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The action growth proposal relates the holographic complexity to the value of the action on the Wheeler-
de Witt patch. We introduce a new method of calculating the gravitational action using the “bulk” term, i.e.,
the part of the Einstein-Hilbert action quadratic in connection coefficients. We demonstrate how to address
the issue of noncovariance of the bulk action and evaluate it using the tetrad formalism. Due to the
boundary term-free nature of the bulk action, we can gain further insights into the spatial structure of the
action on the Wheeler-de Witt patch. We then argue that our entire scheme can be naturally covariantized
within the framework of teleparallel geometry.
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I. INTRODUCTION

The AdS/CFT correspondence established a relation
between a black hole in asymptotically anti–de Sitter
(AdS) spacetime and the dual field theory at its boundary
[1,2]. In addition to studying the properties of black holes
outside the horizon, there is currently interest in under-
standing how the physics is encoded holographically behind
the horizons. One approach is the holographic complexity
conjecture, which suggests that the quantum information
complexity is given by thevalue of the gravitational action in
the interior region of a black hole [3,4].
The gravitational action in the holographic complexity

conjecture is taken to be the standard Einstein-Hilbert
action with the cosmological term and the Gibbons-
Hawking-York (GHY) boundary term [3,4],

Sgrav ¼
1

2κ

Z
W

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ þ 1

κ

Z
∂W

ffiffiffiffiffiffi
−γ

p
K; ð1Þ

where κ ¼ 8π (in c ¼ G ¼ 1 units), γμν is the boundary
metric, and K is its extrinsic curvature.
This action is evaluated in the interior region of a black

hole, W, known as the Wheeler-de Witt (WdW) patch,
where the crucial contribution comes from the boundary
term. In the case of a black hole with a single horizon, the
WdW patch at late times represents the whole under the
horizon region, and both the horizon and r ¼ 0 are being

effectively treated as boundaries. In the case of a black hole
with two horizons, the WdW patch at late times corre-
sponds to the region between them, and both horizons are
treated as boundaries.
We introduce here a new method of evaluating the

gravitational action for the holographic complexity by
integrating the bulk gravitational action. Our use of the
term “bulk” comes from the decomposition of the Einstein-
Hilbert (EH) Lagrangian [5–7],

LEH ¼ Lbulk þ Ltot; ð2Þ

where Ltot is the total derivative term and the bulk term,
Lbulk, is the term quadratic in connection coefficients.1

We motivate our approach by an observation that the
total derivative term is not dynamical since it can be
transformed into a surface term using the Stoke’s theorem.
The inclusion of the total derivative term introduces second
derivatives of the dynamical gravitational field variables,
which leads to a problem with the variational principle. The
standard solution to this problem is to add the GHY
boundary term to cancel out the variations of the total
derivative term [8,9], resulting in the total gravitational
action (1).
However, there is another solution to avoid the issue of

second derivatives by considering the bulk term only.
Indeed, it is well-known that both the EH and bulk actions
lead to the same field equations and hence, are dynamically
equivalent [5–7]. Our goal in this paper is to demonstrate
that this goes beyond the dynamical equivalence and that
we can evaluate the bulk action to obtain the same value of
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1Note that the term “bulk” is commonly used in the literature to
refer to the entire Einstein-Hilbert action, but we refrain from
using this term in that way.
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the action on the WdW patch as using (1) to study
holographic complexity of black holes. We show that the
boundary term-free nature of the bulk action allows us to
study not only the action growth but also the Lagrangian
growth, providing us with further insights into the structure
of the action on the WdW patch.
While the total derivative term in (2) is not dynamical, it

ensures the covariance of the Einstein-Hilbert action.
Therefore, if we consider the bulk term alone, we have
to face the issue of noncovariance of the bulk action. In the
standard metric formalism, the bulk term is given by the
Einstein Lagrangian [10] and requires evaluation in a
peculiar coordinate system, which we argue exists only
for the exterior solution and not for the interior solution on
the WdW patch that we are interested in. This motivates us
then to consider a tetrad version of the bulk term, where the
issue of noncovariance is not related to the choice of a
coordinate system but to the local Lorentz degrees of
freedom of the tetrad. We show that we can find a well-
behaved tetrad on the WdW patch that gives us the correct
answer for the action growth.
We will demonstrate that the issue of the noncovariance

can be resolved by reformulating general relativity using
the so-called teleparallel geometry. We argue that tele-
parallel geometry is a natural framework for this task due to
the fact that its connection is determined solely by the
choice of local Lorentz degrees of freedom, and covarian-
tizes the action without introducing second derivatives of
the dynamical field variables.

II. BULK ACTIONS FOR GENERAL RELATIVITY

The fundamental variable in the metric formalism is the
metric tensor gμν, from which we define the Christoffel
symbols, Γρ

νμ, and the Riemannian curvature tensor lead-
ing to the scalar curvature and the Einstein-Hilbert action.
The decomposition (2) in the metric case leads us to the
metric bulk term [5–7],

Lbulk ¼
1

2κ

ffiffiffiffiffiffi
−g

p
gμνðΓρ

σμΓσ
ρν − Γρ

μνΓσ
ρσÞ; ð3Þ

which is commonly known as the Einstein Lagrangian and
defines the Einstein energy-momentum pseudoten-
sor [10,11].
The Einstein Lagrangian does not transform as a proper

scalar density under diffeomorphisms, and hence, its value
depends on the choice of a coordinate system. For instance,
in Minkowski spacetime, where gravity is absent and we
expect the action to be zero, the Einstein action (3) indeed
vanishes in Cartesian coordinates but diverges in the
spherical coordinate system.
When including gravity and dealing with a curved

spacetime, we must continue using a quasi-Cartesian
coordinate system to avoid the same type of divergent
actions. This is closely related to the well-known problem

of various pseudotensorial definitions of energy, which are
required to be evaluated in such special coordinates [5]. For
example, in the case of Schwarzschild, we use the isotropic
Cartesian coordinate system to find the energy. However,
such coordinates are only well-defined in the exterior
region of a black hole, and they do not exist in the interior
region that we are interested in.
This problem can be easily avoided by using the tetrad

formalism and utilizing its coordinate-free nature. We
select a set of four orthonormal vectors, haμ, called the
tetrad as the fundamental variable, which is related to the
metric by

gμν ¼ ηabhaμhbν; ð4Þ

where ηab ¼ diagð−1; 1; 1; 1Þ is the tangent space metric.
The covariant differentiation is done using the Levi-Civita
spin connection,

ωa
bμ ¼

1

2
hcμ½fbac þ fcab − fabc�; ð5Þ

where fcab ¼ haμhbνð∂νhcμ − ∂μhcνÞ are the coefficients of
anholonomy. The curvature tensor of the spin connection is

Ra
bμν ¼ ∂μω

a
bν − ∂νω

a
bμ þ ωa

cμω
c
bν − ωa

cνω
c
bμ; ð6Þ

from where we define the scalar curvature and the tetrad
Einstein-Hilbert action. The decomposition (2) provides us
with the tetrad bulk Lagrangian,

Lbulk ¼
1

2κ
hðωa

caω
bc

b − ωa
cbω

bc
aÞ; ð7Þ

which was introduced originally by Møller and used to
define the Møller energy-momentum complex [12–15].
To illustrate the problem of noncovariance, we can

consider Minkowski spacetime again. The diagonal
Cartesian tetrad gives us the expected zero bulk action,
but the diagonal tetrad in the spherical coordinate system
haμ ¼ diagð1; 1; r; r sin θÞ leads to a divergent action. We
can solve this problem by considering a local Lorentz
transformation of the tetrad,

h̃aμ ¼ Λ̃a
bhbμ; ð8Þ

with a local Lorentz matrix,

Λ̃a
b ¼

0
BBB@

1 0 0 0

0 cosϕ sin θ cosϕ cos θ − sinϕ

0 − cos θ sin θ 0

0 sinϕ sin θ sinϕ cos θ cosϕ

1
CCCA; ð9Þ

which will lead to the finite zero action.
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Here, we can observe the usefulness of the tetrad
formalism, as it allows us to work both in spherical
coordinates and keep the desired properties of quasi-
Cartesian coordinates at the same time. The form of the
local Lorentz transformation (9) can be understood easily
from the fact that the tetrad (8) is obtained from the
diagonal Cartesian tetrad by just a coordinate change [16].

III. BULK ACTION GROWTH
OF AdS BLACK HOLES

For the holographic complexity conjecture, we
are interested in evaluating the action,2

S ¼
Z
W
L; ð10Þ

with the total Lagrangian given by

L ¼ Lbulk þ LΛ þ LEM; ð11Þ

where LΛ ¼ κ−1hΛ ¼ −3κ−1hl−2 is the cosmological term
and LEM is the Maxwell term.
The spherically symmetric spacetime is given by the

metric,

ds2 ¼ −f2dt2 þ f−2dr2 þ r2dθ2 þ r2 sin2 θdϕ2; ð12Þ
that can be represented by a diagonal tetrad,

haμ ¼ diagðf; f−1; r; r sin θÞ: ð13Þ

We encounter a similar issue with this diagonal tetrad,
resulting in the same kind of divergence as discussed in the
Minkowski case. Fortunately, it has the exact same solution
even in the curved case, i.e., to use a tetrad (8) with the
same local Lorentz transformation matrix (9) but with haμ
given by (13).

A. Uncharged case

In the case of the uncharged AdS black hole, we consider
the action without the Maxwell term and the f function
given by

f2 ¼ 1 −
2M
r

þ r2

l2
: ð14Þ

We find the total Lagrangian (11) to be

L ¼ 2 sin θ
κl2rf

½Ml2 þ r3 þ rðl2 þ 3r2Þðf − 1Þ�: ð15Þ

By integrating, we obtain the action,

S ¼
Z
W
L ¼

Z
dt
r3 þ rl2ð1 − fÞ

l2

����
rh

0

; ð16Þ

leading to the action growth,

dS
dt

¼ 2M; ð17Þ

which exactly coincides with the result obtained in [3,4]
using the standard action (1).

B. Charged case

The Reissner-Nordstrom solution is given by the same
metric (12) and the tetrad (8) as in the uncharged case, but
with the f function given by

f2 ¼ 1 −
2M
r

þQ2

r2
þ r2

l2
; ð18Þ

from where two horizons r� are found as the real solutions
to fðr�Þ ¼ 0.
The total Lagrangian, including the Maxwell term for a

point charge LEM ¼ κ−1hQ2r−4, after evaluation takes the
same form as in the uncharged case (15) but with the f
function given by (18). By integrating, we obtain the bulk
action,

S ¼
Z
W
L ¼

Z
dt
r3 þ rl2ð1 − fÞ

l2

����
rþ

r−

: ð19Þ

Using fðr�Þ ¼ 0, we find the action growth to be

dS
dt

¼ Q2

�
1

r−
−

1

rþ

�
; ð20Þ

which is again exactly the result obtained in [3,4] using the
standard action (1).

IV. COVARIANTIZATION
AND TELEPARALLEL GEOMETRY

We would like to demonstrate that the teleparallel
geometry is a natural framework where the bulk action can
be covariantized. The basic idea underlying the teleparallel
approach to gravity is to replace the Riemannian torsion-
free connection (5) by the curvature-free teleparallel spin
connection [17,18],3

ω
• a

bμ ¼ Λa
c∂μðΛ−1Þcb; ð21Þ

where Λa
c is a local Lorentz transformation.

2The integral here is
R
W ¼ R

dt
R
π
0 dθ

R
2π
0 dϕ

R
rþ
r−

dr, where rþ
and r− are boundaries of the WdW patch.

3We use a common convention that geometric objects with
respect to the teleparallel connection have “•” above them [17], to
distinguish them from the Riemannian geometry quantities.
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The torsion tensor T
• a

μν ¼ 2∂½μhaν� þ 2ω
• a

b½μhbν� is gen-
erally nonzero and can be used to formulate a gravity theory
by considering the torsion-based Lagrangian [17],4

L
•

TG ¼ −
h
2κ

½K• abcK• cba − K
• ac

aK
• b

cb�; ð22Þ

where K
• a

bc ¼ 1
2
ðT• c

a
b þ T

•

b
a
c − T

• a
bcÞ is the contortion

tensor. Using the Ricci theorem,

ω
• a

bμ ¼ ωa
bμ þ K

• a
bμ; ð23Þ

it is possible to show that (22) is equivalent to the EH action
up to a surface term [17],

LEH ¼ L
•

TG þ ∂μ

�
h
κ
T
• νμ

ν

�
; ð24Þ

from where follows that the theory given by (22) is
dynamically equivalent to general relativity [17,18].
Moreover, we can relate the teleparallel (22) and bulk (7)

Lagrangians by using our previous result [16], where we

have derived a relation between L
•

TGðhaμ;ω• abμÞ and

L
•

TGðhaμ; 0Þ. Using the Ricci theorem (23), it is straightfor-
ward to see that the latter is equivalent to the bulk
Lagrangian (7). This leads to the relation,

L
•

TG ¼ Lbulk þ
1

κ
∂μðhω• νμνÞ: ð25Þ

The teleparallel Lagrangian (22) is invariant under
simultaneous local Lorentz transformation of the tetrad
and spin connection,

haμ →Λa
bhbμ; ω

• a
bμ →Λa

cω
• c

dμΛb
dþΛa

c∂μΛb
c; ð26Þ

where Λb
c ¼ ðΛ−1Þcb and can be viewed as a covarianti-

zation of the bulk Lagrangian (7).
Note that while the total derivative term in (2) cova-

riantizes the bulk action by introducing the second deriv-
atives of the dynamical field variables, the total derivative
term in (25) contains only second derivatives of the local
Lorentz degrees of freedom Λa

b, which are not dynamical.

V. DISCUSSION AND CONCLUSIONS

We have introduced a new method of evaluating the
gravitational action on the WdW patch at late times, which
instead of the standard action (1) uses the tetrad bulk action
(7), and tested it on the asymptotically AdS black holes. In
addition to being a useful new tool for calculating the
action, our results are interesting from several perspectives.
The boundary term-free nature of the bulk action allows

us to not only calculate the action’s value but study the
Lagrangian as well. This helps us to gain a deeper under-
standing of the action’s structure on the WdW patch. We
plot the “Lagrangian growth” as a function of distance r in
Fig. 1. The upper two plots corresponds to the results for
AdS black holes from Sec. III.
We observe a peculiar feature that the Lagrangian

becomes complex on the WdW patch. Although the total
action is real since the imaginary part is antisymmetric
around the center of the WdW patch, the presence of a
complex phase is intriguing and may play a role, for
example, in situations where we consider a gravitational
path integral [19] on a portion of the WdW patch.
It is also interesting to plot the Lagrangian growth for the

asymptotically flat black holes, which can be seen in the
lower two plots in Fig. 1. We observe that on the WdW
patch, the real part of the Lagrangian is constant. As a
result, the growth of the bulk action is determined just by
the radial length of the WdW patch.

FIG. 1. The real (red) and imaginary (blue) parts of the Lagrangian growth G ¼ κ dL
dt (for θ ¼ π=2), where L is given by (15), for: AdS

(upper left), charged AdS (upper right), Schwarzschild (lower left), Reissner-Nordström (lower right) black holes.

4We follow [3] and use ð−;þ;þ;þÞ convention, unlike [17].
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Our results are interesting not only in relation to the
holographic complexity proposal but also from the per-
spective of general relativity alone. While the dynamical
equivalence of the EH and bulk actions is well-established,
the bulk action is considered to be a rather obscure object
due to its noncovariance. Similarly, various pseudotensorial
definitions of energy momentum derived from the bulk
action, despite being known to give correct results [20],
have fallen out of favor recently.
We have demonstrated that this is mostly unjustified and

the bulk action can provide meaningful results as long as
we learn how to deal with its non-covariance properly.
We have demonstrated this in the tetrad case (7), where
we can use spherical coordinates and eliminate divergen-
ces through local Lorentz transformation (9). It remains an
open question whether we can use the metric bulk
Lagrangian (3) in the same fashion. The isotropic
Cartesian coordinates were used successfully in the exterior
region [21], but it is not clear how to proceed on the WdW
patch.
We have then explored an alternative framework where

instead of finding a well-behaved tetrad by applying (9)
on (13), we used (9) to define a teleparallel spin connec-
tion (21). The torsion tensor of this connection behaves
covariantly under transformations (26) and defines a covar-
iant teleparallel gravity [18,22,23]. Since the Lagrangian of
teleparallel gravity is equivalent to the bulk Lagrangian and it
is covariant, teleparallel gravity can be viewed as a natural
covariant framework for the use of the bulk action.
From another perspective, we can view our results as that

the physics is given solely by the bulk action. In the
standard approach, the bulk term is covariantized by
addition of the total derivative term (2), but this introduces
second derivatives of dynamical field variables that need to
be removed by the GHY term. Teleparallel gravity achieves
covariance of the bulk action by using the teleparallel
connection (21), which only contains nondynamical local

Lorentz degrees of freedom that fully remove divergences
of the bulk action caused by its noncovariance.
Furthermore, this is useful also from a rather practical

perspective as it allows us to utilize many results already
existing in the literature on teleparallel gravity in a newway.
In fact, we have here just used our previous results about the
teleparallel action in the exterior region of a black hole
[16,22] and applied them to the interior geometry. In recent
years, there has been significant interest in various modified
teleparallel theories of gravity, such as fðTÞ gravity [24,25],
where one of the central problems is finding well-behaved
tetrads [26–30] (see reviews [18,31,32] aswell).While these
modified theories are rather speculative in their nature, the
results regarding these well-behaved tetrads are valid on
their own and can now be utilized towards studying holo-
graphic complexity using the bulk action growth.
Our proposal was tested here only in the limit of late

boundary times, where the WdW patch corresponds to the
region according to our definition. However, action growth
was studied in more general situations, including more
complicated null boundaries [33] and the WdW patch at
intermediate times [34,35]. It would be interesting to apply
our bulk action method in these more general scenarios,
which could turn out to be nontrivial tests of our proposal.
However, the main difficulty is that as we move away from
the limit of WdW patch at late times, we need to integrate
over discontinuous and singular functions, as seen in Fig. 1,
which cannot be done straightforwardly and requires
further investigation.

ACKNOWLEDGMENTS

This work was funded through SASPRO2 project AGE
of Gravity: Alternative Geometries of Gravity, which has
received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie
Skłodowska-Curie Grant Agreement No. 945478.

[1] J. M. Maldacena, The large N limit of superconformal field
theories and supergravity, Adv. Theor. Math. Phys. 2, 231
(1998).

[2] E. Witten, Anti-de Sitter space and holography, Adv. Theor.
Math. Phys. 2, 253 (1998).

[3] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle, and Y.
Zhao, Complexity, action, and black holes, Phys. Rev. D 93,
086006 (2016).

[4] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle, and Y.
Zhao, Holographic complexity equals bulk action?, Phys.
Rev. Lett. 116, 191301 (2016).

[5] L. D. Landau and E. M. Lifschits, The Classical Theory of
Fields (Pergamon Press, New York, 1975).

[6] R. d’Inverno, Introducing Einstein’s Relativity (Oxford
University Press, New York, 1992).

[7] T. Padmanabhan, Gravitation: Foundations and Frontiers
(Cambridge University Press, Cambridge, England, 2014).

[8] J. W. York, Jr., Role of conformal three geometry in
the dynamics of gravitation, Phys. Rev. Lett. 28, 1082
(1972).

[9] G.W. Gibbons and S.W. Hawking, Action integrals and
partition functions in quantum gravity, Phys. Rev. D 15,
2752 (1977).

[10] A. Einstein, Hamilton’s principle and the general theory of
relativity, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl.
(Math. Phys.) 1916, 1111 (1916).

BULK ACTION GROWTH FOR HOLOGRAPHIC COMPLEXITY PHYS. REV. D 109, 086002 (2024)

086002-5

https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1103/PhysRevD.93.086006
https://doi.org/10.1103/PhysRevD.93.086006
https://doi.org/10.1103/PhysRevLett.116.191301
https://doi.org/10.1103/PhysRevLett.116.191301
https://doi.org/10.1103/PhysRevLett.28.1082
https://doi.org/10.1103/PhysRevLett.28.1082
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1103/PhysRevD.15.2752


[11] A. Einstein, The foundation of the general theory of
relativity, Ann. Phys. (N.Y.) 49, 769 (1916).

[12] C. Møller, Conservation laws and absolute parallelism in
general relativity, K. Dan. Vidensk. Selsk. Mat. Fys. Skr. 1,
1 (1961).

[13] C. Pellegrini and J. Plebanski, Tetrad fields and gravitational
fields, K. Dan. Vidensk. Selsk. Mat. Fys. Skr. 2, 1 (1963).

[14] C.Møller, Survey of investigations on the energy-momentum
complex in general relativity, K. Dan. Vidensk. Selsk. Mat.
Fys. Skr. 35, 1 (1966).

[15] C. Møller, On the crisis in the theory of gravitation and a
possible solution, K. Dan. Vidensk. Selsk. Mat. Fys. Skr. 39,
1 (1978).

[16] M. Krššák, Holographic renormalization in teleparallel
gravity, Eur. Phys. J. C 77, 44 (2017).

[17] R. Aldrovandi and J. G. Pereira, Teleparallel Gravity: An
Introduction (Springer, New York, 2013).

[18] M. Krššák, R. J. van den Hoogen, J. G. Pereira, C. G.
Böhmer, and A. A. Coley, Teleparallel theories of gravity:
Illuminating a fully invariant approach, Classical Quantum
Gravity 36, 183001 (2019).

[19] S. W. Hawking, Quantum gravity and path integrals, Phys.
Rev. D 18, 1747 (1978).

[20] C.-C. Chang, J. M. Nester, and C.-M. Chen, Pseudotensors
and quasilocal gravitational energy momentum, Phys. Rev.
Lett. 83, 1897 (1999).
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