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We consider exact Wentzel-Kramers-Brillouin analysis to a PT symmetric quantum mechanics defined
by the potential, VðxÞ ¼ ω2x2 þ gx2ðixÞε¼2 with ω∈R≥0, g∈R>0. We in particular aim to verify a
conjecture proposed by Ai-Bender-Sarkar (ABS), that pertains to a relation between D-dimensional PT -
symmetric theories and analytic continuation (AC) of Hermitian theories concerning the energy spectrum
or Euclidean partition function. For the purpose, we construct energy quantization conditions by exact
Wentzel-Kramers-Brillouin analysis and write down their transseries solution by solving the conditions. By
performing alien calculus to the energy solutions, we verify validity of the ABS conjecture and seek a
possibility of its alternative form by Borel resummation theory if it is violated. Our results claim that the
validity of the ABS conjecture drastically changes depending on whether ω > 0 or ω ¼ 0: If ω > 0, then
the ABS conjecture is violated when exceeding the semiclassical level of the first nonperturbative order, but
its alternative form is constructable by Borel resummation theory. The PT and the AC energies are related
to each other by a one-parameter Stokes automorphism, and a median resummed form, which corresponds
to a formal exact solution, of the AC energy (resp. PT energy) is directly obtained by acting Borel
resummation to a transseries solution of the PT energy (resp. AC energy). If ω ¼ 0, then, with respect to
the inverse energy level-expansion, not only perturbative/nonperturbative structures of the PT and the AC
energies but also their perturbative parts do not match with each other. These energies are independent
solutions, and no alternative form of the ABS conjecture can be reformulated by Borel resummation theory.
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I. INTRODUCTION

Non-Hermitian theory is an exciting topic in a broad area
of theoretical and experimental physics. Although CPT
invariance is a theoretically fundamental concept for field
theories, non-Hermitian theories show rich physics depend-
ing on relaxed symmetry. Non-Hermitian effects were
experimentally observed, such as in open systems and
nonequilibrium systems, and such a non-Hermitian physics
is expected to offer further insights into these interesting
phenomena, providing uswith a deeper understanding [1–3].
It is known that PT symmetric quantum mechanics have

a special property in their energy spectrum [4]. When we
consider the PT symmetric potential defined by

VPT ðxÞ ¼ ω2x2 þ gx2ðixÞε; ðω∈R≥0; g; ε∈R>0; x∈CÞ
ð1Þ

despite lack of CPT invariance, the PT symmetric
Hamiltonian gives a real and bounded energy spectrum
due to PT invariance under the P and T transforms,

P∶ x → −x; T ∶ x → x̄; i → −i; ð2Þ

where x̄ is complex conjugate of x [5–8]. Generalizations to
D-dimensional PT symmetric field theories were also
considered in Refs. [9,10]. In such a generalization to field
theories, it was suggested that Hermitian theories given by
a quartic potential,

VHðxÞ ¼ ω2x2 þ λx4; ðω∈R≥0; λ∈RÞ ð3Þ

with a negative coupling λ relates to the PT symmetric
theories with ε ¼ 2 in Eq. (1) [11–15]. In particular, Ai-
Bender-Sarkar (ABS) made a conjectured relation of
Euclidean partition functions for D ≥ 1 from a semiclass-
ical analysis [14], that takes the form that

logZPT ðgÞ ¼ Re logZHðλ ¼ −gþ i0�Þ; g∈R>0: ð4Þ

However, a contradiction was reported in Ref. [15], and the
authors claimed violation of the ABS conjecture for the
pure quartic potential by the study of quantum mechanics
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and the D ¼ 0 N-component scalar model. By revealing
validity and a limitation of the ABS conjecture, it is
expected to provide us physical meaning of theories with
an unbounded potential from the relation to PT symmetric
theories. Symmetry is quite crucial for any physical
phenomena, and thus the relation would be possibly helpful
to characterize their physical features. Especially, applica-
tions to four-dimensional theories are important issues,
such as their IR physics. See Refs. [16–20], for example. In
order to theoretically investigate the ABS conjecture in a
more rigorous way, however, a method beyond-semiclass-
ical analysis must be necessary.
Since a Euclidean partition function can be written down

by an energy spectrum, analysis of an energy spectrum is
direct investigation of the ABS conjecture expressed
by partition functions. In quantum mechanics (D ¼ 1),
exact Wentzel-Kramers-Brillouin analysis (EWKB) is quite
powerful for such a problem related to an energy spectrum
[21–38]. EWKB is not only a generalization of semi-
classical analysis treating all order of ℏ but also some sort of
Borel resummation theory and resurgence theory, special-
ized in a one-dimensional Schrödinger equation. EWKB
offers an energy quantization condition (QC) by performing
analytic continuation on the complex x-plane, and then its
energy spectrum can be found by solving it. When a
perturbative part of the energy solution is divergent series
and Borel nonsummable, one can access to nonperturbative
informations from the perturbative expansion through Borel
resummation. Such a relation among perturbative and non-
perturbative parts is called as resurgence or resurgent
relation [39–46]. Nonperturbative effects crucially affect
many physical phenomena, and thus EWKB and related
approaches were employed in many physical contexts of
nonperturbative physics [47–60]. It is also an interesting
topic in mathematical physics, such as a relation to inte-
grable systems [61–71], and analyses of PT symmetric
quantum mechanics were considered in Ref. [65,72]. In
addition, PT symmetric eigenvalue problems with numeri-
cal approaches were studied in, e.g., Refs. [73–75].
In this paper, we verify the ABS conjecture for D ¼ 1 in

Eq. (4) by EWKB which is a beyond-semiclassical analy-
sis. We construct QCs of the theories by EWKB and then
obtain formal transseries solutions of the energy spectra by
solving them. From those results, we consider validity of
the ABS conjecture and seek a possibility of its alternative
form by Borel resummation theory if it is violated.

II. SUMMARY OF OUR RESULTS
AND STRUCTURE OF THIS PAPER

As described in the end of Sec. I, our main purpose of
this paper is verification of the ABS conjecture for D ¼ 1
by using EWKB and reformulation by Borel resummation
theory if it is violated. Since a Euclidean partition function
can consist of an energy spectrum, the ABS conjecture
expressed by partition functions can be known by

investigation of the relation of the energies. This study
is a benchmark for generalizations to field theories.
We summarize our results below:
(i) If ω > 0, then the ABS conjecture is violated when

exceeding the semiclassical level of the first non-
perturbative order. While the PT energy is purely
perturbative and Borel nonsummable, the AC energy
contains nonperturbative contributions in addition to
the same perturbative part to the PT energy. The
ABS conjecture is violated in the second nonper-
turbative sector and higher, which contains both real
and imaginary parts in the AC energy, but an
alternative form is constructable by a one-parameter
Stokes automorphism and Borel resummation. The
PT and the AC energies are related to each other by
the one-parameter Stokes automorphism, and a
median resummed form, which corresponds to a
formal exact solution, of the AC energy (resp. the
PT energy) is directly obtained by acting Borel
resummation to a transseries solution of the PT
energy (resp. the AC energy). The relations of the
energy solutions for the formal transseries and the
Borel resummed forms are represented in Eqs. (147)
and (150), respectively. The overall view is sche-
matically shown in Fig. 1. The Euclidean partition
functions also exhibit the same relations, and those
are expressed by Eqs. (154) and (156).

(ii) If ω ¼ 0, then the ABS conjecture is not satisfied.
With respect to the inverse energy level-expansion,
the PT energy is purely perturbative and Borel
nonsummable, and the AC energy has nonperturba-
tive parts. In addition to the difference of the
perturbative/nonperturbative structures between the
PT and the AC energies, even their perturbative
parts do not match with each other unlike the case of
ω > 0. Since their QCs cannot take the same form
by a one-parameter Stokes automorphism, those are
independent solutions. No alternative form of the
ABS conjecture can be reformulated by Stokes
automorphism and Borel resummation.

In this paper, we mainly address the case of Eq. (1) with
ε ¼ 2, but this result is directly extendable to VPT ¼
ω2x2 þ gx2KðixÞε¼2 with K ∈N.
This paper is organized as follows: In Sec. III, we review

Borel resummation theory and EWKB. We first explain
main concepts of Borel resummation and Stokes auto-
morphism in a slightly generic point of view in Sec. III A,
and then introduce EWKB to provide QCs in Sec. III B.
After the review part, we consider a quartic potential with a
quadratic term in Sec. IV. As warm-up, we apply EWKB to
the Hermitian potential with a positive coupling λ in
Sec. IVA. Then, in Sec. IV B, we derive the PT and
the AC energy solutions from the negative coupling
potential. From the results, we modify the ABS conjecture
for ω > 0 based on Borel resummation theory in Sec. IV C.
In Sec. V, we consider a quartic potential without a
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quadratic term. In Sec. VA, we begin with the Hermitian
potential with a positive coupling λ and obtain the energy
solution by using the inverse energy level-expansion. In
Sec. V B, we consider the negative coupling potential. In
Sec. V C, we show the fact that no alternative form of
the ABS conjecture can be reformulated by Stokes auto-
morphism and Borel resummation. In Sec. VI, we make
some remarks about a generalization to VPT ¼ ω2x2 þ
gx2KðixÞε¼2 with K ∈N and spectral reality from the
viewpoint of EWKB. Technical computations, such as
derivation of nonperturbative parts and alien calculus
for the energy spectrum, are summarized in Appendices A
and B, respectively.
For QCs, denoted as D ¼ 0, we frequently use the

symbol thatD1 ∝ D2 through this paper, which means that
D1 and D2 are equivalent to each other except an overall
factor not to affect their energy solutions.

III. PRELIMINARY: BOREL RESUMMATION
THEORY AND EXACT WKB ANALYSIS

In this section, we introduce Borel resummation and
EWKB. In Sec. III A, we review Borel resummation and
Stokes automorphism. Then, in Sec. III B, we explain some
basics of EWKB.

A. Borel resummation and Stokes automorphism

We introduce concepts of Borel resummation (or Borel-
Écalle resummation) and Stokes automorphism. Intuitively,

Borel resummation is a method to reconstruct a function
from a divergent series contained in transseries, and
analyzing transseries is essentially identical to investigation
of properties Borel resummed forms, i.e., their original
functions associated to the transseries.1 There are many
textbooks and reviews of Borel resummation theory and
resurgence theory. See Refs. [39–46], for example.
Let us begin with the following formal power series

expanded by ℏ:

fðℏÞ ∼
X
n∈N

cnℏn as ℏ → 0þ: ðcn ∈CÞ ð5Þ

For simplicity, we assumed that f does not have non-
perturbative contributions and oscillations such as e−S=ℏ

with ReðSÞ ≥ 0. We also assume that f is a divergent series
and Gevrey-1 class, i.e.,

cn ∼AS−nn! as n→∞; lim
n→∞

���� cn
cnþ1

����¼ 0: ðA;S∈CÞ

ð6Þ

FIG. 1. Schematic figure of our modified ABS conjecture for ω > 0. Borel resummation S0� and a one-parameter Stokes
automorphismSν∈R

0 are defined around argðgÞ ¼ 0. Formal transseries of the PT and the AC energies (resp. QCs), denoted by EPT =AC

(resp.DPT =AC), are connected to each other by the one-parameter Stokes automorphism with ν ¼ �1=2. The superscript, argðλÞ ¼ �π,
corresponds to λ ¼ −gþ i0� in Eq. (4). Acting the median resummation Smed to the formal transseries gives their median resummed
forms, ÊPT =AC (resp. D̂PT =AC), that reproduce the original transseries by taking ℏ → 0þ. By introducing another one-parameter Stokes

automorphism acting to Borel resummed forms, Ŝν∈R, the similar relations among the Borel resummed forms of the PT and the AC
energies (resp. QCs) hold formally. Borel resummation S0� makes a direct connection from EPT =AC (resp. DPT =AC) to ÊAC=PT

(resp. D̂AC=PT ).

1In the terminology of Ref. [46], Borel resummation is a
mapping from a transseries to an analyzable function; Determin-
ing the transseries of a function f is the “analysis” of f, and
transseriable functions are “analyzable,” while the opposite
process, reconstruction by BE summation of a function from
its transseries is known as “synthesis.”
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Borel resummation Sθ is defined as an operator acting to a
formal power series and being composition of Borel
transform B and Laplace integral Lθ, i.e., Sθ ¼ Lθ �B.
Those are defined as

B½f�ðξÞ ≔
X
n∈N

cn
ΓðnÞ ξ

n−1 ¼ fBðξÞ;

Lθ½fB�ðℏÞ ≔
Z

∞eiθ

0

dξe−
ξ
ℏfBðξÞ: ð7Þ

The Borel transformed expansion, fB, is an analytic
function in a neighborhood of ξ ¼ 0, but it is not on the
entire complex ξ-plane when f is a divergent series. If no
singular point lays on the integration ray with argðξÞ ¼ θ,
then the Laplace integral is formally performable. In such a
case, we say f is Borel (re)summable along argðξÞ ¼ θ.
Otherwise, f is Borel non(re)summable. Borel resumma-
tion is a homomorphism:

Sθ½f1 þ f2� ¼ Sθ½f1� þ Sθ½f2�;
Sθ½f1f2� ¼ Sθ½f1� · Sθ½f2�: ð8Þ

Notice that the Borel resummed form, Sθ½f�, is a (formal)
function, not a power series or transseries.
Suppose the case that f is Borel nonsummable along

θ ¼ 0. When f is Borel nonsummable, one usually adds a
infinitesimal phase to the integration ray to make f Borel
summable, as θ ¼ 0�. However, because of a discontinuity
from the singular point, the Borel resummed form depends
on the sign of the phase, namely,

S0þ½f� ≠ S0−
½f�: ð9Þ

This implies that the resulting form of S0�½f� does not
match with f in the asymptotic limit, i.e.,2

S0�½f� ∼ℏ→0þf0∓ ≠ f; ð10Þ

where ∼ℏ→0þ denotes reduction of a Borel resummed form to
a formal transseries by taking a small ℏ. Although our input
in Borel resummation is a formal power series as Eq. (6),
f0∓ in Eq. (10) generally becomes a formal transseries
taking the form, for example, that [44,46]3

f0∓ðℏÞ ∼
X
n∈N

cð0Þn ℏn þ
X
l∈N

X
n∈N0

cðlÞn

�
�A

2

�
l
e−

lS
ℏ ℏnþβl;

ðcðlÞn ∈C;A∈ iRÞ ð11Þ
with a nonzero A. The deviation from f can be roughly
estimated by a radius of convergence of fB, and it is
evaluated as r� ¼ S. Hence,

S0þ½f� − S0−
½f� ∼ℏ→0þie−

S
ℏ½cþOðℏÞ�; ð12Þ

with a constant c. Therefore, in general, Borel summability
does not guarantee to give a Borel resummed form perfectly
reproducing the original formal expansion.
The question is how to construct a Borel resummed form

to reproduce the original formal power series, f, in the
small ℏ limit. It is possible by introducing Stokes auto-
morphism, Sθ, which has a key role through this paper,
defined as

Sθþ0þ ¼ Sθþ0−
�Sθ: ð13Þ

Roughly speaking, it is a mapping from a transseries to a
transseries to compensate a difference due to the disconti-
nuity along the integration ray with argðξÞ ¼ θ. Stokes
automorphism is a homomorphism:

Sθ½f1 þ f2� ¼ Sθ½f1� þSθ½f2�;
Sθ½f1f2� ¼ Sθ½f1� ·Sθ½f2�: ð14Þ

If f is Borel summable along argðξÞ ¼ θ, then Sθ is an
identity mapping. Stokes automorphism defined in Eq. (13)
is just an automorphism determined by action of Sθþ0� to f,
but it is extendable to a one-parameter group generated by a

generator, alien derivative Δ
•
θ, as

Sν
θ ¼ exp ½νΔ• θ�; Δ

•
θ ¼

X
w∈ΓðθÞ

Δ
•
w; ðν∈RÞ ð15Þ

where ΓðθÞ denotes a set of singular points along the
integration ray with θ. It satisfies

Sν¼0
θ ¼ 1; Sν1

θ �Sν2
θ ¼Sν2

θ �Sν1
θ ¼Sν1þν2

θ ; ðν1;ν2∈RÞ
ð16Þ

and taking ν ¼ 1 leads toSθ in Eq. (13). Intuitively, action

of Δ
•
w∈ΓðθÞ to a formal power series means pre-extracting a

nonperturbative contribution originated by taking a Hankel
contour clockwise going around a singular point located at
ξ ¼ w in the Laplace integral. An alien derivative is
additive and satisfies Leibniz rule:

Δ
•
w½f1 þ f2� ¼ Δ

•
w½f1� þ Δ

•
w½f2�;

Δ
•
w½f1f2� ¼ Δ

•
w½f1� · f2 þ f1 · Δ

•
w½f2�: ð17Þ

2In this expression, we used a symbol “0∓” instead of “0�” in
f0∓ to adjust to the notation in Eq. (22).

3This form is constrained by underlying mathematical struc-
tures such as a differential equation. Equation (11) is just an
example, and a resurgent structure of our problem slightly differs
from Eq. (11).
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It is notable that, when action of the Stokes automorphism
or alien derivative to a formal power series (or transseries)
is nontrivial, it generates a nonperturbative contribution
such as e−S=ℏ

P
n∈N0

cnℏn, which means that nonpertur-
bative information is accessible from a perturbative expan-
sion (or vice versa). Such a relation among perturbative and
nonperturbative sectors is called as a resurgent relation.
Let us come back to our question. Again, we take θ ¼ 0.

We suppose that there exists formal transseries f0� and a
Borel resummed form f̂ such that S0þ½f0þ� ¼ S0−

½f0− � ¼
f̂ ∼ℏ→0þ f. Thus, knowing a relation between f and f0� is the
solution. This problem can be solved by introducing
median resummation defined as4

Smed;0½f� ≔ S0þ �S−1=2
0 ½f� ¼ S0−

�Sþ1=2
0 ½f�; ð20Þ

where f0� are related to f as

f0� ¼ S∓1=2
0 ½f�; f ¼ S�1=2

0 ½f0��; ð21Þ

and thus, Smed;0½f� ¼ S0�½f0��.5 The median resummation
directly provides a Borel resummed form which is con-
tinuous at argðℏÞ ¼ 0 from f. Action of the alien derivative
to a formal power expansion in Gevrey-1 class is well-
defined, so that the median resummed form naturally

returns Smed;0½f� ∼ℏ→0þf. Conversely, one can express the
discontinuity in S0�½f� using the median resummation as

S0�½f� ¼ Smed;0 �S�1=2
0 ½f� ¼ Smed;0½f0∓ � ∼ℏ→0þf0∓ : ð22Þ

In addition, the procedure (21) can be interpreted to
enable to construct f from f0þ and/or f0− by the Stokes
automorphism, S�1=2

0 , without passing through Borel
resummation.

It is useful to introduce another Stokes automorphism,
Ŝθ, that acts to a Borel resummed form and satisfies

Smed;θ �Sν
θ ¼ Ŝν

θ �Smed;θ: ð23Þ
Choosing ν ¼ �1=2 in the left-hand side (lhs) is equivalent
to Sθþ0� . In this sense, this generalized Stokes automor-

phism, Ŝν
θ, can be regarded to be a continuous transform to

Borel resummed forms, and the Borel resummation, Sθþ0� ,
is a special case of Eq. (23).
A generalization of the Borel resummation to an lth

nonperturbative sector such that fðlÞðℏÞ ∼ e−
lS
ℏ cðlÞn ℏnþlβ

with Re½S� > 0 and β ∉ Z<0 is also defined by modifica-
tions of the Borel transform and Laplace integral as

B½fðlÞ�ðξÞ ¼
X
n∈N0

cðlÞn

Γðnþ lβÞ ðξ − lSÞnþlβ−1 ¼ fðlÞB ðξÞ;

Lθ½fðlÞB �ðℏÞ ≔
Z

∞eiθ

lS
dξe−

ξ
ℏfðlÞB ðξÞ: ð24Þ

The definition of the Stokes automorphism and alien
derivative is obtained in the similar way to the case of a
formal power expansion explained above.
Depending on problems, one obtains f0� prior to knowing

a specific form of f. EWKB is the case. In such a case,
although taking Borel resummation S0� to f0� formally
solves the problem, it is in practice too tough to find their
exact resummed forms as functions except in special cases.
Instead of that, we take another strategy for consideration of
the ABS conjecture, that is, constructing a formal transseries
f from f0� by Stokes automorphism using Eq. (21).
Through this paper, we usually deal with formal transs-

eries except where specifically noted. The hat symbol, f̂,
denotes the median resummed form of f, i.e., f̂ ¼ Smed½f�.
In the below, we show some examples for the procedure

of Borel resummation. In these examples, Borel (median)
resummed forms can be exactly obtained as functions.

1. Example 1: cn =AS− nn!

We consider cn ¼ AS−nn! with S∈R>0 in Eq. (5).
Acting Borel transform defined in Eq. (7) to the formal
power series gives

fB ≔ B½f� ¼ AS
ðS − ξÞ2 ; ð25Þ

and one can immediately see that f is Borel nonsummable
along θ ¼ 0. Taking the Laplace integral with θ ¼ 0� leads to

S0�½f� ¼ L0�½fB� ¼
ASe−

S
ℏ

ℏ

�
Ei

�
S
ℏ

�
� πi

�
− A

∼ℏ→0þ
X
n∈N

AS−nn!ℏn � πi
ASe−

S
ℏ

ℏ
; ð26Þ

4These exponents of Stokes automorphism in this definition,
∓1=2, are determined by the conditions that

C �Sθ ¼ S−θ � C; C �Smed;θ ¼ Smed;−θ � C; ð18Þ
where C is complex conjugate. The first condition in Eq. (18) can
be expressed by Stokes automorphism and alien derivative as

C �Sν
θ ¼ S−ν

−θ � C; C �Δ
•
θ ¼ −Δ

•
−θ � C; ð19Þ

and requiring the second condition in Eq. (18) gives the
exponent, ∓1=2, using Eq. (19).

5In the aspect of Lefschetz thimble decomposition, the Stokes
automorphism in Eq. (13) has a role of reconstruction of an
integration-path to keep the same homology class against a
discontinuity induced by a Stokes phenomenon. In addition,
S∓1=2

0 and S0� correspond to appropriately adding nontrivial
saddles to reproduce its original integration-path and performing
the integration along the thimbles, respectively.
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where EiðxÞ is the exponential integral. Apparently, this result
has a discontinuity at argðξÞ ¼ 0, that is �πi ASe

−Sℏ
ℏ . From

Eq. (25), one can see that a set of singular points consists of
only the double pole at ξ ¼ S, i.e., Γðθ ¼ 0Þ ¼ fSg, and thus
the alien derivative is easily obtained by a residue integration
around ξ ¼ S clockwise, as

Δ
•
S½f� ¼ −

I
ξ¼S

dξe−
ξ
ℏfBðξÞ ¼ 2πi

ASe−
S
ℏ

ℏ
;

ðΔ• SÞn>1½f� ¼ 0: ð27Þ

From this result and Eq. (15), one can obtain action of the
Stokes automorphism to f as

Sν
0½f� ¼ f þ 2πνi

ASe−
S
ℏ

ℏ
; ð28Þ

and Eq. (21) gives f0� as

f0� ¼ S∓1=2
0 ½f� ¼ f ∓ πi

ASe−
S
ℏ

ℏ
: ð29Þ

Taking Borel resummation to f0� yields

f̂ ¼ S0�½f0�� ¼
ASe−

S
ℏ

ℏ
Ei

�
S
ℏ

�
− A ∼ℏ→0þ

X
n∈N

AS−nn!ℏn:

ð30Þ

This result could correctly reproduce cn ¼ AS−nn! and

remove the discontinuity, �πi ASe
−Sℏ

ℏ , appeared in Eq. (26).

In addition, acting Ŝν
0 to f̂ is written as

Ŝν
0½f̂� ¼ f̂ þ 2πνi

ASe−
S
ℏ

ℏ
; ð31Þ

and taking ν ¼ �1=2 corresponds to S0�½f� in Eq. (26).

2. Example 2: Zero-dimensional
PT symmetric toy model

Another example is the zero-dimensional model consid-
ered in Ref. [14], which is given by

ZPT ¼
Z
γPT

dx exp ½−x2 þ gx4�; g∈R>0; ð32Þ

γPT ≔ seþπ
4
iθð−sÞ þ se−

π
4
iθðþsÞ; s∈R; ð33Þ

where θðsÞ is the step function. The integration in Eq. (32)
is analytically performable, and one can obtain the exact
solution as

ẐPT ¼ πe−
1
8g

4
ffiffiffi
g

p
�
I−1

4

�
1

8g

�
þ Iþ1

4

�
1

8g

��
; ð34Þ

where IνðxÞ is the modified Bessel function of the first
kind. We apply the above methods to a formal transseries of
the exact solution expanded by g. This example might be
helpful to understand the whole story in this paper
and Fig. 1.
Expanding Eq. (34) gives

ẐPT ∼ ZPT ¼ ffiffiffi
π

p X
n∈N0

ð1
4
Þnð34Þn
n!

ð4gÞn as g → 0þ; ð35Þ

where ðaÞn ≔ Γðaþ nÞ=ΓðaÞ is the Pochhammer symbol.
Here, we define J 0 ≔ gZPT and deal with J 0. The
coefficients of J 0 are given by

J 0 ¼
X
n∈N

cngn; cn ¼
ffiffiffi
π

p ð1
4
Þn−1ð34Þn−1
ðn − 1Þ! 4n−1; ð36Þ

and Borel transform (7) gives

J 0;B ≔ B½J 0� ¼
2Kð 4

ffiffi
ξ

p
2
ffiffi
ξ

p þ1
Þffiffiffi

π
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ffiffiffi
ξ

p þ 1
p ; ð37Þ

where KðxÞ is the elliptic integral. This has a singular point
at ξ ¼ 1

4
, i.e., Γðθ ¼ 0Þ ¼ f1

4
g. Taking Borel resummation

yields

S0�½J 0�¼
πe−

1
8g
ffiffiffi
g

p
4

�
I−1

4

�
1

8g

�
þIþ1

4

�
1

8g

�
� i

ffiffiffi
2

p

π
K1

4

�
1

8g

��
¼ Ĵ 0þ Ĵ �; ð38Þ

where Ĵ 0 ≔ gẐPT , and Ĵ � ≔ �i e
− 1
8g
ffiffiffiffi
2g

p
4

K1
4
ð 1
8gÞ with the

modified Bessel function of the second kind,KνðxÞ. Formal
transseries of Ĵ �, denoted by J �, can be obtained by the
asymptotic expansion of K1

4
ð 1
8gÞ. Notice that J þ þ J − ¼ 0

and J þ − J − ¼ �2J �. From the results, one can find
actions of alien derivatives and Stokes automorphism to
J 0 and J � as

ðΔ• 1
4
Þ½J 0� ¼

Z þ∞þi0þ

þ∞þi0−

dξe−
ξ
gJ 0;BðξÞ ¼ J þ − J −;

ðΔ• 1
4
Þn>1½J 0� ¼ 0; ð39Þ

ðΔ• θ¼0Þn∈N½J �� ¼ 0; ð40Þ

where
Rþ∞þi0þ
þ∞þi0−

dξ denotes integration along a Hankel

contour going around the singular point at ξ ¼ 1
4
clockwise,

and
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Sν
0½J 0� ¼ J 0 þ νðJ þ − J −Þ; Sν

0½J �� ¼ J �; ð41Þ

Ŝν
0½Ĵ 0� ¼ Ĵ 0 þ νðĴ þ − Ĵ −Þ; Ŝν

0½Ĵ �� ¼ Ĵ �: ð42Þ

Hence, J 0�
0 which satisfy S0þ½J 0þ

0 � ¼ S0−
½J 0−

0 � are
obtained as

J 0�
0 ¼ S∓1=2

0 ½J 0� ¼ J 0 ∓ 1

2
ðJ þ − J −Þ

¼ J 0 − J � ¼ J 0 þ J ∓; ð43Þ

S0�½J 0�
0 � ¼ Smed;0½J 0� ¼ Ĵ 0: ð44Þ

Similarly, we consider analytic continuation of the
Hermitian model given by

ẐH ≔
Z þ∞

−∞
dxexp ½−x2 − λx4� ¼ e

1
8λ

2
ffiffiffi
λ

p K1
4

�
1

8λ

�
; λ∈R>0;

ð45Þ

and define J argðλÞ¼�π
AC ≔ gZargðλÞ¼�π

H . By taking λ ¼ e�πig
with g∈R>0, those can be expressed by

J argðλÞ¼�π
AC ¼ J 0 þ J ∓ ¼ J 0 ∓ 1

2
ðJ þ − J −Þ; ð46Þ

Ĵ argðλÞ¼�π
AC ¼ πe−

1
8g
ffiffiffi
g

p
4

�
I1
4

�
1

8g

�
þ I−1

4

�
1

8g

�

∓ i

ffiffiffi
2

p

π
K1

4

�
1

8g

��

¼ Ĵ 0 þ Ĵ ∓ ¼ Ĵ 0 ∓ 1

2
ðĴ þ − Ĵ −Þ: ð47Þ

From Eqs. (41) and (42), one can find that

S�1=2
0 ½J 0� ¼ J argðλÞ¼∓π

AC ; S�1=2
0 ½J argðλÞ¼�π

AC � ¼ J 0;

S�1
0 ½J argðλÞ¼�π

AC � ¼ J argðλÞ¼∓π
AC ; ð48Þ

Ŝ�1=2
0 ½Ĵ 0� ¼ Ĵ argðλÞ¼∓π

AC ; Ŝ�1=2
0 ½Ĵ argðλÞ¼�π

AC � ¼ Ĵ 0;

Ŝ�1
0 ½Ĵ argðλÞ¼�π

AC � ¼ Ĵ argðλÞ¼∓π
AC ; ð49Þ

S0�½J 0� ¼ Ĵ argðλÞ¼∓π
AC ; S0�½J argðλÞ¼�π

AC � ¼ Ĵ 0: ð50Þ

Therefore, the zero-dimensional PT symmetric model
satisfies the relations in Fig. 1.
It is remarkable to mention that this picture directly

corresponds to Lefschetz thimble decomposition. S0�½J 0�
and S0�½J �� (divided by g) are nothing but thimble-
integrations from a perturbative saddle at x ¼ 0 and

nonperturbative saddles at x ¼ � 1ffiffiffiffi
2g

p , respectively. See

Ref. [14] in detail.

B. Exact WKB analysis

We review EWKB and explain the procedure to obtain
energy quantization conditions (QCs). See, for example,
Refs. [23–26,30–33] in detail.
We consider the following Schrödinger equation given

by a potential VðxÞ:

L ¼ −ℏ2
∂
2
x þ VðxÞ − E; LψðxÞ ¼ 0;

ðx∈C; E;ℏ∈R>0Þ ð51Þ

where E is an energy and ψ is a wave function. The
variable, x, is normally taken as a real value, but we extend
it to be complex-valued for analytic continuation of the
wave function. For simplicity, we assume that the potential
V is independent on ℏ and a polynomial of x bounded in the
asymptotic limit, x → �∞, i.e., the wave function ψ is
normalizable along the real axis. A main difference from
the standard WKB is to take into account of its all orders
with respect to ℏ. We construct the wave function by
preparing an ansatz expanded by ℏ, which is given by

ψaðx;ℏÞ ¼ σðℏÞ exp
�Z

x

a
dx0Sðx0;ℏÞ

�
; ðx∈CÞ ð52Þ

Sðx;ℏÞ ¼
X
n∈N0

Sn−1ðxÞℏn−1 as ℏ → 0þ; ð53Þ

where σðℏÞ is an integration constant generally depending
on ℏ, and a is a normalization point. Substituting ψ into the
Schrödinger equation (51) leads to Riccati equation in
terms of Sðx;ℏÞ as
Sðx;ℏÞ2 þ ∂xSðx;ℏÞ ¼ ℏ−2QðxÞ; QðxÞ ≔ VðxÞ − E:

ð54Þ
From Riccati equation (54), Sðx;ℏÞ is recursively obtained
order by order, as

S−1ðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffi
QðxÞ

p
; S0ðxÞ ¼ −

∂x logQðxÞ
4

;

Sþ1ðxÞ ¼ � 1

8
ffiffiffiffiffiffiffiffiffiffi
QðxÞp �

∂
2
x logQðxÞ − ð∂x logQðxÞÞ2

4

�
; � � � :

ð55Þ
Since Riccati equation is quadratic, we have two indepen-
dent solutions which enable to be distinguished by the sign,
�, in Sðx;ℏÞ. One can also find from Eq. (54) that Sðx;ℏÞ
can be decomposed into two parts; the one part consists of
terms with the sign � determined by choice of S−1ðxÞ ¼
� ffiffiffiffiffiffiffiffiffiffi

QðxÞp
and the other part contains terms independent on
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the sign of S−1ðxÞ. By denoting Sodðx;ℏÞ and Sevðx;ℏÞ for
the former and latter parts, respectively, one can express
the total Sðx;ℏÞ as Sðx;ℏÞ ¼ �Sodðx;ℏÞ þ Sevðx;ℏÞ, and
Sevðx;ℏÞ can be written down by Sodðx;ℏÞ as6

Sodðx;ℏÞ ¼
X
n∈N0

S2n−1ðxÞℏ2n−1; S−1ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
QðxÞ

p
; ð56Þ

Sevðx;ℏÞ ¼
X
n∈N0

S2nðxÞℏ2n ¼ −
1

2
∂x log Sodðx;ℏÞ: ð57Þ

Therefore, the wave function (52) is given by

ψa�ðx;ℏÞ ¼
σ�ðℏÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sodðx;ℏÞ

p exp

�
�
Z

x

a
dx0Sodðx0;ℏÞ

�

¼ σ�ðℏÞ exp
�
� 1

ℏ

Z
x

a
dx0Sod;−1ðx0Þ

�

×
X
n∈N0

ψa�;nðxÞℏnþ1
2: ð58Þ

Without the loss of generality, we take σ�ðℏÞ ¼ 1. The
Borel transform and Laplace integral for the wave functions
are defined as

B½ψa��ðx; ξÞ ≔
ψa�;nðxÞ
Γðnþ 1

2
Þ ðξ� ξ0ðxÞÞn−1

2 ¼ ψB;a�ðx; ξÞ;

ξ0ðxÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffi
Q0ðxÞ

p
; ð59Þ

Lθ½ψB;a��ðx;ℏÞ ≔
Z

∞eiθ

∓ξ0

dξe−
ξ
ℏψB;a�ðx; ξÞ; ð60Þ

and the Borel resummation is a combination of the two
operations, i.e., Sθ ¼ Lθ �B.
After formulating the wave function, we then draw

Stokes graph, that is defined by
R
dxSod;−1ðxÞ of x∈C

and provides a structure of Borel summability of the wave
function. A Stokes graph normally consists of three kinds
of objects: turning points, Stokes lines, and branch-cuts.
Turning points are defined from QðxÞ as

TP ≔ fx∈CjQðxÞ ¼ 0g: ð61Þ

These are used as a normalization point, denoted by a in
Eq. (58), in the wave function. A Stokes line is defined as a
line on the complex x-plane emerging from a turning point
and satisfying the condition that

Im

�
1

ℏ

Z
x

aj

dx0Sod;−1ðx0Þ
�
¼ 0; aj ∈TP: ð62Þ

Along the lines, Re½R xaj dx0Sod;−1ðx0Þ� is monotonically

increasing (resp. decreasing), so thatwe add labels,þ (resp.−),
to an asymptotic domain where Re½R xaj dx0Sod;−1ðx0Þ� → þ∞
(resp. −∞). In addition, without some exceptions, branch-
cuts normally have a role of swapping the independent
solutions, ψ�. Figure 2 is an example of Stokes graph in
the case of adouble-well potential,whichwouldbe also helpful
to follow the below explanations.
When the wave function is Borel nonsummable, there

exist two possibilities for the reason: movable singularity
and fixed singularity. A movable singularity means a
singularity on the Borel plane expressed by Stokes lines,

FIG. 2. Example of Stokes graph, a double-well potential. Turning points are denoted by blue dots, a1;…;4. The black solid and red
wave lines mean Stokes lines and branch-cuts, respectively. The label, þ (resp.−), denotes an asymptotic domain where
Re½R xaj dx0Sod;−1ðx0Þ� → þ∞ (resp. −∞). We perform analytic continuation along the blue line slightly below the real axis from

x ¼ −∞ to x ¼ þ∞. In these cycles, only the B-cycle is nonperturbative, and CNP;θ¼0 ¼ fBg. The other cycles, A and C, intersect with
B once, so that action of the Stokes automorphism to them is nontrivial and related to B. In this case, the intersection number is given
by hA; Bi ¼ −hC;Bi ¼ −1.

6If QðxÞ includes ℏα with α∈N, then Soddðx;ℏÞ contains both
odd and even powers of the ℏ-expansion. The degenerate Weber-
type Stokes graph in Appendix A is the case.
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and the wave function becomes Borel nonsummable when
it stays exactly on the lines. Because of that, the wave
functions defined on each the domain surrounded by the
Stokes lines are generally discontinuous to each other. A
fixed singularity arises when a Stokes line reaches another
turning point by taking certain values of ℏ∈C, and then
two Stokes lines normally degenerate. This situation is
called Stokes phenomenon. In such a case, the wave
function is Borel nonsummable on the complex x-plane
entirely, but it can be resolved by adding an infinitesimal
complex phase to ℏ or parameters in QðxÞ. A example is
drawn in Fig. 3. Below, we define the angle of the Laplace
integral by ℏ, as θ ¼ argðℏÞ.
Our main task in EWKB is to obtain a QC by performing

analytic continuation along a certain path on the complex
x-plane. For the computation, one has to connect the wave
functions on each the domain separated by a Stokes line.
Here, we express the wave function by a vector form using
two independent solutions of Riccati equation (54), ψ�, as

ψa ¼
�
ψaþ
ψa−

�
: ð63Þ

We suppose that ψ I and ψ II are wave functions on two
domains separated by a Stokes line, I and II, respectively. A
connection matrix crossing the Stokes line at x ¼ x� is
defined such that their Borel resummed wave functions
become continuous at x ¼ x�, i.e.,

Sθ½ψ Iðx� þ 0−Þ� ¼ Sθ½ψ Iðx� þ 0þÞ�; ð64Þ
ψ Iðx� þ 0þÞ ≔ MI→IIψ IIðx� þ 0þÞ; ð65Þ

where MI→II is the connection matrix, and x� þ 0− and
x� þ 0þ belong to the domain I and II, respectively. In this

paper, we mainly deal with Airy-type Stokes graph, shown
in Fig. 4. Anticlockwise crossing Stokes lines and branch-
cut emerging from a turning point, a, can be expressed by
the connection matrices M� and the branch-cut matrix T
given by

Mþ ¼
�
1 i

0 1

�
; M− ¼

�
1 0

i 1

�
; T ¼

�
0 −i
−i 0

�
;

ð66Þ

where the subscript ofM� indicates the label of asymptotic
behavior attached to the Stokes line we are crossing. In
addition, their inverse matrices correspond to crossing them
clockwise. Such a connection formula is locally formulated
around a turning point, so that one has to change the
normalization point depending on which turning point the
Stokes line emerges from. The normalization matrix
changing a normalization point from ak to aj is given by

Naj;ak ≔

 
e
þ
R

aj
ak

dxSodðx;ℏÞ

e
−
R

aj
ak

dxSodðx;ℏÞ

!
¼ N−1

ak;aj ;

aj; ak ∈TP: ð67Þ

Acting those matrices (66)(67) to the wave function one by
one along a path of analytic continuation yields a mono-
dromy matrix. When degeneracies are induced at θ ¼ 0 like
Fig. 3, one has to resolve the degeneracies by taking
θ ¼ 0�, and thus the resulting monodromy matrix depends
on the complex phase. For example, for a double-well
potential shown in Fig. 2, those are given by

S0�½ψ0�I
a1 � ¼ S0�½M0�ψ0�VI

a1 �;
M0þ ¼ MþNa1;a2MþNa2;a3MþM−Na3;a4M−Na4;a1 ;

ð68Þ

FIG. 4. Airy-type Stokes graph defined by a simple turning
point, a (blue dot). The colored arrows crossing the Stokes lines
and the branch-cut are expressed byMþ (green),M− (red), and T
(blue) in Eq. (66), respectively.FIG. 3. Example of degeneracy of two Stokes lines. When

argðℏÞ ¼ 0, two Stokes lines emerging from turning points (blue
dots) on the one side go into the other side and degenerate. This
degeneracy can be resolved by adding an infinitesimal complex
phase to ℏ as argðℏÞ ¼ 0�.
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M0− ¼ MþNa1;a2MþM−Na2;a3M−Na3;a4M−Na4;a1 ; ð69Þ

where S0þ½ψ0þ•
a � ¼ S0−

½ψ0−•
a �.7 Normalizability to the wave

function in the asymptotic limit, x → �∞, requires being
zero to a corresponding component of the monodromy
matrix, that gives a QC denoted by D0� :

M0�
jk ¼ D0� ¼ 0; ð70Þ

where ðj; kÞ is determined by normalizability of the wave
function as

ðj; kÞ ¼

8>>>>><
>>>>>:

ð1; 1Þ if ψ0�I− ð−∞Þ ¼ ψ0�Iþ ðþ∞Þ ¼ 0

ð1; 2Þ if ψ0�I− ð−∞Þ ¼ ψ0�I− ðþ∞Þ ¼ 0

ð2; 1Þ if ψ0�Iþ ð−∞Þ ¼ ψ0�Iþ ðþ∞Þ ¼ 0

ð2; 2Þ if ψ0�Iþ ð−∞Þ ¼ ψ0�I− ðþ∞Þ ¼ 0

: ð71Þ

The QCs are functions of the energy E, so that solving
D0�ðEÞ ¼ 0 gives a energy spectrum, but containing a
discontinuity at θ ¼ 0.
Even if the resulting QCs are Borel nonsummable at

θ ¼ 0 such that D0þ ≠ D0− , their Borel resummed forms
are equivalent to each other, i.e., S0þ½D0þ� ∝ S0−

½D0− �.
This fact implies existence of Stokes automorphism that
offers a relation between D0þ and D0− . This Stokes
automorphism is known as Delabaere-Dillinger-Pham
(DDP) formula [25,26] in the context of EWKB.
Generally, QCs consist of Voros symbols (cycles) defined
as a contour integration of Sod going around two turning
points such that A ¼ eaij , where

aij ≔
I

aj

ai

dxSodðx;ℏÞ ¼ −aji; aij þ ajk ¼ aik;

ðai; aj; ak ∈TPÞ ð72Þ

and the DDP formula tells us perturbative/nonperturbative
relations, i.e., resurgent relations, among cycles. For cycles
constructed only by simple turning points, e.g., in the case
of Fig. 2, the DDP formula can be expressed by

Sθþ0þ½Aj� ¼ Sθþ0−
½Aj�

Y
Bk ∈CNP;θ

ð1þ Sθþ0−
½Bk�ÞhAj;Bki; ð73Þ

Sθþ0þ½Bk� ¼ Sθþ0−
½Bk�; Bk ∈CNP;θ; ð74Þ

or identically,

Sν¼1
θ ½Aj� ¼ Aj

Y
Bk ∈CNP;θ

ð1þ BkÞhAj;Bki; ð75Þ

Sν¼1
θ ½Bk� ¼ Bk; Bk ∈CNP;θ; ð76Þ

where CNP;θ is a set of purely nonperturbative cycles that
correspond to a degenerated Stokes line induced by a
Stokes phenomenon at argðℏÞ ¼ θ, and orientation of the
cycles in CNP;θ is fixed such that limℏ→0þ BkðℏÞ ¼ 0. The
other cycles labeled by j∈N, Aj, can be arbitrarily taken as
far as being transversal to Bk ∈CNP;θ, but those are usually
given as a set of cycles going around two turning points that
enable to be connected by a branch-cut. In addition, hA; Bi
denotes the intersection number between two cycles, A and
B, determined by their orientation as

h→;↑i ¼ h←;↓i ¼ þ1; h→;↓i ¼ h←;↑i ¼ −1: ð77Þ

See also Ref. [33] for the derivation. Notice that CNP;θ

depends on the value of θ, and thus CNP;θ ¼ ∅ when no
Stokes phenomenon happens on the Stokes graph at θ. The
generalization to a one-parameter Stokes automorphism
with ν∈R, denoted by Sν

θ, is available by replacing the
intersection number in Eq. (75) as hAj; Bki → hAj; Bki × ν.
Eq. (76) does not change for any ν. From Eqs. (75)(76), the
median resummed forms are obtained as

Âj ¼ Sθþ0�½Aθþ0�
j �;

Aθþ0�
j ≔ S∓1=2

θ ½Aj� ¼ Aj

Y
Bk ∈CNP;θ

ð1þ BkÞ∓hAj;Bki=2; ð78Þ

B̂k ¼ Sθþ0�½Bθþ0�
k �; Bθþ0�

k ¼ Bk; ð79Þ

where f̂ ¼ Smed;θ½f�. From the properties of Borel resum-
mation and Stoke automorphism in Eqs. (8), (14) and (16),
the QCs satisfy

Sþ1=2
θ ½Dθþ0þðA;BÞ� ∝ S−1=2

θ ½Dθþ0−ðA;BÞ�≕DθðA;BÞ;
ð80Þ

DθðAθþ0� ; Bθþ0�Þ ∝ Dθþ0�ðA;BÞ: ð81Þ

Apparently, Sθþ0þ½DθðAθþ0þ ; Bθþ0þÞ� ∝ Sθþ0−
½DθðAθþ0− ;

Bθþ0−Þ� ¼ DθðÂ; B̂Þ. This is a simple way to make sure
of the relation that

Smed;θ½DθðA; BÞ� ∼ℏ→0þDθðA;BÞ: ð82Þ

It is quite crucial to remind that the energy, E, is a free-
parameter in the DDP formula in Eqs. (73)–(76) and
determined by solving the QC, Dθ ¼ 0 (or D̂θ ¼ 0). In
this sense, the DDP formula of cycles is not relevant to the
energy solution directly. However, one can formulate a one-
parameter Stokes automorphism for a formal transseries of

7The wave functions, ψ0�
a , also have a discontinuity caused by

a fixed singularity at argðℏÞ ¼ 0 and can be constructed from ψa
in Eq. (63). Since this effect is consequently irrelevant to QCs and
their solutions, we do not argue ψ0�

a . See Ref. [28] for the
construction.
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the energy solution by combining the DDP formula for
cycles with the QC. This issue would be discussed in
Sec. IV B and Appendix B.
The complex phase θ to resolve a degeneracy of Stokes

lines is normally introduced by argðℏÞ, but the other
parameters in a given theory can be used if it induces
the similar effect. In our analysis, we use a coupling
constant, λ (resp. g), as θ ¼ argðλÞ (resp. θ ¼ argðgÞ).

IV. QUARTIC POTENTIAL
WITH A QUADRATIC TERM

In this section, we apply EWKB to a quartic potential
with ω > 0. In Sec. IVA, we first analyze the Hermitian
potential as a warm-up. In Sec. IV B, we then consider the
negative coupling potential. In Sec. IV C, from transseries
solutions of the PT and the AC QCs obtained in Sec. IV B,
we reformulate the ABS conjecture by Borel resummation
theory.

A. Hermitian potential: V =ω2x2 + λx4

We consider the Hermitian potential. In Sec. IVA 1, we
demonstrate the procedure that we repeatedly perform in
the later analyses. In Sec. IVA 2, we also discuss analytic
continuation of the QCs which will be helpful for analysis
of the negative coupling potential and considerations in
Sec. V C.

1. Quantization condition and energy spectrum

We apply EWKB to a Schrödinger equation of the
Hermitian potential defined as

L ¼ −ℏ2
∂
2
x þ ω2x2 þ λx4 − E: Lψ ¼ 0; ð83Þ

where ω; λ; E∈R>0, and we take E sufficiently small.
From Eq. (61), turning points are given by

TP ¼
8<
:a1 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Eλþ ω4

p
− ω2

2λ

s
; a2 ¼ −i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Eλþ ω4

p
þ ω2

2λ

s
;

a3 ¼ þi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Eλþ ω4

p
þ ω2

2λ

s
; a4 ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Eλþ ω4

p
− ω2

2λ

s 9=
;: ð84Þ

Fig. 5 shows the Stokes graph drawn by Eq. (83). Because
of P symmetry in the potential, Vð−xÞ ¼ VðxÞ, one has
two independent cycles, A1;2, defined as

A1 ≔ ea12 ¼ ea34 ; A2 ≔ ea13 ¼ ea24 ; ð85Þ

where ajk is defined by Eq. (72). Performing analytic
continuation along a line slightly below the real axis
generates a QC by connection matrices, as explained in
Sec. III B. Since a Stokes phenomenon happens at

argðλÞ ¼ 0, the monodromy matrix depends on the com-
plex phase argðλÞ ¼ 0� and is obtained as

M0þ ¼ MþNa1;a2M
−1
− Na2;a3MþNa3;a4MþNa4;a1 ; ð86Þ

M0− ¼ MþNa1;a3MþNa3;a2M
−1
− Na2;a4MþNa4;a1 : ð87Þ

Normalizability of the wave function determines the
boundary condition and requires M0�

12 ¼ 0 by Eq. (71).

(a) arg(λ) = 0+ (b) arg(λ) = 0−

FIG. 5. Stokes graph of the Hermitian potential with ω > 0. We take the analytic continuation along the path denoted the blue line to
obtain the monodromy matrix.
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As a result, one can write down the QCs represented by
cycles as

D0þ
H ∝ 1þ ð2þ A1ÞA2

1þ A−1
1 A2

¼ 1þ ð2þ A1ÞA1D
1þD

; ð88Þ

D0−
H ∝ ð1þ A2Þ2 þ A1A2 ¼ ð1þ A1DÞ2 þ A2

1D; ð89Þ

wherewedefinedD ¼ A−1
1 A2 exponentially dampingwithout

oscillation as a nonperturbative cycle, CNP;argðλÞ¼0 ¼ fDg.
From Eqs. (75) and (76), the DDP formula for

argðλÞ ¼ 0 is given by

Sν
0½Aj¼1;2� ¼ Ajð1þDÞν; Sν

0½D� ¼ D: ðν∈RÞ
ð90Þ

The QC removed the discontinuity, D0
H, is available by

Eq. (80) as Sþ1=2
0 ½D0þ

H � ∝ S−1=2
0 ½D0−

H �≕D0
H, where

D0
H ∝ 1þ A2

�
A1 þ

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A−1

1 A2

p �

¼ 1þ A1D

�
A1 þ

2ffiffiffiffiffiffiffiffiffiffiffiffi
1þD

p
�
: ð91Þ

It is worth to see that the median resummed form of D0
H

has the same to Eq. (91). The discontinuous QCs in
Eqs. (88) and (89) can be reexpressed as

D0�
H ∝ 1þ A0�

2

0
B@A0�

1 þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðA0�

1 Þ−1A0�
2

q
1
CA

¼ 1þ A0�
1 D0�

�
A0�
1 þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þD0�
p

�
;

A0�
j¼1;2 ¼ S∓1=2

0 ½Aj� ¼ Ajð1þDÞ∓1=2; D0� ¼ D: ð92Þ

Since Âj ¼ Smed;0½Aj� ¼ S0�½A0�
j � and D̂ ¼ Smed;0½D� ¼

S0�½D0��, one can immediately find that D̂0
H ¼

Smed;0½D0
H� ∝ S0�½D0�

H �.
One can formally find the energy spectrum by solving

the median resummed QC, but it is technically almost
impossible to directly see details from it. So that, our
strategy is to find a transseries solution from D0

H ¼ 0 in
Eq. (91). However, QCs formulated by the Airy-type
Stokes graph usually have a problem such that the ordering
of a double-expansion in terms of E and ℏ is generally
noncommutative with each other. Thus, the resulting
transseries from the QC does not always correspond
to a correct energy solution. The main reason is that the
energy solution is OðℏÞ and exceeds the applicable limit or
the assumption of the Airy-type connection formula.
In such a case, one needs to modify the Schrödinger
equation as

L ¼ −ℏ2
∂
2
x þ ω2x2 þ λx4 − Ẽℏ; Lψ ¼ 0; ð93Þ

where E ¼ E0 þ Ẽℏ > 0 with E0 ¼ 0 and Ẽ ¼ Oðℏ0Þ. E0

has an important role for the Stokes graph and is indeed a
control parameter of it. Taking E0 ¼ 0 causes a bifurcation
such that two simple turning points corresponding to a
harmonic oscillator collide to each other and become a
double turning point. In consequence, the set of turning
points in Eq. (84) changes to

TP ¼
�
a1 ¼ a4 ¼ 0; a2 ¼ −i

ωffiffiffi
λ

p ; a3 ¼ þi
ωffiffiffi
λ

p
	
: ð94Þ

The Stokes graph is shown in Fig. 6. The local Stokes graph
defined by a double turning point is called as degenerate
Weber (DW)-type Stokes graph, that gives another form of
connection matrices [25,29]. See also Appendix A. In spite
of the difference between the Airy-type and the DW-type
connection formulas, the QCs and the DDP formula
expressed by the Airy-type cycles can be directly translated

FIG. 6. Stokes graph of the Hermitian potential with a quadratic term. Varying E0 → 0þ, the two simple turning points, a1 and a4,
collide to each other and then become a double turning point (green dot) at E0 ¼ 0, where E0 is the classical part of the energy.
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into the DW-type [26,36,57]. For a simplified notation, by
scaling dimensions in Eq. (93) given by

½x� ¼ 1

2
; ½ℏ� ¼ 1; ½ω� ¼ 0; ½λ� ¼ −1; ½Ẽ� ¼ 0; ð95Þ

we rescale the parameters as

x →
ωffiffiffi
λ

p x; Ẽ → ωẼ; ℏ →
ω3

λ
ℏ: ð96Þ

Then, the Schrödinger equation (93) becomes dimension-
less as

λ

ω4
L → L ¼ −ℏ2

∂
2
x þ x2 þ x4 − Ẽℏ: ð97Þ

The QCs of the DW-type can be directly obtained by
replacing A1;2 as

A1 → A1=2B; A2 → A1=2B−1; ð98Þ

A ¼ e−2πiF; B ¼
ffiffiffiffiffiffi
2π

p
e−G

Γð1=2þ FÞ
�
ℏ
2

�
−F
; ð99Þ

where F and G are formal expansions of ℏ and Ẽ. F can be
computed by a residue integration rotating clockwise
around the double turning point, but we do not argue G
in this subsection. By this procedure, one can obtain the
modified QC from Eq. (91) as8

D0
H ∝ 1þA

�
1þ 2

A−1=2Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þB2

p
�
: ð101Þ

The next step is to solve the QC (101). The perturbative
part is given by D0

H ∼ 1þA ¼ 0, i.e.,

FðẼ;ℏÞ ¼ q
2
; q∈ 2Zþ 1; ð102Þ

where q is an energy level. As described above, F is
obtained by the residue integration around the double
turning point, as

FðẼ;ℏÞ ¼ −Resx¼0Sodðx; Ẽ;ℏÞ; ð103Þ

and the formal power expansion of F is given by

FðẼ;ℏÞ ¼ −
Ẽ
2
þ 3ð1þ Ẽ2Þ

16
ℏ −

5ð17Ẽþ 7Ẽ3Þ
128

ℏ2

þ 105ð19þ 50Ẽ2 þ 11Ẽ4Þ
2048

ℏ3 þOðℏ4Þ: ð104Þ

By setting the asymptotic form to Ẽ as ẼHðℏÞ∼P
n∈N0

enℏn, the coefficients en can be obtained by solving
the QC order by order. Specifically, the first four coef-
ficients are given by

ẼHðℏÞ ¼ qþ 3ðq2 þ 1Þ
8

ℏ−
qð17q2 þ 67Þ

64
ℏ2

þ 3ð125q4 þ 1138q2 þ 513Þ
1024

ℏ3 þOðℏ4Þ; ð105Þ

where the energy level is constrained as q∈ 2N0 þ 1 to
give a positive energy. This also means that F is a negative
half-integer, F∈ − Nþ 1

2
, and thus the nonperturbative

effects do not appear because B ¼ 0 due to the gamma
function in Eq. (99). Therefore, the energy solution is Borel
summable even though the DDP formula in Eq. (90) looked
nontrivial [25,59,76].
It might be meaningful to turn on the parameters by the

scaling law (96). From EH ¼ ẼHℏ, the energy solution can
be written down as the following form:

EH

ωℏ
¼ qþ 3ðq2 þ 1Þ

8

�
λℏ
ω3

�
−
qð17q2 þ 67Þ

64

�
λℏ
ω3

�
2

þ 3ð125q4 þ 1138q2 þ 513Þ
1024

�
λℏ
ω3

�
3

þOðℏ4Þ:

ð106Þ

One can see that taking ω → 0 induces divergence.
Therefore, the formal power series is ill defined at
ω ¼ 0. It is important to note that the AC energies are
not naively available from Eq. (106) by replacing the
coupling constant as λ → e�πig with g∈R>0 because in
general an asymptotic form (and also transseries) of a
function depends on the complex phase of its expansion
parameter. This fact also implies that reducing to transseries
from Borel resummed forms and changing argðλÞ are
generally not commutative with each other. In order to find
the AC energies, there exist two ways: analytic continuation
of the Hermitian QC to the negative coupling and directly
constructing the AC QCs from the negative coupling
potential. These would be discussed in Secs. IVA 2
and IV B, respectively, and indeed give the same result.

2. Analytic continuation of the quantization condition

Before moving on the negative coupling case, it is worth
to consider analytic continuation of the QCs by varying

8Of course, one can obtain QCs by beginning with the DW
connection formula. In this case, the QCs are given by

D0þ
H ∝ D0−

H ∝ B; ð100Þ

but the resulting QCs do not have dependence on argðλÞ ¼ 0�.
As we will see, this observation is not a contradiction to Eqs. (91)
and (101).
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θ ¼ argðλÞ for a complex λ. When QCs are expressed by a
formal transseries, one generally needs to take into account
of each Stokes phenomenon appearing during the analytic
continuation. Below, we consider the Airy-type cycles, but
the similar consideration works for the DW-type thanks to
the correspondence of cycle representations.
Varying argðλÞ from 0 to þπ (resp. −π) rotates the two

turning points, a2 and a3, (resp. anti-)clockwise, and they
reach the real axis when E0 > 0 is sufficiently small.
During the process, after resolving the degeneracy at
argðλÞ ¼ 0, Stokes phenomena happen twice at argðλÞ ¼
� 3πEjλj

4ω4 þOðE3=2Þ≕ � θ� and argðλÞ ¼ �π. Fig. 7 shows
the Stokes graphs in which a Stokes phenomenon appears
during the analytic continuation. Each the phenomenon has
its own DDP formula, and those can be expressed by using
A1;2 in Eq. (85) as

Sν
þθ� ½A−1

1 � ¼ A−1
1 ; Sν

þθ� ½A2� ¼ A2ð1þ A−1
1 Þ2ν;

Sνþπ½A� ¼ Að1þ BÞ−2ν; Sνþπ½B� ¼ B;

ðA ¼ A1A2;B ¼ A1Þ ð107Þ

Sν
−θ� ½A1� ¼ A1ð1þ A2Þ2ν; Sν

−θ� ½A2� ¼ A2;

Sν
−π½A� ¼ Að1þ BÞ−2ν; Sν

−π½B� ¼ B;

ðA ¼ A1A2;B ¼ A−1
2 Þ ð108Þ

where CNP;þθ� ¼fA−1
1 g, CNP;−θ� ¼fA2g, and CNP;�π ¼fBg.

These give us analytic continuation of the QCs from
argðλÞ ¼ 0þ (resp. 0−) to argðλÞ ¼ þπ þ 0− (resp.
−π þ 0þ) as

9

Dþθ�þ0þ
H ¼ S−1

θ� ½D
þθ�þ0−
H �; Dþπþ0þ

H ¼ S−1þπ½Dþπþ0−
H �;
ð109Þ

D−θ�þ0−
H ¼ Sþ1

−θ� ½D
−θ�þ0þ
H �; D−πþ0−

H ¼ Sþ1
−π ½D−πþ0þ

H �:
ð110Þ

Notice that the cycles and the QCs are analytic under the
change of argðλÞ until encountering the next Stokes
phenomenon, i.e.,

D0þ
H ¼symDþθ�þ0−

H for 0 < argðλÞ < θ�;

Dþθ�þ0þ
H ¼symDþπþ0−

H for θ� < argðλÞ < π; ð111Þ

D0−
H ¼symD−θ�þ0þ

H for − θ� < argðλÞ < 0;

D−θ�þ0−
H ¼symD−πþ0þ

H for − π < argðλÞ < −θ�; ð112Þ

where ¼sym means that those cycle representations are
analytic and keep the same symbolic forms in the domain.
Combining the above relations yields QCs at argðλÞ ¼
þπ þ 0− and argðλÞ ¼ −π þ 0þ as

Dþπþ0−
H ¼symS−1

þθ� ½D
0þ
H � ∝ 1þA; ð113Þ

D−πþ0þ
H ¼symSþ1

−θ� ½D
0−
H � ∝ 1þA: ð114Þ

As a result, by removing the discontinuity at argðλÞ ¼ �π

from D�πþ0∓
H , one finds

Dþπ
H ¼ S−1=2

þπ ½Dþπþ0−
H � ∝ 1þAð1þ BÞ; ð115Þ

D−π
H ¼ Sþ1=2

−π ½D−πþ0þ
H � ∝ 1þ A

1þ B
: ð116Þ

As one can readily see, the difference of the QCs by
argðλÞ ¼ �π appears in their nonperturbative part corre-
sponding to B and is expected to eventually propagates to
their energy solution. It is notable that, as long as B ≠ 0, the
energy solutions should be complex values becauseD�π

H is
not invariant under complex conjugate. By denoting C as
complex conjugate, since logA∈ iR and logB∈R, one
can readily find that

FIG. 7. Stokes graphs for argðλÞ ¼ 0; θ� ¼ 3πEjλj
4ω4 þOðE3=2Þ, and þπ. The similar phenomena occur at −θ� and −π by varying argðλÞ

from 0 to −π.

9In these equations, the symbol “0�” is a different sense from
the same symbol in the ABS conjecture. λ ¼ −gþ i0� in the
ABS conjecture corresponds to λ ¼ e�πig in our notation. Our
“0þ” (resp. “0−”) means the limit from the right (resp. left) to the
discontinuity on the Borel plane.
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C½D�π
H � ∝ D∓π

H ; C½A� ¼ A−1; C½B� ¼ B: ð117Þ

Complex conjugate is nothing but T -transform, so that
Eq. (117) can be regarded that T -transform swaps the
QCs, Dþπ

H ↔ D−π
H .

In Sec. IV B, we would construct the PT and the AC
QCs from the negative coupling potential. As we will see,
one can actually obtain the same forms to Eqs. (115)
and (116).

B. Negative coupling potential: V =ω2x2 − gx4
We consider the negative coupling potential and derive

transseries solutions of the PT and the AC energies. The
procedure of EWKB is almost parallel to Sec. IVA 1.
We begin with the following Schrödinger equation:

L ¼ −ℏ2
∂
2
x þ ω2x2 − gx4 − E; Lψ ¼ 0; ð118Þ

where ω; g; E; ∈R>0, and we take E sufficient small. From
Eq. (61), turning points are given by

TP ¼
8<
:a2 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω4 − 4Eg

p
2g

s
; a2 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω4 − 4Eg

p
2g

s
;

a4 ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω4 − Eg

p
2g

s
; a4 ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω4 − 4Eg

p
2g

s 9=
;; ð119Þ

and we define cycles as

A ¼ ea23 ; B ¼ ea21 ¼ ea34 : ð120Þ

Similar to the Hermitian case, a real positive-valued g
induces a Stokes phenomenon, so that we introduce an
infinitesimal phase to g. The Stokes graph is shown in
Fig. 8. In this case, the wave function at x ¼ �∞ is not
normalizable because of oscillation, but there are six
asymptotic domains to give a convergent (or divergent)
wave function on the complex x-plane. Hence, we take the
following paths for analytic continuation:

γ3→1∶ − e
π
4
i∞ → e

π
4
i∞; γ2→4∶ − e−

π
4
i∞ → e−

π
4
i∞;

ð121Þ

for the AC energy, and

γ3→4∶ − e
π
4
i∞ → e−

π
4
i∞; ð122Þ

for the PT energy.10 By taking the above paths, one can
obtain the monodromy matrices for argðgÞ ¼ 0� as

FIG. 8. Stokes graph of the negative coupling potential with a quadratic term. The paths for the analytic continuation are denoted by
colored lines, γ3→1 (red), γ2→4 (green), and γ3→4 (blue).

10The paths of analytic continuation are determined as con-
tinuous deformations of the asymptotic domains of the wave
function on the complex x-plane from the real axis by varying a
parameter in the potential. For the AC energy, the deformation
parameter is λ, and γ3→1=2→4 are obtained by continuously
changing the coupling as λ → e∓πig with g∈R>0. For the PT
energy, in contrast, the deformation parameter is ε in the potential
given by Vε ¼ gx2ðixÞε with g∈R>0, and continuously varying
ε ¼ 0 to 2 gives γ3→4 from the real axis. See, for example, Ref. [8]
and references within.
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M0þ
ACð3→1Þ ¼ Na1;a2MþNa2;a3MþM−Na3;a1 ; ð123Þ

M0−
ACð3→1Þ ¼ MþNa1;a2MþNa2;a3MþM−Na3;a4M

−1þ Na4;a1 ;

ð124Þ

M0þ
ACð2→4Þ ¼ M−1þ Na1;a2M−MþNa2;a3MþNa3;a4MþNa4;a1 ;

ð125Þ

M0−
ACð2→4Þ ¼ Na1;a2M−MþNa2;a3MþNa3;a1 ; ð126Þ

M0þ
PT ¼ Na1;a2MþNa2;a3MþNa3;a4MþNa4;a1 ; ð127Þ

M0−
PT ¼ MþNa1;a2MþNa2;a3MþNa3;a1 : ð128Þ

By using Eq. (71), normalizability of the wave function
determines the boundary condition as M0�

12 ¼ 0 for both
the PT and the AC matrices, and one can consequently
find the QCs for argðgÞ ¼ 0� as

D0þ
ACð3→1Þ ∝ 1þ A; D0−

ACð3→1Þ ∝ 1þ A
ð1þ BÞ2 ; ð129Þ

D0þ
ACð2→4Þ ∝ 1þ Að1þ BÞ2; D0−

ACð2→4Þ ∝ 1þ A; ð130Þ

D0þ
PT ∝ 1þ Að1þ BÞ; D0−

PT ∝ 1þ A
1þ B

; ð131Þ

where CNP;argðgÞ¼0 ¼ fBg. From Eqs. (75) and (76), the
DDP formula is also obtained by counting intersection
numbers between the cycles as

Sν
0½A� ¼ Að1þ BÞ−2ν; Sν

0½B� ¼ B: ð132Þ

Thus, the QCs removed the discontinuity are obtained from
Eq. (80) as

D0
ACð3→1Þ ∝ 1þ A

1þ B
; D0

ACð2→4Þ ∝ 1þ Að1þ BÞ;
ð133Þ

D0
PT ∝ 1þ A: ð134Þ

It is remarkable that we could reproduce the QCs in

Eqs. (115) and (116), that correspond to DargðλÞ¼þπ
H ∝

DargðgÞ¼0

ACð2→4Þ and DargðλÞ¼−π
H ∝ DargðgÞ¼0

ACð3→1Þ. It is also notable

that the path-dependence of the analytic continuation,
given by Eq. (121), can be seen as Að1þ BÞ∓1 in
Eq. (133). The difference consequently should appear in
nonperturbative parts of the energy solution, as we pointed
out in Sec. IVA 2. In contrast, the PT QC does not have
such a nonperturbative effect, and the energy solution
should contain only a perturbative part. However, it does
not mean that the PT energy solution should be Borel
summable. It is indeed Borel nonsummable unlike the
Hermitian case, as we can see later.
Let us solve the QCs (133)(134) and obtain their formal

transseries solutions. As we have done in Sec. IVA 1, it is
useful to use the DW-type by taking E0 → 0þ, where E0 is
a classical part of the energy. The Stokes graph is shown in
Fig. 9. For a simplified notation, we rescale variables as

x →
ωffiffiffi
g

p x; Ẽ → ωẼ; ℏ →
ω3

g
ℏ; ð135Þ

where E ¼ E0 þ Ẽℏ > 0, and the Schrödinger equa-
tion (118) becomes dimensionless as

g
ω4

L → L ¼ −ℏ2
∂
2
x þ x2 − x4 − Ẽℏ: ð136Þ

By this procedure, the A- and B-cycles are replaced with

A → A ¼ e−2πiF; B → B ¼
ffiffiffiffiffiffi
2π

p
e−G

Γð1=2 − FÞ
�
ℏ
2

�
F
; ð137Þ

FIG. 9. Stokes graph with E0 ¼ 0 corresponding to Fig. 8, where E0 is the classical part of the energy. By taking E0 → 0þ, two simple
turning points, a2 and a3, collide to each other and then become a double turning point (green dot) at E0 ¼ 0.
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where F and G are formal power series of ℏ and Ẽ. One
can easily obtain F by Eq. (103), but computation of G is
more technical. We summarize the derivation of G in
Appendix A. Notice that the overall sign to F in B is
flipped to Eq. (99) because this sign is related to the
intersection number hA;Bi and takes the opposite to the
Hermitian case. By this procedure, the QCs (133)(134)
lead to

AC∶ log
A�1

1þB
¼ πiq; PT ∶ logA¼ πiq; q∈2Zþ 1;

ð138Þ
where q is an energy level, and �1 in AC corresponds to
DACð3→1Þ and DACð2→4Þ, respectively. According to
Eq. (103) and Appendix A, F and G can be specifically
written down as

F ¼ −
Ẽ
2
−
3ð1þ Ẽ2Þ

16
ℏ −

5Ẽð17þ 7Ẽ2Þ
128

ℏ2 −
105ð19þ 50Ẽ2 þ 11Ẽ4Þ

2048
ℏ3 þOðℏ4Þ;

G ¼ 2

3ℏ
þ Ẽ2

8
ℏþ Ẽð55þ 23Ẽ2Þ

128
ℏ2 þ 441þ 5388Ẽ2 þ 1091Ẽ4

3072
ℏ3 þOðℏ4Þ: ð139Þ

Perturbative parts of the PT and the AC energy solutions are obtained from the same condition, logA ¼ πiq. Substituting

the ansatz, Ẽð0Þ ¼Pn∈N0
eð0Þn ℏn, into F in the condition leads to

Ẽð0Þ ¼ q −
3ðq2 þ 1Þ

8
ℏ −

qð17q2 þ 67Þ
64

ℏ2 −
3ð125q4 þ 1138q2 þ 513Þ

1024
ℏ3 þOðℏ4Þ; ð140Þ

with q∈ 2N0 þ 1. SinceDPT does not contain nonperturbative contributions, Eq. (140) is the transseries solution of thePT
energy. Hence, the perturbative part of the AC energy equals to the PT energy:

ẼPT ¼ Ẽð0Þ
ACð3→1Þ ¼ Ẽð0Þ

ACð2→4Þ ∈R>0: ð141Þ

In contrast,DAC has nonperturbative effects, and those can be computed by expanding the energy Ẽ around its perturbative
part Ẽð0Þ in Eq. (138). Precisely, by shifting the energy as Ẽ ¼ Ẽð0Þ þ δẼ, the AC QCs in Eq. (138) can be written as

X
s∈N

∂
sF

∂Ẽs

����
Ẽ¼Ẽð0Þ

ðδẼÞs
s!

¼ ∓ 1

2πi

X
s∈N0

∂
s logð1þBÞ

∂Ẽs

����
Ẽ¼Ẽð0Þ

ðδẼÞs
s!

; ð142Þ

where δẼ ¼Pl∈N Ẽ
ðlÞ, and ẼðlÞ ¼ e−

2l
3ℏ × ð� � �Þ is a nonperturbative part originated by l bions (instanton-antiinstanton

pairs). Solving Eq. (142) yields transseries solutions of ẼðlÞ
ACð3→1Þ, and the first two nonperturbative parts ðl ¼ 1; 2Þ can be

written down as (cf. [77])

Ẽð1Þ
ACð3→1Þ ¼ −iσ

�
1 −

qðqþ 6Þ
8

ℏþ q4 þ q3 − 102q2 − 43q − 134

128
ℏ2

−
qðq5 − 15q4 − 184q3 þ 4371q2 þ 2400qþ 20484Þ

3072
ℏ3 þOðℏ4Þ

�
; ð143Þ

Ẽð2Þ
ACð3→1Þ ¼ σ2

�
ζþ
2

þ 2qþ 3

8
ℏ −

qðqþ 3Þ
8

ζþℏ −
8q3 þ 3q2 − 102q − 43

128
ℏ2 þ 2q4 þ q3 − 51q2 − 43q − 67

128
ζþℏ2

þ 12q5 − 75q4 − 368q3 þ 2988q2 þ 2400qþ 5121

1536
ℏ3

−
qð2q5 − 15q4 − 92q3 þ 996q2 þ 1200qþ 5121Þ

1536
ζþℏ3 þOðℏ4Þ

�
; ð144Þ

where σ and ζ� are defined as

σ ≔
ffiffiffi
2

π

r
e−

2
3ℏ

Γðqþ1
2
Þ

�
ℏ
2

�
−q
2

; ζ� ≔ ψ ð0Þ
�
qþ 1

2

�
þ log

�
ℏ
2

�
� πi: ð145Þ
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One can directly obtain ẼACð2→4Þ by complex conjugate of
ẼACð3→1Þ as C½ẼACð3→1Þ� ¼ ẼACð2→4Þ, i.e., i → −i and ζþ →
ζ− in Eqs. (143) and (144).
The important fact is that the nonperturbative parts of the

AC energy, Ẽðl∈NÞ
AC , are complex values, and the signs of

their imaginary parts correspond to the path of analytic

continuation. In particular, Ẽð1Þ
AC is pure imaginary, but

Ẽðl>1Þ
AC contains both real and imaginary parts. This point is

extremely crucial for the ABS conjecture; when exceeding
the semiclassical level of the first nonperturbative order, the
ABS conjecture (4) is violated.

C. Reformulation of the ABS conjecture

We reformulate the ABS conjecture by Borel resumma-
tion theory using the above results. Although ẼAC and ẼPT
are not naively related to each other, one can formulate a
direct relation between ẼAC and ẼPT using the DDP
formula (132) thanks to the quadratic term.
Let us see this fact. From the DDP formula (132) and the

QCs (133)(134), one finds that

DPT ¼ S−1=2
0 ½DACð3→1Þ� ¼ Sþ1=2

0 ½DACð2→4Þ�: ð146Þ

Since the QCs are directly related to the energy solutions,
Eq. (146) implies existence of Stokes automorphism for the
energy solutions such that11

EPT ¼ S−1=2
0 ½EACð3→1Þ� ¼ Sþ1=2

0 ½EACð2→4Þ�: ð147Þ

Notice that EACð3→1Þ and EACð2→4Þ also have to be related to
each other as

EACð3→1Þ ¼ Sþ1
0 ½EACð2→4Þ�: ð148Þ

Thus, our task is specifically formulating the Stokes auto-
morphism for the energy solutions. It is actually perform-
able by computation of alien calculus, and we summarize
the derivation in Appendix B. By the results in Eqs. (B19)
and (B20), one can reproduce the nonperturbative parts of
ẼAC in Eqs. (143) and (144) from its perturbative part in
Eq. (140), i.e., ẼPT , by

12

Sν
0½ẼPT � ¼

�
1þ νΔ

•
0 þ

ðνΔ
•
0Þ2
2

þOðν3Þ
�
½ẼPT �

¼
(
ẼACð3→1Þ for ν ¼ þ 1

2

ẼACð2→4Þ for ν ¼ − 1
2

: ð149Þ

This result insists that Stokes automorphism for the energy
solutions is actually constructable by alien calculus without
any contradictions to Eqs. (140), (143), and (144). Notice
that showing Eq. (148) is trivial by using the property of
Stokes automorphism in Eq. (16). We should remind that
analytic continuation of the Hermitian QC with argðλÞ ¼
�π and the AC QCs with argðgÞ ¼ 0 are equivalent as

DargðλÞ¼þπ
H ∝ DargðgÞ¼0

ACð2→4Þ and DargðλÞ¼−π
H ∝ DargðgÞ¼0

ACð3→1Þ. Hence,
the energy solutions should hold the same equivalence, i.e.,

EargðλÞ¼þπ
H ¼ EargðgÞ¼0

ACð2→4Þ and EargðλÞ¼−π
H ¼ EargðgÞ¼0

ACð3→1Þ. One can
also provide the same results for the Borel resummed
forms using Eq. (23). From Eqs. (147)and (148), those are
given by

ÊPT ¼ S0−
½EACð3→1Þ� ¼ Ŝ−1=2

0 ½ÊACð3→1Þ�
¼ S0þ½EACð2→4Þ� ¼ Ŝþ1=2

0 ½ÊACð2→4Þ�; ð150Þ

ÊACð3→1Þ ¼ S0þ½EPT � ¼ Ŝþ1=2
0 ½ÊPT �;

¼ S0þ �Sþ1=2
0 ½EACð2→4Þ� ¼ Ŝþ1

0 ½ÊACð2→4Þ�;
ð151Þ

ÊACð2→4Þ ¼ S0−
½EPT � ¼ Ŝ−1=2

0 ½ÊPT �
¼ S0−

�S−1=2
0 ½EACð3→1Þ� ¼ Ŝ−1

0 ½ÊACð3→1Þ�;
ð152Þ

where Ê ¼ Smed;0½E�. Therefore, the modified ABS con-
jecture for the energy solutions are reformulated by Stokes
automorphism and Borel resummation, as Eqs. (147)
and (150).
One can directly map the results of the energies to

Euclidean partition functions by using the definition,

Z ¼
X

q∈ 2N0þ1

exp ½−βEq�; ð153Þ

where q denotes the energy level. Formal transseries of the
PT and the AC partition functions are related as

ZPT ¼ S−1=2
0 ½ZACð3→1Þ� ¼ Sþ1=2

0 ½ZACð2→4Þ�; ð154Þ

where

Sν
0½Z� ¼

X
q∈ 2N0þ1

exp ½−βSν
0½Eq��: ð155Þ

11Remind that E ¼ Ẽℏ, and this redefinition does not change
the transformation law of Stokes automorphism.

12The subscript, “0”, in the alien derivative denotes argðgÞ ¼ 0,
not locations of the singular points. The alien derivative contains
nonperturbative effects from all the singular points along the real
axis on the Borel plane. See Appendix B.
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The Borel resummed forms are expressed by

ẐPT ¼ S0−
½ZACð3→1Þ� ¼ Ŝ−1=2

0 ½ẐACð3→1Þ�
¼ S0þ½ZACð2→4Þ� ¼ Ŝþ1=2

0 ½ẐACð2→4Þ�: ð156Þ

Finally, we briefly see the energy solutions from the
viewpoint of the continuous deformation by Stokes auto-
morphism. The QCs in Eqs. (133), (134) can be unifiedly
expressed by a real parameter, ν, as

Dν∈R ≔ 1þ Að1þ BÞ−2ν ∝

8>><
>>:

DPT if ν ¼ 0

DACð3→1Þ if ν ¼ þ 1
2

DACð2→4Þ if ν ¼ − 1
2

;

ð157Þ

Sν∈R
0 ½Dν0 � ¼ Dν0þν: ð158Þ

Denoting Ẽðν0Þ as the energy solution of Dν0 , one can
calculate the ν-evolution from Ẽðν0Þ by modifying
Eq. (142) as

FjẼ¼Ẽðν0Þ ¼ −
q
2
−
ν0
πi

logð1þBÞjẼ¼Ẽðν0Þ; ð159Þ

X
s∈N

∂
s

∂Ẽs

�
F þ ν0

πi
logð1þBÞ

�����
Ẽ¼Ẽðν0Þ

ðδẼÞs
s!

¼ −
ν

πi

X
s∈N0

∂
s logð1þBÞ

∂Ẽs

����
Ẽ¼Ẽðν0Þ

ðδẼÞs
s!

: ð160Þ

One can express δẼ by the alien derivatives as

δẼ ¼
X
n∈N

νn

n!
ðΔ• 0Þn½Ẽðν0Þ�; ð161Þ

and substituting Eq. (161) into Eq. (160) determines

ðΔ• 0Þn½Ẽðν0Þ� recursively. Taking ν0 ¼ 0 and ν ¼ �1=2
reproduces Eq. (149). Therefore, the PT and the AC
energy solutions are parameterized by ν and continuously
connected by the one-parameter Stokes automorphism Sν

0,
as Sν

0½Eðν0Þ� ¼ Eðν0 þ νÞ. In addition, these Borel
resummed forms obey the following initial value problem:

dÊðνÞ
dν

¼ dŜν
0½Êð0Þ�
dν

¼ Smed;0 �Δ
•
0½EðνÞ�

¼ −
ℏ
πi

logð1þ B̂Þ
∂

∂Ẽ
ðF̂ þ ν

πi logð1þ B̂ÞÞ

����
Ẽ¼ÊðνÞ=ℏ

;

Êðν ¼ 0Þ ¼ ÊPT ; ð162Þ

where Ŝν
0½Êðν0Þ� ¼ Êðν0 þ νÞ.

We have now completed to make all the relations
in Fig. 1.

V. PURE QUARTIC POTENTIAL

In this section, we consider the Schrödinger equation
given by the pure quartic potential, i.e., ω ¼ 0. In this case,
since no quadratic local minimum exists in the potential,
one might imagine that EWKB expanding ℏ is mean-
ingless. Indeed, the scaling law in the Hamiltonian gives a
monomial with a rational exponent of ℏ such that

E ¼ cðkÞðλℏ4Þ1=3; cðkÞ∈R>0; ð163Þ

with an overall function, cðkÞ, depending on the energy level,
k. However, although the ℏ-expansion is meaningless for the
potential, there is another parameter for a transseries solution
of the energy, that is the (inverse) energy level, k [22,59].
Hence, our main strategy for the pure quartic potential is to
derive a formal transseries of cðkÞ in Eq. (163).
We first consider EWKB of the Hermitian potential,

VðxÞ ¼ λx4, in Sec. VA, and then analyze the negative
coupling potential, VðxÞ ¼ −gx4, in Sec. V B. From these
results, we finally discuss (im)possibility of an alternative
form of the ABS conjecture in Sec. V C.

A. Hermitian potential: V = λx4

The Schrödinger equation with the Hermitian potential,
VðxÞ ¼ λx4, is defined as

L ¼ −ℏ2
∂
2
x þ λx4 − E; Lψ ¼ 0; ð164Þ

where λ; E∈R>0. When naively applying EWKB to
Eq. (164), a remarkable feature of the pure quartic potential
can be readily seen from

R
dxSod, which takes the form that

Z
dxSodðx;ℏÞ ¼ Φ−1ðxÞη−1 þΦþ1ðxÞηþ1 þ � � � ;

η ≔
λ1=4ℏ

E3=4 ; ð165Þ

where the coefficients, Φn∈ 2N0−1ðxÞ∈C, are independent
on λ and E for all n. This suggests that taking η should be a
more reasonable choice of the expansion parameter. The
Schrödinger equation of η is easily obtained by scaling
dimensions of the parameters in Eq. (164), that are

½x� ¼ 1

4
; ½ℏ� ¼ 3

4
; ½λ� ¼ 0; ½E� ¼ 1: ð166Þ

Rescaling x → ðEλÞ1=4x and the relation of η with ℏ in
Eq. (165) lead to the dimensionless operator L as
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1

E
L → L ¼ −η2∂2x þQ; Q ¼ x4 − 1: ð167Þ

Let us perform EWKB for the dimensionless equa-
tion (167). The Stokes graph has the same topology as
Fig. 5 consisting of turning points with different values
given by

TP ¼ fa1 ¼ −1; a2 ¼ −i; a3 ¼ þi; a4 ¼ þ1g: ð168Þ

Similarly, the Stokes phenomenon happens at argðλÞ ¼ 0.
Thanks to the same topology of the Stokes graph, the
monodromy matrix, the QC, and the DDP formula have
the same cycle representations to Eqs. (86)–(92). The
difference is only specific forms of Aj¼1;2, and those are
given by

A1 ¼ eϕðe−πi=4ηÞ; A2 ¼ e−ϕðeþπi=4ηÞ; ð169Þ

where ϕ ¼ ϕðηÞ is a formal power expansion of η as

ϕðηÞ ≔
X
n∈N0

v2n−1η2n−1; v2n−1 ∈R for all n∈N0:

ð170Þ

Those coefficients, v2n−1, are evaluated as

v−1 ¼
4
ffiffiffi
2

p
Kð−1Þ
3

; v1 ¼ −
4
ffiffiffiffiffiffi
2π

p
Γð7=4Þ

9Γð−3=4Þ ;

v3 ¼ −
11

ffiffiffiffiffiffi
2π

p
Γð5=4Þ

384Γð3=4Þ ; � � � ð171Þ

where KðxÞ denotes the complete elliptic integral of the
first kind. For solving the QC, it is technically useful to
decompose the exponents of Aj¼1;2 into the real and the
imaginary parts. By defining

ϕðe−πi=4ηÞ ¼ ϕRðηÞ þ iϕIðηÞ; ϕR;IðηÞ∈R; ð172Þ

the cycles are expressed by logA1 ¼ ϕR þ iϕI and
logA2 ¼ −ϕR þ iϕI, and thus one can write down the
QC, which has the same cycle representation to Eq. (91), as

DargðηÞ¼0
H ∝ cosϕI þ

e−ϕRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−2ϕR

p : ð173Þ

As we described above, E appears only in η as coupling
to ℏ. This fact implies that any ansatz expanded by ℏ does
not work for the energy solution. The coupling constant, λ,
is also the case. Although any extra parameters explicitly
do not exist in the potential, solving QCs generally gains
another parameter to distinguish the energy state, that is an
energy level. For this reason, we use the (inverse) energy
level for our ansatz. Some properties of formal transseries

with the κ−1-expansion for V ¼ λx4 are discussed in
Ref. [59]. Here, we prepare the following ansatz for η13:

η−1 ¼ E3=4

λ1=4ℏ
∼
X
n∈N0

eð0Þ2n−1κ
1−2n

þ
X
l∈N

X
n∈N0

eðlÞn σlκ−n as κ → þ∞; ð175Þ

κ ¼ κðkÞ ¼ π

�
kþ 1

2

�
; σ ≔ e−κ; k∈N0; eðlÞn ∈R:

ð176Þ

Notice that we use the κ−1-expansion for technical sim-
plicity, but the k−1-expansion is always available from it.

The coefficients in the perturbative part, eð0Þ2n−1, can be
determined by the first term in Eq. (173), i.e.,
cosϕIðηÞ ¼ 0, and are obtained as

eð0Þ−1 ¼ 3

4Kð−1Þ ; eð0Þ1 ¼ −
4
ffiffiffi
π

p
Γð7=4Þ

9Γð−3=4Þ ;

eð0Þ3 ¼ −
11Γð5=4Þ½Γð1=4Þ�4
6912

ffiffiffi
π

p
Γð3=4Þ −

8
ffiffiffiffiffiffi
2π

p ½Γð11=4Þ�2
1323

; � � � :

ð177Þ

The second term in Eq. (173) generates the nonperturbative
parts, and the coefficients for the first two bion contribu-

tions, eðl¼1;2Þ
n , can be written down as

eð1Þ0 ¼ ð−1Þk 3

4Kð−1Þ ; eð1Þ1 ¼ ð−1Þk 8
ffiffiffi
π

p
Γð7=4Þ

9Γð−3=4Þ ;

eð1Þ2 ¼ −ð−1Þk 2
ffiffiffi
2

p ð6 − πÞπ3=2
27½Γð−3=4Þ�2 ;

eð1Þ3 ¼ ð−1Þk
ffiffiffi
2

p ð36 − πÞπ5=2
243½Γð−3=4Þ�2 ;…; ð178Þ

eð2Þ0 ¼ −
3

4Kð−1Þ ; eð2Þ1 ¼ −
16

ffiffiffi
π

p
Γð7=4Þ

9Γð−3=4Þ ;

eð2Þ2 ¼ 4
ffiffiffi
2

p ð9 − 2πÞπ3=2
27½Γð−3=4Þ�2 ;

eð2Þ3 ¼ −
4
ffiffiffi
2

p ð2πð18 − πÞ − 27Þπ3=2
243½Γð−3=4Þ�2 ;…; ð179Þ

13The transmonomial, σ, is available after determining the
leading order, ϕR ¼ ϕI ¼ κ. By taking ϕR;I ¼ κ þ δϕR;I, and the
linearized Eq. (173) in terms of δϕR;I leads to

−ð−1ÞkδϕI þ e−κ þOðδϕ2; e−κδϕÞ ¼ 0 ⇒ δϕI ¼ ð−1Þke−κ:
ð174Þ
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Taking EH ¼ η−4=3ðλℏ4Þ1=3 yields the energy solution, and Eðl¼0;1;2Þ
H are obtained as (cf. [22])

Eð0Þ
H

ðλℏ4Þ1=3 ¼ κ4=3
� ð3=4Þ4=3
½Kð−1Þ�4=3 −

210=3
ffiffiffi
π

p
Γð7=4Þ

38=3½Kð−1Þ�1=3Γð−3=4Þ κ
−2 þOðκ−4Þ

�
; ð180Þ

Eð1Þ
H

ðλℏ4Þ1=3 ¼ ð−1Þkσκ1=3
� ð3=4Þ1=3
½Kð−1Þ�4=3 þ

213=3
ffiffiffi
π

p
Γð7=4Þ

38=3½Kð−1Þ�1=3Γð−3=4Þ κ
−1

−
4
ffiffiffi
π

p ð25=6πð6 − πÞ þ 24=3Γð7=4ÞΓð−3=4ÞÞ
311=3½Kð−1Þ�1=3½Γð−3=4Þ�2 κ−2 þOðκ−3Þ

�
; ð181Þ

Eð2Þ
H

ðλℏ4Þ1=3 ¼ σ2κ1=3
�
−

ð3=4Þ1=3
½Kð−1Þ�4=3 −

128
ffiffiffi
π

p ½Kð−1Þ�Γð7=4Þ − 9Γð−3=4Þ
3 · 65=3½Kð−1Þ�4=3Γð−3=4Þ κ−1

þ 210=3
ffiffiffi
π

p ð ffiffiffi
2

p
πð9 − 2πÞ þ 3Γð7=4ÞΓð−3=4ÞÞ

311=3½Kð−1Þ�1=3½Γð−3=4Þ�2 κ−2 þOðκ−3Þ
�
: ð182Þ

In the above, we naively applied the ansatz (175) for
solving the QC, but need to clarify what we actually did
from the aspect of EWKB of the κ−1-expansion. The
point is that the dimensionless operator (164) can be
interpreted to be given by another potential, VðxÞ ¼
x4 − 1, and a fixed energy already determined as zero.14

Here, let us replace η with the formal expansion, η−1 ∼P
n∈N0

eð0Þ2n−1κ
1−2n as κ → ∞, in Eq. (167).15 Then, we

define a modified potential Q̃ðκÞ ∼Pn∈N0
Q̃nκ

−2n as

η−2L ¼ −∂2x þ η−2Q;

η−2Q ∼ κ2½Q̃0 þ Q̃1κ
−2 þ Q̃2κ

−4 þOðκ−6Þ�; ð183Þ

where

Q̃0 ¼ ðeð0Þ−1Þ2Q; Q̃1 ¼ 2eð0Þ−1e
ð0Þ
1 Q;

Q̃2 ¼ ð2eð0Þ−1e
ð0Þ
3 þ ðeð0Þ1 Þ2ÞQ: ð184Þ

By analogy with a standard ℏ-expansion, this potential
Q̃ðκÞ can be regarded as a quantum deformed potentialwith

respect to the κ−1-expansion. Assuming eð0Þ−1 ≠ 0, one can in
principle draw a Stokes graph and construct a QC by using
the Airy-type connection formula without details of the
coefficients, cn, because the Stokes graph depends only on
argðκÞ and Q̃0. After that, the coefficients are determined by
solving the resulting QC. In other words, EWKB of the
κ−1-expansion can be interpreted as an inverse problem; we
determined the specific potential form of Q̃ðκÞ by solving

the QC constrained only by Q̃0 and topology of its
Stokes graph.
Unlike the case that ω > 0 discussed in Sec. IV, one can

directly obtain the AC energy solution from Eqs. (180)–
(182) by taking λ ¼ e�πig and fixing argðηÞ ¼ 0 because
the energy is a monomial with respect to ðλℏ4Þ1=3, as is
shown in Eq. (163). By this procedure, one finds

EACðgÞ
ðgℏ4Þ1=3 ¼ e�π

3
i EHðλÞ
ðλℏ4Þ1=3 ; ð185Þ

where EH is given by Eqs. (180)–(182). Notice that EAC

contains nonperturbative parts with respect to κ−1. We
would further discuss the resulting AC energy in Sec. V B
by directly beginning with the negative coupling potential.

B. Negative coupling potential: V = − gx4
We consider the negative coupling potential with ω ¼ 0

and derive transseries solutions of the PT and the AC
energies. Although the transseries solutions of the AC
energies have been found in Eq. (185), it would be worth to
reconsider it from the negative coupling potential as a
consistency check. Furthermore, the DDP formula given in
the negative coupling potential would be used in discus-
sions in Sec. V C.
The Schrödinger equation is given by

L ¼ −ℏ2
∂
2
x − gx4 − E; Lψ ¼ 0; ð186Þ

where g; E∈R>0. By using the scaling law (166) and
rescaling x → ðEgÞ1=4x, one obtains the dimensionless equa-
tion as

1

E
L → L ¼ −η̃2∂2x þQ; Q ¼ −x4 − 1; η̃ ≔

g1=4ℏ

E3=4 :

ð187Þ

14This “zero-energy” is not directly relevant to E in Eq. (164),
and it is just an analogy with a usual Schrödinger equation.

15We omitted nonperturbative sectors, σl ¼ e−lκ , for simplic-
ity, but the similar discussion works for the case including them.
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From Eq. (61), turning points are given by

TP ¼ fa1 ¼ e−
3π
4
i; a2 ¼ e−

π
4
i; a3 ¼ e

3π
4
i; a4 ¼ e

π
4
ig; ð188Þ

and the Stokes graph is shown in Fig. 10. Performing
analytic continuation taking the paths in Eqs. (121) and
(122) yields the monodromy matrices, Margðη̃Þ¼0� , as

M0þ
ACð3→1Þ

¼ M−1
− M−1þ Na1;a3M−Na3;a2M

−1
− Na2;a4M−MþNa4;a1 ;

ð189Þ

M0−
ACð3→1Þ ¼ M−1

− M−1þ Na1;a4M−MþNa4;a1 ; ð190Þ

M0þ
ACð2→4Þ ¼ Na1;a3MþM−Na3;a2M

−1þ M−1
− Na2;a1 ; ð191Þ

M0−
ACð2→4Þ

¼ Na1;a3MþM−Na3;a1M
−1þ Na1;a4M−Na4;a2M

−1þ M−1
− Na2;a1 ;

ð192Þ

M0þ
PT ¼ MþNa1;a3MþNa3;a2MþNa2;a1 ; ð193Þ

M0−
PT ¼ MþNa1;a4MþNa4;a2MþNa2;a1 : ð194Þ

From Eq. (71), normalizability of the wave functions

determines a matrix component to be Margðη̃Þ¼0�
ij ¼ 0.

For each the QC, those are given as Dargðη̃Þ¼0�
ACð3→1Þ ¼

Margðη̃Þ¼0�
ACð3→1Þ;11, D

argðη̃Þ¼0�
ACð2→4Þ ¼ Margðη̃Þ¼0�

ACð2→4Þ;22, and Dargðη̃Þ¼0�
PT ¼

Margðη̃Þ¼0�
PT ;12 . Specifically,

D0þ
ACð3→1Þ ∝ 1þ AB

ð1þ BÞ2 ; D0−
ACð3→1Þ ∝ 1þ AB;

ð195Þ

D0þ
ACð2→4Þ ∝ 1þ A−1B; D0−

ACð2→4Þ ∝ 1þ A−1B
ð1þ BÞ2 ;

ð196Þ

D0þ
PT ∝ 1þ A

1þ B
; D0−

PT ∝ 1þ Að1þ BÞ; ð197Þ

where

A ¼ ea12 ¼ ea43 ; B ¼ ea31 ¼ ea42 ; ð198Þ

and CNP;argðη̃Þ¼0 ¼ fBg. From Eqs. (75) and (76), one can
obtain the DDP formula for argðη̃Þ ¼ 0� as

Sν
0½A� ¼ Að1þ BÞ2ν; Sν

0½B� ¼ B; ðν∈RÞ ð199Þ

and thus the QCs removed the discontinuity are derived by
Eq. (80) as

D0
ACð3→1Þ ∝ 1þ AB

1þ B
; D0

ACð2→4Þ ∝ 1þ A−1B
1þ B

;

ð200Þ

D0
PT ∝ 1þ A: ð201Þ

Then, we solve the QCs in Eqs. (200) and (201). The
cycles can be written as

A ¼ eiϕ̃ðη̃Þ; B ¼ e−ϕðη̃Þ; ð202Þ

where ϕðη̃Þ∈R is given by Eq. (170), and ϕ̃ðη̃Þ is defined
from ϕ as

ϕ̃ðη̃Þ ≔ −iϕðη̃e−πi
2 Þ ¼

X
n∈N0

v2n−1ð−1Þnη̃2n−1 ∈R: ð203Þ

FIG. 10. Stokes graph of the negative coupling potential without a quadratic term. The paths for analytic continuation are denoted by
colored lines, γ3→1 (red), γ2→4 (green), and γ3→4 (blue).
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Thus, the QCs (200), (201) can be rewritten as

AC∶ � iϕ̃ − ϕ − logð1þ e−ϕÞ ¼ 2iκ; PT ∶ ϕ̃ ¼ 2κ;

ð204Þ

where the sign, �, in AC corresponds to D0
ACð3→1Þ and

D0
ACð2→4Þ, respectively, and κ is defined by Eq. (176). In the

similar way to the analysis in Sec. VA, we set the following
ansatz to η̃:

η̃−1 ¼ E3=4

g1=4ℏ
∼
X
n∈N0

ẽð0Þ2n−1κ
1−2n þ

X
l∈N

X
n∈N0

ẽðlÞn σlκ−n

as κ → þ∞; ð205Þ

where σ ¼ e−κ. One can easily solveD0
PT ¼ 0 and obtains

ẽð0Þ−1 ¼ 3

2
ffiffiffi
2

p
Kð−1Þ ; ẽð0Þ1 −

2
ffiffiffiffiffiffi
2π

p
Γð7=4Þ

9Γð−3=4Þ ;

ẽð0Þ3 ¼ 3
ffiffiffi
2

p
π3Γð7=4Þ − 704½Γð5=4Þ�7
324π3=2Γð−3=4Þ ; � � � ð206Þ

and ẽðl∈NÞ
n ¼ 0 for all n∈N0. Taking EPT ¼ η̃−4=3ðgℏ4Þ1=3

yields

EPT

ðgℏ4Þ1=3 ¼ κ4=3
�

34=3

4½Kð−1Þ�4=3 −
8
ffiffiffi
π

p
Γð7=4Þ

38=3½Kð−1Þ�1=3Γð−3=4Þκ
−2

þOðκ−4Þ
�
: ð207Þ

Notice that the solution is real and Borel nonsummable. In
Fig. 11, we show the truncated PT energy solutions
defined as

Etrn
PT ¼ ðgℏ4Þ1=3κ4=3

Xnmax−1

n¼0

cnκ−2n; ð208Þ

where cn∈N0
are coefficients obtained by our EWKB.

These plots are quite close to the exact values in
nmax ≲ 5. The lowest energy starts to deviate from the
exact value around nmax ≈ 6 and then becomes divergent.
Since the energy spectrum with any energy level is a
divergent series of κ−1, all of them should be eventually
divergent by taking nmax → þ∞. Hence, one can interpret
these plots as follows: only the lowest energy goes beyond
the limitation of optimal truncation in nmax ≳ 6, and the
others are still stable as keeping almost the exact value up
to, at least, nmax ¼ 12 [78]. Therefore, Fig. 11 insists that
EWKB of the κ−1-expansion works well.
We show the fact that no appropriate solution of

Dargðη̃Þ¼0
AC exists. It can be seen by constructing the modified

potential Q̃ðκÞ in Eq. (183). Since the AC QCs (200)
have a special form such that the perturbative part is given

by Dargðη̃Þ¼0
AC ∼ 1þ A�1B, the leading order is a complex

value, that is ẽð0Þ−1 ¼ 3e�πi=4

4Kð−1Þ. This coefficient makes the

leading order of Q̃ complex-valued as Q̃0ðxÞκ2 ¼
QðxÞð 3

4Kð−1ÞÞ2ðe�πi=4κÞ2. Due to the phase in Q̃0, i.e., e�πi=2,

it does not give the same Stokes graph to Fig. 12(a), but (b)
or (c). Since the DDP formulas are generally defined from
each Stokes phenomenon, the QCs (200) formulated by the
DDP formula corresponding to Fig. 12(a) violates the
assumption that its solution must reproduce the same

Stokes graph. Therefore, the solution of Dargðη̃Þ¼0
AC ¼ 0 in

Eq. (200) should be rejected.16 Instead of Fig. 12(a), one can
begin with Fig. 12(b)(c) by taking argðη̃Þ ¼ � π

4
and perform

EWKB to obtain the AC energy. By this procedure, appro-
priate solutions are available from either (b) or (c) depending
on the path of analytic continuation, as (b) for γ3→1 and (c) for
γ2→4. The Stokes graph and the details of the calculations are
parallel to the analysis in Sec. VA, and one can consequently
find the same the Hermitian energy in Eqs. (180)–(182)
except an overall phase due to the phase rotation of the
coupling constant, λ ¼ ge�πi:

Eargðη̃Þ¼þπ=4
ACð3→1Þ ðgÞ ¼ C½Eargðη̃Þ¼−π=4

ACð2→4Þ ðgÞ� ¼ EHðλ ¼ geþπiÞ;
g∈R>0; ð209Þ

where C is complex conjugate. This is the same conclusion to
Eq. (185), and we should accept this solution as EAC.

C. Impossibility of an alternative
form of the ABS conjecture

Finally, we point out that the PT and the AC energies for
the pure quartic potential are independent solutions on each

FIG. 11. Truncated PT energy spectrum for first five energy
levels, k ¼ 0;…; 4, evaluated by Eq. (208) with gℏ4 ¼ 1. nmax in
the horizontal axis denotes the truncation order of the truncated
PT energy solution. The black dashed lines are exact values
from Ref. [8].

16We should also remind that κ is now a real value.
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other, meaning that those cannot be related by Stokes
automorphism and Borel resummation.
Let us see this fact. In order to make such a relation, if

there exists, those QCs need to be equivalent by DDP
formula at a certain argðλÞ and/or argðκÞ.17 The discussion
in Sec. IVA 2 is helpful for the consideration. Since no
Stokes phenomenon occurs in 0 < j argðηÞj < π=4, the QC
for argðηÞ ¼ 0� in Eqs. (88) and (89) can be directly
analytic-continued to the AC QCs for argðη̃Þ ¼ 0∓ in
Eqs. (195) and (196) by replacing symbols ðA1; A2Þ →
ðA;BÞ as

Dargðη̃Þ¼0þ
ACð3→1Þ ∝ DargðηÞ¼0−

H jðA1;A2Þ→ðA;BÞ;

Dargðη̃Þ¼0−
ACð2→4Þ ∝ DargðηÞ¼0þ

H jðA1;A2Þ→ðA;BÞ: ð210Þ

This procedure is the same to rotating complex phases
of λ and κ at once. Thus, we now have the direct relation

between DargðηÞ¼0�
H and Dargðη̃Þ¼0�

AC given by Eq. (210).

However, no connection from Dargðη̃Þ¼0�
AC to Dargðη̃Þ¼0

PT is
constructable by the DDP formula in Eq. (199). Especially,

eliminating the nonperturbative part, B, from Dargðη̃Þ¼0�
AC is

extremely tough, which implies that the perturbative/
nonperturbative structures between the PT and the AC
energies are not related to each other. Notice that EPT in
Eq. (207) is purely perturbative with respect to the κ−1-
expansion, but EAC in Eq. (185) is not. Furthermore, even
the coefficients in their perturbative part do not match
with each other. Therefore, the ABS conjecture is not
satisfied, and those must be independent solutions. No
alternative form of the ABS conjecture can be reformulated
by Stokes automorphism and Borel resummation. In
summary, the above consideration can be schematically
expressed by

DargðηÞ¼0−
H ⟶

λ¼geþπi

D
argðη̃Þ¼þπ

4
þ0−

ACð3→1Þ ⟶
argðκÞ¼0→þπ

4
þ0−

Dargðη̃Þ¼0þ
ACð3→1Þ↛

S∀ ν∈R
argðη̃Þ¼0

Dargðη̃Þ¼0

PT ;

DargðηÞ¼0þ
H ⟶

λ¼ge−πi
D

argðη̃Þ¼−π
4
þ0þ

ACð2→4Þ ⟶
argðκÞ¼0→−π

4
þ0þ

Dargðη̃Þ¼0−
ACð2→4Þ↛

S∀ ν∈R
argðη̃Þ¼0

Dargðη̃Þ¼0

PT : ð211Þ

Notice that the violation of the ABS conjecture forω ¼ 0
is essentially irrelevant to the values of β, g, and ℏ. It is
because our EWKB of the κ−1-expansion does not depend
on them, and their dependence appears as an overall factor
of the energy only. Our result is consistent with the
observations in Ref. [15].

VI. ADDITIONAL REMARKS

A. Generalization to VPT =ω2x2 + gx2KðixÞε= 2
with K ∈N

We would make comments on a generalization of the
modified ABS conjecture to

VPT ¼ ω2x2 þ gx2KðixÞε¼2; ðω∈R≥0; g∈R>0:K ∈NÞ
ð212Þ

In such a case, the paths of analytic continuation in
Eqs. (121) and (122) are modified and defined by values

FIG. 12. Stokes graphs for arg½Q̃0κ
2� ¼ 0;∓ π

2
. The QCs in Eqs. (200) and (201) are constructed under the assumption that

arg½Q̃0κ
2� ¼ 0 shown in (a). The solution ofDargðη̃Þ¼0

AC ¼ 0 violates the assumption and reproduces either (b) or (c), where another Stokes
phenomenon occurs, depending on the paths of analytic continuation, γ3→1 or γ2→4.

17These two complex phases are distinguished for the ansatz in
Eq. (175). The former is an overall phase, and the latter affects the
coefficients.
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of ε and K. (See, for example, Ref. [8] and references
within.) When ε ¼ 2, those are given by

γ3→1∶ − eαπi∞ → eαπi∞; γ2→4∶ − e−απi∞ → e−απi∞;

ð213Þ

for the AC energy, and

γ3→4∶ − eαπi∞ → e−απi∞; ð214Þ

for the PT energy, where α ¼ 1
2Kþ2

. Along these paths, one
can directly apply the same analyses in Secs. IVand V, and
the similar results can be eventually found.
For ω > 0, similar to the case that K ¼ 1, the PT energy

is purely perturbative (but Borel nonsummable), and the
AC energy includes nonperturbative contributions in addi-
tion to the same perturbative PT energy. The QCs and the
DDP formula also take the same forms. As a result,
Eq. (147) is satisfied, and our modified ABS conjecture
is unchanged for any K ∈N.
For ω ¼ 0, the generalization of the energy in Eq. (163)

to K ∈N gives

E ¼ cðkÞðλℏ2Kþ2Þ1=ðKþ2Þ; cðkÞ∈R>0; ð215Þ

and the scaling law in Eq. (166) is modified as

½x� ¼ 1

2Kþ 2
; ½ℏ� ¼ Kþ 2

2Kþ 2
; ½λ� ¼ 0; ½E� ¼ 1: ð216Þ

The ansatz in Eqs. (175), (205) based on the κ−1-expansion
works by a slight modification of the dimensionless
parameters, η and η̃, as

η ¼ λ1=ð2Kþ2Þℏ
EðKþ2Þ=ð2Kþ2Þ ; η̃ ¼ g1=ð2Kþ2Þℏ

EðKþ2Þ=ð2Kþ2Þ : ð217Þ

The PT energy is purely perturbative with respect to the
κ−1 expansion, and the AC energy contains nonperturbative
parts not only the perturbative part like the case of K ¼ 1.
The relation between the Hermitian and the AC energies in
Eq. (185) is modified as

EACðgÞ
ðgℏ2Kþ2Þ1=ðKþ2Þ ¼ e�

π
Kþ2

i EHðλÞ
ðλℏ2Kþ2Þ1=ðKþ2Þ : ð218Þ

No relation between EACðgÞ and EPT ðgÞ is constructable
by Stokes automorphism and Borel resummation.

B. Spectral reality

Observations from QCs and DDP formula are quite
useful to know properties of a energy spectrum of a given
theory. In EWKB, spectral reality can be determined
solely by the corresponding QC without specifically

solving them, and showing spectral reality is equivalent
to obtaining a real QC by analytic continuation. For
example, by denoting aAðE;ℏÞ ¼ −i logAðE;ℏÞ∈R,
Eqs. (133) and (134) are reexpressed by

D0
ACð3→1Þ=ð2→4Þ ∝ cos

�
aA
2
� i
2
logð1þ BÞ

�
;

D0
PT ∝ cos

aA
2
: ð219Þ

Since D0
PT is real, the PT energy solution should be

real. In addition, one can immediately see that the
spectral reality of the above AC energy solutions are
violated by the nonperturbative effect, B, because of the
complex D0

AC.
The methods used in our analysis based on the Airy-type

and the DW-type connection formulas should work for PT
symmetric polynomial potentials. By taking appropriate
paths of analytic continuation, one can make sure that
Eq. (1) with ω∈R>0 and ε∈N provides the same cycle
representation to Eq. (219) forD0

PT . For more complicated
potentials such as VPT ðxÞ ¼ gðixÞα logðixÞ, one has to
formulate a connection formula beyond the Airy- and
DW-type. This would be an interesting problem as a future
work.
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APPENDIX A: DERIVATION OF G

We show the derivation of G in Eq. (137) using a
coordinate transform from the degenerate Weber (DW)-type
Stokes graph to our potential form [25,29,57,59].
There is another method using Mellin transform, see
Refs. [26,36,58].
The DW-type Stokes graph offers a connection formula

around a double turning point. In general, any connection
formulas are first defined in a local coordinate and then
mapped to a coordinate used in a given problem. The local
DW-type connection formula is defined by the following
Schrödinger equation:

L̂ ≔ −ℏ2
∂
2
y þ

y2

4
− κℏ; L̂ ψ̂ðy;ℏÞ ¼ 0; ðA1Þ

where κ∈R. The Stokes graph is shown in Fig. 13,
and the connection matrices, M̂•→•, are expressed by
[25,29,30,59]
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M̂IV→I ¼
�

1 0

i
ffiffiffiffi
2π

p
eþπiκℏþκ

Γð1=2−κÞ 1

�
; M̂I→II ¼

�
1 i

ffiffiffiffi
2π

p
ℏ−κ

Γð1=2þκÞ
0 1

�
;

M̂II→III ¼
�

1 0

i
ffiffiffiffi
2π

p
e−πiκℏþκ

Γð1=2−κÞ 1

�
; M̂III→IV ¼

�
1 i

ffiffiffiffi
2π

p
e−2πiκℏ−κ

Γð1=2þκÞ
0 1

�
: ðA2Þ

In addition, the branch-cut matrix T̂ is given by

T̂ ¼
�
−eþ2πiκ 0

0 −e−2πiκ

�
: ðA3Þ

By a coordinate transform y ¼ yðxÞ, the connection matrices in the x-coordinate, M•→•, take the form that

MIV→I ¼
�

1 0

i C−
Cþ

ffiffiffiffi
2π

p
eþπiFℏþF

Γð1=2−FÞ 1

�
; MI→II ¼

�
1 i Cþ

C−

ffiffiffiffi
2π

p
ℏ−F

Γð1=2þFÞ
0 1

�
;

MII→III ¼
�

1 0

i C−
Cþ

ffiffiffiffi
2π

p
e−πiFℏþF

Γð1=2−FÞ 1

�
; MIII→IV ¼

�
1 i Cþ

C−

ffiffiffiffi
2π

p
e−2πiFℏ−F

Γð1=2þFÞ
0 1

�
: ðA4Þ

and the branch-cut matrix T is given by

T ¼
�
−eþ2πiF 0

0 −e−2πiF

�
: ðA5Þ

The nonperturbative B in Eq. (137) is given by the above
connection formula and takes the form as

B ¼ C−

Cþ

ffiffiffiffiffiffi
2π

p
B0eþπiFℏþF

Γð1=2 − FÞ ; B0 ≔ e−
SB
ℏ ; ðA6Þ

where SB ∈R>0 is determined by distance of two turning
points defining the B-cycle and SB ¼ 2=3 in our case.
Hence, in order to know the specific form ofG in Eq. (137),
our task is to compute C� by the coordinate transform.
Those are available by constructing the wave func-

tions of Eqs. (136), (A1) specifically. Here, QðxÞ and Q̂ðyÞ

are defined as QðxÞ ¼ x2 − x4 − Ẽℏ and Q̂ðyÞ ¼ y2

4
− κℏ,

respectively. One should be careful that SodðℏÞ given by
them contains not only odd powers of the ℏ-expansion but
also even powers due to the energy terms proportional to ℏ.
The coordinate transform can be obtained from the relation
of QðxÞ and Q̂ðyÞ given by

Qðx;ℏÞ ¼ ½∂xyðx;ℏÞ�2Q̂ðyðx;ℏÞ;ℏÞ − ℏ2

2
fyðx;ℏÞ; xg;

ðA7Þ
with the Schwarzian derivative defined as

fyðx;ℏÞ; xg ≔
∂
3
xyðx;ℏÞ
∂xyðx;ℏÞ

−
3

2

�
∂
2
xyðx;ℏÞ
∂xyðx;ℏÞ

�
2

: ðA8Þ

By denoting SodðxÞ and ŜodðyÞ as solutions of Riccati
equation defined by QðxÞ and Q̂ðyÞ, respectively, the wave
functions constructed from SodðxÞ and ŜodðyÞ are also
related to each other as

ψ�ðx;ℏÞ ¼ C�ðℏÞ½∂xyðx;ℏÞ�−1=2ψ̂�ðyðx;ℏÞ;ℏÞ; ðA9Þ

where the sign, “�”, in the wave functions is a label
to distinguish the upper and lower components. From
Eq. (A9), the coefficients, C�ðℏÞ, can be obtained as

C�ðℏÞ ¼ lim
x→0

½∂xyðx;ℏÞ�1=2
ψ�ðx;ℏÞ

ψ̂�ðyðx;ℏÞ;ℏÞ
: ðA10Þ

In our analysis, we define the upper and lower components

of the wave functions such that ψ�ðx;ℏÞ ¼
exp½∓

R
dxSodðx;ℏÞ�ffiffiffiffiffiffiffiffiffiffiffiffi

Sodðx;ℏÞ
p

FIG. 13. Stokes graph for the degenerate Weber equation. The
green dot is a double turning point. The black solid and red wave
lines denote Stokes lines and a branch-cut, respectively.
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and ψ̂�ðy;ℏÞ ¼
exp½�

R
dyŜodðy;ℏÞ�ffiffiffiffiffiffiffiffiffiffiffiffi

Ŝodðy;ℏÞ
p to adjust to the asymptotic

behavior in Fig. 13. One can easily check that
κ¼−Resy¼0Ŝodðy;ℏÞ¼−Resx¼0Sodðx;ℏÞ. From Eq. (A7),
one can obtain yðx;ℏÞ and κðℏÞ as

yðx;ℏÞ ¼ iffiffiffi
2

p
�
2x−

Ẽ
4
xℏ−

49þ 16Ẽ2

64
xℏ2 þ Ẽð11þ Ẽ2Þ

32x3
ℏ3

−
Ẽð1379þ 226Ẽ2Þ

512
xℏ3 þOðℏ4Þ

�
þOðx2Þ;

ðA11Þ

κðℏÞ ¼ −
Ẽ
2
−
3ð1þ Ẽ2Þ

16
ℏ −

5Ẽð17þ 7Ẽ2Þ
128

ℏ2

−
105ð19þ 50Ẽ2 þ 11Ẽ4Þ

2048
ℏ3 þOðℏ4Þ: ðA12Þ

Thus, Eq. (A10) gives

CþðℏÞ ¼ exp

�
Ẽ2

16
ℏþ Ẽð55þ 23Ẽ2Þ

256
ℏ2

þ 441þ 5388Ẽ2þ 1091Ẽ4

6144
ℏ3þOðℏ4Þ

�
2
FðℏÞ
2 e

π
2
iFðℏÞ

¼ 1

C−ðℏÞ
; ðA13Þ

where we used the fact that FðℏÞ ¼ κðℏÞ by Eqs. (139),
(A12). Substituting Eq. (A13) into Eq. (A6) and comparing
with Eq. (137) give the form of G in Eq. (139).

APPENDIX B: ALIEN CALCULUS
FOR ENERGY SPECTRA

We formulate Stokes automorphism (or DDP formula)
for the transseries solution of the energies in Sec. IV B by
performing alien calculus. We omit the subscript “0”, e.g.,
Sν

0 → Sν and only address the case that argðgÞ ¼ 0. Since

expanding the Stokes automorphism in Eq. (15) around
ν ¼ 0 gives

Sν ¼ 1þ νΔ
•
þ ν2

2
ðΔ
•
Þ2 þOðν3Þ; ðB1Þ

our main task is to calculate action of ðΔ• Þn∈N to the
transseries solutions order by order.
Before discussion about our case, we suppose a function

fðEðℏÞ;ℏÞ with an indirect dependence of ℏ in the variable
E ¼ EðℏÞ and consider action of the alien derivative to
fðEðℏÞ;ℏÞ. In this case, the alien derivative can be
decomposed into two parts, i.e., actions to EðℏÞ and to
fðE;ℏÞ with a fixed E. Using the chain rule, it can be
expressed by18

Δ
• ½f�ðEðℏÞ;ℏÞ¼∂fðE;ℏÞ

∂E

����
E¼EðℏÞ

Δ
• ½EðℏÞ�þΔ

•
ℏ½f�ðEðℏÞ;ℏÞ;

ðB2Þ

Δ
•
ℏ½f�ðEðℏÞ;ℏÞ ≔ Δ

• ½fðE;ℏÞ�
���
E¼EðℏÞ

: ðB3Þ

Below, we use a simplified notation as

Δ
• ½f�ðEðℏÞ;ℏÞ → Δ

• ½f�; Δ
•
ℏ½f�ðEðℏÞ;ℏÞ → Δ

•
ℏ½f�;

∂
nf

∂En

����
E¼EðℏÞ

→ ∂
n
E; Δ

• ½EðℏÞ� → Δ
• ½E�: ðB4Þ

Notice that

½Δ• ℏ; ∂E� ¼ 0; ∂EΔ
• ½E� ¼ Δ

•
ℏ �Δ

• ½E� ¼ 0; ðB5Þ

where ½A; B� ≔ AB − BA. By repeating the same calculus,
the higher order derivatives to fðEðℏÞ;ℏÞ can be derived as

ðΔ• Þ2½f� ¼ ½ðΔ• ½E�Þ2∂2E þ ðΔ• Þ2½E�∂E þ 2Δ
• ½E�Δ• ℏ∂E þ ðΔ• ℏÞ2�½f�; ðB6Þ

ðΔ
•
Þ3½f� ¼ ½ðΔ

•
½E�Þ3∂3E þ 3ðΔ

•
Þ2½E�Δ

•
½E�∂2E þ 3ðΔ

•
½E�Þ2Δ

•
ℏ∂

2
E þ ðΔ

•
Þ3½E�∂E þ 3ðΔ

•
Þ2½E�Δ

•
ℏ∂E þ 3Δ

•
½E�ðΔ

•
ℏÞ2∂E þ ðΔ

•
ℏÞ3�½f�;

ðB7Þ
..
.

ðΔ• Þn½f� ¼
X

k1 ;…;kn¼0;
k1þ2k2þ���þnkn≤n

�Yn
p¼1

ðn −
Pp−1

l¼1 lklÞ!
ðn −

Pp
l¼1 lklÞ!ðp!Þkpkp!

ððΔ• Þp½E�ÞkpðΔ• ℏÞ−pkp∂kpE
�
ðΔ• ℏÞn½f�: ðB8Þ

18This procedure is the same methodology to split a total derivative into partial derivatives for a function with indirect
independences [59].
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We apply the above alien calculus to our case in Sec. IV B by beginning with

DPT ∝ 1þ A; ðB9Þ

Sν½A� ¼ Að1þ BÞ−2ν; Sν½B� ¼ B: ðν∈RÞ ðB10Þ

Our strategy to obtain Stokes automorphism for the energy solution is determining its transformation law to make the QC
(B9) invariant, i.e., keeping zero, under the DDP formula of cycles. Remind that, in the DDP formula for the cycles (B10),
the energy E (or Ẽ ¼ E=ℏ) is a free parameter. In this sense, the Stokes automorphism in Eq. (B10) should be described

only by Δ
•
ℏ without Δ

• ½E�∂E, and thus Eq. (B10) is expressed by

ðΔ• ℏÞn∈N½logA� ¼
�−2 log ð1þ BÞ for n ¼ 1

0 otherwise
; ðΔ• ℏÞn∈N½B� ¼ 0: ðB11Þ

From Eqs. (B8) and (B11), actions of the (total) alien derivative to the A-cycle is given by

Δ
• ½logA� ¼ Δ

• ½E�∂E logA − 2 logð1þ BÞ; ðB12Þ

ðΔ• Þ2½logA� ¼ ½ðΔ• ½E�Þ2∂2E þ ðΔ• Þ2½E�∂E� logA − 4Δ
• ½E�∂E logð1þ BÞ; ðB13Þ

ðΔ• Þ3½logA� ¼ ½ðΔ• ½E�Þ3∂3E þ 3ðΔ• Þ2½E�Δ• ½E�∂2E þ ðΔ• Þ3½E�∂E� logA − 6½ðΔ• Þ2½E�∂E þ ðΔ• ½E�Þ2∂2E� logð1þ BÞ; ðB14Þ

..

.

ðΔ• Þn½logA� ¼
X

k1 ;…;kn¼0;
k1þ2k2þ���þnkn≤n

�Yn
p¼1

ðPn
l¼p lklÞ!

ðPn
l¼pþ1 lklÞ!ðp!Þkpkp!

ððΔ• Þp½E�Þkp∂kpE
�
logA

− 2
X

k1 ;…;kn−1¼0;
k1þ2k2þ���þðn−1Þkn−1≤n−1

�Yn−1
p¼1

ð1þPn−1
l¼p lklÞ!

ð1þPn−1
l¼pþ1 lklÞ!ðp!Þkpkp!

ððΔ• Þp½E�Þkp∂kpE
�
logð1þ BÞ: ðB15Þ

Requiring ðΔ• Þn∈N½DPT � ¼ 0 is equivalent to ðΔ• Þn∈N½logA� ¼ 0. Hence, solving Eqs. (B12)–(B15) to be zero determines

the alien derivative to the energy, ðΔ
•
Þn∈N½E�, recursively. We replace the Airy-type cycles with the DW-type as

ðA;BÞ → ðA;BÞ, and thus Eqs. (B12), (B13), for example, leads to

Δ
• ½ẼPT � ¼ −

logð1þBÞ
πi∂ẼF

¼ OðBÞ; ðB16Þ

ðΔ• Þ2½ẼPT � ¼
1

π2ð∂ẼFÞ3
ð∂2

Ẽ
F − ∂ẼF∂ẼÞ½logð1þBÞ�2 ¼ OðB2;B∂ẼBÞ; ðB17Þ

where we usedA ¼ e−2πiF. If one wants to identify nonperturbative contributions from each the singular point like Eq. (15),
it is easily obtained by expanding Eq. (B16) by B. It can be written as

Δ
•
wl
½ẼPT � ¼ ð−1Þl Bl

lπi∂ẼF
; Γðθ ¼ 0Þ ¼

�
wl ¼ 2

3
l;l∈N

	
: ðB18Þ

The case of higher derivatives, ðΔ• Þnwl
½ẼPT �, is also obtained in the same way. Finally, substituting specific forms of F andB

in Eqs. (137), (139) and the PT energy solution in Eq. (140) into Eqs. (B16), (B17) gives
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Δ
• ½ẼPT � ¼ −2iσ

�
1 −

qðqþ 6Þ
8

ℏþ q4 þ q3 − 102q2 − 43q − 134

128
ℏ2

−
qðq5 − 15q4 − 184q3 þ 4371q2 þ 2400qþ 20484Þ

3072
ℏ3 þOðℏ4Þ

�
;

þ πiσ2
�
1 −

qðqþ 3Þ
4

ℏþ 2q4 þ q3 − 51q2 − 43q − 67

64
ℏ2

−
qð2q5 − 15q4 − 92q3 þ 996q2 þ 1200qþ 5121Þ

768
ℏ3 þOðℏ4Þ

�
þOðσ3Þ; ðB19Þ

ðΔ• Þ2½ẼPT � ¼ σ2
�
4ζ þ ð2qþ 3Þℏ − qðqþ 3Þζℏ

−
8q3 þ 3q2 − 102q − 43

16
ℏ2 þ 2q4 þ q3 − 51q2 − 43q − 67

16
ζℏ2

þ 12q5 − 75q4 − 368q3 þ 2988q2 þ 2400qþ 5121

192
ℏ3

−
qð2q5 − 15q4 − 92q3 þ 996q2 þ 1200qþ 5121Þ

192
ζℏ3 þOðℏ4Þ

�
þOðσ3Þ; ðB20Þ

where q∈ 2N0 þ 1 is the energy level, and σ and ζ ≔ Re½ζ�� are defined from Eq. (145). Notice that ðΔ• Þ½ẼPT � and
ðΔ• Þ2½ẼPT � are imaginary and real values, respectively. The higher order derivatives can be found in the similar way.
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