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We study generic matter coupled to a D-dimensional supergravity using a formulation of double field
theory (DFT), where all the fields are encoded in OðD;DÞ multiplets. We study both the case when the
matter comes from a variational principle, as well as the case where the matter comes from a statistical or
thermodynamic approach. For the latter, we construct the distribution function for the perfect fluid and its
entropy current, which is a conserved quantity. We then include general viscous and elastic terms in the
generalized energy-momentum tensor which, in the general case, lead to entropy production. We
consistently deform the conservation law of the generalized entropy current and identify a particular
nondissipative deformation. Using the generalized fluid model, we revisit the issue of noncovariance of
perfect fluids under T-dualities and we show how to resolve it in our DFT model with matter.
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I. INTRODUCTION

Symmetries and dualities play crucial roles in the
understanding of physics. While symmetries are associated
with invariances within a given framework, dualities hold a
distinct place in identifying diverse formulations of the
same physical theory becoming particularly useful when
the theories are connected to string theory or its super-
gravity limit. Notably, dualities frequently unearth unex-
pected connections between seemingly distinct physical
theories, enriching the landscape of string theory as well as
allowing us to choose the most suitable framework to work
with. In this work we study the effect of T-duality [1–3] on
a convenient rewriting of the universal NS-NS supergravity
backgrounds with generic matter content. We explore both
scenarios: one in which the matter content comes from a

Lagrangian defining a variational problem and another
where the matter is defined through a statistical or effective
approach. The former is suitable for a generic field
theory on an arbitrary supergravity background, while
the latter is adequate for describing effective fluid dynam-
ics, such as in string cosmological scenarios, where the
classical string sources are coupled to the standard super-
gravity background. In these cases one problem is that
the fluid dynamics requires both perfect and imperfect
contributions in order to realize the symmetry under
T-dualities or OðD;DÞ rotations1 or, in other words, the
energy-momentum tensor of the perfect fluid is mapped to
the energy-momentum tensor of an imperfect fluid after
the duality rotation. This issue was initially identified in [4]
by using a cosmological ansatz. Although the problem
was addressed at the supergravity level, it has direct
consequences for the formulation of double field theory
(DFT) [5–8], since there is an apparent inconsistency in
writing a perfect fluid in a fully OðD;DÞ-covariant way.
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1In section VI, we study duality rotations for cosmological
backgrounds, where the supergravity fields depend only on time.
There, OðD;DÞ is restricted to OðD − 1; D − 1Þ associated with
(Abelian) isometries along the spatial directions.
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The standard DFT formalism2 can be understood as a
formal rewriting of the degrees of freedom of the theory in
terms of multiplets of OðD;DÞ, which are defined on a
double space whose local coordinates lie in the vector
representation of the duality group. Alternatively, DFT can
be viewed as the fundamental starting point for elaboration,
with the low-energy limit of string theory emerging as a
result of a strong constraint or section condition. Adopting
this perspective, establishing the foundations of fluid
mechanics and thermodynamics in DFT becomes a prom-
ising task which would allow us to understand the con-
nection between the statistical description of strings and
particles with the OðD;DÞ symmetry.
The field content of DFT is given by a generalized metric

and a generalized dilaton, and the dynamics can be
determined by the generalized version of the Einstein
equation and imposing the equation of motion for the
generalized dilaton. Moreover, the effective matter dynam-
ics can be defined through the conservation law of the
generalized energy-momentum tensor which in turn is
obtained from both a variational principle [13,14] or using
a statistical/kinetic approach in the double space [15]. This
last formulation is based on a double phase space configu-
ration where the generalized Boltzmann equation is also
considered. An attempt to construct hydrodynamics equa-
tions using a generalized velocity in the double space was
realized in [15–17], where an OðD;DÞ-covariant model of
fluids was constructed considering a perfect fluid-scalar
field correspondence. While this correspondence can be
used at the supergravity level in order to construct the
energy momentum-tensor for the perfect fluid from the
scalar field dynamics, in the double space a second problem
arises: by requiring the OðD;DÞ-covariance the authors
in [15–17] could not reproduce the full energy-momentum
tensor of perfect fluids in a generic supergravity back-
ground, because the pressure was related to the dilaton
source as p ¼ σ=2 in order not to spoil the generalized
diffeomorphisms invariance. As we discuss later, this
problem is closely related to the first problem (i.e., the
noncovariance of the perfect fluid [4]) and therefore it is
desirable to find an OðD;DÞ-covariant formulation that
extends beyond the generalized scalar field-perfect fluid
correspondence.
In this work we address both issues simultaneously by

proposing an OðD;DÞ-covariant formulation for imperfect
fluids. We begin with the construction of the generalized
distribution function, akin to the Maxwell-Juttner distribu-
tion but in the double phase space. Using this function we
prove that a double perfect fluid does not produce entropy.
Then we propose a deformation of the generalized energy-
momentum tensor of [15–17] using generalized strain
tensors. Adhering to the second law of thermodynamics

in the double space, we formulate a consistent model that
generally leads to entropy production.
The main conclusion is that the energy-momentum

tensor Tperfect
mn of perfect fluids discussed in [4] can be

uplift to T imperfect
MN of imperfect fluids in our OðD;DÞ-

covariant model, where the generalized strain tensors are
included. Since our model is OðD;DÞ covariant by con-
struction, the configuration of imperfect fluids is mapped to
another configuration of imperfect fluids. As noted in [4] in
the supergravity description, the dual configuration of
Tperfect
mn was identified as a configuration of viscous fluids.

The story can be summarized as

T imperfect
MN ⟶

OðD;DÞ
T imperfect

MN

↕ ↕

Tperfect
mn ⟶

OðD;DÞ
Tviscous
mn ;

whereM,N are OðD;DÞ indices which run as 0;…; 2D − 1,
while m; n ¼ 0;…; D − 1 are GLðDÞ indices.
Our main results are
(i) We construct the distribution function for the perfect

fluid in the double space. This function is derived
through a suitable generalization of the Maxwell-
Juttner distribution function [18–20] preserving all
the constraints of the double phase space.

(ii) Using the generalized distribution function we give
the formal construction of the entropy current and its
conservation law. We prove that there is no entropy
production for the double perfect fluid in the DFT
formalism.

(iii) We include new viscous (nonperfect) terms in the
proposal [15–17] and we also propose a systematic
way to write down the entropy production in these
cases based on [21,22].

(iv) We revisit the issue of the noncovariance of perfect
fluid dynamics. It turns out that the OðD;DÞ-boost
transformation of a perfect fluid configuration is
identified as that of viscous fluids as it is shown
in [4]. We highlight that, in the general case where the
pressure and the energy density are generic, the
energy-momentum tensor of theoriginal configuration
cannot be expressed in an OðD;DÞ-covariant way
only in terms of the generalizedmetric, the generalized
dilaton and the generalized velocity. We argue that the
initial DFT configuration must inherently contain
extra contributions. In this work, we define these
additional terms as generalized strain tensors, intro-
ducing them as OðD;DÞ-covariant tensors.

We begin the following section by discussing what kind
of fluid scenarios have been described in the DFT and
supergravity literature so far [4] [15–17] [23–29]. See
also [30–35] for other related works.2For reviews see Refs. [9–11] and the second lecture in [12].
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II. COUPLING MATTER IN DOUBLE FIELD
THEORY AND SUPERGRAVITY

A. The Einstein equation in DFT and supergravity

DFT is a T-duality-invariant reformulation of the low-
energy limit of string theory. This theory is defined on a
double space and all the fields and parameters transform
covariantly under OðD;DÞ. The invariant group metric is
given by

ηMN ¼
�

0 δnm

δmn 0

�
; ð1Þ

where m; n ¼ 0;…; D − 1. The metric (1) is used to raise
and lower the OðD;DÞ indices M;N; � � �. Infinitesimal
generalized diffeomorphisms are consistently defined with
respect to this metric and then generalized vectors and
tensors can be constructed [36–38]. Within this framework
one can write the generalized Einstein equation as [39–40],

GMN ¼ T MN; ð2Þ

where the generalized Einstein tensor is defined by

GMN ¼ RMN −
1

2
RHMN; ð3Þ

andRMN ¼ RMNðH; dÞ,R ¼ RðH; dÞ are the generalized
Ricci tensor and scalar, respectively. The generalized
energy-momentum tensor is given by

T MN ¼ T̂ MN −
1

2
T HMN; ð4Þ

where bothRMN and T̂ MN contain only mixed components
with respect to the DFT projectors PMN ¼ 1

2
ðη −HÞMN and

P̄MN ¼ 1
2
ðηþHÞMN .

3 In consequence, (2) reads

RMN ¼ T̂ MN; ð5Þ

R ¼ T : ð6Þ

A crucial consistency equation of the DFT formulation is
given by the strong constraint

∂Mð∂M⋆Þ ¼ 0 ð∂M⋆Þð∂M⋆Þ ¼ 0; ð7Þ

where ∂M ¼ ð∂m;e∂mÞ refers to derivatives with respect to
the ordinary/dual coordinates, respectively, and ⋆ repre-
sents any combination of generalized fields and/or gauge
parameters. The usual solution to (7) in order to recover the

supergravity framework is e∂m ¼ 0. The generalized metric/
dilaton encodes the field content of the universal NS-NS
sector,

HMN ¼
�
δpm Bmp

0 δmp

��
gpq 0

0 gpq

��
δqn 0

−Bqn δnq

�
; ð8Þ

e−2d ¼ e−2ϕ
ffiffiffiffiffiffi
−g

p
: ð9Þ

Then the generalized Ricci tensor and the generalized
Ricci scalar become

RMN ¼
�
δpm Bmp

0 δmp

�� −sðpqÞ −gprs½rq�

s½pr�grq sðpqÞ

��
δqn 0

−Bqn δnq

�
;

ð10Þ

R ¼ Rþ 4▽m
∂mϕ − 4ð∂ϕÞ2 − 1

12
H2; ð11Þ

where ▽m denotes the ordinary (torsionless) covariant
derivative, Hmpq ¼ 3∂½mBpq�, H2 ¼ HmpqHmpq, and

sðmnÞ ¼ Rmn −
1

4
HmpqHn

pq þ 2▽m▽nϕ; ð12Þ

s½mn� ¼ −
1

2
e2ϕ▽pðe−2ϕHpmnÞ; ð13Þ

where R and Rmn are the usual Ricci scalar and Ricci tensor.
In addition, the generalized energy-momentum tensor can
be generically parametrized as

T̂ MN ¼
�
δpm Bmp

0 δmp

�� −tðpqÞ −gprt½rq�

t½pr�grq tðpqÞ

��
δqn 0

−Bqn δnq

�
:

ð14Þ

Then (5) and (6) give,

Rmn −
1

4
HmpqHn

pq þ 2▽m∂nϕ ¼ tðmnÞ; ð15Þ

−
1

2
▽pHpmn þ ∂pϕHp

mn ¼ t½mn�; ð16Þ

Rþ 4▽m
∂mϕ − 4ð∂ϕÞ2 − 1

12
H2 ¼ T : ð17Þ

Under this parametrization and e∂m ¼ 0, the conservation
law ∇MT MN ¼ 0 reads

▽n

�
e−2ϕ

�
tðnmÞ −

1

2
T gnm

��
¼ e−2ϕT ∂mϕ; ð18Þ

▽nðe−2ϕt½nm�Þ ¼ 0: ð19Þ

3An arbitrary vector can be projected as WM ¼
PM

NWN þ P̄M
NWN ¼ WM þWM̄. By “mixed components”

we mean that we have, for example, RMN ¼ RM N̄ þRM̄ N .
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The equations of motion for the metric, the B-field, and the
dilaton in the presence of matter fields can be described as

Gmn þ 2▽m▽nϕþ 2gmnð▽ϕÞ2 − 2gmn▽
2ϕ

þ 1

24
gmnH2 −

1

4
HmpqHn

pq ¼ e2ϕTmn; ð20Þ

−
1

2
▽pHpmn þ ð▽pϕÞHpmn ¼ 2e2ϕJmn; ð21Þ

R − 4ð∂ϕÞ2 − 1

12
H2 þ 4▽m▽mϕ ¼ −e2ϕσ; ð22Þ

where Gmn is the Einstein tensor, Gmn ¼ Rmn − 1
2
Rgmn, the

exponential factor e2ϕ behaves as an effective gravitational
coupling and the sources are defined as

Tμν ¼
−2ffiffiffiffiffiffi−gp δSmat

δgμν
; Jμν ¼ −

2ffiffiffiffiffiffi−gp δSmat

δbμν
;

σ ¼ −1ffiffiffiffiffiffi−gp δSmat

δφ
¼ −e−2φ

�
δLmat

δφ
− 2Lmat

�
ð23Þ

Comparing Eqs. (15)–(17) with Eqs. (20)–(22) one finds

tðmnÞ ¼ e2ϕ
�
Tmn −

σ

2
gmn

�
; ð24Þ

T ¼ −e2ϕσ; ð25Þ

t½mn� ¼ 2 e2ϕJmn; ð26Þ

and the conservation laws are

▽mTmn ¼ −σ∂nϕ ð27Þ

▽mJmn ¼ 0: ð28Þ

Here we observe that Tmn is conserved only if ϕ is constant.
On theother hand, ifT is constant, then the conserved energy-
momentum tensor is defined as T̃mn ¼ Tmn − ðσ=2Þgmn

since ▽mT̃mn ¼ ð1=2Þe−2ϕ∂nT . For example, the cosmo-
logical model in [30] where T is identified with
the cosmological constant, the quantity T̃mn could be more
suited for the energy-momentum tensor. In our case we
construct the basis of a generalized hydrodynamics and
thermodynamics for arbitrary backgrounds thus we adopt
the definition Tmn independently of the sources, and in turn
we define the energy density e as the eigenvalue of Tm

n
associated with the timelike eigenvector un.

B. The variational principle in DFT and supergravity

So far, the energy-momentum tensor T MN can be
arbitrary, but let us consider a case where the dynamics
of the matter fields can be described by the action principle

(see Sec. 2 of [39] for a general discussion with matter
fields, where several examples are also given). We denote
the action as S ¼ S0 þ Smat with

S0 ¼
1

2

Z
dDx dDx̃ e−2dRðH; dÞ; ð29Þ

and the matter action given by

Smat ¼
Z

dDx dDx̃ e−2dLmat: ð30Þ

The generalized equations of motion and the generalized
energy-momentum tensor can be read from the variation

δSmat ¼ e−2d
�
1

4
T̂ MNδHMN þ T δd

�
þ δSmat

δΨ
δΨ; ð31Þ

where Ψ collectively denotes the matter fields.
Using the same parametrization as in the previous

section one obtains the standard NS-NS supergravity
formulation in which

S0 ¼
1

2

Z
dDx e−2ϕ

ffiffiffiffiffiffi
−g

p �
Rþ 4ð∂ϕÞ2 − 1

12
H2

�
; ð32Þ

and

Smat ¼
Z

dDx e−2ϕ
ffiffiffiffiffiffi
−g

p
Lmat; ð33Þ

while the matter sources are given by

Tmn ¼ −
2ffiffiffiffiffiffi−gp δSmat

δgmn ; ð34Þ

σ ¼ −
1ffiffiffiffiffiffi−gp δSmat

δϕ
; ð35Þ

Jmn ¼ −
2ffiffiffiffiffiffi−gp δSmat

δBmn
: ð36Þ

In the case where the matter fieldsΨminimally couple to
the metric and the dilaton [28], the matter Lagrangian Lmat
in (33) only depends on gmn, Bmn and Ψ, and not on ϕ.
Then the matter sources for this action become

Tmn ¼ e−2ϕ
�
gmnLmat − 2

δLmat

δgmn

�
; ð37Þ

σ ¼ 2 e−2ϕ Lmat; ð38Þ

Jmn ¼ −2 e−2ϕ
δLmat

δBmn
: ð39Þ
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From Eq. (38) one observes that, for this kind of frame-
work, a vanishing dilaton source (σ ¼ 0) is not possible.
Among this kind of minimally coupled matters in

supergravity, we analyze two specific cases. On the one
hand we consider that the matter is given by a scalar field
for which its sources read

Tmn ¼ e−2ϕ
�
gmn

�
−
1

2
▽pΦ▽pΦ − VðΦÞ

�
þ ∂mΦ∂nΦ

�
;

ð40Þ

σ ¼ 2 e−2ϕ
�
−
1

2
▽mΦ▽mΦ − VðΦÞ

�
; ð41Þ

Jmn ¼ 0: ð42Þ

Since it is possible to establish a formal correspondence
with the perfect fluid Tmn ¼ ðeþ pÞumun þ pgmn [17], we
can read the energy density and pressure under the
identifications um ∝ ▽mΦ and

e ¼ e−2ϕ
�
−
1

2
▽mΦ▽mΦþ VðΦÞ

�
; ð43Þ

p ¼ e−2ϕ
�
−
1

2
▽mΦ▽mΦ − VðΦÞ

�
: ð44Þ

Interestingly enough we observe that the supergravity
matter Lagrangian can be given by Lmat ¼ e2ϕp and,
furthermore, the dilaton source σ fixes its value according
to σ ¼ 2p. These relations explain how the perfect fluid
dynamics can be constructed using a formal correspon-
dence with the scalar field dynamics.
On the other hand we consider minimally coupled

matter within a cosmological ansatz in which all the
variables depend only on time making the theory
OðD − 1; D − 1Þ-invariant and we assume that the
energy-momentum tensor corresponds to an isotropic
perfect fluid Tm

n ¼ diagð−e; pδijÞ. Then we can use the
following definition of the pressure, regardless the specific
matter content,

p ¼ −2ffiffiffiffiffiffi−gp gij

D − 1

δSmat

δgij

¼ −2ffiffiffiffiffiffi−gp gij

D − 1

�
δSmat

δgij

����
d
þ δSmat

δd

����
H

δd
δgij

�

¼ pcov þ
σ

2
; ð45Þ

where the spatial indices are i; j ¼ 1;…; D − 1 and pcov is
what is called the OðD − 1; D − 1Þ-covariant pressure
in [28]. Naturally for this cosmological ansatz the matter
Lagrangian does not depend on the spatial metric, thus
pcov ¼ 0 and again σ ¼ 2p.

In order to recover the previous cases from the DFT
framework, let us consider the most general expression for
the generalized energy-momentum tensor T MN depending
on the generalized velocity vector fields UM and the
generalized metric HMN [16],

T MN ¼ aðUM̄UN þUN̄UMÞ þ bHMN; ð46Þ

where the coefficients a and b can be, in principle, arbitrary
generalized scalars. Here we stress that the proposal (46) is
valid for a generic background and not just for a cosmo-
logical ansatz.
The decomposition of the Eq. (4) gives

T̂ MN ¼ aðUM̄UN þ UN̄UMÞ; ð47Þ

T ¼ −2b; ð48Þ

and after imposing the cosmological ansatz one is forced to
described cosmological scenarios with

e ¼ e−2ϕ
�
a
2
− b

�
; ð49Þ

p ¼ σ=2 ¼ e−2ϕb; ð50Þ

Jmn ¼ 0: ð51Þ

In terms of Eqs. (24)–(26) and by virtue of a generalized
correspondence with a generalized scalar field [17] one
finally obtain

tðmnÞ ¼ ðeþ pÞum un; ð52Þ

T ¼ −2p; ð53Þ

t½mn� ¼ 0; ð54Þ

where we have defined e ¼ e2ϕe and p ¼ e2ϕp, which
behave as generalized scalars fields in DFT. In this case, the
energy-momentum reads

T MN ¼ 2ðeþ pÞðUMUN̄ þUM̄UNÞ þ pHMN: ð55Þ

and it enables us to recover a family of string cosmologies
as discussed in [16]. In order to go beyond the constraints
imposed by (49)–(51), one possibility is to introduce
additional variables in T MN which means going beyond
the double perfect fluid defined through the correspon-
dence between this fluid and the generalized scalar field
dynamics [17].
In any case a statistical interpretation in terms of a double

kinetic theory may be considered [15]. Since the general-
ized distribution function for the perfect fluid was not
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constructed, in Sec. III we use the phase space formulation
of DFT to construct a suitable proposal for it with a
vanishing entropy production. Afterward, in Sec. IV we
study nonperfect contributions and its non-negative entropy
production considering additional variables and news terms
directly in the energy-momentum tensor.

III. FLUID STATISTICS IN THE DOUBLE
GEOMETRY

For perfect fluids, the right hand side of (2) can be
constructed in the phase space framework of DFT [15].
Momentum coordinates of the form PM ¼ ðp̃m; pmÞ have
to be included and the generalized Lie derivative is
consistently deformed in order to define diffeomorphism
invariance.
The generalized Boltzmann equation is given by

PMDMF ¼ C½F�; ð56Þ

where C½F� is the generalized collision term and the
operator DM is

DM ¼ DM − UM; ð57Þ

with UM ¼ 2∂Md and DM ¼ ∇M − ΓMN
QPN ∂

∂PQ. This last
derivative is the covariant derivative in the phase space,
which can be easily constructed demanding that the
derivative of the phase space scalars transform correctly.
The dilatonic contribution in (56) is due to the fact that the
generalized distribution function is a phase-space density
scalar, so that the integration of this quantity in the double
space produces double space-time tensors (See for example
the rhs of equations (64) and (66) which transform as
generalized tensors). At this point we can consider an
equilibrium state such that C½Feq� ¼ 0 and we propose the
following ansatz for the generalized equilibrium distribu-
tion function,

FeqðX;PÞ ¼ e2d−P
M HMNβ

N ð58Þ
where βN ¼ UN=T is a generalized Killing vector, i.e.,

2∇ðMjβPHPjNÞ − 2∇PβðMjHPjNÞ ¼ 0; ð59Þ

and T is the OðD;DÞ temperature. Replacing the previous
generalization of the Maxwell-Juttner distribution function
in the generalized version of the Boltzmann equation we
obtain

PM∇MβPHP
QPQ ¼ 0; ð60Þ

which implies

PM∇PβMHPNPN ¼ 0; ð61Þ

through the generalized Killing equation of βM. On the
other hand, the transfer equation of the double kinetic
theory is given by [15]

∇N

�Z
ΨMPNFeq e−2dd2DP

�

−
Z

FeqPNDNΨMe−2dd2DP ¼ 0; ð62Þ

with ΨM an arbitrary phase-space covariant object. Using

ΨM ¼ PM; ð63Þ

we can formally define the generalized energy-momentum
tensor as

T MN ¼
Z

e−2dPMPNFeqdDP; ð64Þ

which, after imposing the generalized version of the scalar
field-perfect fluid correspondence [17], should be related
to (55). On the other hand by choosing

Ψ ¼ ln ðe−2dFeqÞ; ð65Þ

in (62) we can formally define the generalized entropy
current as

SM ¼
Z

e−2dPMFeq ln ðe−2dFeqÞd2DP: ð66Þ

In a general system the conservation equation for the
generalized entropy current is given by

∇NSN ¼
Z

FeqPNDN ln ðe−2dFeqÞe−2dd2DP; ð67Þ

which we can use to define the second law of thermody-
namics for statistical matter coupled to a generic DFT
background. Furthermore, when we inspect the particular
case of the perfect fluid in the double space we find the
expected conservation law

∇NSN ¼ −
Z

e−P
MHMNβ

N
PNPRHRSDNβ

Sd2DP

¼ −
Z

e−P
MHMNβ

N
PNPRHRS∇Nβ

Sd2DP

¼ 0: ð68Þ

In the last step we use the independence between βM and
PM in order to transform the phase space covariant
derivative into the ordinary one, and also (60) to show
that the generalized current of entropy is conserved in
this case.
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IV. IMPERFECT FLUIDS
IN THE DOUBLE GEOMETRY

The main goal of this work is to construct imperfect
contributions in the generalized energy-momentum tensor
given in (55). The most canonical way to do so is to
consider a deformation of the generalized distribution
function (58). In this way the quantities (64) and (66) will
be deformed in order to include imperfect terms/effects.
Here we take a different way based on thermodynamics,
and construct the energy-momentum tensor T MN which
contains imperfect contributions coming from a viscoelas-
tic model [21,22].

A. The general case with entropy production

We introduce additional thermodynamic variables EMN
and ε which represent generalized strain tensors. They
describe the difference between the shape of a material
before and after elastic deformation. We assume that the
strain is small and then the strain tensor EMN corresponds to
an infinitesimal variation of the generalized metric δHMN .
Since an infinitesimal variation of the generalized metric
HMN only has the mixed components,4 the strain tensor
EMN satisfies the property

EMN ¼ EðMNÞ ¼ EM̄ N þ EM N̄: ð69Þ

For simplicity, we suppose that the strain tensor is orthogo-
nal to the fluid velocity EMNHMNUN ¼ 0. In DFT, the
volume factor is contained in e−2d, and the strain tensor
associated with the bulk compression is introduced as a
generalized scalar field ε.
Now the energy-momentum tensor T MN contains cor-

rections so we propose

T MN ¼ 2ðeþ pÞðUMUN̄ þ UM̄UNÞ þ pHMN

þ τ̂MN þ τΔMN; ð70Þ

where ΔMN ¼ 2ðUMUN̄ þ UM̄UNÞ þHMN , and the cor-
rections added in the second line are supposed to be spatial
tensors; τ̂MPHPQUQ ¼ 0. We also suppose that τ̂MN only
have mixed projections. In the following, we determine the
explicit form of τ̂MN and τ from a thermodynamic point of
view in the double space. Let us assume that the local
thermodynamic equilibrium is realized, and we introduce
the entropy density as

s̃ðP̃M;HMN; e−2d; EMN; εÞ: ð71Þ

Here, the s̃ ¼ e−2ds and P̃M ¼ e−2dPM contain the
volume factor e−2d and PM ¼ eVM (VM ¼ HMNUN) is

the energy-momentum vector. We also assume that the
configuration is close to the equilibrium and then the
entropy density is a T-duality invariant generalization of
the one in [21,22],

s̃¼ s̃0ðP̃M;HMN;e−2dÞþ
λe−2d

2T
EMNEMN−

γe−2d

2T
ε2; ð72Þ

where λ ≥ 0 and γ ≥ 0. Its infinitesimal variation (under
our assumption that the strain is small) becomes

δs̃ ¼ δs̃0 þ
λe−2d

T
EMNδEMN −

γe−2d

T
εδε; ð73Þ

where the first term can be expanded as

δs̃0 ¼
δs̃0
δP̃M

δP̃M þ δs̃0
δHMN

δHMN þ δs̃0
δe−2d

δe−2d: ð74Þ

At this point we would like to rewrite the previous equation
as TδS ∼ δEþ pδV. As we show later in Eq. (100), this can
be realized by making the identification

δs̃0
δP̃M

¼ −
UM

T
;

δs̃0
δe−2d

¼ p
T
;

δs̃0
δHMN

¼ e−2d

2T
ðeþ pÞðUMUN̄ þ UM̄UNÞ: ð75Þ

We then consider the variation δ in Eq. (73) as the
generalized Lie derivative along the flow UM, i.e.,
δ ¼ £̂U. We relate the entropy density with the entropy
current as SM ¼ sUM and then,

δs̃ ¼ £̂Us̃ ¼ UM
∂Mðe−2dsÞ þ ∂MUMe−2ds

¼ e−2d∇MSM: ð76Þ

If we now inspect the rhs of (74), the term including δHMN

vanish due to the identity UMUN £̂UHMN ¼ 0, and we also
find that the term including δP̃M becomes

−
UM

T
£̂UP̃M ¼ −

e−2dVM

T
∇NðeUMUNÞ

¼ −
e−2dVM

T
∇NðT MN − TMN

s Þ; ð77Þ

where we have defined the spatial part of the generalized
energy-momentum tensor as

TMN
s ¼ ðpþ τÞΔMN þ τ̂MN; ð78Þ

which satisfies VMTMN
s ¼ 0. Then using the conservation

law for the full generalized energy-momentum tensor,
∇NT MN ¼ 0, one gets

4This can be shown by using δPM
QP̄Q

N þ PM
QδP̄Q

N ¼ 0,
δPMN ¼ − 1

2
δHMN , and δP̄MN ¼ 1

2
δHMN .
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−
UM

T
£̂UP̃M ¼ −

e−2d

T
TMN
s ∇NVM

¼ −
e−2d

4T
τ̂MN £̂UHMN −

e−2d

T
ðpþ τÞ∇MUM:

ð79Þ

Finally, it is useful to notice that

p
T
£̂Ue−2d ¼ e−2d

p
T
∇MUM: ð80Þ

Combining the previous expressions, we find

T∇MSM ¼ −
1

4
τ̂MN £̂UHMN þ 2τ£̂Ud

þ λEMN £̂UEMN − γ£̂Uεε: ð81Þ

The equation (81) is another way to prove that the perfect
fluid does not produce entropy because all the quantities in
the rhs of (81) depend on the imperfect contributions. This
derivation also dictates how to measure the entropy
production for a given τ̂MN , τ, EMN and ε. Now we assume
that τ̂MN and τ are given by linear combinations of
OðD;DÞ-covariant quantities, all of which should vanish
at the equilibrium. Then, to make the right-hand side of
Eq. (81) non-negative, i.e. ∇MSM ≥ 0, we require

�
−λ½£̂UE�MN

1
2
τ̂MN

�
¼ ðGþ ηÞ

� EMN

1
2
£̂UHMN

�
; ð82Þ

�
−γ£̂Uε

τ

�
¼ ðKþ ζÞ

�
ε

2£̂Ud

�
; ð83Þ

where the bracket in ½£̂UE�MN denotes the projection into
mixed components, and

G ¼
�

0 G

−G 0

�
; K ¼

�
0 K

−K 0

�
; ð84Þ

η ¼
�
η1 η2

η2 η3

�
; ζ ¼

�
ζ1 ζ2

ζ2 ζ3

�
; ð85Þ

and η and ζ are positive semidefinite.
From Eqs. (82) and (83), the energy-momentum tensor is

determined as

T MN ¼ 2ðeþ pÞðUMUN̄ þ UM̄UNÞ þ pHMN

þ τ̂MN þ τΔMN; ð86Þ

τ̂MN ¼ 2ðη2 − GÞEMN þ η3£̂UHMN; ð87Þ

τ ¼ ðζ2 −KÞεþ 2ζ3£̂Ud; ð88Þ

and the time evolution of the strain tensors is given by

½£̂UE�MN ¼ −
1

τ1
EMN −

Gþ η2
2λ

£̂UHMN; ð89Þ

£̂Uε ¼ −
1

τ0
ε −

2ðKþ ζ2Þ
γ

£̂Ud; ð90Þ

where

τ1 ¼
λ

η1
; τ0 ¼

γ

ζ1
: ð91Þ

Under these relations, the entropy never decreases.
Equations (89) and (90), which determine the time evolu-
tion of the strain, are the equivalent to the so-called
rheology equations and the parameters τ1 and τ0 corre-
spond to relaxation times. At the timescale which is longer
than τ1 and τ0, the temporal derivatives such as £̂UEMN and
£̂Uε, are much smaller than 1

τ1
EMN and 1

τ0
ε and we obtain

EMN ∝ £̂UHMN; ε ∝ £̂Ud: ð92Þ

Then T MN reduces to the energy-momentum tensor of
viscous fluids,

T MN ¼ 2ðeþ pÞðUM̄UN þ UMUN̄Þ þ pHMN

þ η£̂UHMN þ 2ζ£̂UdΔMN; ð93Þ

where

η ¼ G2 þ det η
η1

; ζ ¼ K2 þ det ζ
ζ1

: ð94Þ

B. The general nondissipative case

Now we observe an interesting aspect of the model
proposed in the previous subsection. If we set η ¼ 0 and
ζ ¼ 0 in (84)–(85), we obtain

T MN ¼ 2eðUMUN̄ þ UM̄UNÞ − 2GEMN

þ ðp −KεÞΔMN: ð95Þ

In this particular case, the Lie derivative for the generalized
strains is given by

½£̂UE�MN ¼ −
G
2λ

£̂UHMN; ð96Þ

£̂Uε ¼ −
2K
γ

£̂Ud: ð97Þ

Under η ¼ 0 and ζ ¼ 0, the right-hand side of (81) vanishes
and the entropy is conserved, ∇MSM ¼ 0. This suggests
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that even the description of the perfect fluid in the double
space could be enriched by the inclusion of new degrees of
freedom to (46), as the generalized strain tensor. The
energy-momentum tensor (46) obtained by the generalized
scalar-perfect fluid identification is a particular case of the
nondissipative model described in this section. It is noted
that, if we choose G ¼ λ and K ¼ γ, the material does not
undergo a plastic deformation at the supergravity level and
can be identified as the elastic material in the sense
discussed in Sec. 3.3 of [22].
So far we have constructed a proposal to incorporate

imperfect fluid contributions in the double space consid-
ering a generalized strain tensor. We show in the next
section the parametrization of this model. Finally, in
Sec. VI, we discuss the relation between the nondissipative
model here constructed and the observations given in [4]
about the noninvariance of the perfect fluid under T-duality
rotations.

V. PARAMETRIZATION

For convenience, here we rewrite our fluid model by
using the standard supergravity fields. We start by para-
metrizing the generalized velocity, UM, and VM as

UM¼
�
δpm Bmp

0 δmp

��
vp
up

�
; VM¼

�
δpm Bmp

0 δmp

��
up
vp

�
:

ð98Þ

Since the generalized velocity must satisfy the constraint
UMUM ¼ 2vmum ¼ 0, we may choose vm ¼ 0 and in this
case HMNUMUN ¼ −1 shows that the velocity field um

satisfies the standard relation

gmnumun ¼ −1: ð99Þ

In what follows we keep both um and vm without
assuming a particular solution to the previous constraint.
The fundamental equation of thermodynamics becomes

Tδs̃0 ¼ δẽþ p̃δ ln v − 2 p̃δϕþ p̃umvnδBmn; ð100Þ

where we have defined ẽ ¼ e−2de and p̃ ¼ e−2dp, and
δ ln v ¼ 1

2
Δmnδgmn with Δmn ¼ umun − vmvn þ gmn corre-

sponds to the variation of the spatial volume. The gener-
alized Lie derivatives of the generalized metric and dilaton
along the flow become

£̂UHMN ð101Þ

¼
�
δpm Bmp

0 δmp

�� kðpqÞ gprk½rq�

−k½pr�grq −kðpqÞ

��
δqn 0

−Bqn δnq

�
;

£̂Ud ¼ um∂mϕ −
1

2
▽mum; ð102Þ

where

kðmnÞ ¼ 2▽ðmunÞ; ð103Þ

k½mn� ¼ Hmnrur þ 2▽½mvn�: ð104Þ

We also parametrize the strain tensor EMN in terms of a pair
of symmetric and antisymmetric matrices Emn and Fmn,
respectively,

EMN ¼
�
δpm Bmp

0 δmp

�� −Epq −gprFrq

Fprgrq Epq

��
δqn 0

−Bqn δnq

�
;

ð105Þ

and we parametrize the components of the generalized
energy-momentum tensor (4) and (14) as

tðmnÞ ¼
�
e −

1

2
T
�
ðumun − vmvnÞ

− 2ðG − η2ÞEmn − 2η3▽
ðmunÞ; ð106Þ

t½mn� ¼ −2ðG − η2ÞFmn − η3Hmnpup

þ 2

�
e −

1

2
T
�
u½mvn� − 2η3▽

½mvn�; ð107Þ

T ¼ −2pþ 2ðK − ζ2Þεþ 2ζ3ð▽mum − 2ϕ̇Þ; ð108Þ

where ϕ̇ ¼ um∂mϕ. The previous expressions can be
rewritten in terms of the ordinary sources as

Tmn ¼ e−2ϕ
�
tðmnÞ −

1

2
T gmn

�

¼ ðeþ pÞðumun − vmvnÞ þ pgmn

− 2ðĜ − η̂2ÞEmn − ðK̂ − ζ̂2ÞεΔmn

− 2η̂3▽
ðmunÞ − ζ̂3ð▽pup − 2ϕ̇ÞΔmn; ð109Þ

Jmn ¼ −ðĜ − η̂2ÞFmn −
1

2
η̂3Hmnpup

þ
�
eþ 1

2
σ

�
u½mvn� − η̂3▽

½mvn�; ð110Þ

σ ¼ 2p − 2ðK̂ − ζ̂2Þε − 2ζ̂3ð▽mum − 2ϕ̇Þ; ð111Þ

where the hatted quantities contains an additional dilaton
factor, e.g., Ĝ ¼ e−2ϕG. The rheology equations become

£uEmn ¼ −
1

τ1
Emn þ Gþ η2

λ
▽ðmunÞ; ð112Þ

£uFm
n ¼ −

1

τ1
Fm

n þ
Gþ η2
2λ

Hm
npupq; ð113Þ
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£uε ¼ −
1

τ0
εþKþ ζ2

γ
ð▽mum − 2ϕ̇Þ; ð114Þ

where we have ignored the quadratic dependence on the
strain tensors and ▽ðmunÞ. Finally, in the fluid limit, the
energy-momentum tensor becomes

Tmn ¼ ðeþ pÞðumun − vmvnÞ þ pgmn − 2η̂▽ðmunÞ

− ζ̂ð▽pup − 2ϕ̇ÞΔmn: ð115Þ

So far we have shown the form of the imperfect
contributions in the double space after solving the strong
constraint and imposing a parametrization for the new
degrees of freedom. One important advantage of this new
model is that now one can rewrite in a fully OðD;DÞ-
covariant way the whole family of cosmological scenarios
related to the perfect fluid dynamics in the supergravity
approach. We use the next section to discuss this point.

VI. COMMENTS ON T-DUALITY
AND PERFECT/IMPERFECT FLUIDS

The generalized energy-momentum tensor is a multiplet
of the duality group and therefore its transformation under
this symmetry is given by

T MN → hMPT PQhQN; ð116Þ

where hMN is an element of the OðD;DÞ group.
In [4], a particular configuration of perfect fluids was

considered in a cosmological background in 1þ 2 dimen-
sions without dilaton or B-field sources. Their original
configuration can be summarized as

g00 ¼ −1; gij ¼ a2ðtÞδij; Bmn ¼ 0;

Tm
n ¼ diagð−ρ; peffδ

i
jÞ; Jmn ¼ σ ¼ 0; ð117Þ

where um ¼ ð1; 0; 0Þ and vm ¼ 0. It was pointed out that if
we perform an OðD − 1; D − 1Þ transformation, the spatial
energy-momentum tensor of the perfect fluid in (117) is
mapped to the one with imperfect nondiagonal terms,
thus the standard formulation of perfect fluids is not
OðD − 1; D − 1Þ covariant unless peff ¼ 0.
Interestingly enough, it is not possible to reproduce the

matter configuration (117) from the generalized energy-
momentum tensor of the perfect fluid-scalar field corre-
spondence (55) with vanishing dilaton charge σ ¼ 0 and
vanishing B-field source Jmn ¼ 0 (see Ref. [16]). In fact the
parametrized energy-momentum tensor coming from (55)
reads

Tm
n ¼ diagð−e; pδijÞ: ð118Þ

with p ¼ σ=2. Therefore for vanishing dilaton source we
obtain p ¼ 0 and in turn we can only recover (117) with
peff ¼ 0. This implies that in order to encode the general
configuration (117) in a duality invariant way, we need to
include new degrees of freedom in (55) in addition to the
generalized metric, the generalized dilaton and the gener-
alized velocity. One possibility to solve this problem is to
consider the general nondissipative scenario proposed here
setting η ¼ 0 and ζ ¼ 0 in Eq. (109). Thus the spatial
mixed part of the energy-momentum tensor reads

Ti
j ¼ ðp −KεÞδij − 2GEi

j; ð119Þ

with p −Kε ¼ σ=2. Indeed if we further apply σ ¼ 0 and
Ei

j ¼ −ðpeff=2GÞδij, we obtain

p −K ε ¼ 0 Ti
j ¼ peffδ

i
j: ð120Þ

with the constraint

£uEi
j ¼

G
2λ

ð▽iuj þ▽juiÞ; ð121Þ

coming from the rheology equation. Therefore from these
expressions we can now read an effective nonvanishing
pressure peff even for the case σ ¼ 0. Since our model is
duality covariant, we can find the T-dual configuration,
which also contains the nonvanishing elastic strain, and
there is no issue of the noncovariance.

VII. CONCLUSIONS AND OUTLOOK

In this work we have constructed the generalization
of the Maxwell-Juttner distribution function (58) as a
solution of the generalized Boltzmann equation (56).
This function opens several possibilities in the double
space. On one hand, all the conserved quantities (T MN and
SM) can be exactly constructed through integration in the
generalized momentum coordinates in (64) and (66). While
this integration is a challenging task, it could serve as a
crucial test to compare with the proposal formulated in [16]
through the generalized scalar-perfect fluid correspon-
dence [17].
On the other hand, the main result of this work is the

construction of a simple model to include nonequilibrium
contributions (93). While the new terms in T MN are fully
covariant under generalized diffeomorphisms, it would
be interesting to construct these contributions from the
(double) statistical approach outlined in [15]. In this sense
the new terms should appear as a particular perturbation of
the distribution function, taking into account collision
contributions from the rhs of the generalized Boltzmann
equation.
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Furthermore, we have proposed a way to measure the
entropy production in a given system considering the
relation (81). This expression can be used to define
the second law of thermodynamics in the double space
and the additional terms in the generalized energy-momen-
tum tensor, after parametrization, introduce modifications
to the Navier-Stokes fluids that changes the dynamics at a
short-timescale as showed in [21–22]. In the proposed
model, by choosing η ¼ 0 and ζ ¼ 0, one can establish a
model where the entropy current is conserved but the effect
of the elasticity is included. Through this model we have
explained how to recover the energy-momentum tensor of
the perfect fluid in an OðD;DÞ-covariant way.
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