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We investigate a nonperturbative approach to quantum gravity built in terms of analogies between
quadratic gravity and quantum chromodynamics. This approach is based on a conjectured phase transition
between quadratic gravity in the trans-Planckian regime and an effective field theory, with general relativity
as the leading-order term, below the Planck scale. We point out that not all aspects of the analogy between
quadratic gravity and quantum chromodynamics are desired. A possible mechanism of chiral symmetry
breaking driven by quantum gravity fluctuations could make this setup incompatible with our observed
Universe. Here, we put forward a first investigation of chiral symmetry breaking in the context of quadratic
gravity. We find indication that gravity, despite being an attractive force, does not trigger chiral symmetry
breaking in a nonperturbative regime. This result is based on a (functional) renormalization group analysis
of four-fermion interactions coupled to quadratic gravity. We also comment on the particularities associated
with the single-flavor case. In summary, the analogy between quadratic gravity and chromodynamics
passes this first phenomenological viability test.
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I. INTRODUCTION

Since the seminal work by Stelle [1], it is known that
quadratic gravity, i.e., the Einstein-Hilbert action aug-
mented by curvature squared terms, is renormalizable
to all orders in perturbation theory. The underlying
reason is that the addition of curvature squared terms
enhances the graviton propagator from p−2 scaling to p−4

scaling, therefore reducing the degree of divergence
of Feynman diagrams involving graviton lines. A few
years after the proof of renormalizability of quadratic
gravity, it was also noted that couplings associated with
the curvature squared terms admit asymptotically free
trajectories [2–14].
At first glance, the properties of all-order renormaliz-

ability and asymptotic freedom seem to make quadratic
gravity a perfect contender in the quest for a UV-complete
theory of quantum gravity. Unfortunately, quadratic gravity
has a longstanding issue related to unitarity [1,15–17].
Schematically, the tree-level graviton propagator of quad-
ratic gravity behaves as

Dhhðq2Þ ∼ −
i

q2ðq2 −m2Þ ∼
1

m2

�
i
q2

−
i

q2 −m2

�
; ð1Þ

wherem2 is a massive parameter (proportional to the Planck
mass). According to the usual “rules” of perturbative
quantum field theory, the negative sign in the last term of
the propagator leads to states with negative norm, i.e., a
ghost. Since this ghost arises as a consequence of the higher-
derivative terms in the action of quadratic gravity, we name it
the higher-derivative ghost. In contrast to Faddeev-Popov
ghosts in gauge theories, we cannot remove the higher-
derivative ghost from the physical spectrum by means of
standard quantization methods. Therefore, in its usual
incarnation, the higher-derivative ghost spoils the unitarity
of quadratic gravity.
The unitarity problem in quadratic gravity has a classical

counterpart, namely, Ostrogradsky instabilities [18,19].
This type of instability is common in theories containing
higher-derivative terms and it is usually used to disregard
higher-derivative theories. Nevertheless, it has been
recently shown that, even at the nonlinear level, it is
possible to construct stable classical solutions in quadratic
gravity [20]. Classical aspects of quadratic gravity were
also explored in [21–30]. See also [31] for a discussion on
causality constraints in quadratic gravity.
Given the problem with unitarity in quadratic gravity and

considering the appearance of many alternative ideas to
quantize gravity [32,33], quadratic gravity was, for a long
time, left aside in the quest for a UV-complete theory of
quantum gravity.
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In recent years, there was a number of promising ideas
to rehabilitate quadratic gravity as a serious contender
for a UV-complete theory of quantum gravity [14,34–58].
Among the different proposals, there are claims that
quadratic gravity can be formulated as a unitary theory
by bringing back ideas from the Lee-Wick program for
higher-derivative theories [59–62]. For example, Anselmi
and Piva introduced a new prescription to define the
integration contour around propagator poles in the complex
plane, which allows us to remove the higher-derivative
ghost from the physical spectrum [47–53]. In this approach,
the higher-derivative ghost is interpreted as a fake-particle,
or a fakeon. As a second example, Donoghue and Menezes
[54–58] proposed that the higher-derivative ghost can be
reinterpreted as a particle traveling back in time, a Merlin
mode. The Merlin modes are unstable particles and, as
such, should not be included in the unitarity relations.
Using this property, they were able to prove S-matrix
unitarity of quadratic gravity [55]. It is important to
mention that both the fakeon and Merlin-mode proposals
trade unitarity violation with microcausality violation
[47,50,54,57,58]. The physical consequences of micro-
causality violation need to be better explored.
Another approach, by Holdom and Ren [63–65], is

based on a possible analogy between quantum gravity and
quantum chromodynamics (QCD). To our better under-
standing [66,67], QCD involves different phases: (i) at
high-energies, QCD is formulated in terms of Yang-Mills
theories with non-Abelian gauge fields (gluons) coupled
to fermions (quarks). This formulation enjoys the nice
property of asymptotic freedom, with gluons and quarks
behaving as free particles in the deep UV-limit [68,69]. As
we flow toward low energies, gluons and quarks become
strongly correlated, and, around the so-called QCD scale,
the theory transitions into a second phase. (ii) At low
energies, QCD can be better described in terms of chiral
perturbation theory, where the propagating degrees of
freedom are bound states of gluons and quarks [70].
However, it is still unclear whether this picture is indeed
compatible with the dynamics of quadratic gravity. More
work in this direction is necessary to make sure that this
analogy is indeed viable.
The approach by Holdom and Ren proposes that a

similar picture could describe quantum gravity. In this
case, in the high energy regime (beyond the Planck scale),
the gravitational dynamics would be described by quad-
ratic gravity, a theory that is both renormalizable and
(under certain conditions) asymptotically free. In this
trans-Planckian regime, the spectrum of the theory con-
tains both gravitons and ghost-like states. In analogy to
QCD, it is conceivable that once we flow toward low
energies, the dynamics of quadratic gravity would enter a
strongly correlated regime. Within Holdom-Ren’s sce-
nario, the strongly correlated regime would happen
around the Planck scale. Below this scale, the theory

would transition to a second phase with effective dynam-
ics where the Einstein-Hilbert is the leading order term
[71–74]. Furthermore, it is conjectured that the ghost
would be removed from the physical spectrum due to
nonperturbative effects. Once again, this is based on the
analogy with QCD, where gluons and quarks are removed
from the physical spectrum due to confinement.
In this paper, we point out that not all the aspects of an

analogy between quantum gravity and QCD are desired
from the physical point of view. In QCD, the nonperturba-
tive dynamics favors the formation of bound states, leading
to a mechanism of chiral symmetry breaking (χSB) [75–93].
As a consequence of χSB, fermions acquire masses of
the same order of magnitude as the scale at which QCD
becomes strongly correlated. Given that gravity is an
attractive interaction, we can expect a similar mechanism
in a regime where quantum gravity is strongly correlated.
However, if this mechanism is indeed realized as part of a
theory of quantum gravity that is strongly correlated around
the Planck scale, we expect that all fermions would acquire
masses around the Planck mass [94,95]. This scenario
would be in serious contradiction with our observations at
low energies since we observe several fermions with masses
much lower than the Planck mass. Therefore, a quantum
gravity scenario based on an analogy with QCD must avoid
χSB around the Planck scale.
The goal of this paper is to present a first analysis of the

mechanism of χSB in the scenario of quadratic gravity
proposed by Holdom and Ren. We perform an analysis
based on functional renormalization group tools [96–99],
where we investigate the impact of graviton fluctuations on
the renormalization group flow of four-fermion interactions
[78]. We find indications that, as long as the curvature
squared couplings stay finite, four-fermion couplings are
not driven toward criticality. Therefore, despite gravity
being attractive, it is possible to avoid χSB even in a
strongly correlated regime.
This paper is organized as follows: In Sec. II, we review

the main aspects of quadratic gravity and its analogy to
QCD. In Sec. III, we present our setup of investigation. In
Sec. IV, we report the renormalization group equations
obtained from our setup. In Sec. V, we perform an analysis
of the phase structure of four-fermion couplings and
discuss its consequence to χSB. In Sec. VI, we present
our conclusion and perspectives.

II. QUADRATIC GRAVITY AND ITS ANALOGY
TO STRONG INTERACTIONS

We can define quadratic gravity as a theory whose
dynamics correspond to Einstein-Hilbert plus curvature
squared terms. In terms of an action, we can write

SQG ¼
Z
x

ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ

p �
−M2Rþ 1

2f22
C2
μναβ −

1

3f20
R2

�
; ð2Þ
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where M2 is a mass parameter, f22 and f20 denote dimen-
sionless couplings, Cμναβ is the Weyl tensor and R denotes
the curvature scalar. Since the main results of this paper are
based on Euclidean methods, from now on we use con-
ventions that are compatible with Euclidean signature.
Here, we use the fR2; C2

μναβg-basis to define the action
for quadratic gravity. We can always translate to other bases
by expressing curvature squared invariants in terms of the
Gauss-Bonnet invariant, a boundary term in four dimen-
sions. The most general action for quadratic gravity also
admits a cosmological constant term. In this paper, we
ignore such a term since it does not play an important role
in our results.
In order to apply quantum field theory techniques to (2),

we introduce metric fluctuations hμν according to the linear
split gμν ¼ ḡμν þ hμν, where ḡμν denotes a background
metric. In Sec. III, we use over-bars to designate geomet-
rical quantities defined in terms of the background metric.
In the calculation of the renormalization group flow of four-
fermion couplings, we can take ḡμν as a flat metric without
loss of generality.
In the perturbative treatment of quadratic gravity, the

mass parameter M2 is usually identified with the Planck
mass M2

Pl ∼G−1
N (where GN denotes the Newton constant).

In the scenario proposed by Holdom and Ren [63–65], the
mass parameter M2 is not directly identified with M2

Pl. In
fact, in the analogy between quadratic gravity and QCD, we
take M2 → 0 in the trans-Planckian regime. Quadratic
gravity with M2 → 0 was also discussed in the context
of agravity [34,36] and conformal gravity (where we also
take f20 → ∞) [42].
The analogy between quadratic gravity and QCD starts

from the beta functions for the couplings f22 and f20. Here,
we focus on the one-loop beta functions for quadratic
gravity (minimally coupled to Nv-vectors, Nf -Dirac fer-
mions and Ns-scalars), previously computed in [13,14,63],
namely

βf2
2
¼ −

1

16π2

�
133

10
þ 12Nv þ 3Nf þ Ns

60

�
f42; ð3Þ

βf2
0
¼ 1

16π2

�
5

12
f40 þ 5f20f

2
2 þ

10

3
f42

�
: ð4Þ

The beta function βf2
2
(at one-loop) is strictly negative,

implying that the coupling f22 features the property of
asymptotic freedom, connecting f22 ¼ 0 in the deep UV
with positive values of f22 in the IR. This situation is similar
to QCD, where the beta function for the non-Abelian gauge
coupling is negative, leading to asymptotic freedom.
The analysis of the beta function βf2

0
is a bit more subtle

since it does not have a definite sign. For positive values
of f20 and f22, it is clear that βf20 is positive, indicating that
we cannot have asymptotically free trajectories connected

to positive values of f20 and f22 in the IR. If f20 < 0 in the
infrared, it is possible to find asymptotically free trajecto-
ries for f20. In Fig. 1, we show the phase diagram of the
curvature squared couplings. In the presence of an Einstein-
Hilbert term in (2), f20 < 0 leads to a tachyon in the
spectrum obtained from the tree-level propagator. Here, we
disregard such an issue, since we will work in a (conjec-
tured) setting where the tree-level propagator does not
capture the actual physical states of the theory.
In the scenario proposed by Holdom and Ren [63–65],

they conjectured that the analogy between quadratic gravity
and QCD goes beyond the running of f22 and f20. The main
conjecture is that the dressed propagator associated with
metric fluctuations should inherit certain aspects of the
dressed gluon propagator. In QCD, the tree-level gluon
propagator reads (apart from tensorial structures)

Dtree
AA ðq2Þ ∼

1

q2
: ð5Þ

The tree-level gluon propagator suggests that QCD
describes colored massless particles as asymptotic states.
However, this picture seems to be in contradiction with
color confinement. The true spectrum of QCD should be
obtained from dressed propagators, where we expect that
nonperturbative effects will properly incorporate color
confinement. In general, we can write the dressed gluon
propagator as

DAAðq2Þ ∼
FAAðq2Þ

q2
; ð6Þ

where the form factor FAAðq2Þ contains the nonperturbative
information. In the last two decades, the QCD community

FIG. 1. Phase diagram of the gravitational couplings f22 and f
2
0.

The green region corresponds to the basin of attraction of the UV
fixed point ðf22;�; f20;�Þ ¼ ð0; 0Þ.
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has made significant progress in obtaining nonperturbative
information about the gluon propagator from various
methods, including lattice simulations and functional
methods [81,90,100–113]. The different approaches to
nonperturbative QCD agree that the gluon propagator (at
least in the Landau gauge) features a decoupling regime
withDAAð0Þ approaching a positive and finite value. Lattice
simulations indicate that one can fit the gluon propagator
(modulo logarithmic corrections) by a four-parameter
function, producing the form factor

Ffit
AAðq2Þ ¼

Zq2ðq2 þM2
1Þ

q4 þM2
2q

2 þM4
3

: ð7Þ

The fitting obtained with quenched SU(3) gauge fields
indicates that the dressed gluon propagator has only
complex poles [114,115]. Thus, it is not physically mean-
ingful to associate a particle interpretation to the poles of
the dressed gluon propagator. A possible interpretation is
that one can associate complex poles in the gluon propa-
gator with color confinement [116].
Now, we turn to propagators in quadratic gravity.

Keeping aside tensorial structures, the tree-level propagator
associated with metric fluctuations behaves as

Dtree
hh ðq2Þ ∼

1

q4
; ð8Þ

This type of behavior is problematic since it is difficult to
reconcile 1=q4-scaling with unitarity. Holdom and Ren
suggested that the tree-level propagator in quadratic gravity
is not the appropriate quantity to define asymptotic states in
quantum gravity. Instead, we should look at the dressed
propagator, which we parametrize as

Dhhðq2Þ ∼
Fhhðq2Þ

q4
; ð9Þ

with Fhhðq2Þ representing a form factor. The conjecture by
Holdom and Ren is that, at the nonperturbative level, the
form factor Fhhðq2Þ behaves similarly to FAAðq2Þ. If this
conjecture is correct, we can write

Dhhðq2Þ ∼
1

q2
DAAðq2Þ: ð10Þ

Thus, keeping in mind that the dressed gluon propagator
features only complex poles, the only real pole of Dhhðq2Þ
is the one at q2 ¼ 0. This massless pole is what one can
interpret as the graviton, and this would be the only
asymptotic state in quadratic gravity. In this picture, the
original poles of the tree-level propagator Dtree

hh would be
removed from the physical spectrum.
To complete the scenario, Holdom and Ren conjecture

that once gravity enters a strongly correlated regime, it will

undergo a phase transition, such that it would be described
by an effective field theory below the Planck, where the
massless graviton is the only propagating degree of free-
dom. Again, this is based on the analogy with QCD. The
physics of strong interactions is well described by chiral
perturbation theory for energies below the QCD phase
transition. In contrast with QCD, the effective theory of
quantum gravity below the Planck scale would still involve
metric fluctuations as its dynamical variable. However, the
dynamics below the Planck scale would be dictated by the
Einstein-Hilbert action plus corrections suppressed by
negative powers of the Planck mass.
While the scenario reviewed in this section is a con-

jecture, we can already ask some questions about it. In
particular, what aspects of QCD should be imported to
quantum gravity in this analogy? While the analogy at the
level of the dressed propagator is very welcome, there are
aspects of QCD that one needs to avoid in a theory of
quantum gravity that enters a nonperturbative regime
around the Planck scale. In QCD, χSB is the leading order
mechanism behind the generation of the mass of hadrons.
This mechanism relies on two main aspects: (i) quarks are
attracted to each other due to the exchange of gluons, which
favors bound-state formation; and (ii) the non-Abelian
interaction enters a strongly correlated regime around the
QCD scale ΛQCD ∼ 102 MeV. As a consequence of χSB,
bound states of colored fermions acquire masses of the
same order as ΛQCD.
In the scenario discussed in this paper, gravity fulfills the

same conditions that are relevant for χSB: (i) gravity is an
attractive interaction; and (ii) quadratic gravity enters a
strongly correlated regime around the Planck scale. Thus, it
is reasonable to expect that quantum gravity effects can
trigger χSB around the Planck scale. If this is the case, we
would expect that all fermions in nature (as gravity is
universal) should form bound states with masses around the
Planck scale. This picture is in clear contradiction with our
Universe since we observe fermions that are much lighter
than the Planck mass. In the rest of this paper, we test
whether the scenario proposed by Holdom and Ren leads
to χSB.

III. TECHNICAL SETUP

The main goal of this paper is to investigate if quantum
gravity fluctuations would trigger χSB in the scenario of
quadratic gravity in analogy to QCD. One efficient way of
searching for χSB is by looking at the renormalization
group flow of four-fermion interactions. See, e.g., [78] for
a review on the role of four-fermion interactions in the
mechanism of χSB. In a nutshell, one can interpret
divergences in the flow of four-fermion couplings as
indications for χSB.
In this paper, we use the functional renormalization

group (FRG) as a tool to derive beta functions in fermionic
systems coupled to quadratic gravity. The FRG is a
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practical implementation of the Wilsonian idea of defining
the renormalization group flow by a step-by-step realiza-
tion of (Euclidean) functional integrals in quantum field
theory [96–99]. Within the effective average action for-
mulation, the main idea is to deform the generating func-
tional by introducing a regulator function Rkðq2Þ that acts
like a momentum-dependent mass term, with k denoting a
renormalization group scale. By construction, Rkðq2Þ
should: (i) suppress IR modes characterized by q2 < k2;
(ii) vanish for k → 0; (iii) diverge when k → ∞; and
(iv) approach zero in a sufficiently quick way when we
set q2 → ∞ with fixed k. For reviews on the FRG, see, e.g.,
Refs. [85,117–119]. For applications of the FRG in
quantum gravity, see, e.g., Refs. [119–122].
The main object of the FRG is the effective average

action Γk, which is a functional that describes the effective
dynamics of a system at scale k, recovering the full
effective action Γ at k ¼ 0 and the bare action at k →
ΛUV (ΛUV is a UV cutoff, we can set it to infinity in
UV-complete theories). The functional Γk satisfies the
nonperturbative flow equation,

k∂kΓk ¼
1

2
STr½ðΓð2Þ

k þRkÞ−1k∂kRk�; ð11Þ

where Γð2Þ
k is a 2-point function derived from Γk, and the

super-trace STr accounts for functional and discrete traces,
and also for negative signs in the case of fermions.
The flow equation (11) is a powerful tool to derive beta

functions beyond standard perturbative approximations.
However, we cannot solve this equation exactly. We still
need to employ some form of approximation method.
Typically, we start with an ansatz, i.e., a truncation for
Γk, then we compute beta functions within the correspond-
ing truncated coupling space.
In this paper, we use the following truncation for Γk

Γk ¼
Z
x

ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ

p �
1

2f22ðkÞ
C2
μναβ −

1

3f20ðkÞ
R2

�

þ
Z
x

ffiffiffiffiffiffiffiffiffiffiffiffi
detðḡÞ

p
Fμ½h; ḡ�YμνðḡÞFν½h; ḡ�

þ
Z
x

ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ

p
iZψ ðkÞψ̄ iγ

μDμψ i

þ
Z
x

ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ

p �
λ̄þðkÞ
2

ðVþ AÞ þ λ̄−ðkÞ
2

ðV − AÞ
�
:

ð12Þ

The first and second lines correspond to the truncation of
the gravitational dynamics. We use a scale-dependent
version of the quadratic gravity action (with M2 → 0),
plus a higher-derivative gauge-fixing term with [123]

Fμ½h; ḡ� ¼
1ffiffiffiffiffiffiffiffiffi
2αgf

p
�
∇νhμν −

1þ βgf
4

∇μhαα

�
; ð13Þ

YμνðḡÞ ¼ −ḡμν∇2 þ cgf∇μ∇ν − dgf∇ν∇μ: ð14Þ

Here, αgf , βgf , cgf , and dgf denote gauge parameters. In this
paper, we report results obtained with gauge choice αgf ¼
f22, βgf¼3f22=ðf22þf20Þ, and cgf − dgf ¼ ðf20 − 2f22Þ=ð3f20Þ.
This gauge choice is adjusted to remove off-diagonal terms
in the graviton 2-point function [10,13,123].
The third and fourth lines of (12) correspond to the

truncation of the fermion dynamics. Our truncation for
the fermion sector corresponds to a Nambu-Jona-Lasino
[124,125] type of action minimally coupled to gravity (via
vierbein formalism). In the fourth line, V and A denote,
respectively, the vector and axial-vector four-fermion
operators, namely

V ¼ ðψ̄ iγμψ iÞ2 and A ¼ −ðψ̄ iγμγ5ψ iÞ2: ð15Þ

The index i represents a flavor-index, taking values
i∈ f1;…; Nfg. In the fermionic sector, we introduce a
wave-function renormalization ZψðkÞ and two four-fermion
couplings λ̄þðkÞ and λ̄−ðkÞ (with canonical mass dimention
−2). In order to derive beta functions that lead to autono-
mous dynamical systems, we define the renormalized four-
fermion couplings

λ�ðkÞ ¼ ðZψ ðkÞ2k−2Þ−1λ̄�ðkÞ: ð16Þ

The system in (12) is symmetric under the global chiral
group SUðNfÞR × SUðNfÞR, corresponding to transforma-
tions of the form

ψ i ↦ ψ 0
i ¼ ðURÞijPRψ j þ ðULÞijPLψ j; ð17Þ

ψ̄ i ↦ ψ̄ 0
i ¼ ψ̄ jPLðU†

RÞji þ ψ̄ jPRðU†
LÞji; ð18Þ

where UR ∈SUðNfÞR and UL ∈SUðNfÞL, and PR;L ¼
1
2
ð1� γ5Þ are the chiral projectors. In addition, (12) is

also symmetric under the global chiral transformation, also
known as Uð1ÞA transformation,

ψ i ↦ ψ 0
i ¼ eiαiγ5ψ i and ψ̄ i ↦ ψ̄ 0

i ¼ ψ̄ ieiαiγ5 ; ð19Þ

for each one of the flavors.
For practical calculations with the FRG, we need to specify

the regulator function Rkðq2Þ. In this paper, we define

Rkðq2Þ ¼ ½Γð2Þ
k ðq2Þ�fields¼0rðq2Þ; ð20Þ

wherewe use rðq2Þ ¼ ððk2=q2Þ2 − 1Þθðk2 − q2Þ in the gravi-
tational sector, and rðq2Þ ¼ ððk2=q2Þ1=2 − 1Þθðk2 − q2Þ in
the fermionic sector.
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IV. RENORMALIZATION GROUP EQUATIONS

Using the FRG, one can compute the beta-functions βλþ
and βλ− by acting with functional derivatives with respect to
fermions on both sides of the flow equation (11), and
projecting it at vanishing fields. Schematically, we can
write

βλ� ¼ ð2þ 2ηψÞλ� þ P� ∘ k∂kΓð4Þ
k;ψψψ̄ ψ̄ ; ð21Þ

where ηψ ¼ −Z−1
ψ k∂kZψ is the fermion anomalous dimen-

sion,Pþ andP− are operators that allow us to project on λþ
and λ−, and Γð4Þ

k;ψψψ̄ ψ̄ is the fermion 4-point function
evaluated at vanishing momenta. At the technical level,
we use the Mathematica packages xAct [126–128],
FormTracer [129] and DoFun [130,131] to evaluate the beta
functions βλ� .
In the following, we report the explicit expressions for

βλþ and βλ− in the perturbative approximation, where we
ignore the anomalous dimension ηψ coming from the
regulator insertion k∂kRk,

βλ� ¼ βð0Þλ� � f22
28672π2

�
141f22 −

811

55
βf2

2

�

−
λ�

192π4

�
67f22 −

779

120
βf2

2
− 8f20 þ

23

60
βf2

0

�
; ð22Þ

where βð0Þλþ and βð0Þλ−
denote the beta functions of four-

fermion couplings in the absence of gravity, namely

βð0Þλþ ¼ 2λþ þ 3

8π2
λ2þ þ Nf þ 1

4π2
λþλ−; ð23Þ

βð0Þλ−
¼ 2λ− þ Nf − 1

8π2
λ2− þ Nf

8π2
λ2þ: ð24Þ

The beta functions βð0Þλ� agree with the limit of vanishing
gauge couplings of the results reported in [80,85,132,133].
Concerning the renormalization group flow of the

gravitational parameters f22 and f20, we use the 1-loop beta
functions previously computed in the literature [cf. Eqs. (3)
and (4)] [13,14,63]. Since we are interested in a system
containing only gravity and fermions, we set Nv ¼ Ns ¼ 0,
resulting in

βf2
2
¼ −

1

16π2

�
133

10
þ Nf

20

�
f42; ð25Þ

βf2
0
¼ 1

16π2

�
5

12
f40 þ 5f20f

2
2 þ

10

3
f42

�
: ð26Þ

Ideally, we should not use 1-loop beta functions to explore
the strongly correlated regime. This is a limitation of our
current analysis. In Sec. V, we explore a toy model that

parametrizes the renormalization group flow of the gravi-
tational couplings in the strongly correlated regime.

V. χSB IN QUADRATIC GRAVITY?

In this section, we search for signs of χSB by looking at
the renormalization group flow of the four-fermion cou-
plings λþ and λ−.

A. Switching off gravitation fluctuations

First, we note that if we switch off gravitational

fluctuations (f22 → 0 and f20 → 0), βλ� reduces to βð0Þλ� .

The beta functions βð0Þλ� feature one free fixed point,

ðλþ;�; λ−;�Þ ¼ ð0; 0Þ; ð27Þ

and three interacting fixed points,

ðλþ;�; λ−;�Þ ¼
�
−

16π2ð3þ NfÞ
9þ 5Nf þ 2N2

f

;−
16π2

9þ 5Nf þ 2N2
f

�
;

ð28Þ

ðλþ;�; λ−;�Þ ¼
�
−

16π2

1 − 2Nf
;

16π2

1 − 2Nf

�
; ð29Þ

ðλþ;�; λ−;�Þ ¼
�
0;

16π2

1 − Nf

�
: ð30Þ

See also Ref. [78] for a discussion on the fixed-point

structure of βð0Þλ� . Here, we focus on the case Nf ≥ 2. We
will discuss the single-favor (Nf ¼ 1) case in Sec. V D.

We label the fixed points as FPð0Þ
1 , FPð0Þ

2 , FPð0Þ
3 and

FPð0Þ
4 , respectively. Concerning their stability properties,

we have that:
(i) FPð0Þ

1 is IR-attractive.

(ii) FPð0Þ
2 and FPð0Þ

3 have one UV-attractive and one
IR-attractive direction.

(iii) FPð0Þ
4 is UV-attractive.

This set of fixed points defines a region (cf. Fig. 2) in the
phase space of four-fermion couplings for which any initial
condition inside such region leads to safe trajectories
toward the IR, thus, avoiding χSB. We will use the
nomenclature chiral phase to refer to this region.
When we switch on gravitational contributions in the

beta functions βλ� , the chiral phase will be deformed due to
nonvanishing values of f22 and f

2
0. Hence, we can search for

signs of gravity-induced χSB by investigating deformations
of the chiral phase for nonvanishing values of f22 and f

2
0. In

particular, if the chiral phase gets shrunk to a point for finite
values of f22 and f20, we can view this as an indication that
quadratic gravity would trigger χSB if it enters a non-
perturbative regime.
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B. A brief detour into single-channel QCD

To better illustrate our strategy, let us briefly review
how to identify χSB in QCD with a simple setup where
we consider only the ðS − PÞ-channel, associated with
a four-fermion coupling λσ. Our discussion follows
[78,80,85,132,133]. In this single-channel approximation,
we search for χSB by looking at zeros of the beta function

βQCDλσ
¼ 2λσ −

3

4π2
λ2σ −

1

π2
g2λσ −

57

256π2
g4; ð31Þ

where g denotes the SU(3) gauge coupling. In the
following, we will treat g as an external parameter. One
can define the chiral phase as the region between the fixed

points (zeros of the beta function) λðIRÞσ� and λðUVÞσ;� , where

λðIRÞσ;� ¼ 32π2 − 16g2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1024π4 − 1024π2g2 þ 85g4

p
24

;

ð32Þ

λðUVÞσ;� ¼ 32π2 − 16g2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1024π4 − 1024π2g2 þ 85g4

p
24

:

ð33Þ

If λðIRÞσ;� ; λðUVÞσ;� ∈R, then any initial condition in the chiral

phase flows toward λðIRÞσ;� in the IR. However, we note
that the chiral phase exists only if the argument of the
square roots in the previous expressions remains positive.
Thus, the requirement of a nonvanishing chiral phase
leads to an upper bound g2 < g2crit ≈ 10.86. At g2 ¼ g2crit

we have λðIRÞσ;� ¼ λðUVÞσ;� , corresponding to a fixed-point

collision. For g2 > g2crit, λðIRÞσ;� and λðUVÞσ;� run into the
complex plane, and the flow of the four-fermion coupling
λσ becomes unbounded. Therefore, if the flow of g2 stays
long enough above g2crit, then the four-fermion coupling λσ
runs toward a divergence, leading to χSB.

C. χSB in quadratic gravity: Nf ≥ 2

Next, we investigate if a similar situation happens in the
context of quadratic gravity. First, we look at a simplified
setting where we consider only gravitational contributions
associated with the transverse and traceless modes of the
fluctuation field hμν, i.e., the TT-approximation. In this
case, the beta functions of λ� reduce to

βλ�jTT ¼ βð0Þλ� � f22
2048π2

ð10f22−βf2
2
Þ− 5λ�

64π4

�
f22−

1

8
βf2

2

�
;

ð34Þ

Treating f22 as an external parameter, this system of beta
functions has four fixed points with the following structure

FPi∶ λðiÞ�;� ¼ AðiÞ
� þ BðiÞ

�
ffiffiffiffiffiffiffiffi
ΔðiÞ

p
; ð35Þ

where i∈ f1; 2; 3; 4g. We sorted the fixed points such that

FPi → FPð0Þ
i (smoothly) when we switch off gravity. The

coefficients AðiÞ
� and BðiÞ

� are polynomial functions of Nf

and f22, but their explicit forms are not relevant for our
discussion. ΔðiÞ is also a polynomial function of Nf and f22.
Focusing on Nf ¼ 2, we can write

Δð1Þ ¼ Δð3Þ ¼ 1342177280π8 − 104857600π6f22

− 6471680π4f42 þ 634624π2f62

þ 22445f82; ð36aÞ

Δð2Þ ¼ Δð4Þ ¼ 33554432000π8 − 2621440000π6f22

− 201113600π4f42 þ 12572416π2f62

þ 561125f82: ð36bÞ

We can explicitly check that ΔðiÞ > 0 for positive values of
f22 (we are not interested in f22 < 0, as we cannot connect
this region with asymptotically free trajectories). We
explicitly checked that the same holds for Nf > 2.
Therefore, we can conclude that all the fixed points of
βλ� remain real, even for large values of f22, which allows
us to define a chiral phase even at large values of f22. We
will discuss the phase structure in more detail once we
lift the TT-approximation. The picture we are developing
here is qualitatively different from our QCD-example,

FIG. 2. Phase diagram of four-fermion interaction with Nf ¼ 2
and in the absence of gravitational contributions. The green
region indicates the chiral phase. Any UV-initial condition inside
this region leads to trajectories that are attracted to the IR fixed

point FPð0Þ1 . The red lines correspond to separatrix between the
different sub-regions of the phase diagram.
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where λðIRÞσ;� and λðUVÞσ;� move into the complex plane for
large values of g2.
In Fig. 3, we plot λðiÞ�;� (i∈ f1; 2; 3; 4g) as a function of

f22. Increasing the value of f22 we can see two fixed-point
collisions, one for each pair of fixed points. In contrast with
the QCD-example, in the present case, the fixed points do
not run into the complex plane after the fixed-point
collision. As we shall see later, the fixed points involved
in the fixed-point collision shown in Fig. 3 exchange their
stability properties. Moving away from the TT-approxima-
tion, we restore all modes of hμν. In this case, the flow of
the four-fermion couplings is described by the beta function
in (22), where we treat f22 and f20 as external parameters.
The fixed points of βλ� exhibit the same structure as

Eq. (35), but with different expressions for AðiÞ
� , BðiÞ

� , and
ΔðiÞ, which now also depend on f20.
In Fig. 4, we show contour plots of ΔðiÞ (i ¼ 1, 2) as a

function of f22 and f20 for Nf ¼ 2. We focus on f22 > 0 and
f20 < 0 since this is the region in the space of gravitational

couplings where we can take values (at finite k) that are
connected to the asymptotically free fixed point. We note
that ΔðiÞ > 0 for all values of f22 and f20 in this range (we
also explored a larger region of the parameter space and the
result remains the same). Thus, we can conclude that the
fixed points of βλ� remain real even at large (absolute)
values of the gravitational coupling f22 and f20, strengthen-
ing the results obtained with the TT-approximation.
In Fig. 5, we plot λðiÞ�;� (i∈ f1; 2; 3; 4g) as a function of

f22, for f
2
0 ¼ 0. We also tested other values within the region

f20 < 0 and the qualitative conclusions reported here remain
the same. Similar to the TT-approximation, the fixed-point
structure obtained with all graviton modes also exhibits two
fixed-point collisions. Each one of these collisions defines a
line in the ðf22; f20Þ-plane. These lines are represented in
Fig. 4, and they divide the ðf22; f20Þ-plane into three regions,
which we call R1, R2, and R3 (cf., caption of Fig. 4). As
we will see, these regions lead to different properties of the
phase diagram of four-fermion interactions.

FIG. 3. We show the fixed-point values λþ;� and λ−;� as a function of f22 in the TT-approximation. Different lines correspond to the
different fixed points FPi with i∈ f1; 2; 3; 4g. This plot corresponds to Nf ¼ 2. The black dots indicate fixed-point collisions.

FIG. 4. Contour plots showing how the quantities Δð1Þ and Δð2Þ [see Eq. (36)] vary with respect to the gravitational couplings f22 and
f20. This plot corresponds to Nf ¼ 2. As we can see, Δð1Þ and Δð2Þ is mainly affected by changes on f22. The dashed lines indicate fixed-
point collisions on the ðf22; f20Þ-plane. We define: (i)R1 as the region to the left of the first dashed line; (ii)R2 as the region between the
dashed lines; (iii) R3 as the region to the right of the second dashed line.
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The results we obtain with the inclusion of all graviton
modes also indicate that we can define a chiral phase even
at large (absolute) values of the gravitational couplings f22
and f20. To confirm this statement, we now look at the
phase diagram of four-fermion interactions. The qualita-
tive result is very little affected by variations of f20, thus,
we focus on f20 ¼ −f22. In Fig. 6, we illustrate the general
behavior with the choices of f22 ¼ 20, f22 ¼ 40 and
f22 ¼ 60. These choices belong to R1, R2 and R3,
respectively. We note that the fixed points FP1 and
FP2 (FP3 and FP4) interchange their stability properties
when we move from R1 to R2 (R2 to R3). In Table I, we
summarize the stability properties in the various regions
of the ðf22; f20Þ-plane.
If ðf22; f20Þ∈R1, we define the chiral phase as the basin

of attraction of the fixed point FP1. Meanwhile, if
ðf22; f20Þ∈R2 or ðf22; f20Þ∈R3, we define the chiral phase
as the basin of attraction of FP2. The regions R1 and R3

share some features. In both cases, all fixed points are
connected to the chiral phase. In contrast, in region R2 we
cannot connect the fixed point FP4 with points inside the
chiral phase. Nevertheless, in all cases one can define a

chiral phase, adding another piece of evidence that gravity
does not trigger spontaneous χSB in our setting.
To complete the analysis, in Fig. 7, we plot the

renormalization group trajectories λþðkÞ and λ−ðkÞ starting
from the free fixed point in the UV, for several choices of
boundary conditions of the gravitational coupling at the

FIG. 5. We show the fixed-point values λþ;� and λ−;� as a function of f22. Different lines correspond to the different fixed points FPi

with i∈ f1; 2; 3; 4g. In this plot, we use Nf ¼ 2 and f20 ¼ 0 as a representative case. The black dots indicate fixed-point collisions.

FIG. 6. Phase diagram of four-fermion interaction including gravitational contributions. The green region indicates the chiral phase. In
all plots, we show the results corresponding to Nf ¼ 2.

TABLE I. Stability properties on the various regions of the
parameter space ðf22; f20Þ in the multiflavor case (Nf ≥ 2). We use
the term “mixed stability” to indicate that a fixed point has one
UV- and one IR-attractive direction.

Region R1 FP1: IR-attractive
FP2 and FP3: Mixed stability
FP4: UV-attractive

Region R2 FP2: IR-attractive
FP1 and FP3: Mixed stability
FP4: UV-attractive

Region R3 FP1: IR-attractive
FP1 and FP4: Mixed stability
FP3: UV-attractive
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Planck scale. One can see that, as long as f22 and f
2
0 remain

finite at the Planck scale, the four-fermion couplings do not
run into divergences in the trans-Planckian regime. As we
run toward the IR, we can encounter a divergence in the
flow of λþðkÞ and λ−ðkÞ, which is generated by the Landau
pole in f22ðkÞ and f20ðkÞ. This divergence is spurious since
the Landau pole in the gravitational sector is most likely an
indication of the breakdown of the beta functions (25) and
(26). In order to properly access the regime below the
Planck scale, we need an IR completion of quadratic
gravity. In the QCD-analogous scenario, the IR completion
is an effective field theory with the Einstein-Hilbert action
being the zeroth order term. However, up to the present
moment, it is not clear whether there is a dynamical
mechanism describing the transition from quadratic gravity
(in the trans-Planckian regime) to an effective field theory
(at low energies).
Here, we explore a toy model for the IR-completion

where we set the running of the gravitational couplings
according to

f2i ðkÞ ¼ f2i;Pl:θðkPl: − kÞ þ f2i;UVðkÞθðk − kPl:Þ; ð37Þ

with i ¼ 0, 2. We use f2i;UVðkÞ to parametrize the flow in
the trans-Planckian regime [determined by (25) and (26)],
and we define f2i;Pl: ¼ f2i;UVðkPl:Þ. In this toy model, the
gravitational couplings are constant below the Planck scale.
This toy model is meant to illustrate that the flow of the
four-fermion couplings does not run into divergences in the
IR, therefore avoiding χSB. This situation, although sim-
ple, shows a significant difference with QCD, since a very
similar toy model applied to the single-channel approxi-
mation in QCD exhibits features related to χSB. In Fig. 8,
the left-panel shows the flow of four-fermion couplings
under the influence of (37), while the right-panel shows a
the running of λσ in our toy model for the QCD case.
In conclusion, the collection of results presented in this

section shows evidence that in the QCD-analogous sce-
nario for quadratic gravity, the nonperturbative sector
does not lead to χSB induced by quantum gravity
effects. Therefore, the scenario proposed by Holdom

FIG. 7. Left: renormalization group trajectories of the four-fermion couplings λ�. We show trajectories corresponding to different
boundary conditions for the gravitational couplings at the Planck scale. Right: Planck scale value of λ� as a function of the gravitational
f22ðkPlÞ. In all cases, with focus on f20ðkPlÞ ¼ −f22ðkPlÞ and Nf ¼ 2.

FIG. 8. Left: renormalization group trajectories of the four-fermion couplings λ� integrated down to IR-scales. The external
trajectories (full lines) correspond to the boundary condition f22ðkPlÞ ¼ −f20ðkPlÞ ¼ 30. For the internal trajectories (dashed lines) we use
boundary conditions f22ðkPlÞ ¼ −f20ðkPlÞ∈ f15; 20; 25g. The four-fermion couplings remain finite even if we choose large boundary
conditions at the Planck scale kPl. Right: renormalization group trajectories of four-fermion coupling λσ in our single-channel toy model
for QCD. The full line corresponds to boundary condition g2ðkQCDÞ ¼ 12. The dashed lines correspond to boundary conditions
g2ðkQCDÞ∈ f8; 9; 11g. In the QCD example, λσðkÞ diverges if we choose large enough boundary conditions for the gauge coupling at the
transition scale kQCD.
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and Ren [63–65] seems to be compatible with the
existence of light fermions in our Universe.

D. χSB in quadratic gravity: Nf = 1

In this subsection, we look into the special case Nf ¼ 1.
As we shall see, this case exhibits a few differences in
comparison with Nf ≥ 2 and, therefore, deserves a separate
analysis.
The first difference between Nf ¼ 1 and Nf ≥ 2 happens

already in the pure-fermion system, i.e., in the case where
we switch off gravity. In this case, the beta functions βλ�
exhibit only three fixed points [78], namely

FPð0Þ
1 ∶ ðλþ;�; λ−;�Þ ¼ ð0; 0Þ; ð38Þ

FPð0Þ
2 ∶ ðλþ;�; λ−;�Þ ¼ ð−4π2;−π2Þ; ð39Þ

FPð0Þ
3 ∶ ðλþ;�; λ−;�Þ ¼ ð16π2;−16π2Þ: ð40Þ

As we can see in (28), the would-be fixed point FPð0Þ
4 runs

to infinity when we take the limit Nf → 1. The stability
properties of these fixed points are the same as in the
previous section. In Fig. 9, we plot the phase diagram of
four-fermion couplings in the case Nf ¼ 1. As we did in
the previous section, one can define the chiral region as the

basin of attraction of FPð0Þ
1 . The main difference in

comparison with Nf ≥ 2 (cf., Fig. 2) is that, in the single
flavor case, the chiral phase extends down to λ− → −∞.
Switching on gravity and treating the gravitational

couplings as external parameters, we first look at the
structure of fixed points of βλ� as a function of f22 and
f20. Following the same notation as in the previous section,
we use FPi to indicate the fixed points that are connected to

FPð0Þ
i when we switch off gravitational contributions. To

simplify the discussion, let us focus on the case f20 ¼ 0 (we
explicitly verified that our conclusions remain unchanged
for other values of f20). In Fig. 10, we plot the fixed-point
values of λþ and λ− as a function of f22. At this point, one
can see a significant difference in comparison with the case
Nf ≥ 2. Starting at f22 ¼ 0, the fixed point FP2 diverges
(with λ− → þ∞) for a finite value f22 ¼ f22;div (≈41.94, for
f20 ¼ 0). At the particular value f22 ¼ f22;div, the beta
functions βλ� have only two fixed-point solutions with
finite couplings. Slightly above f22 ¼ f22;div, one sees a third
fixed-point solution emerging from λ− → −∞. However,
this fixed point has the same properties as FP4 instead of
FP2. In particular, one can check that this fixed-point
solution corresponds to the limit Nf → 1 of the fixed-point
solution FP4 described in the previous section.
Besides the divergence at f22 ¼ f22;div, the fixed-point

structure of the case Nf ¼ 1 also exhibits two fixed-point

FIG. 9. Phase diagram of four-fermion interaction in the single-
flavor case Nf ¼ 1 and in the absence of gravitational contribu-
tions. The green region indicates the chiral phase. Any UV-initial
condition inside this region leads to trajectories that are attracted

to the IR fixed point FPð0Þ1 . The red lines correspond to separatrix
between the different subregions of the phase diagram.

FIG. 10. We show the fixed-point values λþ;� and λ−;� as a function of f22 in the single-flavor case (Nf ¼ 1). In this plot, we use f20 ¼ 0

as a representative case. The black dots indicate fixed-point collisions, and the dashed lines mark the value of f22 for which λ−;� tends to
infinity.
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collisions. The first, at f22 < f22;div, involves a collision
between FP1 and FP2. The second, at f22 > f22;div, involves
a collision between FP3 and FP4. In both cases, the fixed
points involved in the collision interchange their stability
properties. In this case, we can split the parameter space of

gravitational couplings into four regions: R1, R
ð<Þ
2 , Rð>Þ

2

and R3. The regions R1 and R2 are similar to the
corresponding ones that we introduced in the previous

section. Rð<Þ
2 and Rð>Þ

2 are sub-divisions of the region R2

introduced in the previous section. Rð<Þ
2 is below

f22 ¼ f22;div, while Rð>Þ
2 is above f22 ¼ f22;div. In Table II,

we summarize the stability properties of the various regions
in the parameter space of gravitational couplings.
Because of the divergence of FP2, we can only define the

chiral phase based on a finite fixed point within region R1.
For the other regions of the gravitational parameter space,
the chiral phase corresponds to the basin of attraction of an
IR fixed point located at infinity. In Fig. 11, we show
examples of the phase diagram obtained with Nf ¼ 1,

within regionsRð<Þ
2 ,Rð>Þ

2 andR3. We refrain from plotting
the phase diagram corresponding to regionR1 since it does
not show any qualitative difference from the results
obtained with Nf ≥ 2.
Finally, in Fig. 12, we look at the renormalization group

trajectories obtained with Nf ¼ 1. Again, let us consider
our toy model for IR-completion where the running of

FIG. 11. Phase diagram of four-fermion interaction in the single-flavor case (Nf ¼ 1) with the inclusion of gravitational contributions.
The green region indicates the chiral phase. In the second and third plots, we define the chiral phase as the basin of attraction of an IR
fixed point lying at λ− → þ∞.

FIG. 12. Renormalization group trajectories of λ�ðkÞ in the single-flavor case (Nf ¼ 1). We consider Planck scale boundary
conditions such that the gravitational couplings lie on region R3. With this choice, we see that four-fermion coupling λ− grows toward
the IR. This growth reflects the fact that these trajectories are attracted to an IR fixed point with at infinite (in the λ−-direction).

TABLE II. Stability properties on the various regions of the
parameter space ðf22; f20Þ in the single-flavor case (Nf ¼ 1). We
use the term “mixed stability” to indicate that a fixed point has
one UV- and one IR-attractive direction.

Region R1 FP1: IR-attractive
FP2 and FP3: Mixed stability

Region Rð<Þ
2 FP2: IR-attractive

FP1 and FP3: Mixed stability

Region Rð>Þ
2 FP1 and FP3: Mixed stability

FP4: UV-attractive

Region R3 FP1 and FP4: Mixed stability
FP3: UV-attractive
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gravitational couplings is given by Eq. (37). At this point,
we see a significant difference in comparison to the Nf ≥ 2
case discussed in the previous section: if the Planck-scale
values of f22 and f20 are sufficiently large, such that they

belong toRð>Þ
2 orR3, the trajectories λþðkÞ and λ−ðkÞ grow

unbounded when we flow toward the infrared.
Nevertheless, this is not necessarily an indication of
χSB, since the coupling λ− would tend to infinity only
at k → 0, not at finite k as in QCD.
In conclusion, although the results of this section

indicate that single-flavor case (Nf ¼ 1) exhibits a different
phase structure in comparison with Nf ≥ 2, we remain
without any indication of χSB at finite renormalization
group scale.

E. Quadratic gravity vs QCD

The results presented in this section go against the
expectation that quadratic gravity, due to its attractive
nature combined with a strongly correlated regime around
the Planck scale, could trigger χSB. In this subsection, we
confront quadratic gravity with QCD to identify the aspects
that differentiate both cases. The arguments presented here
are based in [94], where a potential mechanism of gravi-
tational induced χSB was investigated in asymptotically
safe quantum gravity.
First, we note several differences between quadratic

gravity and QCD at the level of the diagrams contributing
to the flow of four-fermion interactions (cf., Fig. 13). In the
case of QCD, the gluon contributions to the flow of four-
fermion interaction come from diagrams constructed in
terms of the four-fermion vertex and the gluon-fermion-
fermion vertex. In quadratic gravity, there are infinitely
many vertices involving fermions and metric fluctuations,
allowing additional one-loop diagrams.
Generically, we can trace the mechanism of χSB in QCD

back to the dominance of the λi-independent terms in βλi
(diagrams 2b and 3b in Fig. 13) in comparison with terms
linearly proportional to λi (diagram 1b in Fig. 13). In the
gravitational case, the situation is the opposite. Due to

nontrivial cancellations between the box and crossed-box
diagrams, the λi-independent terms in βλi (diagrams 2a, 4a,
6a, and 7a in Fig. 13) are over-weighted by the terms
proportional to λi (i.e., diagrams 1a, 3a, and 5a in Fig. 13,
plus the anomalous dimension ηψ ), thus avoiding χSB in
quadratic gravity.
In physical terms, the λi-independent terms in the flow of

four-fermion interaction are related to the attractive nature
of gravity. In contrast, the linear terms in λ� correspond to
the anomalous scaling of four-fermion interactions. Our
findings indicate that metric fluctuations in quadratic
gravity contributes to the anomalous scaling of four-
fermion couplings in such a way that it counteracts the
attractive nature of gravity. Thus, the physical picture is
similar to the results obtained in the context of asymptoti-
cally safe quantum gravity [94].

VI. FINAL REMARKS

In this paper, we explored the quantum gravity scenario
conjectured by Holdom and Ren based on analogies
between quadratic gravity and QCD. The goal of this
paper was to put forward a first investigation concerning
the phenomenological viability of this scenario, in particu-
lar, by confronting the existence of light fermions with a
possible mechanism of χSB around the Planck scale.
We performed a renormalization group analysis of four-

fermion interactions in order to investigate if quantum
gravity effects could trigger χSB. The main results of this
paper are:
In a system containing two or more fermions

(Nf ≥ 2), we found no indication for χSB in connection
with the nonperturbative regime of quadratic gravity.
The results were obtained based on: (i) the fixed-point
structure and general properties of the phase-diagram of
four-fermion interactions; (ii) finite renormalization group
trajectories obtained by matching quadratic gravity in the
UV with a toy model for IR-completion. In general, we
obtain a phase-diagram of four-fermion interactions that
shows significant differences with the QCD-counterpart.

FIG. 13. First row: diagrams representing the gravitational contribution to the flow of four-fermion couplings in quadratic gravity.
Second row: diagrams representing the gluonic contributions to the flow of four-fermion couplings in QCD. These diagrams are FRG-
diagrams, thus, the vertices and propagators are derived from Γk, not from the bare action. For simplicity, we omit the dependence on the
regulator insertion k∂kRk.
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In a system containing only one fermion (Nf ¼ 1), the
phase structure of the four-fermion couplings behaves differ-
ently from theNf ≥ 2 case. In particular, for sufficiently large
Planck scale values of the gravitational couplings, we found
that the four-fermion coupling grows unbounded toward the
IR. However, these results do not constitute an indication for
χSB at finite renormalization group scale k.
The results of this paper indicate that the scenario

proposed by Holdom and Ren passes the consistency test
on whether it can accommodate light fermions in its
landscape. Nevertheless, there is still a considerable
amount of work to be done in order to clarify whether
the analogy between quadratic gravity and QCD can be
dynamically realized. As a next step, we plan to investigate
nonperturbative correlation functions in quadratic gravity,
in particular, aiming to investigate whether 2-point func-
tions exhibit the desired properties discussed in Sec. II.
One of the attractive features of the analogy between

quadratic gravity and QCD is the possibility of importing
methods used in the context of QCD to access the non-
perturbative regime of quadratic gravity. For example,
functional methods such as FRG [117,119,134] and
Dyson-Schwinger [112,135] equations have been very
successful in the calculation of correlation functions in
QCD. Thus it is conceivable that the same tools can be
applied to the setup discussed in this paper. We plan to
report on this in future papers.
The setup discussed in the paper also resembles some of

the ideas proposed by Donoghue in the context of Einstein-
Cartan formulation of gravity [136] (see also [137]). In
[136], the author investigates whether there might be a
mechanism of confinement/condensation involving the
spin connection. The setup proposed by Donoghue also
begs the question of whether χSB can be triggered due to a
strongly correlated gravitational regime. We plan to look
into this direction in the future.
The results presented here are also aligned with inves-

tigations of χSB in the asymptotic safety approach to
quantum gravity. In Refs. [94,95], it was shown that a
nonperturbative fixed point regime in quantum gravity does

not trigger χSB. More recently, the interplay between χSB,
gauge fields, and gravity was used to impose lower bounds
on the number of fermions compatible with certain types of
UV-completion with asymptotically safe quantum gravity
[138]. In the future, it would be interesting to explore this
interplay within the context of quadratic gravity in analogy
with QCD.
One important caveat of the analysis presented in this

paper is that it does not take into account the anomalies
related to the Uð1ÞA transformations in Eq. (19). The
Uð1ÞA-anomaly plays an important role in the χSB
in QCD, with most visible effect being the η0 mass [139].
The anomalous Uð1ÞA-breaking was also considered in the
context of asymptotically safe quantum gravity [140],
where the effects of the anomaly were modeled in
terms of instanton contributions to the beta functions of
4-fermion interactions. The main finding of [140] was that
the inclusion anomalous effects lead to nontrivial con-
straints on the allowed UV-completion of gravity coupled
to QCD systems. It is conceivable that similar constraints
would also exist in scenario explored in this paper. In
particle, one can expect a significant contribution of
anomaly induced terms in the single-flavor case, since in
the case the χSB analysis focuses in the breaking ofUð1ÞA-
symmetry. This could be a interesting path for future
investigations.

ACKNOWLEDGMENTS

G. P. B. would like to thank Astrid Eichhorn, Aaron
Held, Benjamin Knorr, Antônio Pereira, Shouryya Ray,
Marc Schiffer and Arthur Vieira for interesting discussions
on chiral symmetry breaking and/or quadratic gravity, and
Astrid Eichhorn, Antônio Pereira, Marc Schiffer and Arthur
Vieira for their feedback on the manuscript. The author also
acknowledges Reinhard Alkofer and an anonymous referee
for pointing out the importance of chiral anomalies in the
mechanism of chiral symmetry breaking and thanks
Masatoshi Yamada and Sebastião Dias for helpful discus-
sions on this topic. G. P. B. is supported by the Research
Grant No. 29405 from VILLUM Fonden.

[1] K. S. Stelle, Renormalization of higher derivative quantum
gravity, Phys. Rev. D 16, 953 (1977).

[2] J. Julve and M. Tonin, Quantum gravity with higher
derivative terms, Nuovo Cimento Soc. Ital. Fis. 46B,
137 (1978).

[3] E. Tomboulis, Renormalizability and asymptotic freedom
in quantum gravity, Phys. Lett. 97B, 77 (1980).

[4] E. S. Fradkin and Arkady A. Tseytlin, Renormalizable
asymptotically free quantum theory of gravity, Nucl. Phys.
B201, 469 (1982).

[5] E. S. Fradkin and Arkady A. Tseytlin, Renormalizable
asymptotically free quantum theory of gravity, Phys. Lett.
104B, 377 (1981).

[6] I. G. Avramidi and A. O. Barvinsky, Asymptotic freedom
in higher derivative quantum gravity, Phys. Lett. 159B, 269
(1985).

[7] Ivan Grigorevich Avramidi, Covariant methods for the
calculation of the effective action in quantum field theory
and investigation of higher derivative quantum gravity,
Other thesis, Moscow State University, 1986.

GUSTAVO P. DE BRITO PHYS. REV. D 109, 086005 (2024)

086005-14

https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1007/BF02748637
https://doi.org/10.1007/BF02748637
https://doi.org/10.1016/0370-2693(80)90550-X
https://doi.org/10.1016/0550-3213(82)90444-8
https://doi.org/10.1016/0550-3213(82)90444-8
https://doi.org/10.1016/0370-2693(81)90702-4
https://doi.org/10.1016/0370-2693(81)90702-4
https://doi.org/10.1016/0370-2693(85)90248-5
https://doi.org/10.1016/0370-2693(85)90248-5


[8] Guilherme de Berredo-Peixoto and Ilya L. Shapiro, Con-
formal quantum gravity with the Gauss-Bonnet term, Phys.
Rev. D 70, 044024 (2004).

[9] Guilherme de Berredo-Peixoto and Ilya L. Shapiro, Higher
derivative quantum gravity with Gauss-Bonnet term, Phys.
Rev. D 71, 064005 (2005).

[10] Alessandro Codello and Roberto Percacci, Fixed points of
higher derivative gravity, Phys. Rev. Lett. 97, 221301
(2006).

[11] Gaurav Narain and Ramesh Anishetty, Short distance
freedom of quantum gravity, Phys. Lett. B 711, 128
(2012).

[12] Gaurav Narain and Ramesh Anishetty, Unitary and re-
normalizable theory of higher derivative gravity, J. Phys.
Conf. Ser. 405, 012024 (2012).

[13] Nobuyoshi Ohta and Roberto Percacci, Higher derivative
gravity and asymptotic safety in diverse dimensions,
Classical Quantum Gravity 31, 015024 (2014).

[14] Alberto Salvio, Quadratic gravity, Front. Phys. 6, 77
(2018).

[15] E. T. Tomboulis, Unitarity in higher derivative quantum
gravity, Phys. Rev. Lett. 52, 1173 (1984).

[16] Ignatios Antoniadis and E. T. Tomboulis, Gauge invariance
and unitarity in higher derivative quantum gravity, Phys.
Rev. D 33, 2756 (1986).

[17] D. A. Johnston, Sedentary ghost poles in higher derivative
gravity, Nucl. Phys. B297, 721 (1988).

[18] M. Ostrogradsky, Mémoires sur les équations
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