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We investigate the complexity of states and operators evolved with the modular Hamiltonian by
using the Krylov basis. In the first part, we formulate the problem for states and analyze different
examples, including quantum mechanics, two-dimensional conformal field theories and random modular
Hamiltonians, focusing on relations with the entanglement spectrum. We find that the modular Lanczos
spectrum provides a different approach to quantum entanglement, opening new avenues in many-body
systems and holography. In the second part, we focus on the modular evolution of operators and states
excited by local operators in two-dimensional conformal field theories. We find that, at late modular time,
the spread complexity is universally governed by the modular Lyapunov exponent λmod

L ¼ 2π and is
proportional to the local temperature of the modular Hamiltonian. Our analysis provides explicit examples
where entanglement entropy is indeed not enough; however the entanglement spectrum is, and encodes the
same information as complexity.

DOI: 10.1103/PhysRevD.109.086004

I. INTRODUCTION AND SUMMARY

In recent years quantum complexity has become a new
exciting area within quantummany-body systems, quantum
gravity and quantum field theory, see e.g. [1–3]. It provides a
new perspective on the structure of quantum states as well as
quantum dynamics, complementing that of quantum infor-
mation. It is also instrumental in understanding black holes
in holography [4] and quantum gravity [5–8]. In this last
context, it was argued by Susskind that “entanglement is not
enough” [9], in particular if one seeks to understand aspects
of the long time regime of chaotic systems and black holes.
Complexity measures were then proposed as fine-grained
probes of dynamics at late times. For this reason, most
research in this direction has focused on properties of a real
time, Hamiltonian evolution of complexity measures, trying
to test their supremacy to entanglement measures. On the
other hand, it is known that entanglement entropy contains
only a small fraction of information about bipartite
entangled states, and that the entanglement spectrum is a
much more fine-grained measure of their structure [10]. In
this vein, it is natural to ask formore direct relations between
complexity and entanglement, and better characterize what
types of entanglement measures are enough for the study of

holography and quantum black holes. This is one of our
main motivations in this work.
To this end, we focus on arguably the most promising (in

relation to the problems mentioned above) definition of
complexity called, Krylov [11] or spread complexity [12],
that can be applied both to quantum operators and states. This
measure was inspired by pioneering works on operator size,
quantum chaos and thermalization in many-body systems
[13,14], and it has produced a burst of activity and interest in
recent years [15–53]. As shown in [12], Krylov or spread
complexity defines complexity as the minimal amount of
spread of the wave function in the Hilbert space. Such
minimization is universally accomplished for a finite amount
of time by the so-called Krylov basis, that arises via the
Lanczos recursionmethod [54] (to be reviewed below). Some
highlights of Krylov complexity in many-body systems are
the demonstration of the exponential growth with the uni-
versal Lyapunov exponent, together with the idea that Krylov
complexity bounds the growth of out-of-time-ordered corre-
lators [11,55], the derivation of the linear growth regime of
complexity [15], the geometric approach and connection
to generalized coherent states [20], the ability to codify
quantum chaos and fine-grained properties of the spectrum
[12,35,36,43], and the recent holographic demonstrations that
it can reproduce the volume of black hole interiors, also
known as the volumes of Einstein-Rosen bridges, see
[34,43,44] for the Jackiw-Teitelboim gravity cases, and
[37] for the case of general relativity in general dimensions.
Given these recent developments, and with the aim of

exploring the relation between entanglement and complexity,
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in this work we expand the Krylov or Lanczos approach in
two new directions. First, generalizing previous work on the
time evolution of the thermofield double state (TFD) [12], we
define and study the complexity of modular evolution in
generic bipartite entangled states. We show that this measure
is controlled by the entanglement spectrum of the reduced
density matrix. Equivalently it is controlled by the modular
Lanczos spectrum, which interestingly contains the very
same information, and might be taken as a new characteri-
zation of the entanglement structure. Indeed the first modular
Lanczos coefficient is the entanglement entropy itself,
while the second is the (square) of capacity of entanglement
[56,57]. We will then analyze this quantity in several
examples. For random states, the modular Hamiltonian is
random, and we discuss how entanglement entropy is
codified in the plateau of the modular complexity evolution,
and how modular complexity is also sensitive to the Page
curve [58]. In the second partwewill discussmodular growth
and evolution of quantumoperators. In holography this paves
a way toward a precise measure of complexity of bulk
reconstruction. Exploiting again the power of generalized
coherent states as well as modular two-point correlators in
two-dimensional (2D) conformal field theories (CFTs), we
will derive a universal growth of spread complexity of
modular evolution characterized by the Lyapunov exponent
λmod ¼ 2π and the scrambling time governed by an effective
local temperature of the modular Hamiltonian for a single
interval as well as two intervals in free fermion CFT.
Overall, this approach makes it clear why “entanglement

is not enough” [9], while at the same time it also suggests
that a slight but insightful modification may solve the issue
at stake, and that indeed entanglement spectrum is enough.

II. SPREAD COMPLEXITY

For completeness, we begin with a brief review of the
spread complexity [12]. The starting point of the discussion
is the unitary evolution of an initial quantum state jψ0iwith
time-independent Hamiltonian H

jΨðtÞi ¼ e−iHtjψ0i: ð1Þ
Generically, this evolution spreads the state jψ0i in the
Hilbert space of the model, making it more complex. While
the amount of the spread depends on the choice of basis, we
can quantify the complexity of this process by minimizing
the spread of the wave function over all choices of basis.
The result of this minimization, at least for a finite period of
time, brings us to the so-called Krylov basis. This basis,
denoted below by jKni, is obtained via the Gram-Schmidt
orthogonalization procedure on the subspace of all the
powers of H applied to jψ0i. The iterative procedure to
achieve this is called the Lanczos algorithm [54], and it can
be written as

jAnþ1i ¼ ðH − anÞjKni − bnjKn−1i; ð2Þ

where jKni ¼ b−1n jAni, b0 ¼ 0 and the first vector coin-
cides with our initial state jK0i ¼ jψ0i. The key role in this
story is played by Lanczos coefficients an and bn that
control the dynamics and are defined as

an ¼ hKnjHjKni; bn ¼ hAnjAni1=2: ð3Þ

The algorithm stops as soon as any of the bn ¼ 0, which
signifies that no more independent basis vectors can be
constructed. After running this iterative algorithm, we can
expand the state in the Krylov basis

jΨðtÞi ¼
X
n

ψnðtÞjKni: ð4Þ

By construction, the coefficients of this expansion satisfy a
discrete Schrodinger equation,

i∂tψnðtÞ ¼ anψnðtÞ þ bnψn−1ðtÞ þ bnþ1ψnþ1ðtÞ; ð5Þ

that also highlights the fact that the Hamiltonian is
tridiagonal in the Krylov basis, with tridiagonal elements
given by the Lanczos coefficients. Finally, if we are able to
solve this equation, the spread complexity is computed as
the average value of n in the probability distribution
pnðtÞ≡ jψnðtÞj2, namely

CðtÞ ¼
X
n

npnðtÞ: ð6Þ

Clearly, solving (5) is the main step, and it requires the
knowledge of the Lanczos coefficients. They are in fact
encoded in the return amplitude (the Loschmidt amplitude)

SðtÞ ¼ hΨðtÞjΨð0Þi ¼ hψ0jeiHtjψ0i ¼
X
n

μn
tn

n!
: ð7Þ

Its moments μn ¼ hψ0jðiHÞnjψ0i allow us to extract
Lanczos coefficients that are related via polynomial equa-
tions e.g., the first two are (see more in Appendix A)

a0 ¼ −iμ1; b21 ¼ μ21 − μ2: ð8Þ

Inversely, the knowledge of the Lanczos coefficients allows
the computation of the moments of the Hamiltonian.
Therefore, since the Lanczos coefficients play such a
pivotal role, it is important to understand their physical
meaning and how different phenomena are encoded in their
scaling with n.
We conclude this introduction with two remarks. Firstly,

an important class of initial states jψ0i is given by the
TFD state [59]. Denoting by jni the eigenstate of the
Hamiltonian with energy En this state reads as
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jψβi ¼
1ffiffiffiffiffiffiffiffiffiffi
ZðβÞp X

n

e−
β
2
En jniL ⊗ jniR; ð9Þ

where ZðβÞ is the partition function at temperature
T ¼ 1=β. The TFD state is the canonical purification of
the thermal density matrix ρ ¼ e−βH. It is then interesting to
consider the time evolution of (9) with the Hamiltonian of a
single copy, sayHL, especially in the context of black holes
[60,61]. For this evolution the return amplitude becomes
the analytically continued partition function

SðtÞ ¼ Zðβ − itÞ
ZðβÞ ; ð10Þ

whose modulus squared is the spectral form factor, a key
object in the field of quantum chaos [62]. This way, the
Lanczos coefficients aswell as spread complexity are directly
probing the spectrum of the evolving Hamiltonian, and they
codify the fine-grained aspects such as spectral rigidity and
the universality class of the chaotic model [12,35,36,43].
Indeed, for chaotic systems with no degeneracies the
Lanczos spectrum of this process contains exactly the same
information as the spectrum itself. Themain idea of thiswork
is to generalize this TFDexample to reduced densitymatrices
and modular Hamiltonian evolution.
Secondly, the Krylov complexity of the operator growth

[11] can be studied in a complete analogy with the
discussion above. The only nontrivial step is the choice
of the inner product in the space of operators that allows us
to map Heisenberg evolution of an operator OðtÞ to a state
jOðtÞÞ. The crucial information about the operator growth
is then captured by the return amplitude that corresponds to
a two-point correlator ðOjOðtÞÞ. Along these lines, below
we will consider operator growth as well as the dynamics of
CFT states excited by local operators under modular
Hamiltonian evolution. They will involve return amplitudes
based on modular two-point functions in 2D CFTs.

III. MODULAR SPREAD COMPLEXITY

We now consider spread complexity of modular
Hamiltonian evolution. As reviewed above, we start with
a pure state jΨ0i in some Hilbert space H. We then pick a
subsystem A and its complement Ac, and assume a Hilbert
space decompositionH ¼ HA ⊗ HAc , so that we can write
jΨ0i in the Schmidt form

jΨ0i ¼
X
j

ffiffiffiffi
λj

q
jjiAjjiAc ; ð11Þ

where jji are basis vectors in A (and the complement). As
usual, we define the reduced matrix ρA of the subregion A
as well as the modular Hamiltonian HA by

ρA ¼ TrAcðjΨ0ihΨ0jÞ≡ e−HA: ð12Þ

The Schmidt coefficients in (11) describe the spectrum λj of
ρA or the spectrum Ej of the modular Hamiltonian HA,

λj ≡ e−Ej ;
X
j

λj ¼ 1; ð13Þ

and, by analogy with thermal states, we can define the
modular partition function at inverse temperature β ¼ n as

Z̃ðnÞ ¼ TrðρnAÞ ¼
X
j

e−nEj : ð14Þ

Conventionally, we normalize TrðρAÞ ¼ Z̃ð1Þ ¼ 1.
Finally, we define the modular evolution of the initial

state (11) as

jΨðsÞi ¼ e−isHA⊗1Ac jΨ0i; ð15Þ

where s is the modular time. Note that we perform this
evolution with HA ⊗ 1Ac and not with the total modular
Hamiltonian Hmod ¼ HA ⊗ 1Ac − 1A ⊗ HAc ; indeed, jΨ0i
is invariant under the evolution withHmod [63]. By analogy
with the TFD state (evolution with HL vs HL −HR), this
leads to a nontrivial evolution of the state jΨ0i. In the
following, our goal will be to quantify the spread complex-
ity of this state in various models and shed light on the
Lanczos coefficients in this evolution.
For that we use the Lanczos algorithm to construct an

orthonormal basis jKni and expand our state as in (4),
where the expansion coefficients ψnðsÞ satisfy (5) with
Lanczos coefficients an and bn encoded in the modular
return amplitude

SðsÞ≡ hΨðsÞjΨ0i ¼
X
j

λ1−isj ¼ Z̃ð1 − isÞ: ð16Þ

This object is closely related to the Renyi entropies of the
reduced density matrix ρA defined for integer n as

SðnÞA ¼ 1

1 − n
logðTrρnAÞ; ð17Þ

and we have the relation to the analytically continued Renyi
with replica index n ¼ 1 − is

SðsÞ ¼ exp ðis Sð1−isÞA Þ: ð18Þ

We conclude that the Lanczos procedure, based on the
moments of SðsÞ, will involve interesting combinations of
quantum informationmeasures. Indeed, already from (8), we
can see that for themodularHamiltonianHA, themomentsa0
and b21 will be simply the von Neumann entropy SA and the
capacity of entanglement CE [56,57,64–67] respectively. At
the conceptual level, since spread complexity is a functional
of the survival amplitude, and this is a functional of the
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entanglement spectrum, we conclude that, while entangle-
ment is not enough (it is just a0), entanglement spectrum is
enough. Going in the reverse direction, since the Renyi
entropies can be found from the modular survival amplitude,
and this is a functional of the modular Lanczos spectrum, we
also conclude that Lanczos spectrum is enough. This con-
struction then provides a solid bridge between entanglement
and complexity, as we further develop below.

IV. EXAMPLES

It is useful to consider a few simple, analytical examples.
Let us start from a qubit state jΨ0i ¼ ffiffiffiffi

p
p j00i þffiffiffiffiffiffiffiffiffiffiffi

1 − p
p j11i where A and Ac are the first and second spins
respectively and p∈ ½0; 1�. Tracing out the second Hilbert
space we obtain the return amplitude

SðsÞ ¼ Trðρð1−isÞ1 Þ ¼ pð1−isÞ þ ð1 − pÞð1−isÞ; ð19Þ

with moments [see definition (7)]

μk ¼ ð−iÞkðp logkðpÞ þ ð1 − pÞ logkð1 − pÞÞ: ð20Þ

From them we extract the nonvanishing Lanczos coeffi-
cients

a0 ¼ −p logðpÞ − ð1 − pÞ logð1 − pÞ ¼ S1;

b21 ¼ pð1 − pÞðlogð1 − pÞ − logðpÞÞ2 ¼ CEðρ1Þ;
a1 ¼ −p logð1 − pÞ − ð1 − pÞ logðpÞ; ð21Þ

and confirm the relation with entanglement entropy and
capacity of entanglement. At present, we do not have a
sharp quantum information interpretation for a1, and we
hope to return to this issue in the future.
Next, we derive the two solutions of the Schrodinger

equation (5) with these Lanczos coefficients, and they are

ψ0ðsÞ ¼ p1þis þ ð1 − pÞ1þis ¼ SðsÞ�;
ψ1ðsÞ ¼ ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1 − pÞ
p

ðð1 − pÞis − pisÞ; ð22Þ

with ∓ corresponding to � in b1 [recall that bn’s (3) are
always positive, so this sign depends on the difference
between logð1 − pÞ and logðpÞ]. By construction, the
coefficient ψ0ðsÞ and SðsÞ are related by the simple
complex conjugation. Finally, the modular spread complex-
ity (6) is given by

CðsÞ ¼ 4pð1 − pÞ sin2
�
s
2
log

1 − p
p

�
: ð23Þ

In this simple example with Krylov space dimension equal
to 2, we have a relation between the modular spread
complexity and modular spectral form factor: CðsÞ ¼
jψ1ðsÞj2 ¼ 1 − jψ0ðsÞj2, which is not true in general for

long times [43]. Clearly, the complexity growth is deter-
mined by the value of p. In particular, for maximally
entangled state p ¼ 1=2, the b1 as well as CðsÞ vanish (see
Appendix B for another example). More generally for flat
entanglement spectrum we have

TrðρnAÞ ¼ dimðHAÞ1−n; ð24Þ

and we only get nontrivial a0 ¼ SA and all bn ¼ 0. This is a
physically sensible result. In this context we only need one
number to understand the structure of the state. In the
thermodynamic limit of physical systems, such as those
appearing in quantum gravity, it might seem that we have a
flat entanglement spectrum at microcanonical sectors. This
is only an artifact of the thermodynamic limit. In reality the
spectrum is chaotic, and the eigenvalues, although close to
the average flat value, show no degeneracy and resemble
the spectrum of a random matrix. In this scenario the
Lanczos spectrum is completely different, as we discuss
below.
Another simple example consists of two coupled har-

monic oscillators. The Hamiltonian is

H ¼ 1

2
½p2

1 þ p2
2 þ k0ðx21 þ x22Þ þ k1ðx1 − x2Þ2�: ð25Þ

Following the conventions in [68] we first define ωþ ¼
k1=20 and ω− ¼ ðk0 þ 2k1Þ1=2, and from this ξ ¼ β=ðγ þ αÞ
where α2 ¼ ωþω−, γ − β ¼ ð2ωþω−Þ=ðωþ þ ω−Þ and
β ¼ ðωþ − ω−Þ2=ð4ðωþ þ ω−ÞÞ. After tracing one of the
oscillators in the vacuum wave function, we get the
entanglement spectrum and modular partition function:

λk ¼ ð1 − ξÞξk; Z̃ðnÞ ¼ ð1 − ξÞn
1 − ξn

; ð26Þ

where 0 < ξ < 1 is related to the details of the coupling
between the oscillators. Following the above procedure, we
can derive a general form for the Lanczos coefficients:

an ¼ −n
1þ ξ

1 − ξ
logðξÞ − logð1 − ξÞ − ξ

1 − ξ
logðξÞ;

bn ¼ n

ffiffiffi
ξ

p
1 − ξ

logð1=ξÞ; ð27Þ

where again a0 ¼ S1 and b21 ¼ CEðρ1Þ. Observe that these
Lanczos coefficients are governed by the SL(2,R) sym-
metry algebra, and our modular evolution of the state can
be mapped to a coherent state of this Lie group. This allows
us to recycle the derivations in [20] and derive the modular
spread complexity:

CðsÞ ¼ 4ξ

ð1 − ξÞ2 sin
2

�
s
2
logðξÞ

�
: ð28Þ
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The entanglement spectrum is equivalent to the thermal
spectrum of a single oscillator, i.e. writing ξ ¼ expð−βωÞ
we have λk ¼ e−βEk=ZðβÞ with Ek being the energy of a
single harmonic oscillator with frequency ω. Even though
we have an infinite dimensional Krylov basis, modular
spread complexity oscillates. However, we can formally
send ω → iω̃ (complex logðξÞ) and observe exponential
growth of the modular spread complexity.
Finally, we consider 2D CFT where the trace of the

reduced density matrix of a single interval A ¼ ½u; v� can be
computed using the replica trick as a correlator of twist
operators inserted at the end points of A [69]:

Z̃ðnÞ ¼ hσnðuÞσ̃nðvÞi ¼ expð−ðn − 1=nÞWÞ; ð29Þ

where W contains the CFT central charge c and details of
the interval as well as geometry of the underlying CFT and
is directly related to entanglement entropy SA ¼ 2W (e.g.
W ¼ c

6
logððu − vÞ=ϵÞ for the vacuum in a line). For our

discussion, we neglected an overall nonuniversal constant
in (29). However, it is crucial that we keep the cutoff ϵ
infinitesimally small, but nonvanishing. The reason is that
density matrices for compact regions in quantum field
theory (QFT) are not well-defined objects, unless regular-
ized by certain procedure. This is a well-known problem
when trying to define entanglement entropy for a given
region. Here it naturally appears as well since we need the
modular spectrum. The analytic continuation of (29) gives
the modular partition function

Z̃ð1 − isÞ ¼ exp

�
−

s2W
s2 þ 1

þ i
sðs2 þ 2ÞW

s2 þ 1

�
; ð30Þ

therefore, the corresponding modular spectral form factor
jZ̃ð1 − isÞj2 decays to a plateau with value expð−SAÞ. By
expanding Lanczos coefficients for large W (or large
central charge c, see Appendix C), we can show that
spread complexity grows quadratically for initial modular
time, proportionally to the entanglement entropy SA:

CðsÞ ∼ SAs2: ð31Þ

For later times, at finite cutoff ϵ, we also expect a period of
linear growth and saturation to a plateau [analogous to the
spectral form factor (30)]. Verifying this expectation
numerically would be interesting, and we leave it for future
work. Next we move to more general qualitative arguments
in the context of random matrix theory.

V. RANDOM MODULAR HAMILTONIANS

Further relations between entanglement entropy and
entanglement spectrum on one hand, and spread complex-
ity and the Lanczos spectrum on the other, arise by
considering the example of random pure states. Given a

pure state and a bipartition of the system into A and Ac, a
putative ensemble of pure states (defining the particular
notion of random state) naturally defines an ensemble of
modular Hamiltonians HA. This ensemble defines a par-
ticular notion of random modular Hamiltonian.
The analysis of the Lanczos approach for random

matrices was recently developed in [35,36]. The application
of these constructions to modular evolution goes as follows.
We first notice that, in the context of random states, the
Lanczos coefficients of a reduced subsystem are random
parameters, and the first goal is to compute their statistics.
This can be accomplished with two assumptions. First we
need take the thermodynamic limit, where the dimension N
of the subsystem A goes to infinity. Without loss of
generality we assume that this dimension is smaller than
the dimension of Ac. In this limit the average values reliably
inform us of the typical values associated with individual
instances of the random modular Hamiltonian. Second we
need to choose as initial state the vector ð1; 0;…; 0Þ. The
reason is that for this state we know how to compute the
Jacobian of the transformation between the original form of
the random modular Hamiltonian and the tridiagonal form.
It is given by [35]

J ¼
YN−1

n¼1

bðN−nÞβ−1
n ; ð32Þ

where β is the Dyson index of the ensemble of random
matrices. This Jacobian should be thought as the analog of
the Vandermonde determinant for the change of variables
that takes us to the diagonal form of the matrix.
Equivalently, if the ensemble is invariant under a certain
group of unitaries, we are free to take any initial state that
follows from the previous one by applying a unitary
belonging to such a group.
In the thermodynamic limit (see [35,36,70,71]), it

becomes natural to label the Lanczos coefficients in terms
of x≡ n=N, namely as aðxÞ≡ an¼xN and bðxÞ≡ bn¼xN .
The reason is that in this limit, on average over the
ensemble, the Lanczos coefficients become continuous
functions in the interval x∈ ½0; 1�. We can now obtain
the relation between these functions and the modular
spectrum. We cut the Krylov chain into shorter segments
of a given length L, such that L → ∞ and L=N → 0 in the
thermodynamic limit. This is a block approximation of the
Hamiltonian whose density of states is the sum of the
densities of each block. Given the continuity assumption,
an and bn can be taken as constants in each block, equal to
aðxÞ and bðxÞ.
The different Hamiltonian blocks are then Toeplitz

matrices of size L, with diagonal elements given by certain
a and off diagonal elements given by certain b. These
matrices have eigenvalues Ek ¼ 2b cosðkπ=ðLþ 1ÞÞ þ a,
with k ¼ 1;…; L, and their density of states reads as
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ρa;bðEÞ ¼
1=L

jdEk=dkj
¼ Hð4b2 − ðE − aÞ2Þ

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2 − ðE − aÞ2

p : ð33Þ

Here HðxÞ is the Heaviside step function, and we normal-
ized the density of states by dividing by L. The total
(normalized) density of states is the sum over all blocks. In
the thermodynamic or continuum limit this becomes [35]

ρðEÞ ¼
Z

1

0

dx
Hð4bðxÞ2 − ðE − aðxÞÞ2Þ
π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bðxÞ2 − ðE − aðxÞÞ2

p : ð34Þ

This formula relates the average Lanczos coefficients to the
modular spectrum, in particular to the modular density of
states, where we recall that λ ¼ e−E [see (13)]. Notice this
consistency relation (34) between averaged quantities
might obscure the fact that we are indeed taking an average.
A more conventional derivation of this formula in terms of
a proper average of matrices subject to a certain probability
distribution can be found in [35], where deviations from
this formula were also found.
Generically, in chaotic systems the wave function in the

Krylov basis (4) reaches a stationary regime at long times
(here at long modular times). In this regime the proba-
bilities fluctuate around a mean value p̄ðxÞ. For special
initial states we might have p̄ðxÞ ¼ 1, namely constant in x,
but this is not the generic situation as can be established
numerically in simple scenarios [12,35,36]. It is thus
natural to inquire for the form of the stationary distribution
p̄ðxÞ. Indeed, in terms of the distribution of energies of the
initial state

jhψ jEij2 ≡ PðEÞ; ð35Þ

this is derived in [36] as follows. Assume PðEÞ is a
continuous function of the energy. For the modular state
evolution that we are considering, this implies a continuous
entanglement spectrum with small fluctuations around the
average. Using (33), the number of states in the interval
between x and xþ dx and in the interval between E and
Eþ dE is

ρ̃ðx; EÞdx dE ¼ NdxdE

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bðxÞ2 − ðE − aðxÞÞ2

p : ð36Þ

The long-time average probability distribution in the
Krylov basis is just the convolution of this density with
the distribution of energies of the initial state (which is
conserved in time). This reads as

p̄ðxÞ ¼
Z

dEPðEÞρ̃ðx; EÞ: ð37Þ

For the modular evolution of states the initial state was (11).
The distribution of energies in the initial state is then
PðEÞ ¼ λ ¼ e−E, and we arrive at

p̄ðxÞ ¼ N I0ð2bðxÞÞe−aðxÞ: ð38Þ

The plateau of the modular spread complexity and the
Shannon entropy HShannon in the Krylov basis (dubbed
K-entropy in [15]) follow from this probability distribution,
p̄ðxÞ. More precisely, the modular spread complexity at
large times goes to

CðsÞ⟶
s→∞

Z1
0

dx xp̄ðxÞ; ð39Þ

where p̄ðxÞ is given in (38). This is an explicit function
once we have derived the Lanczos spectrum from the
modular density of states using (34). It turns out that
the result for the Shannon entropy is quite insensitive to the
specific ensemble of random modular Hamiltonian, i.e on
the specific Lanczos coefficients aðxÞ and bðxÞ. Indeed

HShannon ¼ −
X
n

p̄n ln p̄n ≈ ln N; ð40Þ

up to subleading corrections in the thermodynamic limit.
This means that the dimension of the Hilbert space
explored by the random modular evolution is the same
as the number of nonzero eigenvalues in the reduced
density matrix, counted by its leading density of states.
Notice that this same result applies for the complementary
subsystem Ac. Although we assumed the dimension of A
was smaller than that of Ac, the modular Hamiltonian and
modular spectrum are the same up to zeros. In particular the
number of nonzero eigenvalues is the same, and the
saturation will happen at logN as well for Ac, where we
recall that N is the dimension of the smaller subsystem A.
Finally, we can turn things around. Starting from the

Lanczos coefficients aðxÞ and bðxÞ, we can find the
stationary distribution of the modular spread complexity
p̄ðxÞ, and from there we can obtain the initial probability
distribution in the energy basis as

PðEÞ ¼
Z

dx p̄ðxÞρ̃ðx; EÞ: ð41Þ

We are led to the following conclusions. The first is that
we could use these results in the context of the Page curve
[58] (recall also that the relevance of the capacity of
entanglement, that is our Lanczos coefficient b1, to the
Page curve was already discussed in [66,67]). In this
scenario, for random states drawn from the Haar measure
the modular density of states is known and of compact
support [58]. Although (34) cannot be solved in closed
form in this case, the Lanczos bðxÞ coefficients decay to
zero as they should, and the modular spread complexity
follows the regimes described in [12]. In particular, the
spread complexity will saturate at a value controlled by the
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dimension of the smallest subsystem. For example, the
entropy will be precisely logN in the leading approxima-
tion, where N is such dimension. The plateau of modular
spread complexity then draws a complexity Page curve in
the same way as the entanglement entropy.
The second conclusion concerns the slogan “entangle-

ment is not enough” [9]. This was put forward to motivate
the introduction of the notion complexity in quantum
gravity. The present construction transparently shows
why this is true when for the word “entanglement” we
more precisely understand entanglement entropy itself. The
reason is that entanglement entropy is the first entry of the
Lanczos spectrum. But one needs the full spectrum of
Lanczos coefficients to predict the long-time dynamics of
the wave function of the system. Spread complexity, which
serves to characterize these dynamics, is also a functional
of the whole spectrum. Clearly then, entanglement entropy
is not enough. It is however not true if we slightly, but
insightfully, modify the slogan so that it refers to the
entanglement spectrum. As we have derived, there is a
precise relation (one follows from the other and vice versa),
between the entanglement or modular spectrum, the modu-
lar Lanczos coefficients, the modular survival amplitude
and the modular spread complexity. In this precise sense,
we reach again the conclusion that the entanglement
spectrum seems to be enough in the context of quantum
gravity. The Lanczos modular spectrum and associated
survival amplitude and modular complexity are enough
as well.

VI. MODULAR GROWTH AND EVOLUTION
OF PRIMARY OPERATORS

In this final section we discuss the operator growth and
spread complexity of operators under the modular flow
with the total modular Hamiltonian Hmod ¼ HA ⊗ 1Ac −
1A ⊗ HAc (Ac being the complement of A). Namely, we
consider the following modular evolution [63,72,73]:

OðsÞ ¼ eiHmodsOð0Þe−iHmods ≡ eiLmodsOð0Þ; ð42Þ

where the modular Liouvillian (superoperator) acts on
operators by taking the commutator Lmod ≡ ½Hmod; ·�.
This modular flow of operators has been a central topic
in a variety of recent works in QFT and holography
[74–89], but, to our knowledge, its complexity remains
relatively unexplored. A holographic proposal was put
forward in [90], motivated by developments on wedge
reconstruction and the nature of the black hole interior.
To make progress, for simplicity, we first consider Hmod

for static, universal examples where A is a single interval in
the vacuum of a 2D CFT defined either on the line or on the
circle, leaving more complicated cases to future works (see
more in Appendix D). In the final part of this section we
also mention the result for two disjoint intervals on the line
for the free massless Dirac field in its ground state.

We start with the modular evolution of the highest weight
state jhi (eigenstate of the CFT Hamiltonian i.e., jhi≡
limz→0OðzÞj0i in radial quantization of the Euclidean
formalism) with the total modular Hamiltonian of an
interval A in 2D CFT:

jψðsÞi ¼ e−isHmod jhi: ð43Þ

The total modular Hamiltonian is a well-defined operator in
the continuum and, in 2D CFTs, it can be written as a linear
combination of the SL(2,R) generators (see e.g. [91,92]):

Hmod ¼ σ−1L−1 þ σ0L0 þ σ1L1 þ a:c:; ð44Þ

where the antichiral (a.c.) part is similarly expressed in
terms of global L̄’s (for simplicity, we will focus on the
chiral part) and the coefficients depend on the CFT and
interval geometry (see Appendix D). For this reason (43) is
simply a coherent state and falls into the Lie-algebra
symmetry examples considered in [12,20] where, using
the Baker–Campbell–Hausdorff formula, the spread com-
plexity can be evaluated as a simple function of general σi’s
[see (D10) in Appendix D]. Before we write it down, note
that we may think about this state simply in the context of
spread complexity of states [12] or as a state representing
operator growth [11] with a particular choice of the inner
product that corresponds to the return amplitude

SðsÞ ¼ hhjeisHmod jhi: ð45Þ

By using the procedures discussed in [12,20], we find that
Lanczos coefficients from (45) have the SL(2,R) form an ¼
γðnþ ΔÞ and bn ¼ α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 2Δ − 1Þp

with α ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
σ1σ−1

p
and γ ¼ σ0. Interestingly, in all the examples where (44)
holds, the coefficients satisfy σ1σ−1 − σ20=4 ¼ π2, and this
combination is directly linked to the Lyapunov exponent
defined from the Krylov complexity [11]. For example, for
a single interval A ¼ ½a; b� in 2D CFT on a circle of size L
we obtain

CðsÞ ≃ 2h

sin2
�
πðb−aÞ

L

� sinh2ðπsÞ: ð46Þ

Clearly, at late modular time s ≫ 1, the spread complexity
grows exponentially with Lyapunov exponent λmod

L ¼ 2π.
We will see below that this is in fact a universal behavior
also for local operator growth. The size of the entangling
interval b − a governs the scrambling time at late time (see
also below). We should also point out that this result that
uses σi’s from [91,92] in the general formula (D10), does
not seem to have a well-defined (naive) limit of L → ∞. As
already pointed out in [20,22], the spread complexity of
coherent states can be written as an expectation value of L0.
When passing from the cylinder to the plane, the derivative
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of the exponential map will bring the appropriate factor of
L that cures this (that is why we used ≃).
Next, for 2D CFTs, we consider modular Hamiltonian

evolution of states locally excited by a primary operator
OðlÞ of conformal dimension h placed inside the interval
A ¼ ½a; b�, i.e., λ∈A. This state is defined as

jψðsÞi ¼ N e−iHmodse−ϵHOðlÞj0i; ð47Þ

where j0i is the ground state of the entire system bipartite as
A ∪ Ac and Hmod is the total modular Hamiltonian asso-
ciated with A in this state. We remark that, again for the
sake of simplicity, we only consider a chiral part of the 2D
CFT. Note that the local operator is first smeared with the
CFT Hamiltonian by an amount ϵ in Euclidean time such
that the energy of the excitation is finite EO ∼ h=ϵ and
factor N is the normalization of this initial state with the
operator. The standard Hamiltonian evolution of these
states has been extensively studied in the past [93–96]
(see for corresponding spread complexity in Appendix D)
but here we will be interested in the modular evolution
instead. Before we proceed, it is important to point out that,
since the operators OðlÞ are inserted in A, the actions of
Hmod and HA ⊗ 1Ac on them are identical. Hence, our
discussion in the following also holds for (47) with Hmod
replaced by HA, and we will use them interchangeably in
our formulas. In particular, the modular correlators that will
be used in our return amplitudes (see below) are identical
for these two modular evolutions.
Let us then recall a few basic facts aboutHA. In the chiral

2D CFTs and for some particular states and bipartitions
(e.g. when the CFT is defined either on the line or on the
circle and is in its ground state), the modular Hamiltonian
can be written as

HA ¼ 2π

Z
b

a
β0ðuÞTðuÞdu; β0ðuÞ ¼

1

w0ðuÞ ; ð48Þ

where TðuÞ is the chiral component of the 2D CFT energy-
momentum tensor and the weight function β0ðuÞ (often
called local inverse temperature) encodes the dependence
on the state and of the bipartition for the specific cases we
are considering. For instance, for the ground state of a CFT
on the line or on a circle of length L, we have respectively

wðuÞ ¼ log

�
u − a
b − u

�
;

wðuÞ ¼ log

�
sin½πðu − aÞ=L�
sin½πðb − uÞ=L�

�
: ð49Þ

The modular evolution generated by (48) for a primary
operator O of conformal dimension h is

Oðs; uÞ≡ eisHAOðuÞe−isHA; ð50Þ

and it can be written as [74,75,84]

Oðs; uÞ ¼
�
β0ðξðs; uÞÞ

β0ðuÞ
�

h
Oðξðs; uÞÞ; ð51Þ

where OðuÞ is the initial configuration of the field at s ¼ 0
and ξðs; uÞ satisfies the following differential equation

∂sξðs; uÞ ¼ 2πβ0ðxÞ∂uξðs; uÞ; ξð0; uÞ ¼ u: ð52Þ

The solution of this equation reads as

ξðs; uÞ≡ w−1ðwðuÞ þ 2πsÞ; ð53Þ

in terms of wðuÞ defined in (48) and its inverse function.
Then, the modular evolution (51) can be expanded in
powers of s as follows:

Oðs; uÞ ¼
X∞
n¼0

ð2πsÞn
n!

ÕnðuÞ: ð54Þ

By employing (52), the first three (nontrivial) operators in
this expansion are

Õ1ðuÞ ¼ β0ðuÞO0ðuÞ þ hβ00ðuÞOðuÞ;
Õ2ðuÞ ¼ β0ðuÞ2O00ðuÞ þ ð2hþ 1Þβ0ðuÞβ00ðuÞO0ðuÞ

þ h½hβ00ðuÞ2 þ β0ðuÞβ000ðuÞ�OðuÞ;
Õ3ðuÞ ¼ β0ðuÞ3O000ðuÞ þ 3ðhþ 1Þβ0ðuÞ2β00ðuÞO00ðuÞ

þ β0ðuÞ½ð3h2 þ 3hþ 1Þβ00ðuÞ2
þ ð3hþ 1Þβ0ðuÞβ000ðuÞ�O0ðuÞ
þ h½h2β00ðuÞ3 þ ð3hþ 1Þβ0ðuÞβ00ðuÞβ000ðuÞ
þ β0ðuÞ2β0000 ðuÞ�OðuÞ: ð55Þ

It is straightforward to write also ÕnðuÞ with n > 3, but
their expressions are rather complicated to be reported
here. Clearly, the growth of the operator (in operator space)
due to the modular evolution (50) is determined also by
the weight function β0ðuÞ occurring in the modular
Hamiltonian (48), and its nontrivial derivatives provide
additional contributions of the initial field configuration
OðuÞ into ÕnðuÞ. Indeed, setting β0ðuÞ ¼ const in (55)
simplifies the expressions in a considerable way. On the
other hand, the actual operator size and Krylov complexity
[11] is usually computed based on the return amplitude
that, after an appropriate choice of the inner product, may
become a two-point correlator [computable with (51)].
Below, we will add to these intuitions by computing the
spread complexity of (47) and find that it indeed depends
on the local temperature β0ðuÞ.
Now, let us get back to the computation of the modular

spread complexity of (47). The crucial ingredient is again

CAPUTA, MAGAN, PATRAMANIS, and TONNI PHYS. REV. D 109, 086004 (2024)

086004-8



the return amplitude that can be written as a special
modular two-point correlator

SðsÞ ¼ hO†ð0; u1ÞOðs; u2Þi
hO†ð0; u1ÞOð0; u2Þi

; ð56Þ

which satisfies Sð0Þ ¼ 1 by construction. The insertion
points of the operators in the initial state are (see
Appendix D)

u1 ¼ lþ iϵ; u2 ¼ l − iϵ: ð57Þ

The two-point correlators of the operators after modular
flow can be found e.g. in [74,75,87,88]. Their general
form is

hOðs1;u1ÞOðs2;u2Þi
hOð0;u1ÞOð0;u2Þi

¼
�

ewðu1Þ−ewðu2Þ

ewðu1Þþπs12 −ewðu2Þ−πs12

�
2h

; ð58Þ

where s12 ≡ s1 − s2 and wðuÞ is defined in (48). The
modular correlator (58) satisfies the Kubo-Martin-
Schwinger (KMS) condition with inverse temperature
βKMS ¼ 1. Using (58), we can write our return amplitude
with general wðuÞ as

SðsÞ ¼
�
e−πsð1 − BÞ
e−2πs − B

�
2h
; B ¼ ewðu2Þ−wðu1Þ; ð59Þ

where B, via wðuÞ, depends on the details of the bipartition.
This return amplitude again falls into the SL(2,R) sym-
metry class, and we can derive universal Lanczos coef-
ficients an and bn for arbitrary B (or wðuÞ) and compute the
modular spread complexity. To derive correct Lanczos
coefficients, it is important to perform this computation
for general B and take small ϵ in (57) only at the end
[instead of first expansing SðsÞ in ϵ and then trying to
derive moments]. The Lanczos coefficients are

an ¼
2πiðBþ 1Þ

B − 1
ðnþ hÞ;

bn ¼
2π

ffiffiffiffi
B

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðB − 1Þ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 2h − 1Þ

p
; ð60Þ

where the factor of i and the signs are chosen such that they
are real for our physical insertion points (57). Finally, the
spread complexity for finite ϵ can be written compactly for
arbitrary wðuÞ as

CðsÞ ¼ 2h

sin2
�
iðwðu1Þ−wðu2ÞÞ

2

� sinh2ðπsÞ: ð61Þ

Comparing with (46), we see that the modular evolution
with sinh2ðπsÞ is universally the same, but the prefactor in

the present case involves the details of the insertion of the
local operator OðlÞ. Interestingly, the small ϵ expansion
leads to

CðsÞ ¼ 2h
β0ðlÞ2
ϵ2

sinh2ðπsÞ þOðϵ0Þ; ð62Þ

which depends on β0ðlÞ, while the subleading orders contain
also the derivatives of β0ðlÞ [see (D26)].
We remark that the universal dependence on s is con-

sistent with the analyticity properties of the two-point
function (58) and, since the KMS inverse temperature is
βKMS ¼ 1 for the modular evolution, it can be understood as
sinh2ðπs=βKMSÞ. Moreover, at late modular time s, we find

CðsÞ ∼ eλ
mod
L ðs−s�Þ; ð63Þ

where the modular Lyapunov exponent λmod
L and scrambling

time s� for the local operator are determined by the local
temperature of the modular Hamiltonian respectively as

λmod
L ¼ 2π; s� ¼

1

π
log

� ffiffiffi
2

h

r
ϵ

β0ðlÞ
�
: ð64Þ

It is interesting to point out that, since the spatial bipartition
is symmetric with respect to the center of the interval, the
coefficient of the modular spread complexity β0ðlÞ2 (or
the scrambling time) is maximal for l in the middle of the
entangling region l ¼ ðaþ bÞ=2 whereas it is suppressed
(vanishes) close to the boundary points of the entangling
interval [see e.g. (D16)]. These are our main results in this
section. Similarly to the bound of the Lyapunov exponent
from Krylov complexity [11,55] we conjecture that our
modular exponent provides a bound on the modular chaos
(see e.g. [80]).
For more intervals, general modular Hamiltonians

become more complicated and nonuniversal, so the analy-
sis is beyond the scope of this work. Nevertheless, for the
free massless Dirac fermion in the vacuum, the modular
Hamiltonian of disjoint intervals and the dicorresponding
two-point modular correlators are known explicitly [75].
More precisely, we can consider local fermion operator
ΨðlÞ with h ¼ 1=2, in either of the two intervals
½a1; b1� ∪ ½a2; b2�, evolved with the modular Hamiltonian
of this union region. The two-point function of modular
flow of Ψ is known in this case [75,87] (see also e.g. [88])
and, somewhat surprisingly, it turns out that the corre-
sponding return amplitude can again be written as (59) with

wðuÞ ¼ log

�
−
ðu − a1Þðu − a2Þ
ðu − b1Þðu − b2Þ

�
: ð65Þ

This is sufficient to determine the modular spread complex-
ity that, in the leading ϵ, becomes
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CðsÞ ¼ βloc0 ðlÞ2
ϵ2

sinh2ðπsÞ; βloc0 ðuÞ ¼ 1

w0ðuÞ ; ð66Þ

in terms of (65). In fact the local part of this modular
Hamiltonian (that also contains a nonlocal piece) of these
two disjoint intervals can again be written in the form (48)
with βloc0 ðuÞ; hence it governs the scrambling time.
Notice that in both the single interval and two interval

cases, and irrespective of the nature of the 2D-CFT
(integrable/chaotic), we have obtained a Krylov complexity
that grows exponentially fast with modular time. A similar
phenomenon was found for the conventional Krylov
complexity in Ref. [18], where it was noticed that the
exponential growth happened even for free theories in QFT.
This seems to be originated in certain universal behavior of
correlation functions and modular evolution of type III
algebras [97], a direction worth exploring in more detail. In
Ref. [20], these “simple” and geometric Krylov growths
were related to the simplicity/closedness of the complexity
algebra. We also note that the way the Krylov basis encodes
quantum chaos in the traditional spectrum sense was
discussed in Refs. [12,35,36,43].

VII. DISCUSSION AND OUTLOOK

In this work we have expanded Krylov complexity
technology to the context of modular evolution. In par-
ticular, we have studied the relations between the entan-
glement spectrum, the Lanczos spectrum, and the notions
of Krylov and spread complexity in various concrete
examples. On one hand, this construction transparently
shows why “entanglement is not enough” [9]. In fact, from
the complexity perspective of this story, entanglement
entropy is just the first Lanczos coefficient, namely
a0 ¼ SE. However, to understand the evolution of the wave
function, and consequently of spread complexity, we need
to know the full modular Lanczos spectrum. One can make
an analogous statement about the TFD state, where the
thermal entropy is related to the first Lanczos coefficient,
but all the higher coefficients are also crucial to determine
the evolution of complexity. On the other hand, the full
Lanczos spectrum is obtained from the entanglement
spectrum, providing concrete evidence that entanglement
spectrum may be enough in certain scenarios.
From a different standpoint, from the Lanczos spectrum

one can determine the entanglement spectrum up to
degeneracies. In fact one can obtain all the moments of
the modular Hamiltonian, and therefore the modular flow
and all Renyi entropies. This way, the analysis of the
modular Lanczos coefficients opens up a new window on
the study of entanglement measures. As we show, the
entanglement entropy is the first Lanczos coefficient while
the capacity of entanglement is the second. It would be
interesting if also the higher n Lanczos coefficients can be
interpreted as information theoretic quantities (perhaps

along the lines of entanglement monotones [98]). and
we leave this problem for the future investigation.
Then, we found that the modular growth of operators

exhibits universal modular Lyapunov exponent λmod
L ¼ 2π,

related to the βKMS and analyticity of the return amplitude,
as well as the scrambling time sensitive to the local
temperature of the CFT modular Hamiltonians. Going
beyond our universal examples is certainly very important.
For example, numerics for modular Hamiltonians in lattice
models [99–101] would clarify the aforementioned relation
between entanglement, complexity and modular chaos.
In addition, we remark that in our analysis of spread

complexity, by definition, we work with the standard,
natural inner product in Hilbert space. For Krylov complex-
ity of operators [11], the freedom of choosing a different
inner product (e.g. Wightman) provides a different modular
Krylov complexity. A systematic study and better under-
standing of sensitivity of modular complexity and modular
chaos to these choices is an interesting open problem.
Another important direction concerns holography. In

holographic theories we expect the relation [77]

Hbdy
mod ¼

Âext

4GN
þ ŜWald−like þHbulk

mod; ð67Þ

for the boundary modular Hamiltonian in terms of bulk
quantities (Âext computes the area of the Ryu-Takayanagi
[102] extremal surface S in the bulk, and ŜWald−like can be
expressed by expectation values of local operators on
S [77]). In the semiclassical limit, we also have that in
the entanglement wedge of region Rb the commutators
½Hbdy

mod;ϕR� and ½Hbdy
bulk;ϕR� are the same, for any local

operator ϕR in Rb. Equivalently, in the low energy limit (in
the code subspace) we have

ϕRðsÞ ¼ eisLbdyϕR ¼ eisLbulkϕR; ð68Þ

and the Krylov subspace with modular Liouvillians Lbdy or
Lbulk will be the same. It is then interesting to study the
complexity of bulk reconstruction joining the results
developed in [78], the analysis of the Lanczos approach
for generalized free fields described in [16], and the present
techniques. This might naturally be extended to the com-
plexity of extracting information from the black hole
interior, following the island construction [103]. A related
direction has already been studied in [104], also using the
free fermion example, and it will be very interesting to
make the connection with our tools more precise.
Finally, it would also be interesting to extend our

discussion to the analysis of the black hole microstates
put forward in [37,105], which are insightful examples of
the so-called partially entangled thermal states states [106].
We hope to report on it in the near future.
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APPENDIX A: LANCZOS COEFFICIENTS
AND MOMENTS

Here we briefly explain how the Lanczos coefficients can
be computed in a simple way (for relatively low n). By
definition the moments of the return amplitude SðtÞ (for
real or modular times t or s respectively) are related to the
expectation value of the evolving Hamiltonian

μn ¼ hψ0jðiHÞnjψ0i: ðA1Þ

Also, by construction, the initial state is the first state in the
Krylov basis jψ0i ¼ jK0i in which H is tridiagonal with
Lanczos coefficients an on the diagonal and off diagonal
bn’s. The recursive algorithm is a version of a Markov
process where μn for some fixed n is expressed only in
terms of Lanczos coefficients an and bn with labels only up
to that fixed n. This way, we can find polynomial relations
between μn’s and Lanczos coefficients directly from (A1)
by simply generating a tridiagonal matrix H of at least size
n, taking its n-th power and extracting the 00-element. This
gives

μ1 ¼ ia0; μ2 ¼ −a20 − b21; ðA2Þ

and

μ3 ¼ −iða30 þ 2a0b21 þ a1b21Þ; ðA3Þ

and so on. Then we just solve these relations remembering
that bn are the positive normalizations of the Krylov basis
states. This gives

a0 ¼ −iμ1; b21 ¼ μ21 − μ2; ðA4Þ

and

a1 ¼ i
μ31 − 2μ1μ2 þ μ3

μ21 − μ2
; ðA5Þ

b22 ¼
μ32 þ μ23 þ μ21μ4 − 2μ1μ2μ4 − μ2μ4

ðμ21 − μ2Þ2
: ðA6Þ

For simple return amplitudes (e.g. fixed by dynamical Lie
algebra symmetry) we can often guess a general form after
the first several steps of this procedure and verify that it
holds for higher n’s.
The polynomial relations above are just part of the

algorithm, and hold for arbitrary μn, an and bn in the
Lanczos algorithm. For a more detailed recursive derivation
of the Lanczos coefficients in terms of the survival
amplitude and moments, see [12].

APPENDIX B: GHZ VS W STATES

To gain more intuition for modular spread complexity in
multipartite setups, here we give one more example in
quantum mechanics with tripartite entangled states of class
GHZ and W. Let us start from slightly more general states
parametrized as

jGHZip ¼ ffiffiffiffi
p

p j000i þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
j111i; ðB1Þ

and

jWip1;p2
¼ ffiffiffiffiffi

p1

p j100i þ ffiffiffiffiffi
p2

p j010i
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p1 − p2

p
j001i: ðB2Þ

If we trace one of the spins in the first case, we end up with
the reduced density matrix of the two spins with modular
eigenvalues fp; 1 − pg (studied in the main text) and
spread complexity:

CpðsÞ ¼ 4pð1 − pÞ sin2
�
s
2
log

1 − p
p

�
: ðB3Þ

For the actual GHZ state with p ¼ 1=2, the complexity
vanishes.
On the other hand, tracing out the first or second spin in

the W-class states brings again the reduced density matrix
for two spins with modular eigenvalues fpi;1−pig, i¼1, 2
and modular spread complexity (B3) with pi. Moreover,
integrating over the third spin gives the modular spectrum
fp1 þ p2; 1 − ðp1 þ p2Þg and modular spread complexity

Cp1;p2
ðsÞ ¼ 4ðp1 þ p2Þð1 − p1 − p2Þ

× sin2
�
s
2
log

1 − p1 − p2

p1 þ p2

�
: ðB4Þ

For the W state with p1 ¼ p2 ¼ 1=3 we get

CðsÞ ¼ 8

9
sin2

�
s
2
logð2Þ

�
: ðB5Þ
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Clearly, the structure of entanglement is more susceptible to
increase in complexity for the W state that is not maximally
entangled. It may be interesting to repeat this analysis more
generally in the Hilbert space of 3 qubits for a state where
we sum over all the basis vectors (probably numerically)
with appropriate coefficients.

APPENDIX C: LANCZOS COEFFICIENTS
FOR LARGE W

In the main text, we have used the expansion of Lanczos
coefficients coming from (30) for large values of W. This
was done as follows. First we can compute several
coefficients exactly, and they read as

a0¼2W; a1¼2Wþ3; b21¼2W; b22¼4Wþ3; ðC1Þ

however, from a2 they get more complicated:

a2 ¼
8W2 þ 30W þ 15

4W þ 3
;

b23 ¼ 6
16W3 þ 48W2 þ 45W þ 12

ð4W þ 3Þ2 ; ðC2Þ

and so on. What we can do in practice is to take these exact
solutions (up to some large say n ∼ 15) and expand them
for largeW. From this we analytically find a general answer
for the first couple of orders,

bn ¼
ffiffiffiffiffiffiffi
2W

p ffiffiffi
n

p �
1þ 3ðn − 1Þ

8W
−
9ðn − 1Þ2
128W2

þOðW−3Þ
�
;

an ¼ 2W

�
1þ 3n

2W
−
3nðn − 1Þ
16W2

þOðW−3Þ
�
: ðC3Þ

We can see that for initial n ≪ W we have constant
an ∼ 2W’s and bn ∼

ffiffiffiffiffiffiffi
2W

p ffiffiffi
n

p
. We can then solve the

Schrodinger equation (5) for ψnðsÞ in this regime by first
noting that, for constant an ¼ a, we can simply substitute

ψnðsÞ ¼ e−iasϕnðsÞ; ðC4Þ

with ϕsðsÞ satisfying

i∂sϕnðsÞ ¼ bnϕn−1ðsÞ þ bnþ1ϕnþ1ðsÞ: ðC5Þ

More generally, for bn ¼ α
ffiffiffi
n

p
, the solution of this equation

is simply the same as for the Heisenberg-Weyl algebra [20],

ϕnðsÞ ¼
ð−iαsÞnffiffiffiffiffi

n!
p e−

1
2
α2s2 ; ðC6Þ

and the spread complexity grows quadratically in this initial
regime with the coefficient specified by the entanglement
entropy SA ¼ 2W:

CðsÞ ¼ α2s2 ¼ 2Ws2 ¼ SAs2: ðC7Þ

When n ∼W, this expansion breaks down. Beyond this
regime a transition to linear growth of complexity followed
by a saturation is expected because the modular spectral
form factor saturates. It would be very interesting to verify
these two behaviors explicitly with numerics, and we leave
it as an important future problem.

APPENDIX D: LOCAL OPERATOR EVOLUTION

In this Appendix we provide more details for the spread
complexity of local operators under modular evolution. In
order to gain some intuition and perspective on this
computation, we first evaluate spread complexity of a state
locally excited by a primary operator and evolved with the
Hamiltonian of a 2D CFT. This setup has been extensively
studied before [93–96] as a milder version of a local
quench.

1. Hamiltonian evolution

The starting point is a quantum state locally excited by a
primary operator of conformal dimensions Δ ¼ hþ h̄
inserted in position l. The density matrix can be written as

ρ0 ¼ N e−ϵHOðlÞj0ih0jO†ðlÞe−ϵH ≡ jψ0ihψ0j; ðD1Þ

where we regulate (smear) the operator in Euclidean time
with cutoff ϵ that makes the energy of the excitation finite
ðEO ∼ Δ=ϵÞ. The normalization is chosen such that
TrðρÞ ¼ 1. In the previous studies, one was interested in
the real time evolution of ρðtÞ ¼ e−iHtρ0eiHt and dynamics
of entanglement or correlation functions in this protocol.
Here we first focus on the spread complexity of the
associated state,

jψðtÞi ¼ e−iHtjψ0i; ðD2Þ

which can be computed from the return amplitude

SðtÞ� ¼Trðρ0e−iHtÞ¼ hO†ðz1; z̄1ÞOðz2ðtÞ; z̄2ðtÞÞi
hO†ðz1; z̄1ÞOðz2ð0Þ; z̄2ð0ÞÞi

; ðD3Þ

where we used complex coordinates ðz; z̄Þ ¼ ðxþ iτ;x− iτÞ
in which the insertion points are

z1 ¼ lþ iϵ; z̄1 ¼ l − iϵ;

z2ðtÞ ¼ l − iðϵþ itÞ; z̄2ðtÞ ¼ lþ iðϵþ itÞ: ðD4Þ

If we start from a two-point correlator in a CFT on a line

hO†ðz1; z̄1ÞOðz2; z̄2Þi ¼ z−2h12 z̄−2h̄12 ; ðD5Þ

with zij ¼ zi − zj, the return amplitude becomes
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SðtÞ ¼
�
1 −

it
2ϵ

�
−2Δ

: ðD6Þ

Analogously, using the two-point function in a CFT on a
circle of size L,

hO†ðz1;z̄1ÞOðz2;z̄2Þi¼
�
L
π
sin

�
πz12
L

��
−2h

ð…Þ−2h̄; ðD7Þ

yields the return amplitude

SðtÞ ¼

0
B@sinh

�
2πϵ
L

	
1 − it

2ϵ


�
sinh

	
2πϵ
L



1
CA

−2Δ

: ðD8Þ

It oscillates in time, and it reduces to (D6) in the infinite L
limit. Since both correlators are translationally invariant,
the dependence on the insertion point l cancels. We could
also introduce a UV cutoff ϵUV to the correlators, but it
would also cancel in the normalization of the return
amplitude. However, the return amplitude clearly depends
on the operator regulator ϵ. Finally, we can also use the two-
point correlator at finite temperature that is formally
obtained by taking L ¼ iβ. We will then evaluate spread
complexity from (D8) and simply extract answers for the
CFTon the line and at finite temperature by the above limit
and the substitution. The last important remark is that, since
we are interested in the evolution for all times, we should
derive Lanczos coefficients and compute the spread com-
plexity with finite ϵ and consider small ϵ only at the end of
the computation. The other order of limits, taking first small
ϵ expansion of SðtÞ and then computing moments and
Lanczos coefficients, is simply incorrect.
Following the algorithm [12,54] we can compute the

moments and extract Lanczos coefficients analytically:

an ¼
2πðnþ ΔÞ
L tanh

	
2πϵ
L


 ;
bn ¼

π

L sinh
	
2πϵ
L


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 2Δ − 1Þ

p
; ðD9Þ

and they correspond to the Lanczos coefficients governed
by the SL(2,R) algebra labeled by the highest weight
representation Δ that have a general form an ¼ γðnþ ΔÞ
and bn ¼ α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 2Δ − 1Þp

[20]. In that case the spread
complexity is a general function of α, and γ and
becomes [12]

CðtÞ ¼ 2Δ
1 − γ2

4α2

sinh2
 
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 −

γ2

4

r !
: ðD10Þ

For our coefficients (D9), we then have

CðtÞ ¼ 2Δ
sin2ðπtLÞ

sinh2
	
2πϵ
L


 : ðD11Þ

Clearly it oscillates in time, with period L, and in the small
ϵ limit it is proportional to the energy of the excitation. For
large L it reproduces the answer for the CFT on a line and
grows quadratically with time

CðtÞ ¼ Δ
2ϵ2

t2: ðD12Þ

This is also consistent with the limiting behavior of α and γ
that satisfy γ ¼ 2α when L → ∞. Lastly, continuing to
L → iβ gives exponentially growing spread complexity

CðtÞ ¼ 2Δ
sinh2

	
πt
β



sin2
	
2πϵ
β


 : ðD13Þ

At late times, this complexity is characterized by the same
Lyapunov exponent λ ¼ 2π=β as obtained from the Krylov
complexity of the operator growth [11].

2. Modular Hamiltonian evolution

We can nowmove to the modular Hamiltonian evolution.
The starting point will be the same as above i.e., locally
excited state jψ0i, but we consider the insertion l of the
local operator O to be inside an interval A ¼ ½a; b� and
perform the evolution with the modular Hamiltonian of A
of the initial state. For the vacuum excitations, the state of
our interest will be

jψðsÞi ¼ N e−iHAse−ϵHOðlÞj0i; ðD14Þ

where we denote the modular time as s and evolution is
done with the modular Hamiltonian of A,

H�
A ¼ �2π

Z
b

a
β0ðu�ÞT�ðu�Þdu�;

β0ðuÞ ¼
1

w0ðuÞ ; ðD15Þ

where T� are chiral and antichiral components of the
energy-momentum tensor. For simplicity we will consider
chiral operators and drop the � notation. The kernel β0ðuÞ
stands for effective (inverse) temperature and e.g. for the
CFTon a circle of size L, and in its ground state is given by

β0ðuÞ ¼
L
π

sin πðb−uÞ
L sin πðu−aÞ

L

sin πðb−aÞ
L

: ðD16Þ

Note that for the operator OðlÞ inside A we could evolve
with the total modular Hamiltonian of A and its comple-
ment Ac defined as Hmod ¼ HA −HAc that has the same
action on operators in A but is a well-defined operator in
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continuumQFT. In 2D CFT, this total modular Hamiltonian
for a single interval can be written in terms of global
SL(2,R) generators (see e.g. [91,92])

Hmod ¼ σ−1L−1 þ σ0L0 þ σ1L1 þ a:c:; ðD17Þ

where the coefficients σi depend on the end points of the
interval and the size (or temperature) and a.c. stands for the
antichiral part in terms of L̄n’s. For example, the coef-
ficients for a single interval A ¼ ½a; b� in CFTon a circle of
size L are

σ0 ¼−2π cot
πðb−aÞ

L
; σ�1 ¼

2π cotπðb−aÞL

e�2πi
L bþe�2πi

L a
: ðD18Þ

Generally, these types of SL(2,R) Hamiltonians describe
inhomogeneous 2D CFTs and can be understood geomet-
rically as different quantization (than e.g. the usual radial
used in CFTs).
The important ingredient is again the return amplitude

SðsÞ ¼ hψ0jeiHAsjψ0i ¼
hO†ð0; u1ÞOðs; u2Þi
hO†ð0; u1ÞOð0; u2Þi

; ðD19Þ

where Oðs; uÞ≡ eisHAOðuÞe−isHA is the chiral flow of the
operator OðuÞ and u1 ¼ lþ iϵ and u2 ¼ l − iϵ. The rel-
evant two-point correlators of the operators after modular
flow can be found e.g. in [81]. Their general form is given
in (58), and they satisfy the KMS condition with periodicity
sþ i so are analytic on a strip of size βKMS ¼ 1. This way,
we can write our return amplitude as

SðsÞ ¼
�
e−πsð1 − BÞ
e−2πs − B

�
2h
; B ¼ ewðu2Þ−wðu1Þ; ðD20Þ

where B depends on the details of the bipartition via wðuÞ.
Interestingly, we can show that moments of this amplitude
again correspond to the SL(2,R) Lanczos coefficients that
are real, and can be written in terms of B as

an ¼
2πiðBþ 1Þ

B − 1
ðnþ hÞ;

bn ¼
2π

ffiffiffiffi
B

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðB − 1Þ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 2h − 1Þ

p
: ðD21Þ

Equivalently, one can obtain these coefficients also by
applying the procedure described in [18] to the modular
correlators (with the convention that our bn corresponds to

bnþ1 in that work; for us b0 ¼ 0). This allows us to read off
α and γ as before and check that they satisfy

α2 − γ2=4 ¼ π2;

1 −
γ2

4α2
¼ −ðB − 1Þ2

4B
¼ sin2

�
iw12

2

�
; ðD22Þ

with w12 ¼ wðu1Þ − wðu2Þ. For our insertion points u1 ¼
lþ iϵ and u2 ¼ l − iϵ, we then find

1 −
γ2

4α2
¼ w0ðlÞ2ϵ2 þOðϵ4Þ: ðD23Þ

The coefficient of the first term is given by the effective
temperature evaluated at the operator’s insertion point
w0ðlÞ ¼ 1=β0ðlÞ. Combining the two identities (D22), we
get the universal result for the modular spread complexity
of local operators for small ϵ quoted in the main text:

CðsÞ ¼ 2h
β0ðlÞ2
ϵ2

sinh2ðπsÞ: ðD24Þ

For finite ϵ we simply get

CðsÞ¼ 8hB
−ðB−1Þ2 sinh

2ðπsÞ¼ 2h

sin2
	iw12

2


sinh2ðπsÞ: ðD25Þ

We can expand it in ϵ as (suppressing l dependance)

CðsÞ ¼
�
β20
ϵ2

þ 1þ 2β020 − β0β
00
0

3
þOðϵ2Þ

�
2hsinh2ðπsÞ;

ðD26Þ

so we see that the subleading corrections also depend on
derivatives of β0ðlÞ. The finite ϵ expression can be also
written explicitly in our examples, e.g. for finite size we
have

1

sin2
	iw12

2


 ¼ 4j sin
�
πðb−lþiϵÞ

L

����2��� sin�πðl−aþiϵÞ
L

����2
sin2
�
πðb−aÞ

L

�
sinh2

	
2πϵ
L


 : ðD27Þ

The finite temperature case is recovered by L ¼ iβ, and for
the CFT on a line and in the vacuum we simply get

1

sin2
	iw12

2


 ¼ ððb − lÞ2 þ ϵ2Þððl − aÞ2 þ ϵ2Þ
ðb − aÞ2ϵ2 : ðD28Þ
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