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Recent progress in string theory has unveiled the discovery of Neveu Schwarz-Neveu Schwarz
couplings in bosonic and heterotic effective actions at order α02, which were achieved by imposing
Oð1; 1Þ symmetry on the circle reduction of classical effective actions. While the bosonic theory features
25 couplings, the heterotic theory encompasses 24 parity-even and 3 parity-odd couplings, excluding the
pure gravity couplings. In this study, we redefine the even-parity couplings in the bosonic and heterotic
theories through the application of appropriate field redefinitions, resulting in 10 and 8 couplings,
respectively. To establish the validity of these couplings, a cosmological reduction is conducted,
demonstrating that the cosmological couplings in the heterotic theory vanish, subject to one-dimensional
field redefinitions that include the lapse function and total derivative terms. Additionally, it is observed
that the cosmological couplings in the bosonic theory can be expressed as trðṠ6Þ. These results are
consistent with existing literature, where such behavior is attributed to the pure gravity component of the
couplings. Furthermore, the consistency of the obtained couplings with 4-point string theory S-matrix
elements is confirmed.
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I. INTRODUCTION

The spectrum of quantized free closed strings encom-
passes both massless states and an infinite tower of massive
states. Among these massless states, a notable one is the
spin-2 state,which showcases the potential of string theory as
a promising candidate for a consistent theory of quantum
gravity. To delve into physics within this framework, it is
convenient to employ an effective action that incorporates
only themassless fields. The influenceof themassive fields is
revealed through higher derivatives of the massless fields,
commonly known as α0-corrections, which encompass
classical and loop corrections. Determining these actions
can be achieved through various approaches, such as the
S-matrix method [1,2], the sigma-mode method [3,4], or by
exploring different symmetries in string theory. In the past,
the imposition of local supersymmetry on the effective action
has been utilized to derive leading-order classical effective
actions in superstring theories (see, for example, [5]). This
local symmetry, which necessitates the consideration of both

bosonic and fermionic fields within the theory, can also be
employed to study the α0 corrections [6–8].
Another intriguing symmetry in perturbative bosonic

string theory or superstring theory is T-duality [9,10], which
arises when the theory is compactified on a torus. When
integrating out the massive modes, T-duality emerges as a
symmetry in the effective actions. It has been demonstrated
in [11,12] that the dimensional reduction of the classical
effective actions of bosonic string theory and heterotic string
theory at each order of α0 remains invariant underOðd; d;RÞ
transformations. By assuming that the classical effective
actions of string theory are background independent [13], it
becomes possible to explore a specific closed background
featuring a circular dimension. Applying the nongeomet-
rical Oð1; 1;ZÞ symmetry to the circular reduction of the
independent covariant and gauge invariant couplings in
closed spacetime manifolds allows us to determine the
coefficients of background-independent couplings for
closed spacetime manifolds. This technique has proven
successful in determining the Neveu Schwarz-Neveu
Schwarz (NS-NS) couplings in closed spacetime manifolds
up to order α03 [14–18].
At the leading order of α0, T-duality reproduces the

standard effective action, given by
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At higher orders of α0, and for closed spacetime manifolds
that have no boundary where data would be present, there is
freedom in utilizing the most general higher-derivative
field redefinitions [1,19–21]. If this freedom is employed

to construct the 8 independent parity-even covariant
couplings at orderα0, T-duality determines their background-
independent couplings up to one overall factor, as demon-
strated in [14],

Sð1Þ
MT ¼ −2α0a1

κ2

Z
dDxe−2ϕ

ffiffiffiffiffiffiffi
−G

p �
RαβγδRαβγδ −

1

2
Hα

δϵHαβγRβγδϵ þ
1

24
HϵδζHϵ

α
βHδ

β
γHζ

γ
α −

1

8
Hαβ

δHαβγHγ
ϵζHδϵζ

�
: ð2Þ

The above action is the Metsaev-Tseytlin action [22], derived from the S-matrix elements. For the bosonic string theory,
a1 ¼ 1=4, and for the heterotic theory, it is a1 ¼ 1=8.
There are various other forms for the effective action at this order that are related to the above action through field

redefinitions, such as the action in the Meissner scheme [23], which is given by
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where R2
GB ¼ RαβγδRαβγδ − 4RαβRαβ þ R2 represents the

Gauss-Bonnet couplings.
Using the most general higher-derivative field redefinition

freedom, it is found that at order α0, there are 60 independent
parity-even covariant couplings in closed spacetime mani-
folds [21]. To determine their background-independent
couplings through T-duality, the effective action at order

α0 is required, as it demonstrates the observation that the form
of the effective action at order α02 depends on the form of the
effective action at order α0 [24]. Choosing (2) for the effective
action at orderα0, the T-duality fixes the coefficients of the 60
parity-even couplings at order α02 in bosonic string theory as
follows [15]1:
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1Note that there is a typo in the overall coefficient of Sð2ÞB
MT in [15], i.e., the factor a1 in [15] should be a21.
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where a1 ¼ 1=4. To compare the above couplings with the
S-matrix elements, it is appropriate to change the order α0
action (2) to the Meissner scheme (3), where the graviton
propagator does not receive α0 corrections. By using

field redefinitions at order α0 that transform the action
(2) to the action (3), we have discovered that the same field
redefinitions also transform the action (4) to the following
action:

Sð2ÞB
M ¼ 2α02a21

κ2

Z
d26x

ffiffiffiffiffiffiffi
−G

p
e−2Φ

�
1

12
Hα

δϵHαβγHβδ
ζHγ

ικHϵι
μHζκμ−

1

30
Hαβ

δHαβγHγ
ϵζHδ

ικHϵζ
μHικμ

−
1

20
Hαβ

δHαβγHγ
ϵζHδϵ

ιHζ
κμHικμþ

4

3
Rα

ϵ
γ
ζRαβγδRβζδϵ−

4

3
Rαβ

ϵζRαβγδRγϵδζ−
2

5
Hα

δϵHαβγHβ
ζιHδζ

κRγϵικ

þ2Hα
δϵHαβγRβ

ζ
δ
ιRγζϵι−

3

20
Hαβ

δHαβγHϵζ
κHϵζιRγιδκ−2HαβγHδϵζRαβδ

ιRγιϵζ−2Hα
δϵHαβγRβ

ζ
δ
ιRγιϵζ

þ2Hα
δϵHαβγRβ

ζ
γ
ιRδζϵιþHαβ

δHαβγRγ
ϵζιRδζϵι−

3

5
Hαβ

δHαβγHγ
ϵζHϵ

ικRδιζκ −
8

5
Hα

δϵHαβγHβδ
ζHγ

ικRϵιζκ

þ1

5
Hαβ

δHαβγHγ
ϵζHδ

ικRϵιζκ−
3

10
Hα

γδHβγ
ϵHδ

ζιHϵζι∇β∇αΦ−
3

5
Hγδ

ζHγδϵRαϵβζ∇β∇αΦ−
12

5
Hα

γδHγ
ϵζRβϵδζ∇β∇αΦ

þ6

5
Hα

γδHβ
ϵζRγϵδζ∇β∇αΦ−

3

5
∇β∇αΦ∇ϵHβγδ∇ϵHα

γδ−
3

10
Hβγ

ϵHβγδHδ
ζι∇αΦ∇ιHαϵζþ

3

20
Hα

βγHδϵ
ιHδϵζ∇αΦ∇ιHβγζ

−
1

20
Hα

δϵHαβγ∇ιHδϵζ∇ιHβγ
ζ−

1

5
Hα

δϵHαβγ∇ζHγϵι∇ιHβδ
ζþ1

5
Hα

δϵHαβγ∇ιHγϵζ∇ιHβδ
ζþ1

5
Hαβ

δHαβγ∇ζHδϵι∇ιHγ
ϵζ

−
1

5
Hαβ

δHαβγ∇ιHδϵζ∇ιHγ
ϵζ

�
: ð5Þ

It has been shown in [16] that if one chooses (3) for the
effective action at order α0, the T-duality fixes the coef-
ficients of the 60 parity-even couplings at order α02 in
bosonic string theory to exactly match the above couplings.
One can still use field redefinitions that only change the

fields at order α02. Such field redefinitions do not alter the
form of the Meissner action at order α0, but they do affect
the form of the couplings in (5). Since the final form of the
couplings and the field redefinitions are not known, we
need to consider a specific form for the couplings and check
if there are corresponding field redefinitions. Calculations

for the couplings at order α03 have been performed in [18].
It has been observed that there are schemes in which the
dilaton appears in the couplings only as the overall factor
e−2Φ. We also observe that such schemes exist at order α02.
To determine the form of the other couplings that involve
only the Riemann curvature, H, and ∇H, we utilize trial
and error to find the minimum number of couplings as in
[18]. We have discovered that there exist field redefinitions
such that the above 27 couplings can be expressed in terms
of the following 12 couplings:
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Note that the Riemann-cubed terms and the six-H terms
with a coefficient of 1=12 are invariant under field
redefinitions, so these terms appear in three different forms
of the couplings in Eqs. (4)–(6). We expect the above action
to be the simplest form of the couplings in the bosonic

string theory at order α02, such that its corresponding
couplings at order α0 are described by the Meissner
action (3).
The heterotic string theory has 496 gauge vector fields

as well as NS-NS fields. This theory exhibits a gauge
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anomaly, which can be canceled by assuming the gauge
group to be SOð32Þ or E8 × E8, and by allowing the B-field
to undergo nonstandard gauge transformations and local
Lorentz transformations [25]. In this paper, we specifically
consider the case of zero gauge field. Under the nonstand-
ard local Lorentz transformation for the B-field, the B-field
strength in Eqs. (1), (2), or (3) needs to be replaced by a
new field strength that is invariant under these nonstandard
local Lorentz transformations, i.e.,

Hμνα → Hμνα þ
3

2
α0Ωμνα; ð7Þ

where the Chern-Simons three-form Ω is
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where eμμ1eνν1ημ1ν1 ¼ Gμν. Our index convention is that
μ; ν;… are the indices of the curved spacetime, and
μ1; ν1;… are the indices of the flat tangent spaces.
The replacement of Eq. (7) into Eq. (1) yields the

following terms at order α0, which are parity-odd, and at
order α02, which are parity-even:
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The replacement of Eq. (7) into Eq. (3) produces the
following terms at order α02, which are parity-odd:
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where a1 ¼ 1=8.
There are no independent odd-parity couplings at order α0

that do not involve Ω. However, at order α02, there are 13
independent odd-parity couplings in closed spacetime mani-
folds that do not involveΩ [16]. It has been shown in [26] that

the parity-odd term in Eq. (9) is invariant under T-duality.
However, it has been observed in [16] that the aforementioned
parity-odd couplings at order α02 in (10) are not invariant
under T-duality. Therefore, T-duality necessitates the addition
of the following parity-odd terms to the theory [16]:
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Note that the dilaton only appears as an overall factor, so we
do not attempt further field redefinitions to simplify it.
It has been observed in [16] that the parity-even

couplings at order α02 in Eq. (9) are also not invariant
under T-duality. Therefore, T-duality necessitates the addi-
tion of other parity-even independent couplings that do not

involve Ω. There are 60 such couplings [21]. By adding
these couplings with unfixed coefficients to the Ω2-term in
Eq. (9), and utilizing the Meissner action in Eq. (3), along
with the odd-parity coupling in Eq. (9) for the couplings at
order α0, T-duality fixes the 60 couplings to be the
following [16]:
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Note that the aforementioned couplings do not include the Riemann-cubed terms, which are consistent with the sphere-level
S-matrix elements in string theory [27].
Since the aforementioned couplings involve derivatives of the dilaton, we perform field redefinitions that only involve

terms at order α02 to simplify these couplings. We have succeeded in transforming the aforementioned 24 couplings into the
following 8 couplings:
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In the rest of this paper, our objective is to examine the
couplings in Eq. (6) within the bosonic string theory, as
well as the couplings in Eq. (11) and Eq. (13) within the
heterotic theory. We achieve this in Sec. II by studying the
cosmological reduction of these couplings and demonstrat-
ing their invariance under Oðd; dÞ transformations.
Furthermore, in Sec. III, we compare these couplings with
the 4-point sphere-level S-matrix elements and find exact
consistency between the field theory and string theory
S-matrix elements. We have used the “xAct” package [28]
for performing our calculations in this paper.

II. CONSISTENCY WITH COSMOLOGICAL
SYMMETRY

When applying cosmological reduction to the classical
effective action, the resulting one-dimensional effective
action should exhibit Oðd; d;RÞ symmetry [11,12]. By
utilizing various one-dimensional equations of motion,
including the equation of motion for the lapse function,
and employing integration by parts, it has been demon-
strated in [29,30] that the cosmological reduction of the

classical effective action of string theory at order α0 and
higher can be expressed in a scheme where only the
first time-derivative of the generalized metric S appears.
The couplings involving trðṠ2Þ can be eliminated through
a lapse function transformation, and the trace of an
odd number of first derivatives of S vanishes [30].
Consequently, the one-dimensional action can be expressed
in a canonical form as the following expansion [29,30]:

Sceff ¼ Sc0 −
2

κ2

Z
dte−ϕðα0c2;0trðṠ4Þ þ α02c3;0trðṠ6Þ

þ α03½c4;0trðṠ8Þ þ c4;1ðtrðṠ4ÞÞ2�
þ α04½c5;0trðṠ10Þ þ c5;1trðṠ6ÞtrðṠ4Þ� þ � � �Þ: ð14Þ

In the above action, the coefficients cm;n depend on the
specific theory. For example, c2;0 and c3;0 are nonzero for
the bosonic string theory, while these numbers are zero for
the superstring theory. The lapse function in the afore-
mentioned action is set to n ¼ 1. By examining the
cosmological reduction of only the pure gravity compo-
nents of the couplings in various theories, one can

MORE ON CLOSED STRING EFFECTIVE ACTIONS AT ORDER … PHYS. REV. D 109, 086007 (2024)

086007-5



determine the coefficients cm;n. These coefficients up to
order α03 have been determined in [31].
Using the equations of motion and integration by parts is

equivalent to employing the most general field redefinitions
and disregarding total derivative terms. Therefore, any pro-
posal for the classical effective action of string theory should
be expressed in the canonical form given by Eq. (14) after
applying cosmological reduction, utilizing the most general
one-dimensional field redefinitions, including the lapse func-
tion, and neglecting the one-dimensional total derivative
terms. The NS-NS couplings at order α03 in superstring
theory, which were derived in [17], have been shown to
exhibit a cosmological reduction that can be written in the
aforementioned canonical form [32]. Furthermore, the cou-
plings at order α02 in the bosonic string theory, as presented in
Eq. (4), and their corresponding couplings at order α0, which
are described by the Metsaev-Tseytlin action in Eq. (2), have
been shown to undergo a cosmological reduction that can be
expressed in the canonical form [33]. We have observed that
the cosmological couplings at order α02 in bosonic string
theory, as described in Eq. (6), and their corresponding
couplings at order α0, which are governed by the Meissner
action in Eq. (3), exhibit the same canonical form. This result
is not surprising, as the two action forms are connected solely
through field redefinitions. We have also performed calcu-
lations for the heterotic couplings presented in Eq. (9),
Eqs. (10), (11), and (13), and obtained similar outcomes.
If the classical effective action has the following

α0-expansion:

Seff ¼
X∞
m¼0

α0mSm ¼ S0þα0S1þα02S2þα03S3þ �� � : ð15Þ

The corresponding cosmological reduction would be:

Sc
effðψÞ ¼

X∞
m¼0

α0mSc
mðψÞ

¼ Sc
0ðψÞ þ α0Sc

1ðψÞ þ α02Sc
2ðψÞ

þ α03Sc
3ðψÞ þ � � � : ð16Þ

Here, ψ collectively represents the one-dimensional func-
tions. The cosmological reduced actions Sc

mðψÞ are not
invariant under Oðd; dÞ-transformations unless one uses
appropriate one-dimensional field redefinitions ψ →
ψ þ α0δψ ð1Þ þ α02δψ ð2Þ þ � � �, and includes total derivative
terms J . TheOðd; dÞ-invariant action Sceff should also have
the following α0-expansion:

SceffðψÞ ¼
X∞
m¼0

α0mScmðψÞ

¼ Sc0ðψÞ þ α0Sc1ðψÞ þ α02Sc2ðψÞ
þ α03Sc3ðψÞ þ � � � : ð17Þ

If one uses the replacement ψ→ψþα0δψ ð1Þþα02δψ ð2Þþ���
in the actions Sc

m and then expands the actions in powers
of α0, one would find the following relations between
the expansions and the Oðd; dÞ-invariant actions up to
order α02:

Sc0¼Sc
0ðψÞþJ 0;

Sc1¼Sc
1ðψÞþδ1Sc

0ðψÞþJ 1;

Sc2¼Sc
2ðψÞþδ1Sc

1ðψÞþ
1

2
δ21S

c
0ðψÞþδ2Sc

0ðψÞþJ 2; ð18Þ

where δi on the action indicates that the action contains
the first-order perturbation δψ ðiÞ, and δ21 on the action
means the action contains the second-order perturbation
δψ ð1Þδψ ð1Þ. We have also used the α0-expansion of the total
derivative terms as J ¼ P∞

m¼0 α
0mJ m.

Since one-dimensional field redefinitions involve the
lapse function, and the lapse function appears nontrivially
in the cosmological reduced actions Sc

m, it is difficult to use
the above relations to determine the Oðd; dÞ-invariant
actions Scm. However, Oðd; dÞ-covariance requires this
function to appear in the Oðd; dÞ-invariant form of the
action by replacing the measure of the integral as
dt → dt=nð2k−1Þ, where 2k is the number of time-derivatives
in the action. For example, the lapse function in Sc1 is
modified as dt → dt=n3. Hence, it is appropriate to relate the
perturbation of the cosmological reduced action to the
perturbation of the Oðd; dÞ-invariant actions. This allows
us to find the relations between the expansions of
Oðd; dÞ-invariant action Scm in terms of perturbations of
Oðd; dÞ-invariant actions Scp for p < m. These relations, up
to order α02, are as follows [33]:

Sc0¼Sc
0ðψÞþJ 0;

Sc1¼Sc
1ðψÞþδ1Sc0ðψÞþJ 1;

Sc2¼Sc
2ðψÞþδ1Sc1ðψÞ−

1

2
δ21S

c
0ðψÞþδ2Sc0ðψÞþJ 2: ð19Þ

In this section, we are going to demonstrate that when the
cosmological reduction of the effective actions up to order α02
is inserted into the above expressions, they satisfy theOðd; dÞ
symmetry and can be written in the minimal form of (14).

A. Cosmological symmetry at the leading order

In this subsection, we review the Oðd; dÞ or cosmologi-
cal symmetry of the leading-order action [23,34–36]. When
fields depend only on time, it is possible to write the metric,
B-field, and dilaton using the gauge symmetries as follows:

Gμν ¼
�−n2ðtÞ 0

0 GijðtÞ
�
; Bμν ¼

�
0 0

0 BijðtÞ
�
;

2Φ ¼ ϕþ 1

2
log detðGijÞ; ð20Þ
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where the lapse function nðtÞ can also be fixed to n ¼ 1.
The cosmological reduction of the action in (1) then
becomes:

Sc
0 ¼ −

2

κ2

Z
dte−ϕ

�
1

4
ḂijḂij −

3

4
ĠijĠij −GijĠijϕ̇

− ϕ̇2 þ GijG̈ij

�
; ð21Þ

where Ġij ≡GikGilĠkl. Removing a total derivative term,
one can write Sc

0 as

Sc0 ¼ Sc
0 þ J 0

¼ −
2

κ2

Z
dte−ϕ

�
1

4
ḂijḂij þ 1

4
ĠijĠij − ϕ̇2

�
: ð22Þ

Using the generalized metric S which is defined as

S ≡ η

�
G−1 −G−1B

BG−1 G − BG−1B

�
; ð23Þ

where η is the metric of the Oðd; dÞ group which in the
nondiagonal form is

η ¼
�
0 1

1 0

�
; ð24Þ

one can write the action (22) as

Sc0 ¼ −
2

κ2

Z
dte−ϕ

�
−ϕ̇2 −

1

8
trðṠ2Þ

�
: ð25Þ

This action is invariant under global Oðd; dÞ transforma-
tions. The lapse function can be incorporated into the action
(25) by replacing dt with dt=n.

B. Cosmological symmetry at order α0

In this subsection, we will demonstrate that the cosmo-
logical reduction of the couplings in (3) and the odd-parity
couplings at order α0 in (9) can be expressed in an Oðd; dÞ-
invariant form by employing suitable one-dimensional field
redefinitions and incorporating total derivative terms.
Using the reductions in (20), we obtain the following

cosmological reduction for the actions at order α0:

Sc
1 ¼ −

2a1
κ2

Z
dte−ϕ

�
−
3

8
Ḃi

kḂijḂj
lḂkl −

1

16
ḂijḂijḂklḂkl þ 1

4
ḂijḂklĠikĠjl þ

1

2
Ḃi

kḂijĠj
lĠkl

−
7

8
Ġi

kĠijĠj
lĠkl −

1

8
ḂijḂijĠklĠkl þ 7

16
ĠijĠijĠklĠkl þ Ḃi

kḂijĠjkϕ̇þ 1

2
ḂijḂijϕ̇2

−
1

2
ĠijĠijϕ̇2 − ϕ̇4 þ Ġi

kĠijG̈jk þ 2ϕ̇2ϕ̈þ Ġi
kĠijĠjkĠi

i −
1

2
ĠijĠijϕ̇Ġi

i − ϕ̇3Ġi
i

− ĠijG̈ijĠi
i þ 2ϕ̇ ϕ̈ Ġi

i −
3

4
ĠijĠijðĠi

iÞ2 −
1

2
ϕ̇2ðĠi

iÞ2 þ
1

2
ϕ̈ðĠi

iÞ2 −
1

4
ϕ̇ðĠi

iÞ3

−
1

2
ĠijĠijG̈j

j þ ϕ̇2G̈j
j þ ϕ̇Ġi

iG̈j
j þ

3

4
ðĠi

iÞ2G̈j
j − ḂijĠi

kG̈jk

�
; ð26Þ

where we have used the gauge n ¼ 1. It is important to note
that the last term above corresponds to the cosmological
reduction of the odd-parity term in (9). The above action is
not invariant under Oðd; dÞ transformations. For example,
it contains Ġi

i, which is not invariant. Some of the
noninvariant terms are total derivative terms that should
be eliminated. Additionally, the action expressed in
terms of the variables Gij, Bij, and ϕ is not invariant. It
should be invariant in terms of alternative variables that
involve higher derivatives ofGij, Bij, and ϕ. Therefore, one
needs to employ one-dimensional higher-derivative field
redefinitions.
To eliminate the total derivative terms from (26), we

incorporate additional terms with arbitrary coefficients,
which are total derivatives at order α0. The following total
derivative terms are included:

J 1 ¼ −
2

κ2

Z
dt

d
dt

ðe−ϕI1Þ; ð27Þ

where I1 encompasses all possible terms at the three-
derivative level, constructed from ϕ̇, Ḃ, Ġ, ϕ̈, B̈, G̈, and
so on.
One can perform a change of field variables in (20) as

follows:

Gij → Gij þ α0δGð1Þ
ij ;

Bij → Bij þ α0δBð1Þ
ij ;

ϕ → ϕþ α0δϕð1Þ;

n → nþ α0δnð1Þ: ð28Þ
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Here, the matrices δGð1Þ
ij , δB

ð1Þ
ij , δϕ

ð1Þ, and δnð1Þ consist of
all possible terms at the 2-derivative level, constructed from
ϕ̇, Ḃ, Ġ, ϕ̈, B̈, G̈. When the field variables in Sc0 are
transformed according to the aforementioned field redefi-
nitions, they give rise to certain couplings at order α0 and
higher. In this section, our focus lies on the resulting
couplings at order α0, i.e.,

δ1Sc0¼−
2

κ2

Z
dte−Φ

�
δnð1Þ

�
−
1

4
ḂijḂij−

1

4
ĠijĠijþ ϕ̇2

�

þδϕð1Þ
�
−
1

4
ḂijḂij−

1

4
ĠijĠijþ ϕ̇2

�
−2ϕ̇

d
dt
δϕð1Þ

þδGð1Þ
ij

�
−
1

2
Ḃk

jḂki−
1

2
Ġk

jĠki

�

þ1

2
Ġij d

dt
δGð1Þ

ij þ1

2
Ḃij d

dt
δBð1Þ

ij

�
; ð29Þ

where we have utilized the fact that the lapse function
appears in the action (22) through the replacement
dt → dt=n.
By employing the field redefinitions and incorporating

the total derivative terms, one can express Sc
1 þ δ1Sc0 in

various Oðd; dÞ-invariant forms. However, if one wishes to
write it in the canonical form given by (14), certain
constraints need to be imposed. These constraints require
that Sc

1 þ δ1Sc0 only includes first derivative terms, does not
contain derivatives of the dilaton, and does not include the
trace of two Ḃ or Ġ terms. By imposing these constraints,
one finds that the following field redefinitions can be
employed:

δnð1Þ ¼ a1

�
−
1

4
ḂijḂij −

1

4
ĠijĠij þ 1

2
ϕ̇2

�
;

δϕð1Þ ¼ a1
2
ϕ̇2;

δGð1Þ
ij ¼ −a1ðḂi

k − Ġi
kÞðḂjk − ĠjkÞ;

δBð1Þ
ij ¼ a1ðḂj

kĠik − Ḃi
kĠjkÞ: ð30Þ

Then, up to some total derivative terms, the cosmological
action at order α0 can be expressed as follows:

Sc1 ¼ Sc
1 þ δ1Sc0 þ J 1

¼ −
2a1
κ2

Z
dte−ϕ

�
1

8
Ḃi

kḂijḂj
lḂkl −

1

4
ḂijḂklĠikĠjl

þ 1

2
Ḃi

kḂijĠj
lĠkl þ

1

8
Ġi

kĠijĠj
lĠkl

�
: ð31Þ

The total derivative terms can be ignored as they have no
impact on the calculations at order α02.
Now, by utilizing the definition of the generalized metric

in (23), we can find the following expression:

trðṠ4Þ ¼ 2Ḃi
kḂijḂj

lḂkl − 4ḂijḂklĠikĠjl þ 8Ḃi
kḂijĠj

lĠkl

þ 2Ġi
kĠijĠj

lĠkl: ð32Þ

Using the aforementioned Oðd; dÞ-invariant expressions,
we can express (31) as follows:

Sc1 ¼ −
2a1
16κ2

Z
dte−ϕtrðṠ4Þ: ð33Þ

This expression is consistent with the cosmological action
in (14) with c2;0 ¼ a1=16 ¼ 1=27. For bosonic string
theory, the calculations remain the same, except that there
are no odd-parity terms in (26) and in the Gij-field
redefinition in (30). Therefore, for the bosonic theory,
c2;0 ¼ a1=16 ¼ 1=26. These results coincide with those
found in [31] through the study of pure gravity parts of the
couplings. The lapse function can be incorporated into the
above action by replacing dt with dt=n3.

C. Cosmological symmetry at order α02

In this section, we are going to show that, up to one-
dimensional field redefinitions and total derivative terms,
the cosmological reduction of the couplings in Eqs. (9),
(10), (11), and (13) at order α02 in the heterotic theory, and
the cosmological reduction of the couplings in Eq. (6) in the
bosonic theory, can be written in the canonical form given
by Eq. (14).
By using the reductions in Eq. (20), and the following

reduction for eμμ1

eμμ1 ¼
�
nðtÞ 0

0 eii1ðtÞ

�
; ð34Þ

where eii1ejj1ηi1j1 ¼ Gij, we obtain the following cosmo-
logical reduction for the actions at order α02 in the heterotic
theory:

Scð2Þ
1e ¼ −

2α02a21
κ2

Z
dte−ϕ

�
1

2
ĠijĠklG̈ikG̈jl −

1

2
Ġi

kĠijG̈j
lG̈kl

�
;
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Scð2Þ
2e ¼ 2α02a21

κ2

Z
dte−ϕ

�
−
3

4
Ḃi

kḂijḂj
lḂk

mḂl
nḂmn −

1

4
ḂijḂijḂk

mḂklḂl
nḂmn −

3

2
Ḃi

kḂijḂl
nḂlmĠjmĠkn

−
3

2
Ḃi

kḂijḂj
lḂmnĠkmĠln þ

3

4
ḂijḂklĠi

mĠj
nĠkmĠln þ

1

2
Ḃi

kḂijḂj
lḂk

mĠl
nĠmn − ḂijḂklĠikĠj

mĠl
nĠmn

þ 1

2
Ḃi

kḂijĠj
lĠk

mĠl
nĠmn −

1

4
Ḃi

kḂijḂj
lḂklĠmnĠmn −

3

2
ḂijḂklB̈ikB̈jl −

3

2
Ḃi

kḂijB̈j
lB̈kl þ 5Ḃi

kḂijḂlmĠjlB̈km

− Ḃi
kḂijḂj

lĠk
mB̈lm − 2ḂijḂklĠi

mĠkmG̈jl þ 2ḂijḂklG̈ikG̈jl þ 2Ḃi
kḂijG̈j

lG̈kl − 2Ḃi
kḂijĠj

lĠl
mG̈km

þ 2ḂijḂklĠikĠj
mG̈lm

�
;

Scð2Þ
1O ¼ −

2α02a21
κ2

Z
dte−ϕ

�
−
3

2
ḂijĠi

kĠlmĠlmG̈jk − 4ḂijĠi
kϕ̇2G̈jk − 2ḂijĠi

kĠk
lϕ̇G̈jlj − ḂijĠi

kĠk
lĠl

mG̈jm

þ 3Ḃi
kḂijḂj

lĠk
mG̈lm þ 1

2
ḂijḂijḂklĠk

mG̈lm þ 4ḂijĠi
kG̈jkϕ̈ − 2ḂijĠi

kϕ̇G̈jkðĠÞll −
1

2
ḂijĠi

kG̈jkðĠÞllðĠÞmm

þ 2ḂijĠi
kG̈jkðG̈Þll

�
;

Scð2Þ
2O ¼ −

2α02a21
κ2

Z
dte−ϕ½−2Ḃi

kḂijḂlmĠjlĠk
nĠmn þ Ḃi

kḂijĠj
lĠl

mB̈km − ḂijḂklĠikĠj
mB̈lm − 2Ḃi

kḂijB̈j
lG̈kl

þ 2Ḃi
kḂijḂlmĠjlG̈km − 2Ḃi

kḂijḂj
lĠk

mG̈lm�: ð35Þ

In the above action, we have chosen the gauge n ¼ 1. It is
obvious that the sum of the above actions, i.e., Sc

2 ¼
ðScð2Þ

1e þ Scð2Þ
2e þ Scð2Þ

1O þ Scð2Þ
2O Þ=α02, is not invariant under

Oðd; dÞ transformations. It should be invariant after adding
one-dimensional total derivative terms and using field
redefinitions.
We add the following total derivative term at order α02

to Sc
2:

J 2 ¼ −
2

κ2

Z
dt

d
dt

ðe−ϕI2Þ; ð36Þ

where I2 includes all possible terms at the five-derivative
level, which are constructed from ϕ̇, Ḃ, Ġ, ϕ̈, B̈, G̈, � � �.
We also make the following field redefinitions:

Gij → Gij þ α0δGð1Þ
ij þ α02δGð2Þ

ij ;

Bij → Bij þ α0δBð1Þ
ij þ α02δBð2Þ

ij ;

ϕ → ϕþ α0δϕð1Þ þ α02δϕð2Þ;

n → nþ α0δnð1Þ þ α02δnð2Þ; ð37Þ

where the first-order perturbations δGð1Þ
ij , δB

ð1Þ
ij , δϕ

ð1Þ, δnð1Þ

are given in Eq. (30), and the second-order perturbations

δGð2Þ
ij , δB

ð2Þ
ij , δϕ

ð2Þ, δnð2Þ consist of all possible terms at the

four-derivative level constructed from ϕ̇, Ḃ, Ġ, ϕ̈, B̈, G̈, � � �.
When the field variables in Sc0 are changed according to

the above field redefinitions, they produce two sets of
couplings at order α02. One set is produced by the first-order
perturbations at order α02, i.e.,

δ2Sc0 ¼ −
2

κ2

Z
dte−ϕ

�
δnð2Þ

�
−
1

4
ḂijḂij −

1

4
ĠijĠij þ ϕ̇2

�

þ δϕð2Þ
�
−
1

4
ḂijḂij −

1

4
ĠijĠij þ ϕ̇2

�
− 2ϕ̇

d
dt

δϕð2Þ

þ δGð2Þ
ij

�
−
1

2
Ḃk

jḂki −
1

2
Ġk

jĠki

�
þ 1

2
Ġij d

dt
δGð2Þ

ij

þ 1

2
Ḃij d

dt
δBð2Þ

ij

�
; ð38Þ

which are similar to the first-order perturbation given in
Eq. (29), and the other set is reproduced by the second-
order perturbations, i.e.,
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1

2
δ21S

c
0 ¼ −

2

κ2

Z
dte−Φ

�
1

4

d
dt

δBð1Þ
ij

d
dt

δBð1Þij þ 1

4

d
dt

δGð1Þ
ij

d
dt

δGð1Þij −
d
dt

δϕð1Þ d
dt

δϕð1Þ

− Ḃij d
dt

δBð1Þk
i δGð1Þ

jk − Ġij d
dt

δGð1Þk
i δGð1Þ

jk þ 1

4
ḂijḂklδGð1Þ

ik δG
ð1Þ
jl þ 1

4
ĠijĠklδGð1Þ

ik δG
ð1Þ
jl

þ 1

2
Ḃi

kḂijδGð1Þl
j δGð1Þ

kl þ 1

2
Ġi

kĠijδGð1Þl
j δGð1Þ

kl −
1

2
Ḃij d

dt
δBð1Þ

ij δn
ð1Þ −

1

2
Ġij d

dt
δGð1Þ

ij δn
ð1Þ

þ 2ϕ̇
d
dt

δΦð1Þδnð1Þ þ 1

2
Ḃi

kḂijδGð1Þ
jk δn

ð1Þ þ 1

2
Ġi

kĠijδGð1Þ
jk δn

ð1Þ

þ
�
1

4
ḂijḂij þ 1

4
ĠijĠij − ϕ̇2

�
δnð1Þδnð1Þ þ

�
1

8
ḂijḂij þ 1

8
ĠijĠij −

1

2
ϕ̇2

�
δϕð1Þδϕð1Þ

−
1

2
Ġij d

dt
δGð1Þ

ij δî
ð1Þ þ 2ϕ̇

d
dt

δϕð1Þδϕð1Þ þ 1

2
Ḃi

kḂijδGð1Þ
jk δϕ

ð1Þ þ 1

2
Ġi

kĠijδGð1Þ
jk δϕ

ð1Þ

−
1

2
Ḃij d

dt
δBð1Þ

ij δϕ
ð1Þ þ

�
1

4
ḂijḂij þ 1

4
ĠijĠij − ϕ̇2

�
δnð1Þδϕð1Þ

�
; ð39Þ

where the first-order perturbations are given in Eq. (30).
When the field variables in the Oðd; dÞ-invariant action at order α0, as given by Eq. (31), are changed according to the

field redefinition in Eq. (37), one also finds the following couplings at order α02 resulting from the first-order perturbation at
order α0:

δ1Sc1 ¼ −
2a1
κ2

Z
dte−Φ

�
−ḂijĠi

kĠk
l d
dt

δBð1Þ
jl þ 1

2
Ḃi

kḂijḂj
l d
dt

δBð1Þ
kl −

1

2
ḂijĠi

kĠj
l d
dt

δBð1Þ
kl −

1

2
ḂijḂklĠik

d
dt

δGð1Þ
jl

þ Ḃi
kḂijĠj

l d
dt

δGð1Þ
kl þ 1

2
Ġi

kĠijĠj
l d
dt

δGð1Þ
kl −

1

2
ḂijḂklĠi

mĠkmδG
ð1Þ
jl − Ḃi

kḂijĠj
lĠl

mδGð1Þ
km −

1

2
Ḃi

kḂijḂj
lḂk

mδGð1Þ
lm

þ ḂijḂklĠikĠj
mδGð1Þ

lm −
1

2
Ḃi

kḂijĠj
lĠk

mδGð1Þ
lm −

1

2
Ġi

kĠijĠj
lĠk

mδGð1Þ
lm −

3

8
Ḃi

kḂijḂj
lḂklδnð1Þ þ

3

4
ḂijḂklĠikĠjlδnð1Þ

−
3

2
Ḃi

kḂijĠj
lĠklδnð1Þ −

3

8
Ġi

kĠijĠj
lĠklδnð1Þ −

1

8
Ḃi

kḂijḂj
lḂklδϕ

ð1Þ þ 1

4
ḂijḂklĠikĠjlδϕ

ð1Þ −
1

2
Ḃi

kḂijĠj
lĠklδϕ

ð1Þ

−
1

8
Ġi

kĠijĠj
lĠklδϕ

ð1Þ
�
; ð40Þ

where we have used the fact that the lapse function appears in the Oðd; dÞ-invariant action (31) by replacing dt with dt=n3.
By inserting the first-order perturbations at order α0 (30) into (39), (40), and inserting the arbitrary first-order

perturbations at order α02 into (38), one finds that the cosmological action (19) can be written as:

Sc2 ¼ Sc
2 þ δ1Sc1 −

1

2
δ21S

c
0 þ δ2Sc0 þ J 2 ¼ 0; ð41Þ

for some specific values of the parameters in field redefinitions and total derivative terms. Since we are not interested in
studying the couplings at order α03, we do not write the explicit form of the first-order field redefinitions at order
α02 here.
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For the bosonic theory, the calculations are the same except that the cosmological reduction of (6) is given by:

Sc
2 ¼ −

2a21
κ2

Z
dte−Φ

�
11

12
Ḃi

kḂijḂj
lḂk

mḂl
nḂmn þ

1

4
ḂijḂijḂk

mḂklḂl
nḂmn

þ 1

48
ḂijḂijḂklḂklḂmnḂmn þ 3

2
Ḃi

kḂijḂl
nḂlmĠjmĠkn þ

3

2
Ḃi

kḂijḂj
lḂmnĠkmĠln

−
1

4
ḂijḂijḂklḂmnĠkmĠln −

3

4
ḂijḂklĠi

mĠj
nĠkmĠln þ

1

4
Ḃi

kḂijḂl
nḂlmĠjkĠmn

−
1

2
Ḃi

kḂijḂj
lḂk

mĠl
nĠmn −

1

4
ḂijḂijḂk

mḂklĠl
nĠmn þ ḂijḂklĠikĠj

mĠl
nĠmn

−
1

2
Ḃi

kḂijĠj
lĠk

mĠl
nĠmn þ

1

6
Ġi

kĠijĠj
lĠk

mĠl
nĠmn −

1

16
ḂijḂijĠk

mĠklĠl
nĠmn

−
1

16
ĠijĠijĠk

mĠklĠl
nĠmn þ

1

4
Ḃi

kḂijḂj
lḂklĠmnĠmn −

1

8
Ḃi

kḂijĠj
lĠklĠmnĠmn

þ 1

48
ĠijĠijĠklĠklĠmnĠmn þ ḂijḂklB̈ikB̈jl þ

1

4
ḂijḂklB̈ijB̈kl þ Ḃi

kḂijB̈j
lB̈kl

− 4Ḃi
kḂijḂlmĠjlB̈km −

1

2
Ḃi

kḂijḂlmĠjkB̈lm þ Ḃi
kḂijḂj

lĠk
mB̈lm −

1

2
ḂijḂijḂklĠk

mB̈lm

− G̈i
kG̈ijG̈jk þ 2ḂijḂklĠi

mĠkmG̈jl − 2ḂijḂklG̈ikG̈jl −
1

4
ĠijĠklG̈ikG̈jl þ

1

4
ĠijĠklG̈ijG̈kl

−
5

2
Ḃi

kḂijG̈j
lG̈kl þ

3

2
Ġi

kĠijG̈j
lG̈kl þ

5

2
Ḃi

kḂijĠj
lĠl

mG̈km −
1

4
Ġi

kĠijĠjkĠlmG̈lm

− 2ḂijḂklĠikĠj
mG̈lm −

1

2
Ġi

kĠijĠj
lĠk

mG̈lm þ 1

4
ḂijḂijĠk

mĠklG̈lm −
1

4
ḂijḂijG̈klG̈kl

�
: ð42Þ

Using the same steps as in the heterotic case, one finds:

Sc2 ¼ Sc
2 þ δ1Sc1 −

1

2
δ21S

c
0 þ δ2Sc0 þ J 2

¼ −
2a21
κ2

Z
dte−Φ

�
1

12
Ḃi

kḂijḂj
lḂk

mḂl
nḂmn þ

1

4
Ḃi

kḂijḂl
nḂlmĠjmĠkn −

1

2
Ḃi

kḂijḂj
lḂmnĠkmĠln

þ 1

4
ḂijḂklĠi

mĠj
nĠkmĠln þ

1

2
Ḃi

kḂijḂj
lḂk

mĠl
nĠmn −

1

2
ḂijḂklĠikĠj

mĠl
nĠmn þ

1

2
Ḃi

kḂijĠj
lĠk

mĠl
nĠmn

þ 1

12
Ġi

kĠijĠj
lĠk

mĠl
nĠmn

�
;

¼ −
2

κ2

�
−1

3 × 26

�Z
dte−ϕtrðṠ6Þ; ð43Þ

for some specific values of the parameters in field rede-
finitions and total derivative terms. It is consistent with the
cosmological action given by Eq. (14). The results in
Eqs. (41) and (43) coincide with those found in [31]
through the study of the pure gravity parts of the couplings.
This concludes our illustration that the couplings in Eq. (6)
in the bosonic string theory, as well as the couplings in
Eq. (11) and Eq. (13) in the heterotic theory, are consistent
with the cosmological symmetry.

III. CONSISTENCY WITH S-MATRIX ELEMENTS

In this section, we compare the 4-point S-matrix ele-
ments constructed from the couplings presented in Section I
with the low-energy expansion of the 4-point sphere-level
S-matrix elements in string theory.
It has been observed in [37] that the sphere-level closed

string S-matrix element can be written in terms of disk-level
S-matrix elements. The disk-level S-matrix element of four
gauge bosons’ vertex operators on the boundary of the disk
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has been calculated in [38]. This amplitude for the (s − t)
channel is

Aðα0s; α0tÞ ∼ Γð−α0sÞΓð−α0tÞ
Γð1þ α0uÞ K; ð44Þ

where the Mandelstam variables are

s¼−ðk1þk2Þ2; t¼−ðk1þk4Þ2; u¼−ðk1þk3Þ2;
sþ tþu¼ 0: ð45Þ

The kinematic factor K includes contractions of open string
momenta k1, k2, k3, k4 with themselves and with the
polarizations ζ1, ζ2, ζ3, ζ4. We are interested only in the
terms in K where the momenta are contracted with
themselves. The kinematic factor for these terms in super-
string and bosonic string theories is

KSðα0Þ ¼ α02stζ1 · ζ3ζ2 · ζ4 þ α02suζ2 · ζ3ζ1 · ζ4
þ α02tuζ1 · ζ2ζ3 · ζ4 þ � � � ;

KBðα0Þ ¼
�

α02st
1þ α0u

�
ζ1 · ζ3ζ2 · ζ4 þ

�
α02su
1þ α0t

�
ζ2 · ζ3ζ1 · ζ4

þ
�

α02tu
1þ α0s

�
ζ1 · ζ2ζ3 · ζ4 þ � � � ; ð46Þ

where dots represent the terms where the momenta and
polarizations are contracted, which we are not interested in.
Note that the above kinematic factors are stu-symmetric. If
the above amplitude is for right-moving modes, then there
are similar amplitudes Ā for the left-moving modes with
momenta k1, k2, k3, k4 and polarizations ζ1; ζ2; ζ3; ζ4.

The closed string amplitude of four massless NS-NS
states with momenta ki and polarizations ϵi ¼ ζiζi for
i ¼ 1; 2; 3; 4 is then given as [37]:

A¼−
�
κ2

πα0

�
sin

�
α0π
2

k2 ·k3

�
A
�
α0

4
s;
α0

4
t

�
A
�
α0

4
t;
α0

4
u

�
;

¼−
�
κ2

α0

�
Γð−α0

4
sÞΓð−α0

4
tÞΓð−α0

4
uÞ

Γð1þ α0
4
sÞΓð1þ α0

4
tÞΓð1þ α0

4
uÞK

�
α0

4

�
K̄

�
α0

4

�
;

ð47Þ

where we have normalized the amplitude to be consistent
with the leading-order action (1). The amplitude for the
bosonic theory is given by replacing KK̄ with KBK̄B, and
for the heterotic theory, one has to replace it with KBK̄S.
To find the α0-expansion of the above closed S-matrix

elements, one has to expand the Gamma functions and the
tachyon poles in the bosonic kinematic factor KB. After the
α0-expansion and replacing ζiζi with the closed string
polarization tensor ϵi, one finds some terms where the
momenta are contracted with the closed string polarization,
which we are not interested in. In the terms where the
momenta are contracted with themselves, there are still two
sets of terms. One set includes two-trace terms, where each
trace involves contractions of two polarizations. The other
set involves one-trace terms, which involve contractions of
all polarizations. We are going to compare the one-trace
terms in the α0-expansion of the closed string S-matrix
element with the corresponding terms in the field theory
using the actions presented in the Introduction section.
The one-trace terms in the heterotic closed string

amplitude up to order α02 when the polarization tensor is
for a graviton or for the B-field are

AH ¼ κ2

4

�
s

�
1 −

α0

4
tþ α02

16
t2 þ � � �

�
Trðϵ1ϵT3 ϵ2ϵT4 Þ þ u

�
1 −

α0

4
tþ α02

16
t2 þ � � �

�
Trðϵ1ϵT2 ϵ3ϵT4 Þ

þ s

�
1 −

α0

4
uþ α02

16
u2 þ � � �

�
Trðϵ1ϵT4 ϵ2ϵT3 Þ þ t

�
1 −

α0

4
uþ α02

16
u2 þ � � �

�
Trðϵ1ϵT2 ϵ4ϵT3 Þ

þ u

�
1 −

α0

4
sþ α02

16
s2 þ � � �

�
Trðϵ1ϵT4 ϵ3ϵT2 Þ þ t

�
1 −

α0

4
sþ α02

16
s2 þ � � �

�
Trðϵ1ϵT3 ϵ4ϵT2 Þ þ � � �

�
: ð48Þ

where dots in each parenthesis represent the higher orders of α0, and the dots at the end of the equation represent terms in
which momenta contract with the polarizations and terms that involve the two-traces. The corresponding terms in the
bosonic closed string amplitude are

AB ¼ κ2s
4

�
1þ α0

4
sþ α02

16
s2 −

α02

16
tuþ � � �

�
½Trðϵ1ϵT3 ϵ2ϵT4 Þ þ Trðϵ1ϵT4 ϵ2ϵT3 Þ�

þ κ2u
4

�
1þ α0

4
uþ α02

16
u2 −

α02

16
stþ � � �

�
½Trðϵ1ϵT2 ϵ3ϵT4 Þ þ Trðϵ1ϵT4 ϵ3ϵT2 Þ�

þ κ2t
4

�
1þ α0

4
tþ α02

16
t2 −

α02

16
suþ � � �

�
½Trðϵ1ϵT2 ϵ4ϵT3 Þ þ Trðϵ1ϵT3 ϵ4ϵT2 Þ� þ � � � : ð49Þ
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Using the identity TrðABCDÞ ¼ TrðATDTCTBTÞ, one
can write both amplitudes in terms of Trðϵ1ϵ3ϵ2ϵ4Þ,
Trðϵ1ϵ2ϵ3ϵ4Þ, and Trðϵ1ϵ2ϵ4ϵ3Þ.
When the four states are gravitons or they are B-fields,

one can write the amplitudes as

A ¼ fðs; t; uÞTrðϵ1ϵ3ϵ2ϵ4Þ þ fðu; t; sÞTrðϵ1ϵ2ϵ3ϵ4Þ
þ fðt; u; sÞTrðϵ1ϵ2ϵ4ϵ3Þ þ � � � ; ð50Þ

where the function fðs; t; uÞ is

fHðs; t; uÞ ¼ κ2

2

�
sþ α0

8
s2 þ α02

32
ðs3 − 2stuÞ þ � � �

�
;

fBðs; t; uÞ ¼ κ2

2

�
sþ α0

4
s2 þ α02

16
ðs3 − stuÞ þ � � �

�
: ð51Þ

When states 1 and 2 are gravitons and states 3 and 4 are
B-fields, the amplitudes can be written as:

A ¼ fðs; t; uÞTrðϵ1ϵ3ϵ2ϵ4Þ − fðu; t; sÞTrðϵ1ϵ2ϵ3ϵ4Þ
− fðt; u; sÞTrðϵ1ϵ2ϵ4ϵ3Þ þ � � � ; ð52Þ

where f is the same function as in (51).
In the heterotic theory, when state 1 is a graviton and

states 2, 3, and 4 are B-fields, or when state 4 is a B-field
and states 1, 2, and 3 are gravitons, the amplitude can be
written as:

AH ¼ gðs; t; uÞTrðϵ1ϵ3ϵ2ϵ4Þ þ gðu; t; sÞTrðϵ1ϵ2ϵ3ϵ4Þ
þ gðt; u; sÞTrðϵ1ϵ2ϵ4ϵ3Þ þ � � � ; ð53Þ

where the function gðs; t; uÞ is

gðs; t; uÞ ¼ κ2ðt − uÞ
�
−
α0

16
sþ α02

64
s2 þ � � �

�
: ð54Þ

It has been shown in [27] that when all four states are
gravitons, the amplitude (50) for both the bosonic and
heterotic theories is reproduced by the couplings in (1), (3),
(6), and (9). In the next subsection, wewill demonstrate that
the string amplitudes of all other states at order α02 are
exactly reproduced by the couplings in (1), (3), (6), (9),
(10), (11), and (13).

A. S-matrix elements in field theory

In this subsection, we calculate the S-matrix elements in
field theory. Since the couplings in the heterotic theory
involve the Chern-Simons three-form Ω, which is
expressed in terms of frame fields eμμ1 and their partial
derivatives, and the closed string theory amplitudes result-
ing from the KLT prescription involve the polarization of
the graviton ϵμν, we need to expressΩ in terms of the metric
and its partial derivatives. The metric can then be perturbed

as Gμν ¼ ημν þ κhμν. In calculating the S-matrix elements
in field theory, we also need to write the fluctuation of the
B-field as κb.
By taking partial derivatives of the relation

eμμ1eνν1ημ1ν1 ¼ Gμν, we can determine the following:

∂αeβμ1eγμ1 þ ∂αeγμ1eβμ1 ¼ ∂αGβγ: ð55Þ

Then one can assume that the two terms on the left-hand
side above are identical. In this case, we have the relation:

∂αeβμ1eγμ1 ¼
1

2
∂αGβγ: ð56Þ

Using this relation, we can express Ω as:

Ωαβγ¼Gκ½δGϵ�η
∂κG½αη∂γ∂δGβ�ϵ

þGδθGϵτGμκ

�
1

2
∂δG½γμ∂ϵGβκ∂θGα�τ

þ1

4
∂½αGθτ∂γGδκ∂ϵGβ�μþ

1

6
∂ϵG½γμ∂θGατ∂κGβ�δ

�
: ð57Þ

where the subscript antisymmetrization of indices is
between α, β, and γ. Note that Ω has at least two gravitons.
The four-point function has both contact terms and

massless pole contributions in which the graviton and/or
B-field propagate between two vertices in the latter cases.
Using the leading-order action (1), one finds the following
graviton and B-field propagators:

ðG̃hÞμν;λρ ¼
1

2k2

�
ημληνρ þ ημρηνλ −

1
D
2
− 1

ημνηλρ

�
;

ðG̃bÞμν;λρ ¼
1

2k2
ðημληνρ − ημρηνλÞ; ð58Þ

where kμ is the momentum of the graviton or B-field in
the propagator, and we have used a Euclidean signature
spacetime metric in which the partition function is
Z ∼

R
e−S.

1. Four B-fields amplitude

The contact term of four B-fields at order α02 in the
heterotic action (13) produces the following one-trace
terms in the field theory amplitude:

AH
contact ¼

κ2α02

128
tðs2 þ stþ t2ÞTrðϵ1ϵ3ϵ4ϵ2Þ

þ κ2α02

128
sðs2 þ stþ t2ÞTrðϵ1ϵ4ϵ2ϵ3Þ

−
κ2α02

128
ðs3 þ 2s2tþ 2st2 þ t3ÞTrðϵ1ϵ4ϵ3ϵ2Þ

þ � � � ; ð59Þ
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where dots represent the two-trace terms and terms in
which momenta are contracted with the polarization tensors
that we are not interested in.
The pole amplitude resulting from two vertices at order

α0 and one propagator in between produces the following
one-trace terms in the amplitude:

AH
pole ¼ Ṽ4ðbbhÞG̃hṼ4ðhbbÞ

¼ κ2α02

128
ð−s3−u3ÞTrðϵ1ϵ3ϵ4ϵ2Þ

þ κ2α02

128
sðs2þ3suþ3u2ÞTrðϵ1ϵ4ϵ2ϵ3Þ

þ κ2α02

128
uð3s2þ3suþu2ÞTrðϵ1ϵ4ϵ3ϵ2Þþ �� � : ð60Þ

Note that there is no pole in the one-trace terms. The
subscript 4 in the vertex means it has four momenta.
Additionally, there are no couplings between two B-fields
and one graviton in the action (13) at the six-derivative
order. Hence, there is no amplitude with the structure
Ṽ2ðbbhÞG̃hṼ6ðhbbÞ. By summing the terms AH

contact and
AH
pole, one finds that they are exactly the same as the

corresponding amplitude in (50).
The contact term of four B-fields at order α02 in the

bosonic action (6) produces the following one-trace terms
in the field theory amplitude:

AB
contact ¼

κ2α02

16
stu½Trðϵ1ϵ3ϵ4ϵ2Þ þ Trðϵ1ϵ4ϵ2ϵ3Þ

þ Trðϵ1ϵ4ϵ3ϵ2Þ� þ � � � : ð61Þ

The pole amplitude resulting from two vertices at order α0
and one propagator in between produces the following one-
trace terms in the amplitude:

AB
pole ¼ Ṽ4ðbbhÞG̃hṼ4ðhbbÞ

¼ κ2α02

32
ð−s3−u3ÞTrðϵ1ϵ3ϵ4ϵ2Þ

þ κ2α02

32
sðs2þ3suþ3u2ÞTrðϵ1ϵ4ϵ2ϵ3Þ

þ κ2α02

32
uð3s2þ3suþu2ÞTrðϵ1ϵ4ϵ3ϵ2Þþ �� � : ð62Þ

Here, also, there are no couplings between two B-fields and
one graviton in the action (6) at the six-derivative order.
Hence, there is no amplitude with the structure
Ṽ2ðbbhÞG̃hṼ6ðhbbÞ. By summing the terms AB

contact and
AB
pole, one finds that they are exactly the same as the

corresponding amplitude in (50).

2. Two B-fields amplitude

The contact terms of two B-fields and two gravitons at
order α02 in the heterotic action (13) produce the following
one-trace terms in the field theory amplitude:

AH
contact ¼

κ2α02

128
sðs2þ2stþ2t2ÞTrðϵ1ϵ3ϵ4ϵ2Þ

þ κ2α02

64
sðs2þ2stþ2t2ÞTrðϵ1ϵ4ϵ2ϵ3Þ

þ κ2α02

128
sðs2þ2stþ2t2ÞTrðϵ1ϵ4ϵ3ϵ2Þþ �� � : ð63Þ

The pole amplitude resulting from two vertices at order α0
and one propagator in between produces the following one-
trace terms in the amplitudes:

AH
1pole¼ Ṽ4ðbbhÞG̃hṼ4ðhhhÞ

¼ κ2α02

128
s3½Trðϵ1ϵ2ϵ3ϵ4ÞþTrðϵ1ϵ2ϵ4ϵ3Þ�þ �� � ;

AH
2pole¼ Ṽ4ðhbhÞG̃hṼ4ðhbhÞ

¼ κ2α02

128
t3½Trðϵ1ϵ2ϵ3ϵ4Þ−Trðϵ1ϵ4ϵ2ϵ3Þ�

þ κ2α02

128
u3½Trðϵ1ϵ2ϵ4ϵ3Þ−Trðϵ1ϵ4ϵ2ϵ3Þ� � � � ;

AH
3pole¼ Ṽ4ðhbbÞG̃bṼ4ðbbhÞ

¼ κ2α02

128
t3½Trðϵ1ϵ2ϵ3ϵ4ÞþTrðϵ1ϵ4ϵ2ϵ3Þ�

þ κ2α02

128
u3½Trðϵ1ϵ2ϵ4ϵ3ÞþTrðϵ1ϵ4ϵ2ϵ3Þ� � � � : ð64Þ

Note that since the Chern-Simons three-form in (57) has at
least two gravitons, the pure gravity couplings at order α02

in (9) have no three-graviton vertex, i.e., Ṽ6ðhhhÞ ¼ 0.
Moreover, we have used the fact that Ṽ2ðhbhÞ ¼ 0. By
summing the terms AH

contact, AH
1 pole, A

H
2 pole, and AH

3 pole, one
finds that they are exactly the same as the corresponding
amplitude in (52).
The contact terms of two B-fields and two gravitons at

order α02 in the bosonic action (6) produce the following
one-trace terms in the field theory amplitude:

AB
contact¼

κ2α02

64
sð3s2þ4stþ4t2ÞTrðϵ1ϵ3ϵ4ϵ2Þ

þκ2α02

16
sðs2þ2stþ2t2ÞTrðϵ1ϵ4ϵ2ϵ3Þ

þκ2α02

64
sð3s2þ4stþ4t2ÞTrðϵ1ϵ4ϵ3ϵ2Þþ���: ð65Þ
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The pole amplitude resulting from two vertices and one
propagator in between produces the following one-trace
terms in the amplitudes:

AB
1pole ¼ Ṽ4ðbbhÞG̃hṼ4ðhhhÞ

¼ κ2α02

32
s3½Trðϵ1ϵ2ϵ3ϵ4Þ þTrðϵ1ϵ2ϵ4ϵ3Þ� þ � � � ;

AB
2pole ¼ Ṽ4ðbhbÞG̃bṼ4ðbhbÞ

¼ −
κ2α02

32
sðs2 þ 3suþ 3u2ÞTrðϵ1ϵ4ϵ2ϵ3Þ

þ κ2α02

32
u3Trðϵ1ϵ3ϵ4ϵ2Þ þ

κ2α02

32
t3Trðϵ1ϵ4ϵ3ϵ2Þ � � � ;

AB
3pole ¼ Ṽ2ðbbhÞG̃hṼ6ðhhhÞ

¼ −
3κ2α02

64
s3½Trðϵ1ϵ2ϵ3ϵ4Þ þTrðϵ1ϵ2ϵ4ϵ3Þ�

þ � � � : ð66Þ

Note that in the bosonic action at order α02 in (6), there is a
nonzero three-graviton vertex which has been used in the
last relation above. By summing the terms AB

contact, AB
1 pole,

AB
2 pole, and AB

3 pole, one finds that they are exactly the same
as the corresponding amplitude in (52).

3. Three B-fields amplitude

The contact terms of three B-fields and one graviton at
order α02 in the heterotic action (11) produce the following
one-trace terms in the field theory amplitude:

AH
contact ¼−

κ2α02

128
ðs−uÞðt2þ suÞTrðϵ1ϵ3ϵ4ϵ2Þ

þ κ2α02

128
ð−tþuÞðs2þ tuÞTrðϵ1ϵ4ϵ2ϵ3Þ

þ κ2α02

128
ðs− tÞðstþu2ÞTrðϵ1ϵ4ϵ3ϵ2Þþ �� � : ð67Þ

The pole amplitude resulting from two vertices at order α0
and one propagator in between produces the following one-
trace terms in the amplitude:

AH
pole ¼ Ṽ4ðbbhÞG̃hṼ4ðhbhÞ

¼ −
κ2α02

128
ðs3 − u3ÞTrðϵ1ϵ3ϵ4ϵ2Þ

þ κ2α02

128
ð−t3 þ u3ÞTrðϵ1ϵ4ϵ2ϵ3Þ

þ κ2α02

128
ðs3 − t3ÞTrðϵ1ϵ4ϵ3ϵ2Þ þ � � � : ð68Þ

One finds that the sum of AH
contact and AH

pole is exactly the
same as the corresponding amplitude in (53).

4. One B-field amplitude

The odd-parity effective action (11) contains no coupling
involving a single B-field. However, the odd-parity cou-
plings in (10), resulting from replacing the nonstandard
B-field strength in the Meissner action, do involve a single
B-field. The contact term of three gravitons and one B-field
at order α02 in the heterotic action (10) produces the
following one-trace terms in the field theory amplitude:

AH
contact ¼−

κ2α02

128
ðs−uÞðt2þ suÞTrðϵ1ϵ3ϵ4ϵ2Þ

−
κ2α02

128
ðs− tÞðu2þ stÞTrðϵ1ϵ2ϵ4ϵ4Þ

þ κ2α02

128
ðt−uÞðs2þ tuÞTrðϵ1ϵ3ϵ2ϵ4Þþ �� � : ð69Þ

The pole amplitude resulting from two vertices at order α0
and one propagator in between produces the following one-
trace terms in the amplitude:

AH
pole ¼ Ṽ4ðhhhÞG̃hṼ4ðhhbÞ

¼ −
κ2α02

128
ðs3 − u3ÞTrðϵ1ϵ3ϵ4ϵ2Þ

−
κ2α02

128
ðs3 − t3ÞTrðϵ1ϵ2ϵ3ϵ4Þ

−
κ2α02

128
ðu3 − t3ÞTrðϵ1ϵ3ϵ2ϵ4Þ þ � � � : ð70Þ

One finds that the sum of AH
contact and AH

pole is exactly the
same as the corresponding amplitude in (53). This confirms
our observation that the 4-point functions in the effective
actions of the bosonic and heterotic theories at order α02 are
consistent with the corresponding 4-point sphere-level
S-matrix elements at order α02.

IV. CONCLUSION

In this paper, using appropriate field redefinitions, we
have expressed the even-parity couplings in the effective
actions of both the bosonic string theory and the heterotic
string theory at order α02 in a canonical form where the
dilaton appears only as the overall factor. These couplings,
which have recently been discovered through T-duality, can
be represented as (6) and (13), respectively. Additionally,
we demonstrate that the cosmological reduction of the
couplings in the bosonic theory, as well as the even- and
odd-parity couplings in the heterotic theory, satisfy the
Oðd; dÞ symmetry in the proposed canonical form put
forward in [29,30]. This achievement is accomplished
by incorporating appropriate one-dimensional total deriva-
tive terms and utilizing suitable one-dimensional field
redefinitions.
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Since the original couplings were derived by imposing the
T-duality symmetry Oð1; 1Þ on the most general covariant
couplings [15,16], it is expected that the cosmological
couplings remain invariant under Oðd; dÞ transformations.
To further confirm the couplings, we extensively examine
them by comparing the 4-point S-matrix elements in the
effective actions at order α02 with the corresponding sphere-
level S-matrix elements in string theory. Remarkably, we
establish an exact agreement between these two S-matrix
elements.
The aforementioned S-matrix calculations provide

confirmation of the couplings in field theory at order
α02 that involve two, three, and four B-fields. Additionally,
the couplings described in (6) and (13) involve six
B-fields as well. To validate these couplings through
S-matrix elements, it is necessary to determine the 6-point

sphere-level S-matrix elements of NS-NS vertex operators
in both the bosonic and heterotic theories, and then
expand them to isolate the terms at order α02. By employ-
ing the KLT prescription [37], one needs to calculate the
6-point disk-level S-matrix element of gauge bosons in
the bosonic and superstring theories, and subsequently
obtain its α0-expansion. Such calculations have been
conducted in [39] for superstring theory. Therefore, it
is necessary to find the 6-point disk-level S-matrix
element in the bosonic theory and determine its
α0-expansion. Utilizing the KLT prescription, one can
then deduce the NS-NS S-matrix elements at order α02.
These calculated S-matrix elements should align with the
corresponding S-matrix elements in the effective actions
at order α02. The detailed calculations for this procedure
are left for future work.
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