞ ; ð2:6Þ

in order to derive the following expression for the partial-
wave coefficients of Eq. (2.4)

an;l ¼ r!
ðnþ 1þ rÞ!

1

Kðl; αÞ
�

4

ðnþ 4Þ2
�
α−1

2

Z
nþ4

0

dtCðαÞ
l

×

�
1 −

2t
nþ 4

�
ðtðnþ 4 − tÞÞα−1

2ð−tþ 2þ rÞnþ1:

ð2:7Þ

By examining Eq. (2.7) we make the following obser-
vations:

(i) Unlike the case of the Veneziano amplitude where
an;l ¼ 0 for nþ l equal to an even number, here we
do not have that. This is due to the presence of the
deformation parameter r. In the special case r ¼ 0
the coefficients are equal to 0 as they should.

(ii) We have, however, that an;l ¼ 0 for l ≥ nþ 2, as is
the case for the Veneziano amplitude as well. The
vanishing of the partial-wave coefficients an;l for the
values l ≥ nþ 2 indicates that the states that are
present are of spins up to l ¼ nþ 1 for a fixed
mass m2

n.
We conclude this section here and discuss more the

above two points in Appendix A.

III. THE PARTIAL WAVE COEFFICIENTS
IN D= 4 DIMENSIONS

Here we specialize the discussion in the D ¼ 4, or
equivalently α ¼ 1

2
, case. Equation (2.7) simplifies to the

following expression

an;l ¼ r!
ðnþ 1þ rÞ!

1þ 2l
nþ 4

Z
nþ4

0

dtPl

×

�
1 −

2t
nþ 4

�
ð−tþ 2þ rÞnþ1; ð3:1Þ

where in the above PlðxÞ denotes the Legenedre poly-
nomials.
We can proceed by utilizing the generating function of

the Legendre polynomials

X∞
l¼0

PlðxÞt−l−1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2xtþ t2
p : ð3:2Þ

and the representation of the Pochhammer symbol in terms

of the Stirling number of the first kind, sðbÞa ,7

ðxÞn ¼
Xn
k¼0

ð−1Þn−ksðkÞn xk; ð3:3Þ

in order to obtain

5Note that relative to [22] we have a shift fs; tg →
fsþ 1; tþ 1g. This shift precisely amounts to considering the
scattering of massive states with m2

0 ¼ −1, rather than massive
particles.

6Let us remind the reader of the definition of the
generalized hypergeometric function. It is given as a
formal power series; pFqðfα1; α2;…; αpg; fβ1; β2;…; βqg; zÞ ¼P∞

k¼0

ðα1Þkðα2Þk…ðαpÞk
ðβ1Þkðβ2Þk…ðβqÞk

1
k! z

k.
7In some places in the literature it is written as sða; bÞ but we

opt for the one that is closer to the Mathematica implementation.
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X∞
j¼0

1

2jþ 1

an;j
hjþ1

¼ 1

ðnþ 4Þðnþ 1Þ!
Xnþ1

k¼0

ð−1Þnþ1−ksðkÞnþ1

×
Z

nþ4

0

dt
ð−tþ 2þ rÞkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh − 1Þ2 þ 4ht

nþ4

q
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

GðrÞ
n;kðhÞ

: ð3:4Þ

In the above, Eq. (3.4), we have defined a “pseudo

generating function” GðrÞ
n;kðhÞ which we can evaluate explic-

itly and is given by:

GðrÞ
n;kðhÞ ¼

1

22kþ1

ðnþ 4Þkþ1

hkþ1

�
ðh − 1Þ2 þ 4h

nþ 4
ð2þ rÞ

�
k

× ðEþ − E−Þ; ð3:5Þ

with the shorthand

E� ¼ ðh� 1Þ2F1

�
1

2
;−k;

3

2
; fð�Þ

�
;

fð�Þ ¼ ðh� 1Þ2
ðh − 1Þ2 þ 4h

nþ4
ð2þ rÞ : ð3:6Þ

Using the formal power-series definition for the hyper-
geometric function 2F1ða; b; c; zÞ

2F1ða; b; c; xÞ ¼
X∞
y¼0

1

y!

ðaÞyðbÞy
ðcÞy

xy; ð3:7Þ

we can rewrite Eq. (3.5) as8

GðrÞ
n;kðhÞ ¼

1

22kþ1

ðnþ 4Þkþ1

hkþ1

Xk
p¼0

ð−kÞp
ð2pþ 1Þp!

×

�
ðh − 1Þ2 þ 4h

nþ 4
ð2þ rÞ

�
k−p X2pþ1

m¼0

×

�
2pþ 1

m

�
hmð1þ ð−1ÞmÞ: ð3:8Þ

A. The leading Regge trajectory

In Eq. (3.8) the function GðrÞ
n;kðhÞ has in total kþ 1 terms

that scale according to 1
h ;

1
h2 ;…; 1

hkþ1. It is a rather straight-
forward exercise to extract the 1

hkþ1 coefficient, which is
given by

DðrÞ
n;k ¼

ðnþ 4Þkþ1

22kþ1

ffiffiffi
π

p k!�
kþ 1

2

�
!

. ð3:9Þ

Let us recall at this point, that the point of the exercise is to
extract the partial-wave coefficient for the leading Regge
trajectory, an;nþ1. This is the term that scales like 1

hnþ2 in
Eq. (3.4). We have

1

2nþ 3
an;nþ1 ¼

1

nþ 4

r!
ðnþ rþ 1Þ! s

ðnþ1Þ
nþ1 DðrÞ

n;nþ1; ð3:10Þ

which yields

an;nþ1 ¼
1

4nþ1

ffiffiffi
π

p ðnþ 4Þnþ1
ðnþ 1Þ!
ðnþ 1

2
Þ!

r!
ðnþ rþ 1Þ! ; ð3:11Þ

and Eq. (3.11) holds for any integer n ≥ −1. Note, also, that
for r ¼ 0 since the amplitude reduces to the Veneziano
amplitude, the partial-wave coefficient of the leading Regge
trajectory, given by Eq. (3.11), should reduce to the result
derived for that case. We have checked against the result
derived in [5] and this is indeed the case.

B. More on the Regge trajectories

In this section we wish to provide some, hopefully,
useful expressions for the partial-wave coefficients of the
Regge trajectories. We start the discussion by considering
the case an;n. We work in an experimental manner. That is,
we compute the coefficients of interest using Eq. (3.1) for
some low-lying values of n and manage to spot the pattern.
Subsequently, we perform numerous nontrivial tests of our
expression. By nontrivial we mean against values for the
quantum number n that lie outside the data range used to
obtain the original expression. We find the following

an;n ¼ an;nþ1

2nþ 1

nþ 4
2r: ð3:12Þ

Let us make the comment that in the r ¼ 0 case the
coefficients given by Eq. (3.12) should coincide with those
of the undeformed Veneziano amplitude. It is useful at this
point to remind ourselves of the fact that for the unde-
formed Veneziano amplitude the partial-wave coefficients,
an;l, are always equal to zero when nþ l is an even
number. This agreement is manifest in Eq. (3.12).
Working in a similar vein for a couple more Regge

trajectories, we observe that there is a striking pattern. All
the coefficients can be written as

an;n−γ ¼ an;nþ1

2ðn − γÞ þ 1

ðnþ 4Þγþ1

1

2
ðð−1Þγðr − 1Þ

þ rþ 1ÞPγðn; rÞ ð3:13Þ
8Note that the p-sum is terminated, however, this is natural

since ð−aÞb ¼ 0 holds ∀ b > a.
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where in the above Pγðn; rÞ is a polynomial in n and r. The
r-degree of the polynomial is 1

2
ð−1Þγðð−1Þγð2γ þ 1Þ − 1Þ

and only the even powers in r appear. The degree in n is
1
4
ð−1Þγðð−1Þγð6γ þ 1Þ − 1Þ. Unfortunately, we do not

have a closed-form expression for all Regge trajectories,
however, we have closed-form expressions for γ ¼
f0; 1;…; 10g. We observed the general pattern using the
values γ ¼ f0; 1; 2; 3; 4g and the remaining values of γ
served as checks of the pattern we found. Since the
polynomials become quite unwieldy, below we provide
the expressions for those that we will need in order to
constrain the parameter r and more expressions can be
found in Appendix B. The form of the first 2 the 3
polynomials presented in Eq. (3.14) were obtained for
values n ≤ 5 and checked up to n ≤ 11. The third poly-
nomial was obtained from values n ≤ 6 and checked
against data up to n ≤ 11.

P0ðn; rÞ ¼ 2;

P1ðn; rÞ ¼ ð4nþ 2Þr2 þ n2

6
þ 19n

6
þ 23

3
;

P2ðn; rÞ ¼
�
16n2

3
−
4

3

�
r2 þ 2n3

3
þ 43n2

3
þ 121n

3
þ 50

3
:

ð3:14Þ

Before closing the section and for concreteness and
clarity we mention that the regime of validity in the
formulas presented above in Eq. (3.14) for n is such that
the spin is never negative. More concretely for γ ¼ 0 we
have n ≥ 0, for γ ¼ 1 we have n ≥ 1, and for γ ¼ 2 we
have n ≥ 2. This logic holds for all the partial-wave
coefficients.

C. The general coefficients

It is possible, with the relations that we have derived so far, to re-write the general partial-wave coefficients given by
Eq. (3.1). Algorithmically we will work in the same way as above for the leading Regge trajectory, an;nþ1. The task at hand,
now, is to compute the general term that scales like h−l−1 from both sides of the h-expansion. We re-state below what we
have obtained, for the reader’s convenience. The relation that we need to use in order to get the an;l is given by:

X∞
j¼0

1

2jþ 1

1

hjþ1
an;j ¼

r!
ðnþ rþ 1Þ!

Xnþ1

k¼0

ð−1Þnþ1−ksðkÞnþ1

1

22kþ1
ðnþ 4Þk 1

hkþ1

×
Xk
p¼0

ð−kÞp
p!ð2pþ 1Þ

�
ðh − 1Þ2 þ 4h

nþ 4
ðrþ 2Þ

�
k−p X2pþ1

m¼0

�
2pþ 1

m

�
hmð1þ ð−1ÞmÞ: ð3:15Þ

We will use the binomial expansion

ðaþ bÞc ¼
Xc
d¼0

�
c

d

�
ac−dbd; ð3:16Þ

in order to rewrite�
ðh − 1Þ2 þ 4h

nþ 4
ð2þ rÞ

�
k−p

¼
Xk−p
r¼0

�
k − p

r

��
4

nþ 4
ð2þ rÞ

�
k−p−r

hk−p−rðh − 1Þ2r; ð3:17Þ

and subsequently

ðh − 1Þ2r ¼
X2r
z¼0

�
2r

z

�
ð−1Þ2r−zhz; ð3:18Þ

thus arriving at

X∞
j¼0

1

2jþ 1

1

hjþ1
an;j ¼

r!
ðnþ rþ 1Þ!

Xnþ1

k¼0

ð−1Þnþ1−ksðkÞnþ1

1

22kþ1
ðnþ 4Þk 1

hkþ1

×
Xk
p¼0

X2pþ1

m¼0

Xk−p
r¼0

X2r
z¼0

�
2pþ 1

m

��
k − p

r

��
2r

z

��
4

nþ 4
ðrþ 2Þ

�
k−p−r

×
ð−kÞp

p!ð2pþ 1Þ ð−1Þ
zhzþmþk−p−rð1þ ð−1ÞmÞ: ð3:19Þ
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From the above we can read-off the terms proportional to h−l−1 from both sides and the result yields9:

an;l ¼ ðlþ 1Þr!
ðnþ rþ 1Þ!

Xnþ1

k¼0

ð−1Þnþ1−ksðkÞnþ1

1

22kþ1
ðnþ 4Þk

Xk
p¼0

X2pþ1

m¼0

Xk−p
r¼0

�
2pþ 1

m

��
k − p

r

��
2r

pþ r − l −m

� ð−kÞp
p!ð2pþ 1Þ

×

�
4

nþ 4
ðrþ 2Þ

�
k−p−r

ð−1Þpþr−l−mð1þ ð−1ÞmÞ ð3:20Þ

D. A simpler expression for the general coefficients

Wewill derive a simpler expression for the an;l coefficients compared to Eq. (3.20). To do so, we remind ourselves of the

definition of the “pseudo generating function” GðrÞ
n;kðhÞ in D ¼ 4 which is given by:

GðrÞ
n;kðhÞ ¼

Z
nþ4

0

dt
ð−tþ 2þ rÞkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh − 1Þ2 þ 4ht

nþ4

q : ð3:21Þ

As we have seen, the integral in Eq. (3.21) can be performed analytically in terms of the ordinary Gauss hypergeometrics
functions, 2F1ða; b; c; xÞ. There exists another way of obtaining the integral in terms of the Appell hypergeometrics
function, F1ða; b; c; d; x; yÞ. The answer is given by the following:

GðrÞ
n;kðhÞ ¼ 2k

nþ 4

h − 1
F1

�
1;−k;

1

2
; 2;

nþ 4

2þ r
;−

4h
ðh − 1Þ2

�
: ð3:22Þ

We recall now that the formal definition of the Appell hypergeometrics function as a power-series in the following manner

F1ða; b; c; d; x; yÞ ¼
X∞
e¼0

X∞
f¼0

1

e!
1

f!

ðaÞeþfðbÞeðcÞf
ðdÞeþd

xeyf; ð3:23Þ

and we also make note of the simplification:

ð1Þxþy

ð2Þxþy
¼ 1þ xþ y; ð3:24Þ

in order to obtain:

GðrÞ
n;kðhÞ ¼ ðrþ 2Þk nþ 4

h − 1

Xk
u¼0

X∞
v¼0

1

u!
1

v!

ð−kÞuð12Þv
1þ uþ v

�
nþ 4

rþ 2

�
u
�
−

4h
ðh − 1Þ2

�
v
: ð3:25Þ

To proceed we perform the u-sum in the above relation and we obtain

GðrÞ
n;kðhÞ ¼ ðrþ 2Þkðnþ 4Þ

Xk
v¼0

ð1
2
Þv

ðvþ 1Þ! 2F1

�
−k; 1þ v; 2þ v;

nþ 4

rþ 2

�
ð−4Þv hv

ðh − 1Þ2vþ1
: ð3:26Þ

Now, we can use, once more, the binomial expansion

1

ð1þ xÞn ¼
X∞
y¼0

�
nþ y − 1

y

�
ð−1Þyxy; ð3:27Þ

as well as the relation between the binomial coefficients and the Pochhammer symbol

9We have checked that our result, Eq. (3.20), matches the expression for the partial-wave coefficients in [22], Note that there is a shift
by one in the definitions of n between the two works; the n here has to be shifted as n → nþ 1 to match the result in [22].
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�
xþ y − 1

y

�
¼ ðxÞy

y!
; ð3:28Þ

in order to rewrite

1

ðh − 1Þ2vþ1
¼ ð−1Þ−2v−1

X∞
r¼0

ð2vþ 1Þr
r!

ð−1Þ2rhr; ð3:29Þ

and thus the expression for GðrÞ
n;kðhÞ becomes

Gn;kðhÞ ¼ ðrþ 2Þkðnþ 4Þ
Xk
v¼0

ð1
2
Þv

ðvþ 1Þ! 2F1

�
−k; 1þ v; 2þ v;

nþ 4

rþ 2

�
ð−4Þvð−1Þ−2v−1hv

×
X∞
r¼0

ð2vþ 1Þr
r!

ð−1Þ2rhr: ð3:30Þ

Having obtained an explicit form as power series expansion for the “pseudo generating function,” Gn;kðhÞ, in terms of h,
Eq. (3.30), it is quite straightforward to extract the coefficient an;l. It is given by10:

an;l ¼ ð2lþ 1Þr!
ðnþ 4Þðnþ rþ 1Þ!

Xnþ1

k¼0

ð−1Þnþ1−ksðkÞnþ1ðrþ 2Þkðnþ 4Þ

×
Xl
v¼0

ð1
2
Þv

ðvþ 1Þ! 2F1

�
−k; 1þ v; 2þ v;

nþ 4

rþ 2

�
ð−4Þv ð2vþ 1Þl−v

ðl − vÞ! : ð3:31Þ

Note that, while Eq. (3.31), is completely equivalent to Eq. (3.20) they are distinct parametrizations of the partial-wave
coefficients. Equation (3.31) comes with only two sums, instead of the four ones that appear in Eq. (3.20). An argument can
be made in favor of both those equations in comparison to Eq. (3.1) as they are just sums, rather than integration of the
Legendre polynomials times nontrivial functions.
Also, note that for l ¼ 0 we have just a single sum

an;0 ¼
r!

ðnþ 4Þðnþ rþ 1Þ!
Xnþ1

k¼0

ð−1Þnþ1−ksðkÞnþ1ðrþ 2Þk
�
rþ 2

kþ 1
þ ð−1Þk ðrþ 2Þ−kðn − rþ 2Þkþ1

kþ 1

�
: ð3:32Þ

IV. THE PARTIAL WAVE COEFFICIENTS IN D DIMENSIONS

In this section, we wish to derive similar expressions as we did previously in D ¼ 4 dimensions, Sec. III, but without
specifying the number of spacetime dimensions. The steps and basic relations that we need in order to manipulate the
expressions have already appeared in the previous section, and hence we will proceed with a faster pace here.
For the reader’s convenience we record here again, the basic relation, as an integral over the Gegenbauers, that gives the

partial-wave coefficients an;l

an;l ¼ r!
ðnþ rþ 1Þ!

1

Kðl; αÞ
1

nþ 4

�
4

ðnþ 4Þ2
�

α−1
2

Z
nþ4

0

dtCðαÞ
l

�
1 −

2t
nþ 4

�
ðtðnþ 4 − tÞÞα−1

2ð−tþ 2þ rÞnþ1: ð4:1Þ

In order to proceed, we want to make use of the generating function of the Gegenbauer polynomials

X∞
l¼0

CðαÞ
l ðxÞtl ¼ 1

ð1 − 2xtþ t2Þα ; ð4:2Þ

the representation of the Pochhammer symbol in terms of the Stirling number of the first kind, see Eq. (3.3), and also

10We have checked in this case as well that, Eq. (3.31), matches the expression for the partial-wave coefficients in [22] as we did
previously.

POSITIVITY OF THE HYPERGEOMETRIC VENEZIANO … PHYS. REV. D 109, 086008 (2024)

086008-7



ðnþ 4 − tÞα−1
2 ¼

X∞
p¼0

p
�
α − 1

2

p

�
ð−1Þpðnþ 4Þα−1

2
−ptp: ð4:3Þ

After using the above, we obtain the following:

X∞
j¼0

Kðj;αÞan;jhj ¼
r!

ðnþ rþ 1Þ!
1

nþ 4

�
4

ðnþ 4Þ2
�
α−1

2 Xnþ1

k¼0

ð−1Þnþ1−ksðkÞnþ1

X∞
p¼0

�
α − 1

2

p

�
ð−1Þpðnþ 4Þα−1

2
−p

×
Z

nþ4

0

dt
ð−tþ 2þ rÞktpþα−1

2�
ðh − 1Þ2 þ 4ht

nþ4

�
α

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
GðαÞðrÞ
n;k;p ðhÞ

; ð4:4Þ

where in the above relation, Eq. (4.4), we have defined the pseudo generating function GðαÞðrÞ
n;k;p ðhÞ. The integral can be

performed analytically and we obtain

GðαÞðrÞ
n;k;p ðhÞ ¼

2ðrþ 2Þk
2αþ 2pþ 1

ðnþ 4Þαþpþ1
2

1

ðh − 1Þ2α F1

�
αþ pþ 1

2
;−k; α; αþ pþ 3

2
;
nþ 4

rþ 2
;−

4h
ðh − 1Þ2

�
: ð4:5Þ

Now, we can proceed as we did in Sec. III D, in order to rewrite Eq. (4.5) in a form that is appropriate for our manipulations.
Namely, we can use the definition of the Appell hypergeometrics function as a power-series, which is given by Eq. (3.23),
alongside with the simplification

ðαþ pþ 1
2
Þxþy

ðαþ pþ 3
2
Þxþy

¼ 1þ 2αþ 2p
1þ 2αþ 2pþ 2xþ 2y

; ð4:6Þ

and then analytically perform the u-sum, after which we need to use the binomial expansion, Eq. (3.27), and the relation
between the binomial coefficients and the Pochhammer symbol given by Eq. (3.28) in order to obtain

GðαÞðrÞ
n;k;p ðhÞ ¼ 2ðrþ 2Þkðnþ 4Þαþpþ1

2

Xk
v¼0

ðαÞv
v! 2F1

�
−k; αþ pþ 1

2
þ v; αþ pþ 3

2
þ v;

nþ 4

rþ 2

�

× ð−4Þvð−1Þ−2v−2αhv
X∞
r¼0

ð2vþ 2αÞr
r!

ð−1Þ2rhr: ð4:7Þ

After the above simplifications, the equation we need to consider in order to extract the partial-wave coefficients is given by:

X∞
j¼0

Kðj; αÞan;jhj ¼
r!

ðnþ rþ 1Þ! 4
α−1

2

Xnþ1

k¼0

ð−1Þnþ1−ksðkÞnþ1

X∞
p¼0

�
α − 1

2

p

�
ð−1Þp2ðrþÞ2k

×
Xk
v¼0

ðαÞv
v!

1

1þ 2αþ 2pþ 2v
ð−4Þv2F1

�
−k; αþ pþ 1

2
þ v; αþ pþ 3

2
þ v;

nþ 4

rþ 2

�

× hv
X∞
r¼0

ð2vþ 2αÞr
r!

ð−1Þ2rhr: ð4:8Þ
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A. The leading Regge trajectory

Using Eq. (4.8) we can read-off from both sides the terms that scale as hnþ1 in order to extract the expression for the
partial-wave coefficients on the leading Regge trajectory, an;nþ1. We have that:

an;nþ1 ¼
r!

ðnþ rþ 1Þ!
2ðrþ 2Þnþ1

Kðnþ 1; αÞ 4
α−1

2

X∞
p¼0

Xnþ1

v¼0

�
α − 1

2

p

� ðαÞv
v!

ð−1Þpð−4Þv
1þ 2αþ 2pþ 2v

× 2F1

�
−n − 1; αþ pþ 1

2
þ v; αþ pþ 3

2
þ v;

nþ 4

rþ 2

� ð2vþ 2αÞnþ1−v
ðnþ 1 − vÞ! : ð4:9Þ

B. More on the Regge trajectories

While, Eq. (4.9) is a formal derivation for the partial-wave coefficients of the leading Regge trajectories in arbitrary
D-dimensions, it looks more like a simplified rewriting of the integral, rather than a helpful expression. Again, we can work
experimentally in order to derive

an;nþ1 ¼
ðnþ 4Þnþ1ðnþ 1Þ!

4n
1

ðD − 3ÞðD − 1Þ
r!

ðnþ rþ 1Þ!
1�

Dþ1
2

	
n−1

; ð4:10Þ

for the leading Regge trajectory. Note that in deriving the above relation, Eq. (4.10), we used as input data the results from
4 ≤ D ≤ 5 and −1 ≤ n ≤ 5 and checked up to d ≤ 11 and n ≤ 9. It turns out that a similar behavior to the one in theD ¼ 4
case is observed here as well. The subleading trajectories can be expressed as

an;n−γ ¼ an;nþ1

1

ðnþ 4Þγþ1

1

2
ð1þ ð−1Þγðr − 1Þ þ rÞðD − 3þ 2ðn − γÞÞPγðn;D; rÞ; ð4:11Þ

where in the above Pγðn; d; rÞ is a polynomial, which we do not have in a closed-form for all levels. For the first few we
have the expressions:

P0ðn;D; rÞ ¼ 2;

P1ðn;D; rÞ ¼ 12r2ðDþ 2n − 3Þ −Dn − 2Dþ n2 þ 23nþ 54

6ðnþ 4Þ2 ;

P2ðn;D; rÞ ¼ ðDþ 2n − 3Þð−Dn − 2Dþ n2 þ 25nþ 58Þ þ 4r2ðDþ 2n − 5ÞðDþ 2n − 3Þ
3ðnþ 4Þ3 : ð4:12Þ

In order to derive the patter in ðγ; DÞ of Eq. (4.12) we used γ ¼ f0; 1; 2g as input and checked against γ ¼ 3 and for the
dimensions 4 ≤ D ≤ 7 and checked up to D ≤ 9. For the polynomials described in Eq. (4.12) we used n ≤ 13 and D ≤ 14
as input and checked up to d ≤ 17 and D ≤ 17.

C. The general coefficients

Finally, it is a straightforward exercise to extract the hl term from both sides of Eq. (4.8) in order to obtain the expression
for all partial-wave coefficients. It is given by11:

an;l ¼ r!
ðnþ rþ 1Þ!

1

Kðl; αÞ 4
α−1

2

Xnþ1

k¼0

ð−1Þnþ1−ksðkÞnþ1ðrþ 2Þk
X∞
p¼0

�
α − 1

2

p

�
ð−1Þp

×
Xl
v¼0

ðαÞv
v!

1

1þ 2αþ 2pþ 2v 2F1

�
−k; αþ pþ 1

2
þ v; αþ pþ 3

2
þ v;

nþ 4

rþ 2

�
ð−4Þv ð2vþ 2αÞl−v

ðl − vÞ! : ð4:13Þ

11We have checked in this case also that, Eq. (4.13), matches the expression for the partial-wave coefficients in [22] as we did in the
previous cases.
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V. COMMENTS ON UNITARITY

The unitarity of the underlying theory, no matter what
the theory, is directly related to the positivity of the partial-
wave coefficients that we derived in the previous sections.
The reason is that negative partial-wave coefficients indi-
cate the exchange of ghost states. Hence, requiring that the
partial-wave coefficients are non-negative numbers, is
equivalent to the requirement that the theory is ghost-free.
The deformation parameter r that enters Eq. (2.1) can be

any real number. With that in mind, we start from the
expressions we derived for theD ¼ 4 case. From Eq. (3.11)
and for n ¼ 0 we obtain

a0;1 ¼ 2
1

rþ 1
; ð5:1Þ

from which we conclude that r > −1 and this is our first
unitarity bound.
A second more stringent bound comes from the study of

an;n given by Eq. (3.12) already at n ¼ 0. We obtain

a0;0 ¼ r
1

rþ 1
; ð5:2Þ

and requiring positivity of the above yields

r < −1∨r ≥ 0: ð5:3Þ

From the above, we conclude that r ≥ 0, since the r < −1
solution does not allow the deformation parameter r to
become 0 and thus undo the deformation of the Veneziano
amplitude. The study of coefficients derived from the
subleading trajectories, does not lead to further bounds
on the allowed values of the parameter r.
We continue to the general D dimensions and check if

we can derive any bounds on the allowed value of D. Here,
we have already derived r ≥ 0 and we will use this as an
input. Note, also, that we are interested in integer spacetime
dimensions D. The first nontrivial constraints in this case
come from the an;n−1 and n ¼ 1. We have the expression

a1;0 ¼
12ðD − 1Þr2 − 3Dþ 78

12ðD − 1Þðrþ 1Þðrþ 2Þ ; ð5:4Þ

the positivity of which leads to

ðr > 0 ∧ D ≤ 4ðD − 1Þr2 þ 26Þ∨2r ≥ 1∨D ≤ 26: ð5:5Þ

Clearly, the first part, which reads ðr > 0 ∧ D ≤ 4

ðD − 1Þr2 þ 26Þ is inconsistent as it does not allow the
deformation parameter to return to the value r ¼ 0 and thus
to obtain the undeformed Veneziano amplitude. For the
same reason we can exclude the second solution, 2r ≥ 1,
and we are only left with D ≤ 26. Namely the underlying
theory has to live below the critical dimension of string

theory. Since, r ≥ 0 one could imagine that the partial-wave
coefficients of the Veneziano amplitude going to negative
values above the critical dimensions of string theory could
become positive for some appropriate value of r, however,
such is not the case.
Before concluding this section we would like to add

some clarifying comments.
As we have already mentioned, in [22] the authors

provided an expression for all partial-wave coefficients as a
double-sum. Upon explicit evaluations of the relation, they
were able to derive bounds on the allowed values for the
deformation parameter, r and the number of spacetime
dimensions, D.
The results we have obtained here are in agreement with

those presented in [22] upon the appropriate shift that we
have already mentioned in the previous section and for the
special case of m2

0 ¼ −1. While our formulas given by
Eqs. (3.20) and (3.31) for the special case of D ¼ 4 and
Eq. (4.13) for general-D dimensions are equivalent to the
result obtained in [22] they are distinct parametrizations of
the partial-wave coefficients.
Furthermore, the general expressions for all partial-

wave coefficients that appear both here and in [22] are not
expressed in terms of simple analytic functions, but rather
as sums. This is more of a formal rewriting of the
coefficients, rather than a straightforward expression that
allows the non-negativity of the said coefficients to be
manifest. Taking that into consideration, the formulas
describing the partial-wave coefficients on the Regge
trajectories, while not formally derived, appear to be more
useful in a practical sense.

VI. EPILOGUE

In this work, we focused on examining the following
hypergeometric deformation of the Veneziano amplitude

Aðs; tÞ ¼ Γð−s − 1ÞΓð−t − 1Þ
Γð−s − t − 2Þ 3F2ð−s − 1;−t − 1; r;

− s − t − 2; 1þ r; 1Þ; ð6:1Þ

that was derived in [22]. Using the decomposition into
partial waves, we were able to derive bounds on the
deformation parameter r and the number of spacetime
dimensions D, namely

r ≥ 0; and D ≤ 26; ð6:2Þ

based on the requirement that the coefficients in the partial-
wave decomposition are non-negative numbers. This
requirement is a consequence of the unitarity of the under-
lying theory.
We find it quite remarkable that even though the

deformation parameter r could be any real number at the
beginning, and naively one could expect that this would not
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allow to derive any bounds on the dimensions of the
underlying theory, the positivity of the coefficients in the
expansion requires that D is bounded from above. More
extraordinary is the fact that this upper bound matches
precisely the critical dimensions of the bosonic string.
Unfortunately, unlike the physical intrpretation that we

have on the bound of the spacetime dimensions, we do not
have a physical explanation for the bound on the deforma-
tion parameter. It should, also, be noted that the allowed
values of r strongly depend on the value of the mass, and
can be seen from the numerical analysis of [22] that in the
case of low masses negative values are allowed. As a
concrete example, we mention that for the scattering of
massless particles the parameter has to be r ≥ 1

2
.

As we have mentioned already in the introduction,
generalizing the Veneziano amplitude is motivated from
many different points of view, one of which is a question on
the uniqueness of string theory. Being able to derive the
critical dimension of the string from the examination of
the hypergeometric Veneziano amplitude, is not a proof that
string theory is unique, however, it can be seen as suggestive
evidence. Of course, as was explained in [21], one can argue
that the input assumptions used as constraints to bootstrap
Eq. (6.1) were neither strong nor restrictive enough, and
hence it is not a big surprise that new mathematical
functions were found that satisfy the bootstrap conditions.
We hope that this work is a first step toward the more

systematic study of these new and exciting hypergeometric
amplitudes, supplementing and extending the unitarity
analysis of [22].
There are many exciting and interesting avenues for

future work.
The first and most straightforward path, would be to

consider performing a similar analysis for different values
of m2

0, since in this work we specifically considered the
case of massive scattering with m2

0 ¼ −1. There is already
numerical evidence from [22] that for different values ofm2

0

the deformation parameter can be negative without violat-
ing the unitarity of the underlying theory.12

We still do not know the underlying theory of the
amplitude given by Eq. (6.1), if any. Taking our findings
into consideration, as well as the fact that this four-point
amplitude has an integral representation in terms of the
Koba-Nielsen formula [22],13 perhaps the first and more

natural place to try and look for an answer would be some
2 → 2 scattering process within string theory itself.
Furthermore, it is well known that the Veneziano and the

Virasoro-Shapiro amplitudes given by14:

Aven ¼
Γð−s − 1ÞΓð−t − 1Þ

Γð−s − t − 2Þ ;

Avs ¼
Γð−s − 1ÞΓð−t − 1ÞΓðsþ tþ 3Þ
Γðsþ 2ÞΓðtþ 2ÞΓð−s − t − 2Þ ; ð6:3Þ

are related via the Kawai-Lewellen-Tye (KLT) relation [23]

Avs ¼
sinðπsÞ sinðπtÞ
π sinðπð−s − tÞÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

kernel

A2
ven: ð6:4Þ

It would be very interesting to examine if a similar relation
holds true for the hypergeometric deformations of the
Veneziano and Virasoro-Shapiro amplitudes, to derive the
kernel in this generalized context, and thus the generalized
KLT relation.
Finally, a straightforward path is to consider the hyper-

geometric Coon amplitude that was, also, derived in [22]
and attempt to obtain the corresponding unitarity bounds for
the deformation parameters, q and r, and perhaps the
spacetime dimensions D in that case. Note that this is
the most general construction in terms of the hypergeo-
metric deformations that were discussed in that article and
certain limits can be taken in order to derive Eq. (6.1) from
that. We believe that the bounds derived here can be used as
useful input in order to derive bounds on the allowed region
of values that the parameters can have in the case of the
hypergeometric Coon amplitude.
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APPENDIX A: PARTIAL-WAVE COEFFICIENTS THAT ARE EQUAL TO ZERO

1. The effect of a nonvanishing value for the r-parameter

Let us discuss the first point of Sec. II at a bit more depth in order to showcase our argument. To do so, we remind ourselves
that in the case of the Veneziano amplitude, in order to prove that an;l ¼ 0when nþ l is equal to an even number, we have to

consider the shift t ¼ nþ 4 − t0 [5]. Using the properties ð−xÞy ¼ ð−1Þyðx − yþ 1Þy and CðαÞ
l ð−xÞ ¼ ð−1ÞlCðαÞ

l ðxÞ and the
integral of Eq. (2.7) becomes

Z
nþ4

0

dtCðαÞ
l

�
1 −

2t
nþ 4

�
ðtðnþ 4 − tÞÞα−1

2ð−tþ 2þ rÞnþ1

¼ −ð−1Þnþl

Z
nþ4

0

dtCðαÞ
l

�
1 −

2t
nþ 4

�
ðtðnþ 4 − tÞÞα−1

2ð−tþ 2 − rÞnþ1; ðA1Þ

where in the above we renamed t0 as t after using the
properties. Now, in the Veneziano case, which is the case
r ¼ 0, the original integral is just re-written as −ð−1Þnþl

times itself, and hence for nþ l any even number the result
is zero. It is clear, that due to the presence of a nonzero r this
is no longer the case.
Before we proceed to show that an;l ¼ 0 for l ≥ nþ 2,

we briefly mention again that this indicates the presence of
states with spins up to l ¼ nþ 1 at mass m2

n.

2. Vanishing coefficients in D= 4

Here we will specify the discussion to the case D ¼ 4.
In this case, we have seen that the expression for the partial-

wave coefficient simplifies drastically, see Eq. (3.1). Let us
focus on the integral of that expression, given by

Z
nþ4

0

dtPl

�
1 −

2t
nþ 4

�
ð−tþ 2þ rÞnþ1: ðA2Þ

We will use that the Legendre polynomials satisfy

Pl

�
1−

2t
nþ 4

�
¼
Xl
k¼0

�
l

k

��
lþ k

k

��
−

t
nþ 4

�
k
; ðA3Þ

in order to rewrite Eq. (A2) as:

Xl
k¼0

�
l

k

��
lþ k

k

��
−

1

nþ 4

�
k
Z

nþ4

0

dttkð−tþ 2Þð−tþ 3Þ…ð−tþ 2þ nþ rÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðnþ1Þ−terms

: ðA4Þ

Let us consider that aj is the coefficient of the term tj in the
above and hence we have that Eq. (A4) becomes

Xnþ1

j¼0

ajðnþ 4Þjþ1T ðl; jÞ; ðA5Þ

where in the above we have defined:

T ðl; jÞ ¼
Xl
k¼0

ð−1Þk
�
l

k

��
lþ k

k

�
1

kþ jþ 1
: ðA6Þ

Notice that Eq. (A6) can be written as:

T ðl; jÞ ¼
Z

1

0

dz zjP̃lðzÞ; ðA7Þ

with P̃lðzÞ being the shifted Legendre polynomial that
satisfy

P̃lðzÞ ¼ Plð1 − 2zÞ ¼
Xl
k¼0

ð−1Þk
�
l

k

��
lþ k

k

�
zk: ðA8Þ

Recall that the task at hand was to evaluate T ðl; jÞ. The
integral in Eq. (A7) can be evaluated to be

T ðl; jÞ ¼ ð−jÞl
ðjþ 1Þðjþ 2Þl

: ðA9Þ

From Eq. (A9) we conclude that T ðl ≥ nþ 2; jÞ for
any j ¼ 0; 1;…; nþ 1.
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3. Vanishing coefficients in any D

Now, we proceed to compute the integral and show the
vanishing of the partial-wave coefficients in any dimen-
sions for l ≥ nþ 2. We begin by considering the following
representation of the Gegenbauer polynomials

CðαÞ
l ðxÞ ¼ ð2αÞl

l! 2F1

�
−n; 2αþ n; αþ 1

2
;
1 − x
2

�
; ðA10Þ

which can be written in the more convenient, for our
purposes, form

CðαÞ
l ðxÞ ¼ ð2αÞl

l!

Xl
j¼0

�
n

j

� ð2αþ nÞj�
αþ 1

2

	
j

�
x − 1

2

�
j
: ðA11Þ

Using Eq. (A11), the integral appearing in Eq. (2.7)
becomes

Z
nþ4

0

dt
ð2αÞl
l!

Xl
k¼0

�
l

k

� ð2αþ lÞk�
αþ 1

2

	
k

×

�
−

1

nþ 4

�
k
tktα−

1
2ð−tþ nþ 4Þα−1

2ð−tþ 2þ rÞnþ1:

ðA12Þ

In the above, ð−tþ 2þ rÞnþ1 has in total (nþ 1)-terms of
the form: ð−tþ 2þ rÞð−tþ 3þ rÞ…ð−tþ 2þ nþ rÞ.
Additionally, we can use the binomial theorem to express
ð−tþ nþ 4Þα−1

2 as:

ð−tþnþ4Þα−1
2¼

X∞
p¼0

�
α− 1

2

p

�
ð−1Þpðnþ4Þα−1

2
−ptp: ðA13Þ

Now, we consider that aj is the coefficient of tj in
ð−tþ 2þ rÞð−tþ 3þ rÞ…ð−tþ 2þ nþ rÞ and
Eq. (A12) becomes

ð2αÞl
l!

Xnþ1

j¼0

ajðnþ 4Þjþ2αT ðl; j; αÞ; ðA14Þ

where in the above

T ðl; j; αÞ ¼
Xl
k¼0

�
l

k

� ð2αþ lÞk�
αþ 1

2

	
k

ð−1Þk
X∞
p¼0

�
α − 1

2

p

�
ð−1Þp 2

1þ 2αþ 2jþ 2kþ 2p
: ðA15Þ

The sums in Eq. (A15) can be performed analytically and we obtain

T ðl; j; αÞ ¼
�
Γ
�
αþ 1

2

��
2

Γ
�
αþ jþ 1

2

�
3F 2

�

αþ jþ 1

2
;−l;lþ 2α

�
;



αþ 1

2
; 2αþ jþ 1

�
; 1

�
; ðA16Þ

where in the above we have used pF qðfa1; a2;…; apg; fb1; b2;…; bqg; zÞ to denote the regularized hypergeometric
function, which is given in terms of the generalized hypergeometric function as:

pF qðfa1; a2;…; apg; fb1; b2;…; bqg; zÞ ¼
1

Γðb1ÞΓðb2Þ…ΓðbqÞ p
Fqðfa1; a2;…; apg; fb1; b2;…; bqg; zÞ; ðA17Þ

From Eq. (A16) we can conclude that T ðl ≥
nþ 2; j; αÞ ¼ 0 for any number of spacetime dimensions
D and any j ¼ 0; 1;…; nþ 1.

APPENDIX B: THE POLYNOMIALS FOR THE
REGGE TRAJECTORIES IN D= 4 DIMENSIONS

In this appendix we provide some additional examples
for the polynomials governing the Regge trajectories in
D ¼ 4 dimensions from Sec. III B. Before presenting the

formulas for those, we clarify their derivations and checks.
For P3 we used n ≤ 9 and checked up to n ≤ 13, for P4 we
used n ≤ 11 and checked up to n ≤ 13, for P5 we used
n ≤ 14 and checked up to n ≤ 17, for P6 we used n ≤ 16

and checked up to n ≤ 18, for P7 we used n ≤ 19 and
checked up to n ≤ 22, for P8 we used n ≤ 21 and checked
up to n ≤ 25, for P9 we used n ≤ 22 and checked up to
n ≤ 24, and for P10 we used n ≤ 25 and checked up to
n ≤ 28.
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P3ðn; rÞ ¼
�
16n3

3
− 8n2 −

4n
3
þ 2

�
r4 þ

�
4n4

3
þ 92n3

3
þ 215n2

3
−
23n
3

− 18

�
r2

þ n5

36
þ 401n4

360
þ 1367n3

90
þ 23503n2

360
þ 5923n

60
þ 523

15
;

P4ðn; rÞ ¼
�
64n4

15
−
256n3

15
þ 224n2

15
þ 64n

15
− 4

�
r4 þ

�
16n5

9
þ 376n4

9
þ 36n3 −

1486n2

9
−
82n
9

þ 116

3

�
r2

þ n6

9
þ 218n5

45
þ 4157n4

60
þ 24743n3

90
þ 55921n2

180
−
2071n
30

− 82;

P5ðn; rÞ ¼
�
128n5

45
−
64n4

3
þ 448n3

9
− 32n2 −

568n
45

þ 28

3

�
r6

þ
�
16n6

9
þ 368n5

9
−
680n4

9
−
2440n3

9
þ 3889n2

9
þ 587n

9
−
310

3

�
r4

þ
�
2n7

9
þ 461n6

45
þ 13139n5

90
þ 14515n4

36
−
2221n3

9
−
224179n2

180
þ 1577n

30
þ 286

�
r2

þ n8

324
þ 103n7

540
þ 72011n6

15120
þ 31553n5

560
þ 285899n4

1008
þ 1033789n3

1680
þ 4928053n2

11340
−
594829n
3780

−
1138

9
;

P6ðn; rÞ ¼
�
512n6

315
−
2048n5

105
þ 5248n4

63
−
1024n3

7
þ 23648n2

315
þ 3968n

105
− 24

�
r6

þ
�
64n7

45
þ 1376n6

45
−
8576n5

45
þ 16n4

9
þ 52756n3

45
−
55546n2

45
−
1406n

5
þ 308

�
r4

þ
�
8n8

27
þ 1904n7

135
þ 5108n6

27
þ 8144n5

135
−
105671n4

54
−
126079n3

135
þ 87601n2

18
þ 10327n

45
−
3292

3

�
r2

þ n9

81
þ 221n8

270
þ 16141n7

756
þ 69851n6

280
þ 2588081n5

2520

þ 272901n4

280
−
11443967n3

4536
−
7777853n2

1890
þ 356711n

630
þ 964; ðB1Þ

P7ðn; rÞ ¼
�
256n7

315
−
128n6

9
þ 4288n5

45
−
2720n4

9
þ 19792n3

45
−
1688n2

9
−
12172n
105

þ 66

�
r8

þ
�
128n8

135
þ 2432n7

135
−
32096n6

135
þ 16864n5

27
þ 107992n4

135
−
620152n3

135
þ 504206n2

135
þ 9982n

9
− 980

�
r6

þ
�
8n9

27
þ 1924n8

135
þ 22508n7

135
−
94526n6

135
−
677699n5

270
þ 3716929n4

540
þ 1240327n3

135
−
3456947n2

180

−
64279n

30
þ 4382

�
r4 þ

�
2n10

81
þ 698n9

405
þ 8641n8

189
þ 468323n7

945
þ 75233n6

72
−
1451983n5

360

−
8123005n4

648
þ 18345539n3

3240
þ 10273985n2

378
−
737869n

630
− 6028

�
r2 þ n11

3888
þ 841n10

38880
þ 2152081n9

2721600

þ 5665843n8

362880
þ 5406743n7

32400
þ 30769397n6

36288
þ 972735997n5

544320
−
38975383n4

1088640
−
7255356281n3

1360800

−
460545103n2

90720
þ 15354599n

12600
þ 18871

15
; ðB2Þ
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P8ðn; rÞ ¼
�
1024n8

2835
−
8192n7

945
þ 11264n6

135
−
2048n5

5
þ 144256n4

135
−
60928n3

45
þ 1390016n2

2835
þ 344192n

945
−
572

3

�
r8

þ
�
512n9

945
þ 7936n8

945
−
13184n7

63
þ 53696n6

45
−
74464n5

45
−
241136n4

45

þ 3306440n3

189
−
11112316n2

945
−
1344076n

315
þ 3256

�
r6

þ
�
32n10

135
þ 7616n9

675
þ 7592n8

75
−
303824n7

225
þ 134866n6

225

þ 3756572n5

225
−
27364001n4

1350
−
36813233n3

675
þ 34407883n2

450
þ 945907n

75
−
89292

5

�
r4

þ
�
8n11

243
þ 964n10

405
þ 531536n9

8505
þ 1619614n8

2835
−
1250071n7

1134
−
2318551n6

180

þ 12720941n5

4860
þ 133287227n4

1620
þ 77483591n3

6804
−
449387851n2

2835
−
2828951n

945
þ 104056

3

�
r2

þ n12

972
þ 112n11

1215
þ 1196773n10

340200
þ 11905489n9

170100
þ 70047469n8

100800

þ 548246269n7

226800
−
66696559n6

38880
−
48406423n5

1944
−
79199036753n4

2721600
þ 31022789003n3

680400

þ 17353447943n2

226800
−
20749049n

2100
−
259286

15
; ðB3Þ

P9ðn; rÞ ¼
�
2048n9

14175
−
1024n8

225
þ 280576n7

4725
−
93184n6

225

þ 1117952n5

675
−
843136n4

225
þ 60356992n3

14175
−
99392n2

75
−
368216n

315
þ 572

�
r10

þ
�
256n10

945
þ 2816n9

945
−
15104n8

105
þ 433408n7

315
−
228128n6

45
þ 138272n5

45

þ 25833776n4

945
−
62429264n3

945
þ 12001739n2

315
þ 1711723n

105
− 11154

�
r8

þ
�
64n11

405
þ 14752n10

2025
þ 24752n9

675
−
1002248n8

675
þ 4159412n7

675

þ 6835234n6

675
−
172516181n5

2025
þ 181332943n4

4050
þ 189778778n3

675
−
413439001n2

1350
−
2927713n

45
þ 73612

�
r6

þ
�
8n12

243
þ 328n11

135
þ 521078n10

8505
þ 1100114n9

2835
−
25659041n8

5670
−
19007911n7

1890

þ 145457699n6

1944
þ 93677327n5

1080
−
30023039233n4

68040
−
5731391107n3

22680

þ 1636399621n2

1890
þ 36484051n

630
− 190028

�
r4

þ
�
n13

486
þ 941n12

4860
þ 1288333n11

170100
þ 50049121n10

340200
þ 557418061n9

453600
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þ 137847077n8

907200
−
933350689n7

34020
−
2027689027n6

38880
þ 212491115287n5

1360800

þ 1087556641399n4

2721600
−
50810550289n3

226800
−
2094388529n2

2800
þ 11761469n

252
þ 162838

�
r2

þ n14

58320
þ 107n13

58320
þ 362693n12

4082400
þ 10121317n11

4082400
þ 1667002441n10

39916800
þ 3207436571n9

7983360

þ 163569574211n8

89812800
þ 68609574763n7

35925120
−
4576464369611n6

359251200
−
14953602874033n5

359251200

−
927033772163n4

59875200
þ 2596960946917n3

29937600
þ 441409885271n2

4989600
−
2649524531n

138600
−
314354

15
; ðB4Þ

P10ðn; rÞ ¼
�
8192n10

155925
−
65536n9

31185
þ 370688n8

10395
−
3473408n7

10395
þ 13976576n6

7425
−
1925120n5

297

þ 409485056n4

31185
−
425455616n3

31185
þ 63601568n2

17325
þ 13240064n

3465
− 1768

�
r10

þ
�
1024n11

8505
þ 5632n10

8505
−
137728n9

1701
þ 666112n8

567
−
2309504n7

315
þ 7955776n6

405

þ 2012032n5

1701
−
214121696n4

1701
þ 2118827684n3

8505
−
119186042n2

945
−
11763526n

189
þ 117260

3

�
r8

þ
�
256n12

2835
þ 55808n11

14175
−
24064n10

14175
−
1096192n9

945
þ 1090592n8

105
−
92613952n7

4725

−
1380237872n6

14175
þ 1098647552n5

2835
−
8138435n4

567
−
2140478078n3

1575
þ 646434493n2

525
þ 33164102n

105
− 305448

�
r6

þ
�
32n13

1215
þ 11888n12

6075
þ 1942184n11

42525
þ 3789124n10

42525
−
6254986n9

945
þ 200483701n8

14175

þ 10897731679n7

85050
−
7691537891n6

24300
−
30358969699n5

34020
þ 359628196349n4

170100

þ 122628506327n3

56700
−
21427008719n2

4725
−
153371047n

315
þ 1006456

�
r4

þ
�
2n14

729
þ 976n13

3645
þ 897097n12

85050
þ 981730n11

5103
þ 1102788149n10

1020600
−
15745694n9

1701

−
207637186087n8

4082400
þ 25174204033n7

204120
þ 157940397331n6

226800
−
10725272695n5

20412

−
14608972386719n4

4082400
þ 10269635113n3

22680
þ 681990515411n2

113400
−
17273033n

210
− 1290532

�
r2

þ n15

14580
þ 227n14

29160
þ 11153n13

28350
þ 22796371n12

2041200
þ 16378424261n11

89812800
þ 89710139017n10

59875200

þ 488830522129n9

179625600
−
1146948964289n8

44906400
−
1733919836167n7

14968800
þ 1953314586743n6

179625600

þ 137895712720613n5

179625600
þ 8473021434481n4

9979200
−
2101852716961n3

1663200
−
1626950129029n2

831600

þ 747757867n
2772

þ 435964: ðB5Þ
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