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Recent progress in string theory has unveiled the discovery of Neveu Schwarz-Neveu Schwarz
couplings in bosonic and heterotic effective actions at order a'?>, which were achieved by imposing
O(1, 1) symmetry on the circle reduction of classical effective actions. While the bosonic theory features
25 couplings, the heterotic theory encompasses 24 parity-even and 3 parity-odd couplings, excluding the
pure gravity couplings. In this study, we redefine the even-parity couplings in the bosonic and heterotic
theories through the application of appropriate field redefinitions, resulting in 10 and 8 couplings,
respectively. To establish the validity of these couplings, a cosmological reduction is conducted,
demonstrating that the cosmological couplings in the heterotic theory vanish, subject to one-dimensional
field redefinitions that include the lapse function and total derivative terms. Additionally, it is observed
that the cosmological couplings in the bosonic theory can be expressed as tr(S6). These results are
consistent with existing literature, where such behavior is attributed to the pure gravity component of the
couplings. Furthermore, the consistency of the obtained couplings with 4-point string theory S-matrix

elements is confirmed.
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I. INTRODUCTION

The spectrum of quantized free closed strings encom-
passes both massless states and an infinite tower of massive
states. Among these massless states, a notable one is the
spin-2 state, which showcases the potential of string theory as
a promising candidate for a consistent theory of quantum
gravity. To delve into physics within this framework, it is
convenient to employ an effective action that incorporates
only the massless fields. The influence of the massive fields is
revealed through higher derivatives of the massless fields,
commonly known as o-corrections, which encompass
classical and loop corrections. Determining these actions
can be achieved through various approaches, such as the
S-matrix method [1,2], the sigma-mode method [3.,4], or by
exploring different symmetries in string theory. In the past,
the imposition of local supersymmetry on the effective action
has been utilized to derive leading-order classical effective
actions in superstring theories (see, for example, [5]). This
local symmetry, which necessitates the consideration of both
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bosonic and fermionic fields within the theory, can also be
employed to study the ' corrections [6-8].

Another intriguing symmetry in perturbative bosonic
string theory or superstring theory is T-duality [9,10], which
arises when the theory is compactified on a torus. When
integrating out the massive modes, T-duality emerges as a
symmetry in the effective actions. It has been demonstrated
in [11,12] that the dimensional reduction of the classical
effective actions of bosonic string theory and heterotic string
theory at each order of @ remains invariant under O(d, d, R)
transformations. By assuming that the classical effective
actions of string theory are background independent [13], it
becomes possible to explore a specific closed background
featuring a circular dimension. Applying the nongeomet-
rical O(1,1,Z) symmetry to the circular reduction of the
independent covariant and gauge invariant couplings in
closed spacetime manifolds allows us to determine the
coefficients of background-independent couplings for
closed spacetime manifolds. This technique has proven
successful in determining the Neveu Schwarz-Neveu
Schwarz (NS-NS) couplings in closed spacetime manifolds
up to order o> [14-18].

At the leading order of o, T-duality reproduces the
standard effective action, given by

SO = —32 / dPxe /-G <R +4V,pVig — 1H2).
K 12
(1)
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At higher orders of «, and for closed spacetime manifolds
that have no boundary where data would be present, there is
freedom in utilizing the most general higher-derivative
field redefinitions [1,19-21]. If this freedom is employed
|

to construct the 8 independent parity-even covariant
couplings at order o, T-duality determines their background-
independent couplings up to one overall factor, as demon-
strated in [14],

1. 1 1 ‘
5 / dPxe?\/-G (RaﬁyaR"/’V‘s - EH(,‘S‘H‘WRM& + ﬁHeégHeaﬁHﬁ,;HC = gHaﬁﬁH"ﬁrHﬁ H5€§> )

The above action is the Metsaev-Tseytlin action [22], derived from the S-matrix elements. For the bosonic string theory,

a; = 1/4, and for the heterotic theory, it is a; = 1/8.

There are various other forms for the effective action at this order that are related to the above action through field
redefinitions, such as the action in the Meissner scheme [23], which is given by
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where Rp = R.,sR?"° — 4ARR,5 + R* represents the
Gauss-Bonnet couplings.

Using the most general higher-derivative field redefinition
freedom, it is found that at order o/, there are 60 independent
parity-even covariant couplings in closed spacetime mani-
folds [21]. To determine their background-independent
couplings through T-duality, the effective action at order
|
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« is required, as it demonstrates the observation that the form
of the effective action at order o> depends on the form of the
effective action at order o [24]. Choosing (2) for the effective
action at order o/, the T-duality fixes the coefficients of the 60
parity-even couplings at order > in bosonic string theory as
follows [15]":
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"Note that there is a typo in the overall coefficient of Sl(\,zl)TB in [15], i.e., the factor a; in [15] should be a%.
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where a; = 1/4. To compare the above couplings with the
S-matrix elements, it is appropriate to change the order &
action (2) to the Meissner scheme (3), where the graviton
propagator does not receive o corrections. By using
|

field redefinitions at order o that transform the action
(2) to the action (3), we have discovered that the same field
redefinitions also transform the action (4) to the following
action:
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It has been shown in [16] that if one chooses (3) for the
effective action at order o/, the T-duality fixes the coef-
ficients of the 60 parity-even couplings at order > in
bosonic string theory to exactly match the above couplings.

One can still use field redefinitions that only change the
fields at order /2. Such field redefinitions do not alter the
form of the Meissner action at order «, but they do affect
the form of the couplings in (5). Since the final form of the
couplings and the field redefinitions are not known, we
need to consider a specific form for the couplings and check
if there are corresponding field redefinitions. Calculations
|
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for the couplings at order o> have been performed in [18].
It has been observed that there are schemes in which the
dilaton appears in the couplings only as the overall factor
e~2®. We also observe that such schemes exist at order o>,
To determine the form of the other couplings that involve
only the Riemann curvature, H, and VH, we utilize trial
and error to find the minimum number of couplings as in
[18]. We have discovered that there exist field redefinitions
such that the above 27 couplings can be expressed in terms
of the following 12 couplings:
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Note that the Riemann-cubed terms and the six-H terms
with a coefficient of 1/12 are invariant under field
redefinitions, so these terms appear in three different forms
of the couplings in Eqs. (4)-(6). We expect the above action
to be the simplest form of the couplings in the bosonic

(6)

string theory at order o>, such that its corresponding

couplings at order o are described by the Meissner
action (3).

The heterotic string theory has 496 gauge vector fields
as well as NS-NS fields. This theory exhibits a gauge
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anomaly, which can be canceled by assuming the gauge
group to be SO(32) or Eg x Ejg, and by allowing the B-field
to undergo nonstandard gauge transformations and local
Lorentz transformations [25]. In this paper, we specifically
consider the case of zero gauge field. Under the nonstand-
ard local Lorentz transformation for the B-field, the B-field
strength in Egs. (1), (2), or (3) needs to be replaced by a
new field strength that is invariant under these nonstandard
local Lorentz transformations, i.e.,

where the Chern-Simons three-form € is

2
— vy Hi — v ay Hi-
Qﬂba a)[ﬂﬂl 5,/(1)0,],/1 + 3 w[ﬂﬂ] a)W] wa]al ’
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where a; = 1/8.

There are no independent odd-parity couplings at order o
that do not involve Q. However, at order o2, there are 13
independent odd-parity couplings in closed spacetime mani-
folds that do not involve € [16]. It has been shown in [26] that
|

) _ 2d%a?

where ¢,/1e,'n, , = G,,. Our index convention is that
u,v, ... are the indices of the curved spacetime, and
Uy,vy, ... are the indices of the flat tangent spaces.

The replacement of Eq. (7) into Eq. (1) yields the
following terms at order o/, which are parity-odd, and at
order o’?, which are parity-even:

(1) 2da; 10 20
S’ =—-—— d'"°xV-Ge™*®(-2H,,,, Q")
K
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S = - =51 / d10xy/=Ge 2 (=12Q,,, Q") (9)

The replacement of Eq. (7) into Eq. (3) produces the
following terms at order o/, which are parity-odd:

— / d'Oxv/—-Ge™?® [—4Ha/f7RQa,jy— 12H' Ry, 5.Q,% + 24H /° RV Q. 5
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(10)

I
the parity-odd term in Eq. (9) is invariant under T-duality.
However, it has been observed in [ 16] that the aforementioned
parity-odd couplings at order o> in (10) are not invariant
under T-duality. Therefore, T-duality necessitates the addition
of the following parity-odd terms to the theory [16]:

S5 5 / d'OxV/~Ge™® [4H“/f7H5€wavﬁHa5ﬂ ~ 2H P H" Rypey VF H . ©

K
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Note that the dilaton only appears as an overall factor, so we
do not attempt further field redefinitions to simplify it.

It has been observed in [16] that the parity-even
couplings at order a’?> in Eq. (9) are also not invariant
under T-duality. Therefore, T-duality necessitates the addi-
tion of other parity-even independent couplings that do not

(11)

|
involve Q. There are 60 such couplings [21]. By adding
these couplings with unfixed coefficients to the Q?-term in
Eq. (9), and utilizing the Meissner action in Eq. (3), along
with the odd-parity coupling in Eq. (9) for the couplings at
order o, T-duality fixes the 60 couplings to be the
following [16]:
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Note that the aforementioned couplings do not include the Riemann-cubed terms, which are consistent with the sphere-level

S-matrix elements in string theory [27].

Since the aforementioned couplings involve derivatives of the dilaton, we perform field redefinitions that only involve
terms at order o> to simplify these couplings. We have succeeded in transforming the aforementioned 24 couplings into the

following 8 couplings:

S5

—2H,"H 'Ry R, + 2HP'H**R 0" R

1
+3 H,**HP'N Hy,, V' Hp*

In the rest of this paper, our objective is to examine the
couplings in Eq. (6) within the bosonic string theory, as
well as the couplings in Eq. (11) and Eq. (13) within the
heterotic theory. We achieve this in Sec. II by studying the
cosmological reduction of these couplings and demonstrat-
ing their invariance under O(d,d) transformations.
Furthermore, in Sec. III, we compare these couplings with
the 4-point sphere-level S-matrix elements and find exact
consistency between the field theory and string theory
S-matrix elements. We have used the “xAct” package [28]
for performing our calculations in this paper.

II. CONSISTENCY WITH COSMOLOGICAL
SYMMETRY

When applying cosmological reduction to the classical
effective action, the resulting one-dimensional effective
action should exhibit O(d,d,R) symmetry [11,12]. By
utilizing various one-dimensional equations of motion,
including the equation of motion for the lapse function,
and employing integration by parts, it has been demon-
strated in [29,30] that the cosmological reduction of the

Zalza% 10 \/— -2 1 Ok ryofy ALy u T 1
——T d'"xv—-Ge _ﬁHa H Hﬁe Hy chy Hj. + 7

YHKA T

1 HaﬂHHaﬁyHyKAHGﬂyHKMTHﬁw

1
2H,"H"Ry" /Roje — 5 H*"HY*N ,Hps"V,H .,

+ H"H'N H VP H o' | (13)

classical effective action of string theory at order o and
higher can be expressed in a scheme where only the
first time-derivative of the generalized metric S appears.
The couplings involving tr(S?) can be eliminated through
a lapse function transformation, and the trace of an
odd number of first derivatives of S vanishes [30].
Consequently, the one-dimensional action can be expressed
in a canonical form as the following expansion [29,30]:

2 . .
ngf = S(L] - F/ dte_¢(a'c2,0tr(54) -+ a’zc3,0tr(56)

+ &3[eg otr(S%) + ey 4 (tr(8))]
+ @*es otr(8'0) + ¢5, (SO (SH] + ). (14)

In the above action, the coefficients c¢,,, depend on the
specific theory. For example, ¢, and c; are nonzero for
the bosonic string theory, while these numbers are zero for
the superstring theory. The lapse function in the afore-
mentioned action is set to n = 1. By examining the
cosmological reduction of only the pure gravity compo-
nents of the couplings in various theories, one can
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determine the coefficients c,,,. These coefficients up to
order o> have been determined in [31].

Using the equations of motion and integration by parts is
equivalent to employing the most general field redefinitions
and disregarding total derivative terms. Therefore, any pro-
posal for the classical effective action of string theory should
be expressed in the canonical form given by Eq. (14) after
applying cosmological reduction, utilizing the most general
one-dimensional field redefinitions, including the lapse func-
tion, and neglecting the one-dimensional total derivative
terms. The NS-NS couplings at order o> in superstring
theory, which were derived in [17], have been shown to
exhibit a cosmological reduction that can be written in the
aforementioned canonical form [32]. Furthermore, the cou-
plings at order o’ in the bosonic string theory, as presented in
Eq. (4), and their corresponding couplings at order o', which
are described by the Metsaev-Tseytlin action in Eq. (2), have
been shown to undergo a cosmological reduction that can be
expressed in the canonical form [33]. We have observed that
the cosmological couplings at order &> in bosonic string
theory, as described in Eq. (6), and their corresponding
couplings at order , which are governed by the Meissner
action in Eq. (3), exhibit the same canonical form. This result
is not surprising, as the two action forms are connected solely
through field redefinitions. We have also performed calcu-
lations for the heterotic couplings presented in Eq. (9),
Egs. (10), (11), and (13), and obtained similar outcomes.

If the classical effective action has the following
o' -expansion:

Setr = Zalmsm =Sy +dS; +a?S, +a?*S5+---.  (15)
m=0
The corresponding cosmological reduction would be:

Sse(w) =Y ™S, (y)
m=0

=S§(y) +a'S{(y) + a”S5(y)
+aB3S5(y) + - (16)

Here, y collectively represents the one-dimensional func-
tions. The cosmological reduced actions S (y) are not
invariant under O(d, d)-transformations unless one uses
appropriate one-dimensional field redefinitions w —
w + a'dyV) + o6y + .- -, and includes total derivative
terms J. The O(d, d)-invariant action S¢; should also have
the following «’-expansion:

See(w) =D ™S5 (w)
m=0

= S§(w) + &S (y) + a?S5(w)
+aBS5(y) + . (17)

If one uses the replacement y — y + o' dy'V) + a2y + .-
in the actions S§, and then expands the actions in powers
of o/, one would find the following relations between
the expansions and the O(d, d)-invariant actions up to
order o’?:

8§ =S5 (w) +6,S5(w) + T 1.

|
S5 =85(y) +6,8{(w) + 3585 (W) + &:85(w) + T2, (18)

where §; on the action indicates that the action contains
the first-order perturbation Sy, and 67 on the action
means the action contains the second-order perturbation
Sy Dyl We have also used the o’-expansion of the total
derivative terms as J = > % a7 ,,.

Since one-dimensional field redefinitions involve the
lapse function, and the lapse function appears nontrivially
in the cosmological reduced actions S¢,, it is difficult to use
the above relations to determine the O(d,d)-invariant
actions S5,. However, O(d,d)-covariance requires this
function to appear in the O(d,d)-invariant form of the
action by replacing the measure of the integral as
dt — dt/n®*=1) where 2k is the number of time-derivatives
in the action. For example, the lapse function in S is
modified as dt — dt/n>. Hence, itis appropriate to relate the
perturbation of the cosmological reduced action to the
perturbation of the O(d, d)-invariant actions. This allows
us to find the relations between the expansions of
O(d, d)-invariant action S§, in terms of perturbations of
O(d, d)-invariant actions S, for p < m. These relations, up
to order o2, are as follows [33]:

S§ =S5 (w) +6,S5(w) +T1.

, . . I, ,
85 =S5 (w) +8157(y) =3 81S5(v) +8:85(w) + To. - (19)

In this section, we are going to demonstrate that when the
cosmological reduction of the effective actions up to order o>
is inserted into the above expressions, they satisfy the O(d, d)
symmetry and can be written in the minimal form of (14).

A. Cosmological symmetry at the leading order

In this subsection, we review the O(d, d) or cosmologi-
cal symmetry of the leading-order action [23,34-36]. When
fields depend only on time, it is possible to write the metric,
B-field, and dilaton using the gauge symmetries as follows:

o (N ) (3

1
20 = ¢ + 5 log det(G). (20)
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where the lapse function n(#) can also be fixed to n = 1.
The cosmological reduction of the action in (1) then
becomes:

3
S§ ———/dte [ B; B‘J—ZG G — GG
- qbz GIJGU:| , (21)

where G = G*G'G,,;. Removing a total derivative term,
one can write S§ as

S5 =85+ T

= ——/dte [ BB +4G G’J—qﬁz] (22)

Using the generalized metric S which is defined as

where 7 is the metric of the O(d, d) group which in the
nondiagonal form is

0 1
= , 24
(1 o) 4
one can write the action (22) as
¢ 2 | _ 42 1 @
SO = —F dte —¢ - gtr(S ) . (25)

This action is invariant under global O(d, d) transforma-
tions. The lapse function can be incorporated into the action
(25) by replacing dr with dt/n.

B. Cosmological symmetry at order o

In this subsection, we will demonstrate that the cosmo-
logical reduction of the couplings in (3) and the odd-parity
couplings at order @ in (9) can be expressed in an O(d, d)-
invariant form by employing suitable one-dimensional field
redefinitions and incorporating total derivative terms.

-1 e
S—n < G 1 G Bl )’ (23) Using the reductions in (20), we obtain the following
BG™ G-BG™B cosmological reduction for the actions at order «':
|
2(1 3. ... 1. ... . 1. . . 1. ... .
Si=—"3 [ die” { o BIBUB)! By — 2 ByBYByBY + L BYBNGyu Gy + S BIBIG Gy
TG RGIG Gy — B BIGGH + LG GGG+ BABIG i+ L BB
—gYi i On = g Bib GG+ 1 G WG+ b jk¢+§ iB"¢
1. i a4 ki Y kil i 1. i 23
=3 GG =+ GFGIG + 22§ + GFGIGG — 5 GGG~ G
-GYG;iG' + 299 G'; - ZGile](Gli>2 - §¢2<Gli)2 + §¢(G’i)2 - Z¢(Gli)3
=5 GyGIG; + §267; + 961G + 5 (G261 - BIGHE jk] , (26)
where we have used the gauge n = 1. It is important to note 2 d, _,
that the last term above corresponds to the cosmological T = 2 dt% (e7"Th) (27)

reduction of the odd-parity term in (9). The above action is
not invariant under O(d, d) transformations. For example,
it contains Gii, which is not invariant. Some of the
noninvariant terms are total derivative terms that should
be eliminated. Additionally, the action expressed in
terms of the variables G;;, B;;, and ¢ is not invariant. It
should be invariant in terms of altemative variables that
involve higher derivatives of G;;, B;;, and ¢. Therefore, one
needs to employ one-dimensional higher-derivative field
redefinitions.

To eliminate the total derivative terms from (26), we
incorporate additional terms with arbitrary coefficients,
which are total derivatives at order «'. The following total
derivative terms are included:

where 7, encompasses all possible terms at the three-
derivative level, constructed from ¢, B, G, ¢, B, G, and
so on.

One can perform a change of field variables in (20) as
follows:

(1)
Gij - Glj +0/5Gij s
(1)
Bl] - B” ‘l‘ aléBij ,
b ¢+ o)

n—n+aént), (28)
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Here, the matrices 5Gl<.}), 535}), 8¢V, and 6n'") consist of
all possible terms at the 2-derivative level, constructed from
&, B, G, ¢, B, G. When the field variables in S§ are
transformed according to the aforementioned field redefi-
nitions, they give rise to certain couplings at order &’ and
higher. In this section, our focus lies on the resulting

couplings at order o, i.e.,

2 1o 1. ... .
5,85 = —F/dte“l’ {5;1(1) (—ZBUB‘J —ZGUG’/ +¢2>

1. ... 1. ... . . d
W _ZB.Bi__¢G..Gl 2) 250
+6¢ < 4B,JB 4G,JG +¢) 2¢dt5¢

TR W
+8G.)) <—§Bk1B"’ —EG,/G'G)

1...d 1. .d
+§GIJE(SG§}> +ZB’~’dt(SB§}>] : (29)

where we have utilized the fact that the lapse function
appears in the action (22) through the replacement
dt — dt/n.

By employing the field redefinitions and incorporating
the total derivative terms, one can express S{ 4 6;5{ in
various O(d, d)-invariant forms. However, if one wishes to
write it in the canonical form given by (14), certain
constraints need to be imposed. These constraints require
that S| + 6, 5§ only includes first derivative terms, does not
contain derivatives of the dilaton, and does not include the
trace of two B or G terms. By imposing these constraints,
one finds that the following field redefinitions can be
employed:

1. ... 1. ... 1.
snl) = a, (—ZBUB” =466 +5¢2),

5 (1) — ﬂ .2,

P =2

5Gl<,}) = —a (Bik - Gik)(Bjk - ij)’

6BY)) = a\(B*Gy — B Gy). (30)

Then, up to some total derivative terms, the cosmological
action at order o can be expressed as follows:

2,2
_20%a

K

S¢ =S¢+ 5,85+ T,

2a L., ... . |
= ——Kzl dte_¢ |:§BikBl]leBk[ _ZBl]BleikGﬂ
1., ... . 1., ... .
+ 3 BIBIGGy + S GFGIG Gy . (31)

The total derivative terms can be ignored as they have no
impact on the calculations at order o’.

Now, by utilizing the definition of the generalized metric
in (23), we can find the following expression:

tr(8*) = 2B*BVB,'B;, — 4BUBY G, G, + 8B/ B G ' Gy
+2G GGGy (32)

Using the aforementioned O(d, d)-invariant expressions,
we can express (31) as follows:

/ dte~?tr(SY). (33)

This expression is consistent with the cosmological action
in (14) with c¢yo=a;/16 =1/27. For bosonic string
theory, the calculations remain the same, except that there
are no odd-parity terms in (26) and in the G;;-field
redefinition in (30). Therefore, for the bosonic theory,
€20 =a;/16 =1/2°%. These results coincide with those
found in [31] through the study of pure gravity parts of the
couplings. The lapse function can be incorporated into the
above action by replacing dt with dt/n>.

2611

1= 7160

C. Cosmological symmetry at order o’

In this section, we are going to show that, up to one-
dimensional field redefinitions and total derivative terms,
the cosmological reduction of the couplings in Egs. (9),
(10), (11), and (13) at order o> in the heterotic theory, and
the cosmological reduction of the couplings in Eq. (6) in the
bosonic theory, can be written in the canonical form given
by Eq. (14).

By using the reductions in Eq. (20), and the following

reduction for e e

= (" o) o

j» we obtain the following cosmo-

logical reduction for the actions at order ’? in the heterotic
theory:

where eiilejjlniljl = Gi

. T R
i) = 3 /dte_(/) |:2GUGkIGiijl_2GikGl]Glekl .
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2a%a? 3 | T 3,

S5l = “K2 / dte‘¢[—ZBi"B’JBj’Bk’”B,"an—ZBijB’/Bk’"B"’Bl’zan—EBi"B’/B,”B”"Gijk,,
- EBikBl]leankaGln + ZBI']BleimGj”kaGln + EBikBl]leBkalnGmn - BiBMG GGGy

1, 1. 3 3 AU
+ 2B KBIGIG GGy — 4 B/}*BVB'B},G,,,G™ — EB”B“B,-,{B o= EB["B”B !By + 5B BUB"™G 1By,
- B*BIB;'G"B,, — 2B"B"G"G,,,G; + 2BUB" G, G, + 2B*BIG' Gy — 2B*BIG, GGy,
" zBikalGiijnlc';,,,,} |
c(2) 20’/22 —¢ 31 k Im i k32 iy ks iy ke

Si6) =~ dre™ |2 BIGKG,,,G" G — ABIG KPP Gy — 2BIG G G | — BIGHG GGy
+3B}BIB GGy + EBijB”Blekalm +ABIGKG i — 2BYIG PG (G)! - EB’«’Gi"ij(G)’ (G
+ ZBijGiijk<G>lli| )

S = “K / dte=[-2B}BIB™G GG, + BBIG G By, — BB GG "By, — 2B} BIB Gy,
+ 2BEBIBMG Gy, — 2BRBIB GG (35)

In the above action, we have chosen the gauge n = 1. It is
obvious that the sum of the above actions, i.e., S§ =
(S% 4 85%) 4 <) 4 ¢y /52 i not invariant under
O(d, d) transformations. It should be invariant after adding
one-dimensional total derivative terms and using field
redefinitions.

We add the following total derivative term at order o
to S5:

2 d
j2 = —?/dta(e_‘ﬁfz), (36)

where 7, includes all possible terms at the five-derivative
level, which are constructed from (]), B, G, (i), B, G, ---.
We also make the following field redefinitions:

Gij = Gy +a/5G,)) + a”5G.,
b — ¢+ dsp) + 2592
n—n+aén) +o?6n?, (37)

where the first-order perturbations G J), 6Bl(-11-), sp), onh)

are g1ven 1n Eq. (30) and the second-order perturbations
3Gy, 6B, 61

ij °
four-derivative level constructed from ¢, B, G, ¢, B, G, - - -.
When the field variables in Sfj are changed according to
the above field redefinitions, they produce two sets of
couplings at order a’>. One set is produced by the first-order

perturbations at order %, i.e.,

) consist of all possible terms at the

5= [ et [5n(2) <_ VBB =160 4’52)
+ 5 (_ L -6, 00+ 5}52) ~ 22 5y
+ 6fo»> <_%Bijki _ %ij(';ki> + %Gij %5(;512)
+ %Bw‘ %535?] , (38)

which are similar to the first-order perturbation given in
Eq. (29), and the other set is reproduced by the second-
order perturbations, i.e.,
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1 2 W1d _1d 1d
—588 = — ~® |- — 6B — 8BV - — 5G,
2N =2 /dt {441 OBy & T3a%

4 56 —5¢ ¢
4 . d 1. . 1. .

- B 25856y — G 256G, 6Gy + 1 BUBMSG)6G) + Gl/leacE;)acj.?

L apiisGisGth +1G-kfo5G< lsg _ L i @ 5B\ 5n) L 4 56050
27! JoTTk Ty k’zd 27 dr Y

. d | | R
+24—60on) 42 BB 16GY)sn) + ;GG i6GY) nV

1. ... 1. ... . 1
+ (ZBUBU +1GijGU —¢2>5n<1)5ﬂ(1> + <8B B+ SGUGU __452>5¢ J5pth)

1...d . . d
—EG”—(SGE})&(I)+2¢E(S¢ 15p(1) + = B"B’J(SG VoD + - G"G’/5G Vg

di
L i L spsgn 4 13‘31@1(;..(;1‘]'_4,2 PROPIOLE (39)
27 dr Y 4700 4y

where the first-order perturbations are given in Eq. (30).

When the field variables in the O(d, d)-invariant action at order «, as given by Eq. (31), are changed according to the
field redefinition in Eq. (37), one also finds the following couplings at order ’? resulting from the first-order perturbation at
order o

c 2a1 -0 l"k'zd O Ypapig1 4 sp) _Laijore 19 sp) _Lpipue 4 o)

5151: K dl |: JGl‘ Gk ESBJ +2B B]B déBkl —EB]G G d 5Bkl EBJB GikaéGjl
d 1 d

+BkB”GldéG,(d>+ G"G”GldéG,(d)

o [ 3. 3.
+B’ka’G,-ijm5G§,‘,}—EBikBlijlemaGﬁjj ZG"G‘/G 1G,m5G\Y) — g BIBB, ' Buon) + 7 BIBYG,Gon)

Lo 1,
- EBl-/Ble,-mGk,,,éG‘. '~ B}BIGG/"6G,,, — 5 BFBYB,!B,"5G,)

3. 3. | P | |
- EB,»"B’JG /1GonV) — g GrGIG;'Gyon') — gBi"B’JB i Brog) + ZB’/B“GikG 6t — EB/‘B’/G /G o)

1. ...
—gG,-"G’JG/le&p“) , (40)

where we have used the fact that the lapse function appears in the O(d, d)-invariant action (31) by replacing dt with dt/n>.
By inserting the first-order perturbations at order o' (30) into (39), (40), and inserting the arbitrary first-order
perturbations at order /> into (38), one finds that the cosmological action (19) can be written as:

1
55:S§+515T—§5%56+5258+52:0, (41)

for some specific values of the parameters in field redefinitions and total derivative terms. Since we are not interested in
studying the couplings at order a’®>, we do not write the explicit form of the first-order field redefinitions at order
a'? here.
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For the bosonic theory, the calculations are the same except that the cosmological reduction of (6) is given by:

2a3

L LT
S5 =-S5 [ dte™® [EB,-"B’/BjIBk’"B,”an—l—ZB,-jB’/Bk’”B"’B,”Bm,,

K

48

+ 15 BiB"BuB" By B" + S B BIB"B" G}, Gy + 3 B BUB, B Gy G

~ 1 ByBUBYB" Gy, Gy, ~ T BIBNG G GGy, +  BEBUB B GGy,

_ EBikBlijlBkalnGmn

~ 3 BrBUG GGG+ G GGG GGGy

6

16

-3 BiyBB" B G "G,y + BUBYGy GGGy

1. i m ki n
1¢ BuBIGGHG Gy,

G,;GIG"GMG"G,,, + ZB,»"B’JB 'B,G,,, G™ — gB,-"B’ij’Gk,GmnGm"

+&GijGqulelenGmn+BuBleikle+ZBUBleijBkl+BikBl]leBkl

_ABABIBG By,

- EB,-"B’/B“"G B + BXBIB,'G," By, — 5 B;;BBN G By,

=~ GAGIG )+ 2BIBYG "Gy Gy — 2BTBYG Gy = 7 GIGM GGy + 5 GIGH GGy

5

~ 3 BABIG Gy + 3 GAGIG Gy + S BABIGG "Gy ~ 1 GAGI GGG,

~2BYBNG G "Gy ~ 5 G GIG GG+ ByBIG GG, — 1 BBIGLGH. (42)

Using the same steps as in the heterotic case, one finds:

. | R
S5 = S5+ 8157 ~ 5 5156 + 8256 + T

2
_2ay

=-g [ die™® [ﬁ BXBUB,B"B)"B,,, + { B BIB/B" G, Gy, — 5 BFBYB B Gy, G,

+ 3 BIBYGG GGy + 5 BABIB B G Gy~ 5 BIBYG GG G+ 5 BABIG GGGy

+55 G,»kG’ij’kaG,"Gmn} ,

2 -1 .
= —-— | — _¢ 6
2 <3 » 26> /dte tr(S°),

for some specific values of the parameters in field rede-
finitions and total derivative terms. It is consistent with the
cosmological action given by Eq. (14). The results in
Egs. (41) and (43) coincide with those found in [31]
through the study of the pure gravity parts of the couplings.
This concludes our illustration that the couplings in Eq. (6)
in the bosonic string theory, as well as the couplings in
Eq. (11) and Eq. (13) in the heterotic theory, are consistent
with the cosmological symmetry.

(43)

III. CONSISTENCY WITH S-MATRIX ELEMENTS

In this section, we compare the 4-point S-matrix ele-
ments constructed from the couplings presented in Section I
with the low-energy expansion of the 4-point sphere-level
S-matrix elements in string theory.

It has been observed in [37] that the sphere-level closed
string S-matrix element can be written in terms of disk-level
S-matrix elements. The disk-level S-matrix element of four
gauge bosons’ vertex operators on the boundary of the disk
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has been calculated in [38]. This amplitude for the (s — )
channel is

['(—d's)(—d't)

's,d't) ~ K, 44
Ald's, @) T(1 + du) (44)
where the Mandelstam variables are
—(ky +ky)?, —(ky +kq)?, — (ki +k3)*;
s+t+u=0. (45)

The kinematic factor K includes contractions of open string
momenta k;, k,, k3, k, with themselves and with the
polarizations ¢, {,, {3, {,. We are interested only in the
terms in K where the momenta are contracted with
themselves. The kinematic factor for these terms in super-
string and bosonic string theories is

K5(d) = a?st8) - {380 - Cq+ P suly - §380 - &y
+a?tuly - $Hls - Cy

2
KP(a') = <1a o >C:1 ¢3¢~ C4+(a su>£2 {318y

/2tu 46
+<1+ )Cl $a83-Cat - (46)

where dots represent the terms where the momenta and
polarizations are contracted, which we are not interested in.
Note that the above kinematic factors are stu-symmetric. If
the above amplitude is for right-moving modes, then there
are similar amplitudes A for the left-moving modes with
momenta k;, ky, k3, ks and polarizations £, &5, (3. (.

2 o o>
A = 1—— 4 p
4[s( t—|—16t+

a/ 0/2
+s<1 —Zu—i—ﬁu + -

ad o
-2+ —
+u< s+16s+

)Tr(elezezeg) + t<1 “Sur e

)Tr(€1€£€3eg) + t(l “Csr g

The closed string amplitude of four massless NS-NS
states with momenta k; and polarizations ¢; = {;{; for
i=1,2,3,4 is then given as [37]:

2 an ad o \—[(d o
A:_(ﬁ) s1n< 2 ky- kg)'A(Zs’Zt)A(Zt’Zu)’

(5t ()e(5)

(47)

where we have normalized the amplitude to be consistent
with the leading-order action (1). The amplitude for the
bosonic theory is given by replacing KK with KZK®, and
for the heterotic theory, one has to replace it with KZKS.

To find the o'-expansion of the above closed S-matrix
elements, one has to expand the Gamma functions and the
tachyon poles in the bosonic kinematic factor K2. After the
o’-expansion and replacing ;{; with the closed string
polarization tensor €;, one finds some terms where the
momenta are contracted with the closed string polarization,
which we are not interested in. In the terms where the
momenta are contracted with themselves, there are still two
sets of terms. One set includes two-trace terms, where each
trace involves contractions of two polarizations. The other
set involves one-trace terms, which involve contractions of
all polarizations. We are going to compare the one-trace
terms in the o'-expansion of the closed string S-matrix
element with the corresponding terms in the field theory
using the actions presented in the Introduction section.

The one-trace terms in the heterotic closed string
amplitude up to order &> when the polarization tensor is
for a graviton or for the B-field are

2

)Tr(elegezei) +u <1 ——r+ 01(_6 2+ )Tr(eleg@e{)

/ 2

1 6 >Tr(elege4e3T)

/ 12

1 6 )Tr(€1€§€462T) +---. (48)

where dots in each parenthesis represent the higher orders of ¢, and the dots at the end of the equation represent terms in
which momenta contract with the polarizations and terms that involve the two-traces. The corresponding terms in the
bosonic closed string amplitude are

K2 a/ a/2 a/2
LI NI
2 ( T Tt

) [Tr(er€efeses) + Tr(erez2€7)]

/ a/z 2

K2u< a
+— 1+—u+—u ———st+-

e = St rlencese]) + Trlercfese)

2t o %, a>
l+—t4+—r—-—
+ ( +4 +16 16su+

> [Tr(eielese]) + Tr(erefeser )] + - (49)
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Using the identity Tr(ABCD) = Tr(ATDTCTBT), one
can write both amplitudes in terms of Tr(e;e365€4),
Tr(ee,63€4), and Tr(e e2€4€3).

When the four states are gravitons or they are B-fields,
one can write the amplitudes as

A= f(s,t,u)Tr(e e362€4) + f(u, t, 5)Tr(e1e,63€4)
+f(t, u, S)Tr(€1€2€4€3) + s, (50)

where the function f(s, #,u) is

2 / 2
fA(s,t,u) :%[s+%s2+§—2(s3—2stu)+~--],

2 / 2
B _K P ¥ 3
f (s,t,u)—2 [s+4s —|—16(s stu) + ] (51)

When states 1 and 2 are gravitons and states 3 and 4 are
B-fields, the amplitudes can be written as:

A= f(s,t,u)Tr(e e36,64) — f(u, t, 5)Tr(e e,63€4)
— f(t,u,5)Tr(ee264€3) + - -+, (52)

where f is the same function as in (51).

In the heterotic theory, when state 1 is a graviton and
states 2, 3, and 4 are B-fields, or when state 4 is a B-field
and states 1, 2, and 3 are gravitons, the amplitude can be
written as:

AH = g(S, t, M)Tr(€1€3€2€4) + g(u, t, S)Tr(€1€2€3€4)
+ g(t, u, s)Tr(e 6r64€3) + - - -, (53)

where the function g(s, #, u) is

/ alz

gls, t,u) = k>t —u) —ix—6s—|—6—4s2+--- . (54)

It has been shown in [27] that when all four states are
gravitons, the amplitude (50) for both the bosonic and
heterotic theories is reproduced by the couplings in (1), (3),
(6), and (9). In the next subsection, we will demonstrate that
the string amplitudes of all other states at order /> are
exactly reproduced by the couplings in (1), (3), (6), (9),

(10), (11), and (13).

A. S-matrix elements in field theory

In this subsection, we calculate the S-matrix elements in
field theory. Since the couplings in the heterotic theory
involve the Chern-Simons three-form €, which is
expressed in terms of frame fields e,/ and their partial
derivatives, and the closed string theory amplitudes result-
ing from the KLT prescription involve the polarization of
the graviton e, we need to express Q in terms of the metric
and its partial derivatives. The metric can then be perturbed

as G,, = n,, + kh,,. In calculating the S-matrix elements
in field theory, we also need to write the fluctuation of the
B-field as xb.
By taking partial derivatives of the relation
e,/e, ' n,,,, = Gy, we can determine the following:
dpepie,, + 0.et1ep, = 0,Gg,. (55)

Then one can assume that the two terms on the left-hand
side above are identical. In this case, we have the relation:

1
6(,6/5”16],”[ = EaaG/}},. (56)

Using this relation, we can express Q as:

Q,p, =G°GN0,G,,0,05G g,

afy

, 1
+GYGeGHe iagG[yﬂagGﬁkagGa],

1 1
+700G0:0,G5x9c G+ £0:G 1,09 GacOx G | - (57)

where the subscript antisymmetrization of indices is
between a, 3, and y. Note that Q has at least two gravitons.

The four-point function has both contact terms and
massless pole contributions in which the graviton and/or
B-field propagate between two vertices in the latter cases.
Using the leading-order action (1), one finds the following
graviton and B-field propagators:

1 1
(Gh)/u/,,lp = 27162 <'7;4/1’7up + MupMlva — 2_1’7;4,/77@> s
2

1
(Gb)/u/,,lp = 2_162 (’7;4,1’%/; - ’7/4/)7711/1)’ (58)

where k* is the momentum of the graviton or B-field in
the propagator, and we have used a Euclidean signature
spacetime metric in which the partition function is
Z~ [e 5.

1. Four B-fields amplitude

The contact term of four B-fields at order &’ in the
heterotic action (13) produces the following one-trace
terms in the field theory amplitude:

B R )
Acontact = m’(s + st + 1°)Tr(e €3¢462)

K2 a/2

128
K2a/2
T 128

+oe (59)

+ s(s? + st + 1) Tr(e e465€3)

(5% + 252t + 251 + £3)Tr(e,e4€3¢€5)
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where dots represent the two-trace terms and terms in
which momenta are contracted with the polarization tensors
that we are not interested in.

The pole amplitude resulting from two vertices at order
o and one propagator in between produces the following
one-trace terms in the amplitude:

Al =V, (bbh)G,V 4 (hbb)
2o
=128 (=53 —u?)Tr(e e3e4€)
2o
+ 8 s(s2 4 3su+3u?)Tr(e e46,€3)
2o
+ 58 u(3s2 4 3su+u?)Tr(e e4e36,) +---.  (60)

Note that there is no pole in the one-trace terms. The
subscript 4 in the vertex means it has four momenta.
Additionally, there are no couplings between two B-fields
and one graviton in the action (13) at the six-derivative
order. Hence, there is no amplitude with the structure
V,(bbh)G,V¢(hbb). By summing the terms AZ .. and

Ag’(ﬂe, one finds that they are exactly the same as the

corresponding amplitude in (50).

The contact term of four B-fields at order o in the
bosonic action (6) produces the following one-trace terms
in the field theory amplitude:

2 02

AL et = TSW[TT(€1€3€4€2) + Tr(e €46,€3)

+ Tr(eje4€367)] + - - - (61)

The pole amplitude resulting from two vertices at order o
and one propagator in between produces the following one-
trace terms in the amplitude:

Agole = ‘74<bbh)éh V4(hbb)
2.2
:K32 (=53 —u?)Tr(e,e3€4€5)
2,2
+ 2 s(s? +3su+3u?)Tr(e e462€3)
a2
+ % u(3s?+3su+u?)Tr(e e4e36,) +---.  (62)

Here, also, there are no couplings between two B-fields and
one graviton in the action (6) at the six-derivative order.
Hence, there is no amplitude with the structure
V,(bbh)G,Ve(hbb). By summing the terms AZ .. and
Agole, one finds that they are exactly the same as the
corresponding amplitude in (50).

2. Two B-fields amplitude

The contact terms of two B-fields and two gravitons at
order ’? in the heterotic action (13) produce the following
one-trace terms in the field theory amplitude:

" K2a? ) 5
Acontact = TSS(S 251421 )TI‘(€1€3€4€2)

2 (1/2

64
2 a/z

128

+ s(s%+2st+21)Tr(e e462€3)

+

s(s>+2st+282)Tr(e e4e365) + -+ (63)

The pole amplitude resulting from two vertices at order o
and one propagator in between produces the following one-
trace terms in the amplitudes:

H
A 1 pole

= V,(bbh)G,V 4(hhh)
K2a/2
128

Aglpole = ‘74<hbh)éh ‘74(hbh)

s [Tr(e exe3e4) +Tr(erese4€3)] +-,

K'2 (1/2

128
2.2

P[Tr(eee3e4) —Tr(e e465€3)]
LK
128

K.Z a/2

128
2.2

128

w3 [Tr(e€s64¢3) — Tr(e e465€3)] -+,

H
A3 pole

P[Tr(ejez63€4) +Tr(ereser¢3)]

+

w[Tr(e1e,64€3) + Tr(erese263)] -+ (64)

Note that since the Chern-Simons three-form in (57) has at
least two gravitons, the pure gravity couplings at order o>
in (9) have no three-graviton vertex, i.e., V¢(hhh) = 0.
Moreover, we have used the fact that V,(hbh) = 0. By
summing the terms Al AT ores A ore> and AY ., one
finds that they are exactly the same as the corresponding
amplitude in (52).

The contact terms of two B-fields and two gravitons at
order a’? in the bosonic action (6) produce the following
one-trace terms in the field theory amplitude:

2o
AB :6—4s(3s2 +4st+412)Tr(e e3€46,)

2 a/2

16
Za/2

64

+ s(s2+2st+212)Tr(e e462€3)

+

s(3s2 +4st+412)Tr(e e4e365) +-++. (65)
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The pole amplitude resulting from two vertices and one
propagator in between produces the following one-trace
terms in the amplitudes:

A?pole = V4(bbh)(~;h‘74(hhh>
)
- K;; s3[Tr(e ere3€4) + Tr(e ere4€3)] + -,
Agpole = V4(bhb)(~;b‘74 (bl’lb)
K2a/2
=- 0 s(s2 + 3su + 3u2)Tr(ele462€3)
K*a? 2o
+ 32 ”3Tr(€1€3€4€2) + 0 t3Tr(€le4€3€2) e
Agpole = VZ(bbh)Ghvﬁ(hhh)
3K2a/2
= — a s3[Tr(€1€2€3€4) + Tr(e1€2€4€3)]
4l (66)

Note that in the bosonic action at order &2 in (6), there is a
nonzero three-graviton vertex which has been used in the
last relation above. By summing the terms A nuces A7 poes
AZ o> and AT, one finds that they are exactly the same

as the corresponding amplitude in (52).

3. Three B-fields amplitude

The contact terms of three B-fields and one graviton at
order o? in the heterotic action (11) produce the following
one-trace terms in the field theory amplitude:

2o
Al = —78(5 - “)(fz +su)Tr(e e3e4¢5)
a2
+ 8 (=t +u)(s+tu)Tr(e e465€3)
K2a/2
+ 28 (s—1)(st+u?)Tr(e e4e36,) + . (67)

The pole amplitude resulting from two vertices at order o
and one propagator in between produces the following one-
trace terms in the amplitude:

Al = V4(bbh)G),V4(hbh)
K2a/2
T (53 — ) Tr(e e3e4¢7)
o2
+ 128 <_t3 + M3)TI'(€1€4€2€3)
Ka?
+ 128 (S -1 )Tr(€l€4€3€2) + e (68)

One finds that the sum of Al and AT

same as the corresponding amplitude in (53).

is exactly the

4. One B-field amplitude

The odd-parity effective action (11) contains no coupling
involving a single B-field. However, the odd-parity cou-
plings in (10), resulting from replacing the nonstandard
B-field strength in the Meissner action, do involve a single
B-field. The contact term of three gravitons and one B-field
at order @ in the heterotic action (10) produces the
following one-trace terms in the field theory amplitude:

. K2a/2 5
Acontact:_ﬁ(s_uxt +SM)TI'(€1€3€4€2>
212
_K1;8 (s —1)(u> + s1)Tr(e e2€4€4)
o2
+ 15 (t—u)(s>+1u)Tr(ee3e264) +--.  (69)

The pole amplitude resulting from two vertices at order o
and one propagator in between produces the following one-
trace terms in the amplitude:

AlLL = V4(hhh)G,V 4 (hhb)

KZ a/2

=~Tg (53 — u?)Tr(e e3e4¢7)
K2a/2
~ 138 (53 = £)Tr(e ere3€4)
2o
-8 (? = ) Tr(eje36264) +-++. (70)

One finds that the sum of Alf,, and AT

same as the corresponding amplitude in (53). This confirms
our observation that the 4-point functions in the effective
actions of the bosonic and heterotic theories at order o> are
consistent with the corresponding 4-point sphere-level

S-matrix elements at order 2.

is exactly the

IV. CONCLUSION

In this paper, using appropriate field redefinitions, we
have expressed the even-parity couplings in the effective
actions of both the bosonic string theory and the heterotic
string theory at order o> in a canonical form where the
dilaton appears only as the overall factor. These couplings,
which have recently been discovered through T-duality, can
be represented as (6) and (13), respectively. Additionally,
we demonstrate that the cosmological reduction of the
couplings in the bosonic theory, as well as the even- and
odd-parity couplings in the heterotic theory, satisfy the
O(d,d) symmetry in the proposed canonical form put
forward in [29,30]. This achievement is accomplished
by incorporating appropriate one-dimensional total deriva-
tive terms and utilizing suitable one-dimensional field
redefinitions.
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Since the original couplings were derived by imposing the
T-duality symmetry O(1, 1) on the most general covariant
couplings [15,16], it is expected that the cosmological
couplings remain invariant under O(d, d) transformations.
To further confirm the couplings, we extensively examine
them by comparing the 4-point S-matrix elements in the
effective actions at order o> with the corresponding sphere-
level S-matrix elements in string theory. Remarkably, we
establish an exact agreement between these two S-matrix
elements.

The aforementioned S-matrix calculations provide
confirmation of the couplings in field theory at order
a’? that involve two, three, and four B-fields. Additionally,
the couplings described in (6) and (13) involve six
B-fields as well. To validate these couplings through
S-matrix elements, it is necessary to determine the 6-point

sphere-level S-matrix elements of NS-NS vertex operators
in both the bosonic and heterotic theories, and then
expand them to isolate the terms at order o’>. By employ-
ing the KLT prescription [37], one needs to calculate the
6-point disk-level S-matrix element of gauge bosons in
the bosonic and superstring theories, and subsequently
obtain its «-expansion. Such calculations have been
conducted in [39] for superstring theory. Therefore, it
is necessary to find the 6-point disk-level S-matrix
element in the bosonic theory and determine its
o'-expansion. Utilizing the KLT prescription, one can
then deduce the NS-NS S-matrix elements at order o',
These calculated S-matrix elements should align with the
corresponding S-matrix elements in the effective actions
at order ’>. The detailed calculations for this procedure
are left for future work.
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