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In this article, we study the impact of self-interaction and multiparticle states on sustaining negative
energies in relativistic quantum systems. For physically reasonable models, one usually requires bounds on
both magnitude and duration of the accumulation of negative energy, typically given in form of a quantum
energy inequality (QEI). Such bounds have applications in semiclassical gravity where they exclude exotic
spacetime geometries and imply the formation of singularities. The essence of this article is a novel
numerical method for determining optimal QEI bounds at the one- or two-particle level, extending previous
work focused on the one-particle case and overcoming a new type of technical challenge associated with
the two-particle scenario. Our method is tailored for integrable models in quantum field theory constructed
via the S-matrix boostrap. Applying the method to a representative model, the sinh-Gordon model, we
confirm self-interaction as the source of negative energy, with stronger interactions leading to more
pronounced negativities. Moreover, we establish the validity of QEIs and the averaged weak energy
condition (AWEC) at the one- and two-particle level. Lastly, we identify a constrained one-parameter class
of nonminimal stress tensor expressions satisfying QEIs at both levels, with more stringent constraints

emerging from the QEI bounds at the two-particle level.

DOI: 10.1103/PhysRevD.109.085022

I. INTRODUCTION

In general relativity, Einstein’s equations couple the
geometry of spacetime to matter which is represented by
the so-called stress(-energy) tensor. To select physically
reasonable solutions one typically imposes energy con-
ditions. The classical energy conditions—such as the weak
energy condition (WEC) or the null energy condition
(NEC)—represent pointwise positivity of the energy den-
sity and pressure as measured by moving observers. On the
geometric side these conditions exclude exotic spacetime
configurations like wormholes or warp drives and imply the
formation of a singularity provided that the geometry has
contracted sufficiently to form a trapped surface [1].

Quantum matter, though, has challenged this perspective:
Negative energy densities appear abundantly in quantum
field theory [2] as for example in the well-tested phenome-
non known as Casimir effect. The energy density can even
scale to negative infinity at a point; see e.g. [[3], Sec. 2].
Thus all classical energy conditions of GR are violated by

“jan.mandrysch@fau.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2024/109(8)/085022(13)

085022-1

quantum matter. Alleviating is that weaker alternatives have
been developed. On the one side there are the averaged
energy conditions (AWEC, ANEC, ...) which require the
classical energy conditions to hold “globally on average”
meaning when integrated along full trajectories in space-
time. On the other side, there are the so-called guantum
energy inequalities (QEI) which retain the local character of
the classical energy conditions but allow for bounded
negative energies.

Consider the stress-energy T(y, g*) measured along an
inertial trajectory y with velocity vector u and averaged
over a positive test function ¢,

T(r. ) = / dei T, ()P, (1)

where T, (x) is the stress tensor at spacetime point x.
Focussing on timelike trajectories y, a QEI may take the
following form:

T(y.g%*) = —c,1 (2)

for a constant ¢, > 0 which depends only on g. If the
inequality holds in a suitably large set of states, we say that
a state-independent (worldline) QEI holds. However, it is
possible that one has to allow for a mild dependence of ¢,
on the states; in this case we call the QEI state-dependent.

Published by the American Physical Society


https://orcid.org/0000-0003-4827-1806
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.085022&domain=pdf&date_stamp=2024-04-30
https://doi.org/10.1103/PhysRevD.109.085022
https://doi.org/10.1103/PhysRevD.109.085022
https://doi.org/10.1103/PhysRevD.109.085022
https://doi.org/10.1103/PhysRevD.109.085022
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

JAN MANDRYSCH

PHYS. REV. D 109, 085022 (2024)

Note here that averaged energy conditions can in principle
be inferred by studying the limit g — 1. For instance, the
AWEC requires that

T(r.1) = / de i wT,, (7(z)) > 0 3)

for all inextendible timelike geodesics y and when the
integral is absolutely convergent. It is implied from (2)
provided that ¢, — 0 in the limit g — 1.

Both types of weakened energy conditions (QEIs and
averaged conditions) are still effectively imposing con-
straints on exotic spacetimes and allow to state conditions
for singularity formations similar as with classical energy
conditions; see [4] for a review.

QEIs have been proven for many kinds of free QFT
models on flat and curved spacetimes and also conformal
field theories in 1+ 1d [5-30]. Also averaged energy
conditions, here referring to its weakest variants ANEC
and achronal ANEC, are known to hold for scalar and vector
fields in free QFTs on Minkowski space [6,24,31-36] and,
restricting to 1+ 1d, even for general situations with
interaction and curvature [24,37,38].

For QElIs, though, their validity in the presence of self-
interaction is less clear. There exist general model-
independent inequalities which are however weaker than
the previously discussed ones [39,40] and it is unclear if
they are able to impose constraints on the geometric side.
More is known when specializing to the class of 1+ 1d
integrable models. A QEI in the presence of self-interaction
was first established in the Ising model by using an analogy
with the free fermionic field [41]. The only other full QEI in
this context pertains to a recent result for the sine-Gordon
model in the superrenormalizable regime with an adiabatic
cutoff [42]. QEIs at one-particle level, i.e., where (2) holds
when evaluated in one-particle states, have been obtained
for the class of integrable models with one scalar particle
type [43] and recently generalized to models with bound
states, arbitrary particle types, and inner degrees of
freedom [44,45].

In this article, we present a method to obtain numerical
estimates for sharp QEI bounds in one- and two-particle
states in the class of integrable models: We will analyse the
spectrum of a discretized version of the averaged stress
tensor in one- and two-particle states. The lower bound of
the spectrum will serve as an approximation for the optimal
choice of the constant ¢, appearing in (2). For the time
being, we will exclude states superposing different particle
numbers. Further, we limit ourselves to treat a simple
representative model, the sinh-Gordon model, which
describes a single scalar particle without bound states.
The method, however, is general and in principle applies to
any integrable model provided that the truncated momen-
tum space correlation functions—also known as form
factors—of the stress tensor are known to low order.

While the general strategy is similar to a numerical
analysis for the one-particle case [46], the two-particle case
has two additional significant challenges. First, going from
one- to two-particle states, the numerical dimension of the
problem squares so that computations are much more
costly. Second, while the to-be-discretized kernel is ana-
lytic at the one-particle level, at the two-particle level it has
singularities. This needed extra attention and a careful
inclusion in the numerical approximation in order to
achieve numerical stability.

The numerical results for the sinh-Gordon model indi-
cate that QEIs at one- and two-particle level share many
qualitative features but accumulation of negative energies
can be significantly higher in magnitude and duration in
states with two particles. At the one-particle level, we find
agreement with the results obtained in [46]. The results at
two-particle level are new.

Concluding with the general introduction (Sec. I), we
will start with a brief but self-contained account on the
treatment of observables in integrable models (Sec. II). As
part of this section, we will specifically discuss the stress
tensor (Secs. IT A and II C) and introduce the sinh-Gordon
model (Sec. I B). Next, we introduce the numerical setup.
This includes a brief account on the physical input data
(Sec. IIT A), a general description of the discretization
method (Sec. III B) as well as a detailed description of the
central methodological challenge, the treatment of singu-
larities (Secs. III C to III E). It also includes some further
methodological aspects (Secs. III F to III H). Finally, we
present our numerical results (Sec. IV) including plots of
lower bounds for the stress-tensor at one- and two-particle
level with varying model inputs. We conclude on these
results in Sec. V.

II. INTEGRABLE MODELS, OBSERVABLES
AND FORM FACTORS

In this section we will briefly review the setup of
integrable models via the inverse scattering approach—
also referred to as S-matrix bootstrap—and give the
description of observables in terms of their form factors.
The starting point of the construction consists of fixing the
particle content of the model and a scattering function
representing the two-to-two particle interactions. Assuming
integrability, this suffices to determine the full state space
and local field content of the model. While this applies to
general models with several particle types and inner
degrees of freedom [44,45,47,48], we will confine our-
selves to treat models with a single bosonic scalar degree of
freedom and in particular the sinh-Gordon model serving as
a representative example.

In our setup, the (two-to-two particle) scattering function
can be described by a single complex-valued function S(6)
conveniently parametrized by the rapidity difference 6 of
the incoming (or outgoing) particles. Typical properties in
scattering theory like unitarity and crossing symmetry
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amount to S being analytic in the physical strip R + [0, ]
and satisfying the relations

S@)™ = 8(=¢) = S(¢ + im) = S(0).

The full state space for integrable models is then given
by an S-symmetrized version of second quantization [49]:
With one-particle space H; = L?>(R) the interacting
k-particle space is given by

eC. (4)

Hy = L3(R*) = {y € L*(RY), y S-symmetric}, (5)

where v is referred to as S-symmetric iff for all # € R* and
TE Symk,

w(0) = SO (07) = [] S6:) — 0w (6). (6)

i<j

#(i)>7())
Here, 0° = (6,(1). ..., 0;)) and Sym, denotes the symmet-
ric group with k elements. As further notation, we introduce

ng) which projects from unsymmetrized Fock space onto
S-symmetric k-particle vectors,

Pw(0)=

7€ Symy

ST(0)w (07). (7)

Occasionally, we will use ,P.(S‘],% to specify on which

variables P(Sk> acts.

To describe observables, it is customary to introduce
improper rapidity eigenstates |@) = |6, ...,6;) which are
fixed by orthonormality,

k
(k) (k)
A(0.n) = (0Al) = PPy lnz

where @, ; = (0, ...,0 j).l The 0 indicates the distributional
limit from above; which we will keep implicit from now on.
For models without bound states the form factor equations
can be summarized as {Fy};cn, being a family of
meromorphic functions which satisfy,

STE)Fu(E), 7€Symy, (13)

S-symmetry: Fy(§) =
S-periodicity : Fy (&, ¢) = Fyr (£, ), (14)

for & = (¢, ) € C** with arbitrary ¢’ € C**~! and { € C and
with the following singularity structure: The only poles of

'"This expression compares with the inversion formula
derived in [[52], Prop. 3.5] using (8|=+vm!{l(@)] and

|0) = Vm!|r(6)) for 6€R™ and @ the same tuple with
reversed order.

F2](01 T i0,n; | +im—

Oln) = P50 —n). (8)

and the eigenrelation,

PH0) = p*(0)10),  p'(0) = ZP"(%)‘ ©)

Here P*, y =0, 1, denotes the total energy momentum
operator and p(0) = m(chd,shd)’ a single on-shell
momentum parametrized by the particle’s mass m > 0
and rapidity 6.

The k-particle form factor of an observable A is then
given by

Fi(0) = VIL(0lAI2). (10)
where |Q) is the vacuum vector. The expectation value of A
in a state y takes the form

v A) = / d0dmy @) Ol AImy (). (11)

Assuming that A is localized in a finite region, the F
allow for a meromorphic continuation and satisfy the so-
called form factor equations [45,46,50-52] [[45], Chap. 3].
Assuming for simplicity, that all odd form factors vanish,
i.e., Fp 1 =0, the relation of (11) to the form factors is
then given by

0)5(9j+1 - ’1j+1>~-5(9k - le)’ (12)

I
all elements of {F,;} are first-order and fixed by

im (¢ = {68+ im.0)
(1—Hsc )SEra =0 ) Fa@) (19

as well as consistency with S-symmetry and S-periodicity.
These poles are named kinematical singularities.
Solutions to these equations take the general form

mln (C gl)
e + ebi

Fy(8) = qai(exp&) H

1<i<j<2k

,  (16)

where the ¢,; are symmetric Laurent polynomials depend-
ing on A, and F ', is the so-called minimal solution of the
model which satisfies
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Fmin(g) = S(g)Fmin(_g)’ (17)
Fmin(€+i”) mm( Z:"i_lﬂ) (18)

For a conventional normalization, F;,(iz) = 1, the min-
imal solution has an integral representation as

d
Fan(©) = exp (2 [ g0 L) 1o

where f is uniquely specified in terms of S:

7(1) = in! / " <;fglogS(9)> cos(z101)do;  (20)
0

see also [[44], Appendix A.3]. For later use we introduce
the constant

mm—hmme(9+m —exp/ S(1) dt (21)

The form factors of observables in integrable models
were subject to a plethora of studies and there exist explicit
expressions at low particle numbers in a number of
physically relevant models; see e.g. [53-56]. Our aim will
be to take these solutions and insert it into (12) to obtain an
expression for (@|A[n) suitable for numerical analysis.

A. Form factors of the stress tensor

Ultimately, we are interested to treat the smeared stress
tensor, i.e., choosing A = T(y, g?). The stress tensor is
mainly characterized as the conserved local hermitian current
generating the translations upon spacelike integration,

=0. (22)

uv

Pt = / T9(0, x)dx, oHT

Poincaré covariance of the stress tensor and the second
identity in (22) imply that

F19(0) = wurt,, (p(0))Fou(0) (wp,(0).  (23)

where

2(p) = / dx(x)eir", (24)

2
NP~ — PuP
(p): 2 pz ‘ D7

(25)

and {F,.} solves the form factor equations (13)—(15)
corresponding to the trace of the stress tensor,
A =T, (0).

The first identity in (22) implements a normalization on
F5 (see e.g. [[44], Theorem 3.2]),

F(0,0 + in) = ’:— (26)

fixing also the normalization of higher order F,;, via the
residue relation (15).

B. Explicit solutions for the sinh-Gordon model

The sinh-Gordon model describes a bosonic scalar
massive degree of freedom which scatters according to

shf —

S(C):m, O<ax<l. (27)

Here a = 0 corresponds to the free model and a = 1 to the
maximally interacting case. The scattering function § is

obtained in perturbation theory [57,58] from the
Lagrangian
1 m?
L= 3 @0 @ — — chgp, (28)
g
with a = sin”® and B = 83;”;2. solution is
given by (19) with
Bt 2—B)t t
f(1) :4shzsh< 1 ) shi(sht)" (29)
and satisfies
sh{

Fmin(g)Fmin(C + lﬂ) = (Ffr?in)z' (30)

sh + ia

The constant F7 can be evaluated efficiently numeri-
cally and interpolates monotonically between 1 and
exp(2¢ — acoth3) ~ 1.26687 for a ranging from 0 to 1.
Here G denotes Catalan’s constant.

Concerning the form factors of the stress tensor, we first
note that 7 is an even observable with respect to the
inversion symmetry ¢ <> —¢ of the sinh-Gordon model so
that odd form factors vanish and the preceding characteri-
zation of even form factors applies. Solutions to the form
factor equations for F,,—representing the trace of the
stress tensor—have been obtained before [54,59]. These
take the form (16) with g,; given by

q0 =0, (31)
q> = gial’ (32)
N s )
0= (32 (P v 34

(620364 + ¢1(0405 + 010206) + ¢20306).  (35)
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Here ¢; = 4(1 —a?), ¢; = 1 — ¢y, and o; denotes the jth
elementary symmetric polynomial, i.e.,

Gj(xl,...,xk): E X een
1<iy<...<ij<k

C. Nonminimal stress tensors

While the form factors given in the previous section
correspond to the canonical choice of the stress tensor,
other choices are possible. In this section we briefly
characterize these options in order to prepare a study of
the validity of QEIs for these nonminimal expressions. The
motivation here lies in the fact that in the inverse scattering
approach one has no direct access to usual prescriptions for
obtaining the stress tensor since a Lagrangian or action is
a priori not available. While this problem may be overcome
in specific models like the sinh-Gordon model, in general,
this is difficult and an intrinsic description of the stress
tensor in the inverse scattering setup is desirable. In this
regard, QEIs may qualify as an additional physical require-
ment selecting a physically reasonable stress tensor. This
has been explored in [44,46] at the one-particle level and
will be extended here to the two-particle level.

It is convenient to analyze the freedom of choice for the
stress tensor at the level of the form factor equations. Based
on the decomposition (23), it is sufficient to analyze
the freedom of choice of the trace of the stress tensor,
which is invariant under boosts. This implies that F,; is
invariant under uniform shifts, i.e., Fy (6 + (4,...,4)) =
F,(0) for all @ and A, constraining g,; from (16) to be
homogeneous of degree k(2k — 1). Restricting to polyno-
mial ¢,; and following the analysis in [59], a general
solution up to the two-particle level is of the form (16) with

m?4da
44 —((1=1)010503+ (0407 +63)).

- R
2n2n re (36)

and ¢, as given in (32); higher ¢,;, kK > 3 do not contribute
at the two-particle level. As outlined in [[54], Sec. IV C] the
only choice which yields a singularity structure compatible
with the form factor equations for any component of the
stress tensor u*u”T,, corresponds to 4 = 0; the canonical
choice for the stress tensor as given in the preceding
section.

Other freedoms include to consider nonzero real con-
stants g, or g;; the latter case has been analyzed in [60].
Both result in constant shifts of the spectrum of T(y, ¢%)
with a possible dependence on the type of states: For g, we
simply have ¢, — ¢, + qo [ dzg*(7) in (2). For states with
fixed particle number ¢g; does not contribute to c,. Thus
both alterations can be accommodated for in a simple
manner and we assume g, = ¢; = 0 in the following.

The only remaining freedom of choice is to ‘“add
derivatives”: Given the canonical solution represented by

{q2 }, multiplication by an arbitrary power of 65;_;61/02;
at each k€N alters neither the form factor equations
nor (22) and has the same degree of homogeneity as
qor- Thus, an arbitrary solution will be of the form
{r(694_161/02¢) g} Where r is an arbitrary polynomial
with real coefficients and r(0) = 1. At the operator level,
this corresponds to modifying the canonical stress tensor
T into r(=0/m*)T*, where [J =0,0" denotes the
d’ Alembert operator. For the special case that the degree
of ris 1, we may parametrize our nonminimal stress tensor
to be of the form

™

nonminy ((1 - V) - VD)T/“/’ (37)
where T+ denotes the canonical expression for the stress
tensor as before.

III. NUMERICAL SETUP

In this section we will motivate and explain the numerical
setup. Our aim is to approximate an optimal bound ¢, as
appearing in (2). The first step is to discretize the hermitian
quadratic form A; = ng)T(y, gz)P(Sk) acting on L3(RF).
Next, we will perform a numerical spectral analysis of the
resulting matrix in order to find its lowest eigenvalue. If the
resolution of the discretized problem is sufficiently high, we
expect to obtain a good approximation for c,. Note that it is
sufficient to study A; on LZ(RF):=L2(R* dfy . ),

since L3(RF) = ng)Li([Rk).

A. Physical parameters

There are four physically relevant inputs to the analysis:
The class of states, the interaction model, the observer’s
trajectory and the averaging profile. The class of states
consists of all (normalized) states with particle number k; in
this case being either one or two (excluding superpositions
with different particle numbers). The interaction model is
the sinh-Gordon model specified by its coupling parameter
B€]0,2] and its mass scale m > 0. For the mass, we
choose to measure energy in rescaled units so that effec-
tively m = 1. Note here that the mass scale of the stress
tensor is fixed by (22) to m? and that the form factors of the
(trace of the) stress tensor F; are all proportional to m?
since we have factored out the Fourier transformed aver-

aging function g> which has mass scale m~!.

For inertial trajectories y we may assume without loss of
generality, that y(z) = (z,0): By covariance of the stress
tensor, expectation values transform as

W.T(r.¢)y) = W' T( . 9w, (38)

where the primes indicate the transformed objects. For a
generic inertial trajectory y there is a transformation
including a boost and a translation which brings it into
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the form y’: 7+ (7,0). The boost results in a shift of y;
the translation multiplies it with a phase factor. Since we
optimize over arbitrary states (aside from fixing the particle
number), we can ignore the change from y to y’ without
loss of generality. The introduced cutoff for the numerical
analysis does not affect this argument since we choose it
sufficiently large for ignoring boundary effects.

Concerning the profile, we will study two one-parameter
classes of smooth test functions which satisfy [ g*(x)dx = 1:
A Gaussian profile,

32

sol0) = re)texp (<2 ). B(p)=expl-%p?),

and a Lorentzian one,

1

_H _

at=ofep(-31). @)

Both choices are parametrized by a single parameter, the
averaging scale o which indicates the timescales over which
Ay, is averaged.

B. Discretization method

For resolution n € N and rapidity cutoff R > 0, we define
a lattice spacing h:= %, lattice points 4;:=—R+h-
(j—1), and an ordered index set

I],(,’< = {jE{l, ...,n}k: j1 <...< jk}’
enumerating a hyper triangular lattice
Nore={4= ) }en -

Then, toward large n and R, the orthonormal system

R R
EMR = {ef }je1§_<» e (0):=1x,,(01)...x), (01),
given in terms of normalized characteristic functions

I, 0€i;+[-h/2,h/2),

0, otherwise

xi(0) = h_%{

decently approximates L2 (R*) and thus L3(R*). In par-
ticular, for y € L3(R*) we have

(w, Ay) = (k)2 D prMEp;, (39)
ijel .
where
ﬂ] = <€J l//> and Mﬁ, = (el,Aej> (40)

The matrix elements evaluate to

M, = h"/[_

Here, Hermiticity of A, thus of MA, corresponds to

2]

A(0.m) = A(n.0) < Mj; = (M,)". (42)

In order to efficiently compute the components of M4,
we will approximate it for small & by its expansion up to
O(h*), resp., by expanding the integrand A(4; + h6, A; +
hn) up to O(K°). If i, # j, for all r,s€{1,...,k}, then
A(4;,4;) is regular and we may simply use a leading order
approximation for small £,

(A(A; + 0.2 + b)), = A(Ai. 4y).

where the subscript “l.0.” indicates “leading order.” The
expression is independent from @ and # so that
(M?j)l.o. :th(/li”lj)’ irséjs’r,se{l,u.,k}' (43)
However, if i, = j; for one or more combinations of
(r,s), we have to deal with delta-distributions and kin-
ematical singularities; cf. (12) and (15). This results
in a directional dependence, i.e., a dependence on 6, 7,
which has to be integrated over according to (41) and the

necessity to compute next-to-leading order contributions in
some cases.

C. Computation of leading order contributions
to the discretized kernels

To illustrate the computation of the leading-order con-
tribution to M4 for the singular case, we treat here two
exemplaric cases in detail. Results for the other cases are
given in the next two sections. Since in the one-particle case
A(4;, 4;) is regular (even for coinciding arguments 4; = 4;),
we focus on the two-particle case, i.e., k = 2. The subscript
“l.o.” indicates again the leading-order contribution for
small A.

Let us introduce the short hand notation S;; == S(4; — 4;)
and Fy; == Fi(4;, 4; + im). Let us also adopt the conven-
tion that ch; = ch/;, ch;; = ch(4; — 4;) and similarly for sh;
and sh;;.

Suppose that i; # j; and i, = j,, then either by direct
computation from the expression for F, (Sec. IIB) or
according to (15), we obtain that

(F4(Ai + ha,)v‘]— + h? +l.n))1.o_
—1 (1 — S, SjljZ)Fz;iljl

bl

271'i(92 - 7’]2 + l()) ’
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where the arrow on top of j and # indicates a reversion of
order. Since

dfdn 1
-, 45
/[_ 24 27i (6, — 1y + 10) 2 (43)

we arrive at

F, h i1 #J1
(M3 Do, =2 i S = DF2ijio - % - (46)
Suppose instead that i =j, then
(FalAi + 16,2+ hy +im)),,
B 2ach,]lz ((6; = ny)chy, + (6, —my)ch;,)* (47)
a4 sh? , 472(0) —ny +i0)(6, — n, 4 i0)

again by direct computation. The terms of the form
(0, —11)(0, — 5> +i0)~" vanish upon integration, so
that only the term which does not depend on € and 7
survives:

, a ch; ch;ch; .
2 ey, T WY

I

F.
(Mi;)l.o. =

Expressions for F,(4; + h6y.4; + hny + im)d(4;, —
Aj, + h(6, —11,)) and permuted variants can be computed
in analogous fashion. Here one uses that §(4 + h6) =
h=16(0) if 2=0 and 6(4+ h0) =0 in case that 1 # 0
for sufficiently small A.

D. Explicit discretized kernels
up to leading order

In this section, we will list the discretized expressions
obtained by the method described in the preceding section
focussing on the leading order terms. From (12) we obtain
schematically that

A =F,, (49)

Ay == (Fy + 4F55,), (50)

NI>—‘

where the projectors 73;];), and P(Sk_>, , are included in the

definition of the summands. We will list the matrix
elements obtained for the individual summands up to
leading order in h:

(Mo,

i), = hFaj, (51)

2 4 chichychy;
L S e =j
QL]
2 ch;, chy,ch; ; . _<—
WE S g =
1 .
(MF4) h_(l SZZZISJIJZ)F'2 irj> W= (52)
ij /1o h (SJIJZ — 1211)F2,i2j] il :j2 ’
h%(sim - SjljZ)anil.iZ i2 = jl
h3 (Slzll 2 1)F2,i,j, Iy =ja
WF otherwise
44j
hi(Chi —l—ch%z) i=j
h S1211 (Ch,zl + Ch%2> i= J
M4F252 hSlZ’lSJHzFZ-izjz i1 =Ji 5
( “ >1.0. B hS’2’1F2-i211 i1 =2 ( )
hSJ]JzFZJ'l/'z Iy = J
thviljl i2 = j2
0 otherwise
Here, F;;; = %ﬁﬁﬁlzmm(/{ —Aj +im). The case dis-

tinctions are concatenated by “else 1f ’, so that reading from
top to bottom the first affirmative condition is accepted. For
instance, the third case in Mg? corresponds to i; = j; A
iy # j, since if i, = j, the first condition would have
already been true. Note that, when a single pair of argu-
ments is equal, the contributions from F, and F,0, are
of a similar form, so that they add up nicely. Note further
that (51)—(53) are also valid for nonminimal stress tensors
as given in (37) when appropriate factors are added to F, ;;

and F —
4ij

E. Next-to-leading order contributions

In the numerical analysis, we aimed to include all terms
up to order O(h?). Since in the singular cases the leading-
order contribution of M4 is O(h) this implies that M4
receives next-to-leading order corrections in the cases
iy = Jji, i1 = Ja, Ip = J1, and i, = j,, for both A = F»5,

and A = F. In the special casesi =jandi =j only A =
F,0, receives next-to-leading order contributions. At least
some of these terms are significant: Without inclusion,
previous tests showed a bad numerical convergence in
small 4 (i.e. with increasing n) which was drastically
improved when including the terms mentioned above.
The discretized kernels including next-to-leading order
contributions are too long to be displayed here but arise
from tedious but straightforward expansion of previously
given expressions in higher orders of h. For faster
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computations we neglect terms which depend on deriva-
tives in F;,. Their contribution has been checked to be
small for a large range of parameters as is also indicated by
the smallness of |F . /F |-
F. Numerical representation
of the minimal solution

It is desirable to have a fast numerical representation of
the minimal solution F;, which appears frequently in the
expressions computed above. The minimal solution is
defined via an integral transform according to (19). We
implemented this integral transform numerically and used
the methods suggested in [[54], Eq. (4.18), N = 1] to
improve the convergence rate. The relation (30) is satisfied
with a precision of 107%. We stored the numerical approxi-
mation in a lookup table for fast evaluation.

G. Spectral analysis

The eventual task is to find the lowest eigenvalue of the
dense Hermitian matrix M4. The corresponding vector
space dimension is given by the number of lattice points
and for large n amounts to

n nk
d=|Ik_| = R—.

We use Lanczos’, resp., Arnoldi’s method as imple-
mented in Mathematica (Version 13.2) in the func-
tion Eigensystem|[-M,s,Method — {‘Arnoldi’,
‘Criteria’ — ‘RealPart’}] The outcome of this
analysis will of course depend not only on the physical
parameters (Sec. III A) but also on n and R. Thus the result
is only accepted as an approximate optimal bound c,
whenever it stabilizes for sufficiently large n and R upon
further variation of n and R within a satisfactory preci-
sion goal.

H. Plausibility checks and error bounds

There are a number of plausibility checks available. We
have checked that the resulting matrices are hermitian (they
have real eigenvalues) and that the discretization and
spectral analysis method reproduces the spectrum of known
singular integral operators like the Hilbert transform. We
have also checked that for the free scalar model (i.e., a = 0
in the sinh-Gordon model) we obtain positivity in one- and
two-particle states (k = 1, 2). Moreover, the one-particle
results (i.e., looking at A;) agree with those obtained
in [46]. Importantly for two-particle results, the numerical
factor in front of F is fixed by the residue relation (15) and
can be confirmed by direct computation.

An indication for the size of numerical errors (disregard-
ing systematical ones) arises from the precision goal
mentioned in Sec. III G: All finite spectral bounds have
been checked to stabilize with respect to n and R (where R

is chosen close to the support of the lowest eigenvector).
Upon variation of R within 10% margins, the spectral
bounds varied within two relative digits around n = 50 and
within five relative digits around n = 100; as is also
indicated by the fast decay of the eigenstates toward the
boundary (Sec. IVA). For variation of n within a 10%
margin we obtain the same precision at the one-particle
level. For the two-particle case we indicate convergence in
n explicitly in the following plots.

IV. NUMERICAL RESULTS
ON NEGATIVE ENERGIES

In this section we summarize our numerical results,
presenting approximately optimal lower bounds on the
spectrum of the smeared stress tensor 7(y, g*) within the
class of one- and two-particle states for the sinh-Gordon
model. The results at the one-particle level are in precise
agreement with a previous analysis in [46]. The results for
the two-particle level are new.

Throughout this section, we will specify the inputs of the
numerical analysis. This includes physical parameters
(Sec. II'A): the coupling constant B € [0,2] fixing the
interaction and the averaging function (default: Gaussian,
alternative: Lorentzian) with averaging scale ¢ within
1073 m~'...1.0 m~". It further includes numerical param-
eters (Sec. III B): The number of lattice points per side n
and the rapidity cutoff R. We restrict our discussion to
inertial trajectories which without loss of generality may be
considered to take the form y(z) = (z,0) (Sec. IIL A). In
this case, we write

T00(g?) = / e T(c.0)(z) = T(y. ).

Since we restrict our spectral analysis to the class of one-
and two-particle states, we effectively minimize T{°(¢g*) =
POTO(2)PR) with k = 1, 2.

As outcomes of our numerical evaluation, we find
eigenstates minimizing energy expectation values
(Sec. IVA) and corresponding estimates for an optimal
lower bound ¢, of QEI form (2); including its dependence
on interaction strength (Sec. IV B) and on the averaging
scale (Sec. IVC). We also analyze constraints on non-
minimal expressions for the stress tensor imposed by the
validity of QEIs (Sec. IV D).

A. Lowest eigenstates

In this section we plot the most negative eigenstate ¢ of
T9°(g?) for the maximally interacting sinh-Gordon model
and varying averaging scale (Fig. 1). In rapidity space, we
plot (6,,6,) +— |@(0,,0,)| restricted to the region 8; > 6,.
This captures the essential features of ¢ as |¢| is symmetric,
ie., |p(6,,0,)] = |@(6,,0,)| due to S-symmetry and uni-
tarity of S.
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FIG. 1. Absolute value of lowest eigenvector |¢(6;,6,)]
of T9(g?) for the maximally interacting sinh-Gordon model
(B = 1). Parameters: n = 80 and, from upper left to lower right,
(R.6) = (8.0,0.008 m™"), (7.0,0.021 m™"), (5.0,0.086 m™"),
(4.0,0.220 m™).

To begin with, we observe that all eigenstates in Fig. 1
are narrowly localized showing fast decay toward the
boundary indicating convergence of the numerical analysis.
In contrast, for unbounded/nonconvergent cases computed
eigenstates have been found to be localized predominantly
at the boundary indicating divergence with increasing R. In
comparison to the lowest one-particle eigenstates ¢; [46],
we find that the values of ¢ are bigger in magnitude leading
to more negative bounds (Sec. IV B).

Restricting to large averaging scales or regions with
sufficiently far separation between 8, and 6, (front quarter),
profiles at constant 6; (or 6,) share some similarities with
the one-particle profiles |¢;|. This goes in line with the
expectation that in these cases states should behave like a
tensor-product of two one-particle states—as in the free
theory—since S(6) — 1 for @ — 0, resp., 0 — co.

B. Dependence on the interaction strength

In this section we analyze the dependence of the lowest
eigenvalue of 7%(g?) on the interaction strength as
represented by the coupling constant B ranging from 0
(noninteracting) via 1 (maximally interacting) through to 2
(noninteracting) and taking into account the symmetry of
the model, B <> 2 — B. In Fig. 2 you find the plot for the
one- and two-particle case.

Despite the larger numerical uncertainties in the boun-
dary of the graph 0.0 < B < 0.3 (1.7 < B < 2.0), we see
that for the free limit B — 0 (B — 2) all curves tend toward
zero. This is the expected non-negativity of the energy
density in the massive free scalar model for states with
fixed particle number. Further, in the region 0.3 < B < 1.7
we find a qualitatively similar behavior of the curves in
the one- and two-particle case; the eigenvalues decrease

—k=2,n= 80

—0.026 -
—0.028 ‘
0

1.5 2

|
1
B
FIG. 2. Lowest eigenvalue of T%(g?) for varying coupling
constant B in the sinh-Gordon model. We compare the lowest
eigenvalues in one- and two-particle states and indicate its

variance for increasing n for the latter. Parameters: R = 4.5 or
5.0,6=0.1 m™".

monotonously, reaching a local minimum at the maximally
interacting case B = 1. This aligns well with the general
expectation that self-interaction is causing the presence of
negative energies and that strong self-interaction allows for
a stronger accumulation of negative energy. Notable is that
the minimum for the two-particle case is more than twice as
negative as the one-particle minimum with minima evalu-
ating to ¢, ~ 12 x 107 m?, resp., ¢, ~# 5 x 10 m?; indi-
cating that increasing the particle number allows for a
stronger accumulation of negative energy.

Surprisingly, at the two-particle level in the region 0 <
B < 0.3 (1.7 < B < 2.0) we find a feature which was not at
all visible in the one-particle case. Here the energy density
can become much more negative than in the one-particle case
and also compared with the stronger interaction regime
0.3 < B < 1.7; aminimum for the energy density is obtained
at about B ~ 0.07 with ¢, ~ 2.7 x 1072 m?. This finding is
very surprising since on general grounds a strong interaction
should allow for a more negative energy density and the
author is not aware of any discontinuity in the coupling
constant for the sinh-Gordon model (within the mentioned
regime). While we emphasize that we have run a number of
plausibility checks as illustrated in Sec. III H, at present we
cannot exclude this feature to be an artifact of the numerics as
is also indicated by the huge variance with respect to n. A
further increase of n or an expansion of the discretized stress
tensor in higher orders of £ is desirable and expected to lead
to higher precision but is severely limited due to a rapid
increase in memory and runtime complexity (Sec. III G).

C. Dependence on the averaging scale

In this section we plot the dependence of the lowest
eigenvalue of T%(g?) on the averaging profile and scale
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_10-7 | |— k=1, n =200,
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Gauss

k=1, n =200, Lorentz
—k=2,n= 60, Gauss
k=2,n= 60, Lorentz -

FIG. 3. Lowest eigenvalue of T%(g?) for varying averaging
scale ¢ in the maximally interacting sinh-Gordon model (B = 1)
at the one- and two-particle level for Gaussian and Lorentzian
averaging. Parameters: n = 60, and adaptively chosen R. Dotted
lines indicate the asymptotic scaling (x 672).

(Fig. 3). For the averaging profile we consider a Gaussian
and a Lorentzian smearing function both parameterized by
an averaging scale parameter ¢ (Sec. III A), indicating the
timescales over which the energy density is averaged.

We find that, the choice of averaging profile basically
yields a horizontal shift of the plot linked to the slower
decay properties of the Lorentzian profile and that there is a
strong dependence on the averaging scale showing some
universal features:

Overall, we see that in the two-particle case and for
Gaussian profile it requires larger averaging scales to
approach non-negativity than in the one-particle case and
for Lorentzian profile.

For small o, i.e., for narrow time spans, we confirm an
asymptotic scaling like 672 (dotted lines). This is expected
since 7%(g?) has scaling dimension 2 and was also
confirmed for one-particle states in [46].

For large o, i.e., for long averaging times, the eigenval-
ues tend to zero rapidly. Note here that the numerics
becomes unstable for eigenvalues with absolute values
below %107 m~! or for ¢ being larger than ~0.5 m~!.

Despite this, we see clear evidence that, within our
numerical precision, the (timelike) averaged energy density
becomes non-negative in the long-time limit g — 1; imply-
ing the validity of the averaged weak energy condition
(AWEC) (3) in one- and two-particle states.

At the one-particle level this is straightforward to derive
analytically: Setting g = 1, we have

7*(po(0) = po(n)) =2x|p1(0)|1(5(0 —n) + 5(6 +n)).

Thus, using (12), (23) and (26), we obtain

” Ty
—05} - : .
1k i
™
§ ~15} .
>
g —2F 2
&~
—25) a
— k=1,n=500
—3f e k=2n= 60
 k=2n= 80
—-35 I | I I I |
—04 —0.2 0 0.2 0.4
v
FIG. 4. Lowest eigenvalue of 79 - (¢*) for nonminimal

choice of the stress tensor as in (37) in the maximally interacting
sinh-Gordon model (B = 1). We compare the lowest eigenvalues
in one- and two-particle states for varying v and indicate
convergence with increasing n for the latter. The asymptotes
of the curves are indicated by dotted lines. Parameters: R = 4.5 or
5.0,6=0.1 m™".

(O]T(1)|n) = m|shd|~" (ch?05(6 — n) + 5(6 + 1)),

implying, after some moments of thought, 7%°, (1) > 0 due
to ch?@ > 1 for all @ € R. Note that this argument does not
use any specific properties of the sinh-Gordon model, but
holds for generic massive integrable models.

An analytical result at the two- or higher particle level is
absent, though. In this case, the form factors have a more
complicated structure and &(po(@) — po(ny)) does not
decompose as in the one-particle case.

D. Nonminimal stress tensors

In this section we analyze the validity of QEIs for
nonminimal expressions of the stress tensor. These arise
when adding terms of the form ¢[J"T* to T for some
ceR and neN.

When n > 1, we have checked this to lead to divergent
bounds for arbitrarily small coefficients. This is in agree-
ment with the results at one-particle level obtained in [46].
For n =1, we parametrize our family of nonminimal
expressions for the stress tensor as in (37); denoted by
™ with parameter v. A plot of the lowest eigenvalues

nonmin,v
of T imin (¢7) is given in Fig. 4.

For both, one- and two-particle states, we find a v-band
around the canonical choice v = 0 with finite eigenvalues
which are relatively constant with respect to v. It is notable
that the eigenvalues are not symmetric around v = 0. At the
boundary of the bands, the eigenvalues start to decrease
rapidly and the eigenstates change appearance. In contrast

to the full plot, the position of these thresholds is symmetric
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around v = 0 and given as dotted vertical lines in the plot.
For the one-particle case the threshold lies at |v| ~ 0.395 ~

M% in agreement with [46] (the rhs corresponds to the
analytic result given in the reference). For the two-particle
case the threshold for || is between 0.10 and 0.11 (in this
case no analytic result is known).

To sum it up, we find that at higher particle numbers the
validity of a QEI becomes more restrictive. Speculating on
this observation and taking into account the significantly
lower bounds in the two-particle case, this indicates that the
threshold decreases even more at higher particle numbers;
possibly selecting the canonical stress tensor uniquely in

states of arbitrary particle number.

V. CONCLUSION

In summary, this article introduces a novel numerical
method for determining optimal QEI bounds in one- and two-
particle states, extending previous work focused on the one-
particle case. This extension encountered two formidable
challenges: a substantial increase in complexity, affecting
runtime, memory, and analytical considerations, and the
necessity for numerical treatment of kinematical singularities
not encountered in the one-particle domain. The proposed
method is inherently applicable to all integrable models
constructed via the inverse scattering approach, provided that
solutions to the form factor equations are well understood.

We applied our method to a representative example, the
sinh-Gordon model, gaining explicit insights into its optimal
QEI bounds. A key revelation is the preservation of QEIs at
the two-particle level, accompanied by a notable increase in
the negativity of energy density compared to the one-particle
case. Additionally, our findings substantiate that self-
interaction acts as the source of negative energy, with
stronger interactions yielding more pronounced negativities.
Despite this, we found strong evidence that negative energies
cannot be sustained for arbitrarily long times which implies
the validity of the averaged weak energy condition (AWEC)
at both one- and two-particle levels. Last but not least, we
established the existence of a one-parameter class of non-
minimal stress tensors satisfying QEIs at both levels, with
more stringent constraints arising from two-particle QEIs.

The transition from the one-particle to the two-particle
level was marked by significant advancements. States
featuring a single particle may overlook certain aspects
of self-interaction, and the inclusion of two-particle states
introduces entirely new technical challenges related to the
kinematical singularities. While complexity escalates when
considering particle numbers higher than two, no funda-
mentally new aspects emerge, suggesting a possible con-
tinuity in qualitative features. From that perspective our
observations stemming from one- and two-particle analyses
suggest that QEIs and the AWEC may extend to arbitrary
finite particle numbers. Furthermore, we expect that con-
straints on nonminimal expressions for the stress tensor
imposed by the validity of a QEI become more restrictive
with increasing particle numbers promising to establish
QEIs as a robust selection principle for physically reason-
able stress tensors. To confirm these speculations, it is
desirable addressing states with higher particle numbers,
albeit necessitating novel numerical approximations or
additional analytic insights, given the escalating complex-
ity for particle numbers beyond two.

Another important aspect yet to be explored is the
treatment of QEIs in states superposing different particle
numbers. After all, it is well known that—even in non-
interacting models—negative energies arise when super-
posing states with different particle numbers. Thus, treating
negative energy states, exemplified by superpositions of
vacuum, one- and two-particle states, in a setup with self-
interaction presents an intriguing challenge which is within
the scope of the current method. We anticipate returning to
this issue in future investigations.
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