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The definition of a particle varies across different theories. The quantum field theory in curved spacetime
shows that from the perspective of a linearly accelerated observer, an inertial empty space may be full of
thermal particles. This effect is known as the Unruh effect. When the degrees of freedom of orbital angular
momentum (OAM) are considered, all OAM modes share the same expected particle number. Here, we
examine the OAM spectrum in a rotating accelerated reference frame to see how the spectrum differs from
the linear accelerated case. When the observer starts to rotate, not all OAM modes are allowed and some
negative energy modes show up. To understand how a rotating accelerated observer actually perceives these
particles, the Unruh-DeWitt detector and its detailed balance are studied. This relation is studied both in the
comoving inertial frame and in the rest frame. Based on these results, the OAM entanglement degradation
is explored in two-dimensional and high-dimensional cases, respectively. The results indicate that the
entanglement dimension and the highest order of OAMmodes are mainly related to the acceleration and the
rotation, respectively. It is then demonstrated that these results can be generalized to all stationary
trajectories.
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I. INTRODUCTION

The definition of a particle varies across different
theories. A physicist before the 20th century would likely
have told you that a particle is a localized pointlike object.
It has some intrinsic properties that are related to some
fundamental interactions. In quantum mechanics and
quantum field theories, the concept of particles arises when
we quantize a field [1]. Take the scalar field, for example.
One may first identify the field variable ψ and its conjugate
momentum Π. Then, their quantum-mechanical commuta-
tion relations can be deduced from their classical Poisson
bracket relations. By expanding the field with its eigen-
functions, one can further identify its creation and annihi-
lation operators—i.e., a and a†—and their commutation
relations. We now can create a particle from the vacuum by
using a creation operator a† on the vacuum state, or
annihilate one by using an annihilation operator a.
The story of particles becomes more complicated when

the theories of relativity show up. The structure of
spacetime induces several problems. First, the positivity
of the norm is now questionable. The inner product should
satisfy the requirements of symmetry, linearity, and observ-
ables being Hermitian. Thus, for relativistic particles, the
inner product should be generalized to [2]

hgI; hJi ¼ i
Z
Σ
½g�I∂0hJ − hJ∂0g�I �nμ

ffiffiffi
γ

p
d3x; ð1Þ

where gI ¼ gIðxμÞ, hJ ¼ hJðxμÞ, I and J represent a set of
possible indices, Σ is a spacelike hypersurface on which the
integration is carried out, γμν is the induced 3-metric on this
hypersurface, γ ¼ detðγμνÞ, and nμ is the unit normal
vector. We will come back to this point later. If one uses
this inner product to calculate the norm of an eigenfunction,
(s)he may find that the result could be positive, negative, or
even zero. This problem can be solved by choosing
positive-norm states to associate with an annihilation
operator aI; then those negative-norm states will associate
with a creation operator a†I , so the negative-norm states are
just complex conjugates of positive-norm states. Also,
zero-norm eigenstates can be treated as linear combinations
of positive-norm and negative-norm states. The second
problem is the choice of reference frames. For nonrelativ-
istic particles, quantization is carried in a fixed spacetime
background, and the particle states in different reference
frames are unitary equivalent. However, in the theories of
relativity, different reference frames may not share equiv-
alent particle definitions. To be concrete, the Unruh effect
states that a vacuum space seen by an inertial observer may
be drowned by a thermal particle bath when observed by an
accelerated observer [2–17]. Moreover, a recent study finds
that if an observer has a rotational vortex structure in the
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transverse dimensions and carries a well-defined orbital
angular momentum (OAM), it can absorb or emit Rindler
particles with the same OAM when interacting with the
background thermal bath [18]. There is another problem:
Will conserved quantities which are used to describe
particles still be conserved in any frames? Especially, we
want the particle number to be constant so that when an
observer measures particles, there will be no particles
coming out of nowhere or suddenly disappearing. This
requires the Hamiltonian, defined in the observer’s rest
frame, to be time-independent—i.e., stationary. Otherwise,
Hamiltonians at different times may not commute with each
other, yielding inconsistent particle numbers. This further
requires that the metric experienced by the observer be
stationary, as well. Thus, we know that the tangent vectors
of the trajectory followed by the observer must form a
Killing vector field. This kind of trajectory is called a
stationary trajectory. In the Minkowski spacetime, the
generators of Killing vector fields are time and space
translation generators (∂t, ∂x, ∂y, ∂z), rotation generators
(x∂y − y∂x, y∂z − z∂y, z∂x − x∂z), and boost generators
(x∂t þ t∂x, y∂t þ t∂y, z∂t þ t∂z). Stationary trajectories
formed by these generators can fall into six classes, from
class A to class F [19]. The six classes can be divided into
two different categories, based on how they define the
vacuum. Classes A, C, and D define the Minkowski
vacuum, while the other three classes define the so-called
Fulling-Unruh vacuum [19–23]. These two vacua are not
equivalent, as will be shown later.
In our previous study [17], we found that for a linearly

accelerated observer, the OAM spectrum of the Rindler
particles is uniform, because the spacetime on the trans-
verse plane is isotropic and circularly symmetric. Here, we
consider the case where the observer rotates around the
acceleration direction. We expect that the OAM spectrum
will be different, because when changing the sign of the
azimuthal angle θ, the metric is not invariant. Moreover,
there is a cross term between the temporal and spatial
elements, which we expect to induce some modifications in
wave functions. We will further investigate OAM entan-
glement in this frame to see how rotation motion affects it.
Unless otherwise specified, geometrized units with c ¼

G ¼ kB ¼ 1 are used. The metric signature is chosen as
ð−;þ;þ;þÞ. All greek indices run in f0; 1; 2; 3g. This
paper is structured as follows: In Sec. II, the spacetime
structure of the stationary rotating accelerated frame is
studied. Section III reviews the quantization of the scalar
field in cylindrical coordinates and in the Rindler coor-
dinates. In Sec. IV, the Bogoliubov transformation between
the Minkowski and Rindler operators is identified and
generalized to a single-mode transformation. In Sec. V, the
OAM spectrum of Rindler particles is studied by express-
ing the Minkowski vacuum with the Rindler modes. To
further understand how the observer will experience the
Rindler particles, in Sec. VI, the Unruh-DeWitt detector

and its detailed balance relation are studied. Then, the
OAM entanglement in the rotating accelerated frame is
explored in Sec. VII. Last, we generalize our result to all
rotating accelerated trajectories in Sec. VIII. Our results are
summarized and discussed in Sec. IX.

II. STATIONARY ROTATING
ACCELERATED FRAME

As stated in the Introduction, a stationary trajectory can
be generated by the combination of generators of the
Poincaré group. For the main part of the paper, we will
focus on a special case where the rotation is parallel to the
acceleration. In the end, we will show that all the results
obtained in this case can be generalized to all stationary
trajectories. Now, let us consider an observer who is
moving along the z direction with an acceleration of aẑ
while rotating around the same axis with an angular
velocity of ωẑ. The tangent vectors of the observer’s world
line, which can be chosen to be the proper time vector of the
observer, form a Killing field [23],

∂τ ≡ v ¼ Pt þ ωJz þ aKz; ð2Þ

where ∂τ is the proper time vector, and Pt ¼ ∂t,
Jz ¼ ðx∂y − y∂xÞ, and Kz ¼ ðz∂t þ t∂zÞ generate the time
translation, the rotation around the z axis, and the boost
along the z axis, respectively. When the observer moves
along v, the spacetime metric in the observer’s rest frame
will be constant. Thus, we say the observer is moving along
a stationary trajectory. By defining z ¼ z0 − 1=a, the
Killing field becomes

∂τ ¼ ωJz0 þ aKz0 ; ð3Þ

where Pt is absorbed intoKz0 . We can further introduce the
following coordinates in the z0-t plane and the x-y plane,
respectively [23]:

z0 ¼ ξ cosh χ; t ¼ ξ sinh χ; ð4Þ

x ¼ r cos θ; y ¼ r sin θ: ð5Þ

The coordinates (χ, ξ, r, θ) are called the Rindler coor-
dinates, and χ is the time coordinate. Now, the Killing field
can be further simplified into

∂τ ¼ ω∂θ þ a∂χ ; ð6Þ

by which the worldline of the observer can be calculated.
Suppose at τ ¼ 0, the observer is located at tobsðτÞ ¼ 0,
xobsðτÞ ¼ r0, yobsðτÞ ¼ 0, zobsðτÞ ¼ 0. Then, the worldline
of the observer is given by

χobsðτÞ ¼ aτ; ξobsðτÞ ¼
1

a
; ð7Þ
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robsðτÞ ¼ r0; θobsðτÞ ¼ ωτ; ð8Þ

where χobsðτÞ and ξobsðτÞ describe the accelerating motion
along the z0 axis, while robsðτÞ and θobsðτÞ describe the
rotation around the z0 axis.
The Minkowski metric, in the Rindler coordinates, is

given by

ds2 ¼ −ξ2dχ2 þ dξ2 þ dr2 þ r2dθ2: ð9Þ

At ξ ¼ 0, for an arbitrary nonzero vector uμ, its norm is
gμνuμuν > 0. That means that all nonzero vectors are
spacelike, and therefore, no timelike or null curves can
penetrate the ξ ¼ 0 plane. Thus, ξ ¼ 0 are the horizons
that split the spacetime into a right region and a left
region. These regions are spacelike to each other, so an
observer on one side can never acquire the information on
the other side.
Unlike the nonrotating case, there exists an extra special

structure. This can be seen by the norm of the Killing field,
which is given by gμνvμvν ¼ ω2r2 − a2ξ2. Setting the norm
to zero, we have r ¼ �aξ=ω, beyond which gμνvμvν is
positive and v becomes spacelike, so the observer moving
along v cannot stay static in the three-dimensional space.
Thus, r� ¼ �aξ=ω is the static limit, as in the spacetime
near a rotating black hole. The existence of the static limit
complicates the quantization procedure because the “time-
like” Killing vector vμ is only timelike outside the static
limit. It is not clear how to deal with the field modes inside
the static limit—i.e., r > r�. There have been several
methods proposed to tackle this problem. The first method
assumes the usual quantization procedure in the static
spacetimes—i.e., choosing mode functions whose Killing
time dependence will continue to hold inside the static limit
[24,25]. This is justified by the fact that there is a Killing
field that is timelike inside the static limit and whose affine
parameter is the same as that for the usual Killing field. The
second method regards the spacelike hypersurfaces of
constant Killing time as fundamental, not the timelike
Killing field. This procedure can be viewed as “untwisting”
the Killing field to get a new vector field which is
orthogonal to a spacelike hypersurface, and then quantizing
fields with respect to observers moving along integral
curves of the new vector field [26,27]. Another approach
circumvents this problem by eliminating the area inside the
static limit altogether by imposing “perfect conductor” (i.e.,
vanishing) boundary conditions [28,29]. In this paper, we
combine the last two methods. We will first quantize the
scalar field on some hypersurface with a constant time
coordinate—i.e., t or χ. Then, the boundary condition at
r ¼ r� is imposed so that the quantization procedure is
confined outside the static limit.

III. QUANTIZATION OF THE KLEIN-GORDON
FIELD

First, let us consider the Klein-Gordon equation in the
cylindrical coordinates, which is given by

□ψ ¼
�
−∂2t þ ∂

2
z þ ∂

2
r þ

1

r2
∂
2
θ þ

1

r
∂r

�
ψ ¼ 0; ð10Þ

where ψ is the Klein-Gordon field. The solutions to the
equation are

glEk3ðt; z; r; θÞ ¼ ClEk3e
ilθ−iEtþik3zJlðPrÞ; ð11Þ

where ClEk3 is a normalization constant, l is an integer,

jk3j < jEj, P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − k23

p
, and JlðPrÞ signifies the Bessel

functions of the first kind. For now, E can be any real value.
As usual, l, E, and k3 represent the azimuthal index (also
known as the topological charge), the energy (or equiv-
alently the frequency), and the z component of the wave
vector, respectively. We will refer to Eq. (11) as the
Minkowski modes.
We will use Eq. (1) as the inner product throughout this

paper. For the Minkowski modes, the indices in Eq. (1), I,
and J, represent the collection of lEk3. By decomposing
the four-dimensional spacetime into time and three-
dimensional space, the spacetime metric gμν becomes [30]

gμν ¼
�−N2 þ βkβ

k βj

βi γij

�
; ð12Þ

where N is the lapse function, βi is the shift vector,
βj ¼ γijβi, and the unit normal vector is given by
nμ ¼ ð1=N;−β1=N;−β2=N;−β3=NÞ. Since proper wave
functions should be zero at infinity, the Stokes theorem
ensures that the integration (1) is independent of the
hypersurface Σ. For most cases, it would be easier to
calculate if the hypersurface Σ is chosen to be the hyper-
plane x0 ¼ 0. Then, the inner product for the two
Minkowski modes glEk3ðt; z; r; θÞ and gl0E0k0

3
ðt; z; r; θÞ is

given by

hglEk3ðt; z; r; θÞ; gl0E0k0
3
ðt; z; r; θÞi

¼ 8π2EjClEk3 j2
P

δðl − l0Þδðk3 − k03ÞδðP − P0Þ; ð13Þ

where the closure equation of the Bessel functions is
used—i.e.,Z

∞

0

rJlðPrÞJlðP0rÞdr ¼ 1

P
δðP − P0Þ: ð14Þ

Therefore, for positive-norm modes, we should choose
E > 0 on the whole Minkowski spacetime. Since E and P
are both positive, one of them can be determined if we know
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the other one. Therefore, we may sometimes write
glPk3ðt; z; r; θÞ instead of glEk3ðt; z; r; θÞ, when it appears
to be more convenient. From Eq. (13), we also know the
normalization constant is given by

ClEk3 ¼
�

P
8π2E

�
1=2

¼ ðE2 − k23Þ1=4
ð8π2EÞ1=2 : ð15Þ

After canonically quantizing theKlein-Gordon field, wemay
write the field operator as

ψðxμÞ ¼
X
l;E;k3

½alEk3glEk3ðxμÞ þ a†lEk3g
�
lEk3

ðxμÞ�; ð16Þ

where alEk3 and a
†
lEk3

are the usual annihilation and creation
operators, respectively, and in this paper, we omit the hats on
operators when no confusion arises. The summation symbol
means that the indices run over all possible values. Since E
and k3 vary continuously, the summation should be replaced
by integration, but for simplicity, when no confusion is
caused, we use the summation symbol instead. Onemay also
verify the following commutation relations:

½alEk3 ; a†l0E0k0
3
� ¼ δðl − l0ÞδðE − E0Þδðk3 − k03Þ; ð17Þ

½alEk3 ; al0E0k0
3
� ¼ ½a†lEk3 ; a

†
l0E0k0

3
� ¼ 0; ð18Þ

and the number operator is given by NlEk3 ¼ a†lEk3alEk3.
Next, we will try to quantize the Klein-Gordon field in

the Rindler coordinates. From the Killing field, Eq. (6), we
can write

ĤRF ¼ −ωĴz0 − aK̂z0 ; ð19Þ

where ĤRF ¼ i∂τ, Ĵz0 ¼ −iðx∂y − y∂xÞ ¼ −i∂θ, and K̂z0 ¼
−iðz0∂t − t∂z0 Þ ¼ −i∂χ are the Hamiltonian operator,
the z0 component of the angular momentum operator,
and the boost operator along the z0 axis, respectively.
Thus, the Hamiltonian ĤRF is defined in the rest frame
of the observer, and it will be independent of time. This fact
is another reason that we say the observer is moving along a
stationary trajectory. Given a Hamiltonian, HIF ¼ i∂0,
defined in any inertial frame, one may derive that

½HIF; Kz0 � ¼ iPz0 ; ð20Þ

where Pz0 ¼ −i∂z0 is the linear momentum operator along
the z0 axis. The nonzero commutator indicates that the
commutator ½HIF; HRF� is also nonzero. Therefore, the
particle states defined by HIF and HRF are different. In
particular, the vacuum states defined by them are not
equivalent. The vacuum state defined by HIF is called
the Minkowski vacuum state, while that defined by HRF is
the Fulling-Rindler vacuum. These two vacuum states are

the only vacua that can appear along a stationary trajectory
in Minkowski spacetime [21].
It would be easier to find the eigenstates of HRF in

the Rindler coordinates, and then infer their energy
by using Eq. (19). Let us denote the eigenfunctions of
HRF in Rindler coordinates as hmΩðχ; ξ; r; θÞ, where m
and Ω are related to the eigenvalues of Jz0 and Kz0 ,
respectively—i.e.,

Jz0hmΩðχ; ξ; r; θÞ ¼ mhmΩðχ; ξ; r; θÞ; ð21Þ

Kz0hmΩðχ; ξ; r; θÞ ¼ −ΩhmΩðχ; ξ; r; θÞ: ð22Þ

The reason that Ω is defined in this way is that later we
require Ω > 0 for the positive-norm modes. Hence, we
can write

hmΩðχ; ξ; r; θÞ ¼ HmΩðξ; rÞe−iΩχþimθ; ð23Þ

where HmΩðξ; rÞ is a function to be determined by the
Klein-Gordon equation, which in the Rindler coordinates
is given by

�
−
∂
2
χ

ξ2
þ∂ξ

ξ
þ∂

2
ξ þ∂

2
r þ

∂
2
θ

r2
þ∂r

r

�
hmΩðχ;ξ;r;θÞ¼ 0: ð24Þ

Substituting Eq. (23) into it gives

�
∂
2
ξ þ

∂ξ

ξ
þ ∂

2
r þ

∂r

r
þΩ2

ξ2
−
m2

r2

�
HmΩðξ; rÞ ¼ 0: ð25Þ

The solutions are proportional to JmðQrÞKiΩðjQξjÞ,
where KαðxÞ are the modified Bessel functions of the
second kind, and Q is a new parameter. Therefore,
the mode functions, named the Rindler modes, can be
written as

hðσÞmΩQðχ;ξ;r;θÞ¼DðσÞ
mΩQe

−iΩχþimθJmðQrÞKiΩðσQξÞ; ð26Þ

where DmΩQ is the normalization constant, and σ ¼ þ
means the mode is defined in the right region with ξ > 0,
while σ ¼ − means the opposite. The azimuthal index m
can take any integer. Unlike the Minkowski mode
functions (11) in cylindrical coordinates, Q is not related
to other indices, and it is only required that Q > 0. For
now, Ω can be any real value. Since Ω appears before the
Rindler time coordinate χ, it will be referred to as the
Rindler energy. However, it is not the energy perceived
by the observer. From the perspective of the observer, the
energy of a particle E should satisfy

HRFhðχ; ξ; r; θÞ ¼ Ehðχ; ξ; r; θÞ: ð27Þ

Therefore, we see that the energy of a particle is related to
the Rindler energy by
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E ¼ aΩ −mω: ð28Þ

The inner product of the Rindler mode functions is
given by

hhðσÞmΩQðχ;ξ;r;θÞ;hðσ
0Þ

m0Ω0Q0 ðχ;ξ;r;θÞi

¼ 2π3σðDðσÞ
mΩQÞ2

QsinhðΩπÞ δðm−m0ÞδðΩ−Ω0ÞδðQ−Q0Þδðσ−σ0Þ:

ð29Þ
Therefore, the normalization constant may be written as

DðσÞ
mΩQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q sinhðσΩπÞ

2π3

r
: ð30Þ

Also, in the right region, where ξ > 0 and σ ¼ þ, we
should choose Ω > 0 for positive-norm modes, while
Ω < 0 in the left region. This is different from the
Minkowski modes (11) in the cylindrical coordinates,
where E > 0 in both regions. There is another interesting
fact in this case. In our earlier work [17], where the OAM
particles in the linear accelerated frame are studied, the
particles in the right region all have positive-defined
energy. However, when the observer starts to rotate,
things change. Now, the particles in the right region
can also have negative energy whenever aΩ < mω, which
can be seen from Eq. (28). We will explore this phe-
nomenon further later. Similarly, we can write the Klein-
Gordon field by the Rindler modes as

ψðxμÞ ¼
X

m;Ω;Q;σ

½bðσÞmΩQh
ðσÞ
mΩQðxμÞ þ bðσÞ†mΩQh

ðσÞ�
mΩQðxμÞ�; ð31Þ

where bðσÞmΩQ and bðσÞ†mΩQ are the usual annihilation and
creation operators for the Rindler modes, respectively.
They also obey the usual commutation relations,

½bðσÞmΩQ; b
ðσ0Þ†
m0Ω0Q0 � ¼ δðm −m0ÞδðΩ −Ω0ÞδðQ −Q0Þδðσ − σ0Þ;

ð32Þ

½bðσÞmΩQ; b
ðσ0Þ
m0Ω0Q0 � ¼ ½bðσÞ†mΩQ; b

ðσ0Þ†
m0Ω0Q0 � ¼ 0: ð33Þ

The Minkowski modes (11) and the Rindler modes (26)
are well defined on the spacelike hypersurfaces with
constant t and χ, respectively. Hence, they are well defined
with respect to nonrotating observers. However, this will
not hold when the observers start to rotate, because of the
existence of the static limit. As stated in the last section, after
quantizing the scalar field on some spacelike hypersurface,
we now need to impose the vanishing boundary condition to
confine the scalar field outside the static limit, and the
integrals with respect to r are restricted from 0 to r�. For the
modes in Eq. (11), this can be done by using Jlðũl;PrÞ to
replace JlðPrÞ, where ũl;P ¼ ul;P=r�, and ul;P is thePth zero

of theBessel functionJlðxÞ. This replacement alsomakes the
continuous label P become discrete. Now, it can only take
positive whole numbers. Accordingly, the normalization
constant is replaced by ClEk3¼½2π ffiffiffiffi

E
p

r�jJlþ1ðul;PÞj�−1 and
E2 ¼ k23 þ ũ2l;P. Similarly, for the modes in Eq. (26), the
Bessel functions JmðQrÞKiΩðσQξÞ are replaced by
Jmðũm;QrÞKiΩðσũm;QξÞ, andQ can only take positive whole

numbers, as well. The normalization constant is DðσÞ
mΩQ ¼

π−3=2½sinhðσΩπÞ�1=2=½r�Jmþ1ðum;QÞ�.

IV. SINGLE-MODE BOGOLIUBOV
TRANSFORMATION

From the expansions for the field operator, Eqs. (16) and
(31), one can see that the Bogoliubov transformation,
which connects the Minkowski and Rindler operators, is
given by

bðσÞmΩQ ¼
X
l;P;k3

ðαðσÞ�ðm;Ω; Q; l; P; k3Þal;P;k3

−βðσÞ�ðm;Ω; Q; l; P; k3Þa†l;P;k3Þ; ð34Þ
where the Bogoliubov coefficients are given by

αðσÞðm;Ω; Q; l; P; k3Þ
¼ hglPk3ðxμÞ; hðσÞmΩQðxμÞi

¼ DðσÞ
mΩQClPk3

π2eσΩπ=2½r�Jmþ1ðum;QÞ�2eik3=a
sinh ðσΩπÞ

×

�
E − k3
Eþ k3

�
iΩ=2

δðm − lÞδðQ − PÞ; ð35Þ

βðσÞðm;Ω; Q; l; P; k3Þ ¼ −hg�lPk3ðxμÞ; h
ðσÞ
mΩQðxμÞi

¼ DðσÞ
mΩQClPk3ð−1Þm

π2e−σΩπ=2½r�Jmþ1ðum;QÞ�2e−ik3=a
sinh ð−σΩπÞ

×

�
E − k3
Eþ k3

�
iΩ=2

δðmþ lÞδðQ − PÞ: ð36Þ

Since we mainly consider an observer moving in the right
region, we will restrict Ω > 0 from now on, and replace all
Ω’s with σΩ. Now, the Bogoliubov transformation for

bðσÞmΩQ is given by

bðσÞmΩQ ¼
Z

dk3

�
e−ik3=aeΩπ=2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πE sinhðΩπÞp �

E − k3
Eþ k3

�
−iσΩ=2

amQk3

þ ð−1Þmeik3=ae−Ωπ=2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πE sinhðΩπÞp �

E − k3
Eþ k3

�
−iσΩ=2

a†−mQk3

�
:

ð37Þ

The Bogoliubov transformation for bðσÞ†mΩQ, al;P;k3 , and a
†
l;P;k3

can also be derived. The transformation can be used to
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study the Minkowski vacuum state and one-particle state in
the Rindler coordinates, but the derivation will be messy.
Instead, since we mainly care about the degrees of freedom
of OAM, we shall find a single-mode Bogoliubov trans-
formation as follows [16].
First, Eq. (37) inspires us to define

PðσÞ
Ω ðk3Þ ¼

1ffiffiffiffiffiffiffiffiffi
2πE

p e−ik3=a
�
E − k3
Eþ k3

�
−iσΩ=2

: ð38Þ

This function is orthonormal and complete—i.e.,Z
∞

−∞
dk3P

ðσÞ
Ω ðk3ÞPðσÞ0

Ω0 ðk3Þ ¼ δðσ − σ0ÞδðΩ −Ω0Þ; ð39Þ

X
σ

Z
∞

0

dΩPðσÞ
Ω ðk3ÞPðσÞ�

Ω ðk03Þ ¼ δðk3 − k03Þ: ð40Þ

Then, we can define a new set of annihilation and creation
operators as

aðσÞmΩQ ¼
Z

∞

−∞
dk3P

ðσÞ
Ω ðk3ÞamQk3 ; ð41Þ

aðσÞ†mΩQ ¼
Z

∞

−∞
dk3P

ðσÞ�
Ω ðk3Þa†mQk3

: ð42Þ

Here, amQk3 and a†mQk3
are operators corresponding to the

Minkowski modes, Eq. (11), while aðσÞmΩQ and aðσÞ†mΩQ are
operators of a new set of Minkowski modes, denoted by

fðσÞmΩQðxμÞ. Since PðσÞ
Ω ðk3Þ is orthonormal and complete,

fðσÞmΩQ are linear combinations of glPk3ðxμÞ, and they share
the same Minkowski vacuum. For the same reason, the new
annihilation and creation operators satisfy the following
commutation relation:

½aðσÞmΩQ;a
ðσ0Þ†
m0Ω0Q0 � ¼ δðm−m0ÞδðΩ−Ω0ÞδðQ−Q0Þδðσ − σ0Þ;

ð43Þ

½aðσÞmΩQ; a
ðσ0Þ
m0Ω0Q0 � ¼ ½aðσÞ†mΩQ; a

ðσ0Þ†
m0Ω0Q0 � ¼ 0: ð44Þ

Later, when studying the one-particle state, wewill find that

when aðþÞ†
mΩQ acts on the vacuum state, it will create a particle

moving in the right region, while að−Þ†mΩQ does the opposite.
Now, the single-mode Bogoliubov transformation can be
written as

bðσÞmΩQ ¼ α�ðΩÞaðσÞmΩQ − β�ðΩ;−mÞað−σÞ†−mΩQ; ð45Þ

where αðΩÞ¼ eΩπ=2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sinhðΩπÞp

and βðΩ; mÞ ¼ ð−1Þmþ

1e−Ωπ=2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinhðΩπÞp ¼ ð−1Þmþ1e−ΩπαðΩÞ. Note that

there is no summation implied over repeated labels.

V. OAM SPECTRUM OF RINDLER PARTICLES
IN MINKOWSKI VACUUM

Since the Bogoliubov coefficient β is not zero, the
Minkowski vacuum and the Fulling-Rindler vacuum will
not be equivalent. According to the Unruh effect [2–17],
there exist Rindler particles in the Minkowski vacuum.
Now, we will explore the OAM spectrum of these particles
when the observer starts to rotate around the z0 axis. Let us
denote the Minkowski vacuum state and the Fulling-
Rindler vacuum state by j0iM, and j0iRj0iL, respectively,
where R means the right region and L the other one, so the
operators with σ ¼ þ only act on j0iR, and those with
σ ¼ − on j0iL. Suppose the Minkowski vacuum can be

written as j0iM ¼ FðbðσÞ†mΩQÞj0iRj0iL, where FðbðσÞ†mΩQÞ is a
function of all creation operators for the Rindler modes.
One may derive that

FðbðσÞ†mΩQÞ ∝ exp

�X
mΩQ

ð−1Þme−ΩπbðþÞ†
mΩQb

ð−Þ†
−mΩQ

�
; ð46Þ

and the Minkowski vacuum state can be written as

j0iM ∝
Y
mΩQ

X∞
nmΩQ¼0

ð−1ÞmnmΩQe−ΩπnmΩQ jnmΩQiRjnmΩQiL;

ð47Þ

where
Q

represents direct products, and nmΩQ is the

number of particles in mode hðþÞ
mΩQ. For consistency, when

we write jnmΩQiL, we actually mean that there are nmΩQ
particles with an OAM of (−m) in the left region. One may
notice that the above expression is not normalizable
because the coefficients are independent of Q, which
can be any positive whole number. This reflects the fact
that the Minkowski vacuum and the Fulling-Rindler vac-
uum are not unitarily equivalent [16]—i.e., one cannot be
transformed from the other one by a unitary operator. The
expression is only valid for each mode, and the most
important information it carries is the relative frequency
that each mode represents. Since we mainly care about the
number of particles with OAM m, we may focus our
attention only on the label m and suppose the observer
(detector) can only be excited by particles with energy E.
Then, we can write

j0iM ¼ C
X∞

fnm¼0g
ð−1Þ

P
l
lnle−π

P
l
ðEþlωÞnl=ajfnlgiRjfnlgiL;

ð48Þ

where C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

lð1 − e−2πðEþlωÞ=aÞ
q

, and fnlg is a set of

particle numbers with a different OAM l.
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What OAM modes are allowed? When the observer is
linearly accelerated, all OAM modes are permitted in the
Bogoliubov transformation, which is another reason that
causes the Rindler particle number in the Minkowski
vacuum state to diverge. However, when the observer starts
to rotate, according to Eq. (28) and the restriction that the
Rindler energy must be positive, we can see that if the
angular velocity of the observer ω is positive, then only
modes with l > −E=ω are allowed, and when ω < 0, those
with l < −E=ω are allowed. We define the critical OAM lc
to be the one that splits the allowed and the forbidden
modes. Hence, we may write

lc ¼

8>>>>><
>>>>>:

⌈− E
ω⌉ if ω > 0 and Emod ω ≠ 0;

− E
ω þ 1 if ω > 0 and Emodω ¼ 0;

b− E
ωc if ω < 0 and Emod ω ≠ 0;

− E
ω − 1 if ω < 0 and Emod ω ¼ 0;

ð49Þ

where ⌈ · ⌉ and b·c are the ceiling and floor functions,
respectively. Then, the normalization constant can be

further given by C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe−2πðEþlcωÞ=a; e−2πjωj=aÞ∞

q
, where

ða; qÞn ¼
Q

n−1
k¼0ð1 − aqkÞ is the q-Pochhammer symbol.

We also can calculate the probability of finding nl
particles with OAM l, where l runs over all permitted
values, which is given by

PðfnlgÞ ¼ C2 exp

�
−2π

P
lðE þ lωÞnl

a

�
; ð50Þ

where l runs over all permitted OAM values. And the
ensemble average of the total OAM for these Rindler
particles is given by

hLzi ¼
X
fnlg

��X
m

mnm

�
PðfnlgÞ

�
¼

X
l

l

e2πðEþlωÞ=a − 1
;

ð51Þ

where, as usual, l and m can take all permitted values.
However, there is a paradox. From the perspective of the

Rindler observer who is moving along a rotating accel-
erated trajectory, the scalar field may not be in its ground
state. Instead, the field may contain some particles, and the
detector is excited by these particles to pick up some energy
and OAM. Meanwhile, the field decays to a lower energy
state and loses some OAM. However, this would be absurd
from the eye of an inertial observer, who, in turn, would see
that the scalar field is already in its ground state—i.e., the
vacuum state—and there are no particles. No more energy
or OAM can be extracted from the field. It would seem that
the conservation of energy and OAM is broken, because the
Rindler observer gains some energy and OAM, while the
field cannot decay to anything else. This paradox may be

solved by noticing that the Rindler observer is accelerating
and rotating, which means there exists some external source
to maintain its acceleration and rotation [2,31]. Hence, the
Rindler observer takes energy and OAM from the external
source, instead of the field itself.
The OAM spectrum is most easily seen by the expected

number spectrum of Rindler particles, which is given by

NmE ¼ Mh0jbðσÞ†mE bðσÞmE j0iM ¼ e−ðEþmωÞπ=a

2 sinhððE þmωÞπ=aÞ : ð52Þ

As before, we omit the Q label since it does not affect the
spectrum. For later use, we first draw the curve for the
expected particle number with fixed energy E ¼ 1 and
OAMm ¼ 3 by varying the angular velocity ω in Fig. 1(a).
The units of E, ω, and a are J, J=ℏ, and cJ=ℏ, respectively.
From the figure, we find that as ω increases from zero, the
expected particle number decays exponentially. On the
other hand, when ω → −E=m from the right, the expected
particle number will approach infinity. As we will find out

(a)

(b)

FIG. 1. The curves for expected particle number. The energy E,
angular velocity ω, and the acceleration a are in the units of J,
J=ℏ, and cJ=ℏ, respectively. The acceleration a is set to 10. The
energy E and the OAM l are, respectively, set to (a) 1 and 3, and
(b) −1 and −3.
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later, this infinite number of particles will cause entangle-
ment to degrade to zero. If ω continues to decrease, when
ω ≤ −E=m, no particle is allowed to appear, because other-
wise the requirement that the Rindler energymust be positive
will be violated. We also calculate the expected particle
number for opposite energy and OAM, as in Fig. 1(b). This
curve is conjugate to the above one. One can see that the
particles with E ¼ −1 and m ¼ −3 live in the region where
thosewith E ¼ 1 andm ¼ 3 are not allowed. Asω decreases
from −E=m, the expected particle number drops, as well.
Currently, the detection of the Unruh effect is impos-

sible, since it will require an enormously great acceleration.
Many efforts have been focused on reducing the difficul-
ties. For example, the experimentally verified Sokolov-
Ternov effect may be related to the circular Unruh effect
[32]; the high-energy channeling radiation experiment
could be the first observation of acceleration-induced
thermality [33]; by using the geometric phase, it is shown
that the acceleration needed can be as low as 1017 m=s2; a
localized laser coupled to a Bose-Einstein condensate may
be used to observe an analog of the circular Unruh effect
[34]. Meanwhile, Eq. (52) indicates that the rotation may
facilitate the detection of Rindler particles when the OAM
is nonzero. To find out how rotation affects the detection
results, we draw the expected particle numbers with
different acceleration a and angular velocity ω for l ¼ 0,
l ¼ 3, and l ¼ 10, respectively, in Fig. 2. In Fig. 2(a), we can
see that the rotation causes no changes in the expected
particle numbers. This is because the energy shift termmω, in
Eq. (52), vanishes. In this case, the rotation will not reduce
the difficulties of detectingRindler particles. However, when
the OAM is nonzero, as in Figs. 2(b) and 2(c), the particle
numbers are altered by the rotation. Note that we have
truncated the particle numbers at 10 for better illustration.
When the acceleration and the angular velocity have opposite
directions, the expected particle numbers will be raised,
before the angular velocity reaches a critical valueωc ¼ E=l,
where all particles will suddenly disappear. By comparing
Fig. 2(b) with Fig. 2(c), one can find that if we increase the
OAM, then the same expected particle number can be
achieved by using a smaller angular velocity. This is because
by using a higher OAM l, the critical angular velocity ωc
moves towards zero, and the energy shift term lω grows, as
well. Therefore,we nowhave three degrees of freedom—i.e.,
the acceleration, the angular velocity, and the OAM value—
all of which can enhance the detection as they increase (the
angular velocity increases in the opposite direction).
Next, we plot the distribution for the expected particle

numbers of different OAM modes. One may notice that the
energy E modifies the distribution differently when it has
different signs. First, suppose E > 0. This is the most
common case, where the observer detects a particle with a
definite energy E and some OAM value l. In Fig. 3, we plot
the particle number distributions for different angular
velocities ω. The acceleration a is set to 10. Figure 3(a)

shows that when ω ¼ 0, as we find in our previous study
[17], all OAM modes share the same particle number. The
ensemble average of total OAM hLzi is zero, which reflects
the fact that the spacetime structure of the transverse plane
along the observer’s trajectory is isotropic. When the
observer starts to rotate with a positive angular velocity,
the critical OAM lc moves from negative infinity to the

(a)

(b)

(c)

FIG. 2. The expected particle numbers for (a) l ¼ 0, (b) l ¼ 3,
and (c) l ¼ 10 modes. For better illustration, we truncate the
particle number at 10 for l ¼ 3 and l ¼ 10 modes. The energy E
is set to 1.
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right. As ω increases, more and more modes disappear, and
the modes to the right of lc are regulated by an exponential
function and form a tail, as shown in Fig. 3(b). When ω
reaches E, all negative OAMmodes are disallowed, and the
critical OAM lc stops at l ¼ 0, as in Fig. 3(c). Figure 3(d)
shows that as ω continues to grow, the positive modes are
depressed more and more strongly. If the light-speed limit
is set aside for a moment, in the case where ω ¼ ∞, only
the l ¼ 0 mode can survive. In this case, from the
perspective of the observer, the surrounding spacetime is
rotating with an angular velocity of −∞. The spacetime
points on the transverse plane will not be well defined. If
any nonzero OAM shows up, it will induce an ill-defined
phase factor. Hence, we expect only the zero OAM modes
to survive, as our calculation shows. We also plot the
probability distribution for negative angular velocity in
Figs. 3(e) and 3(f). They show a similar but reverse
procedure as the ω gradually decreases to negative infinity.
In contrast to the linear accelerated frame, a new kind of

particle exists in the rotating case. When ω ¼ 0, the particle
energy E is equal to the Rindler energyΩ. This requires that
the particle energy always be positive. Hence, the proba-
bility of detecting a negative-energy particle is zero, as
shown in Fig. 4(a). However, when the detector starts to
rotate, the introduction of lω with l > 0 allows the
existence of negative-energy modes. The detector can be
excited either by absorbing a positive-energy particle or
emitting a negative-energy particle. The negative particle is

mainly located beyond the static limit, and this process is
analogous to the Penrose effect near a rotating black hole
[23]. For a given negative E, the modes l > jEj=ω can be
detected, but higher-order OAM modes have a lower
probability, as in Fig. 4(b). As the angular velocity grows,
more and more positive modes are allowed, as in Fig. 4(c).
But in the end, it will stop at l ¼ 1. The zero OAM and
negative OAM modes are always forbidden. The expected
particle number of l ≥ 1will continue to be suppressed asω
keeps growing. When ω → ∞, all modes vanish again, as
in Fig. 4(d). A similar but reverse procedure shows up when
the ω is negative, as in Figs. 4(e) and 4(f).

VI. UNRUH-DEWITT DETECTOR
FOR OAM MODES

In the previous section, we see that the Minkowski
vacuum state can be expressed by particle states in the
rotating accelerated frame, but one may ask how the
observer will actually experience these states. We will
use an Unruh-DeWitt detector (UD detector) to represent
the observer, and we study how the detector reacts when it
interacts with those states. Originally, the UD detector was
designed to be a pointlike two-level monopole quantum
system, which interacts with the scalar field locally via the
interaction Hamiltonian [3,23,31],

HI;oriðτÞ ¼ cðτÞ
Z

d3x0Mðτ; xiðτÞ; x0jÞψðx0jÞ; ð53Þ

(b)

(c) (d)

(e) (f)

FIG. 3. Distributions for the expected particle number with
E ¼ 1 and a ¼ 10. The angular velocities are set to (a) 0, (b) 0.1,
(c) 1, (d) 10, (e) −0.1, and (f) −1.
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(e) (f)

FIG. 4. Distributions for the expected particle number with
E ¼ −1 and a ¼ 10. The angular velocities are set to (a) 0,
(b) 0.5, (c) 2, (d) 10, (e) −0.5, and (f) −2.
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where τ is the proper time of the detector; cðτÞ is the
coupling factor, which is assumed to be small; and
Mðτ; xiðτÞ; x0jÞ is the monopole moment operator of the
detector. We denote the free Hamiltonians of the detector
and the scalar field by HD and Hψ , respectively. Since the
detector is modeled to be pointlike and move along the
observer’s trajectory (τ; xiðτÞ) in the right region, and its
interaction with the field is localized, then Mðτ; xiðτÞ; x0jÞ
should have the form

Mðτ; xiðτÞ; x0jÞ ¼ mðτÞδð3Þðx0i − xiðτÞÞ; ð54Þ

wheremðτÞ bears the role ofmonopolemoment operator, and
the three-dimensional Dirac delta function, δð3Þðx0i − xiðτÞÞ,
restricts the interaction to be localized to the trajectory of the
detector—i.e., xiðτÞ.
However, this UD detector may not be very useful for

detecting the OAM particles, because the OAM is a phase
distribution over the transverse plane, and it will not yield
the information for OAM by only detecting a single point.
Instead, to obtain the topological charge of an OAM
particle, we should extract the phase information along a
transverse circle centered in the propagation axis. For this
reason, we shall redesign the UD detector to be transverse-
extended—i.e., we leave the longitudinal interaction to be
localized. First, we assume that the detector has a ringlike
shape extending from a circle with a small radius r, so we
can extract phase information over the ring, and we write
the r0 dependence of the monopole term as e−ðr0−rÞ2=ð2L2Þ=r0,
where L is some scale parameter. The 1=r0 factor is
included simply to cancel the r0 factor introduced by
d3x0 ¼ r0dr0dθ0dx03. In fact, if we leave out the 1=r0 factor,
we will only have to include a constant r in the result,
which can be absorbed by the weak coupling factor. This
justifies the inclusion of 1=r0. The e−ðr0−rÞ2=ð2L2Þ factor
restricts the interaction to be near the circle. When L
increases, the ring extends, on the transverse plane, from
the circle, and the interaction area with the field increases,
as well. However, we wish to keep the interaction local, at
least to some extent, as the original UD detector does, so we
choose to decrease the scale parameter L, and the detector
shrinks toward the circle. When L is small enough, we
could approximate e−ðr0−rÞ2=ð2L2Þ by

ffiffiffiffiffiffi
2π

p
Lδðr0 − rÞ, where

L is now only a real number. Further, we would like the
detector to interact only with particles with a particular
OAM. Thus, let us consider a simplest case, where there are
only two different states. One is the ground state with OAM
0. The other one is an excited state with OAM l. They will
be denoted by jg; 0i and je; li, respectively. To let the
detector couple to a particle with OAM l, we require that at
τ ¼ 0 the detector have a phase structure of e�ilθ0 in the
form of ðje; lihg; 0je−ilθ0 þ jg; 0ihe; ljeilθ0 Þ, where the first
term describes that a detector in the ground state absorbs a
particle with OAM l to jump to the excited state, while the

latter term describes the reverse process. There is another
important modification. Note that the phase structure e�ilθ0

is defined in the detector’s inertial frame, or we may say
that the structure is constructed before the detector starts to
rotate. However, when the detector rotates, it will become

e�ilθ̃0 , where θ̃0 ¼ θ0 − ωτ is the azimuthal angle in the
rest frame of the detector. Hence, when viewed from the
Rindler frame, the phase structure should be written as
ðje; lihg; 0je−ilθ0þilωτ þ jg; 0ihe; ljeilθ0−ilωτÞ. Later, we will
see that this structure indeed ensures that the detector will
only couple to particles with OAM l. As for the interaction
along x03, it is still local and can be written as δðx03 − x3Þ.
Putting these factors together, we can derive the interaction
Hamiltonian for the transverse-extended UD detector to be

HIðτÞ¼cðτÞ
Z

dr0dθ0dx03eiHDτðje;lihg;0je−ilθ0þilωτþjg;0i

×he;ljeilθ0−ilωτÞe−iHDτ
ffiffiffiffiffiffi
2π

p
Lδðr0−rÞδðx03−x3Þ

×ψðτ;r0;θ0;x03Þ

¼cðτÞ
Z

2π

0

dθ0eiHDτðje;lihg;0je−ilθ0þilωτþjg;0i

×he;ljeilθ0−ilωτÞe−iHDτψðτ;r;θ0;x3Þ; ð55Þ

where in the last line,
ffiffiffiffiffiffi
2π

p
L is absorbed into the

coupling factor cðτÞ. For simplicity, we will assume
cðτÞ is invariant in time—i.e., cðτÞ ¼ c. Also, in the
Heisenberg picture, the interaction Hamiltonian evolves
as HIðτÞ ¼ eiHDτHIð0Þe−iHDτ.
Let us assume that the detector starts out in the state

jei; lii and interacts with a scalar field which is in the state
jψ ii at the time τi; we can denote the state of the system as
jei; li;ψ ii ¼ jei; lii ⊗ jψ ii. In the interaction picture, we
can derive the evolution of the system to the time τf, in the
first-order approximation, as

jfei; li;ψ igðτfÞi ¼
�
1 − i

Z
τf

τi

dτHIðτÞ
�
jei; li;ψ ii: ð56Þ

Then, the probability that the detector ends up in a different
state jef; lfi (ef ≠ ei) is given by

Pi→f ¼ hei; li;ψ ij
Z

τf

τi

dτH†
I ðτÞjef; lfihef; lfj

×
Z

τf

τi

dτ0HIðτ0Þjei; li;ψ ii; ð57Þ

where we have traced out the final field state jψfi because
we only care about how the detector reacts.
First, we consider the case that jei; lii ¼ jg; 0i and

jef; lfi ¼ je; li and the energy gap between these states
is E > 0. The probability that the detector becomes excited
is now given by
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Pg→e ¼ c2
Z

τf

τi

dτ
Z

τf

τi

dτ0e−iEðτ−τ0Þe−ilωðτ−τ0Þ
Z

2π

0

dθ

×
Z

2π

0

dθ0hψ ijeilθψðxðτÞÞe−ilθ0ψðx0ðτ0ÞÞjψ ii: ð58Þ

If the initial scalar field is in the Minkowski vacuum state—
i.e., jψ ii ¼ j0iM—the correlation function will be the
positive-frequency Wightman function—i.e.,

Gþ
l ðxðτÞ; xðτ0ÞÞ≡

Z
2π

0

dθ
Z

2π

0

dθ0h0jMeilθψðxðτÞÞ

× e−ilθ
0
ψðx0ðτ0ÞÞj0iM: ð59Þ

Later, it will turn out that the positive-frequency Wightman
function only depends on the proper time difference τ − τ0,
so we may write it as Gþ

l ðτ − τ0Þ. By changing variables
from τ and τ0 to u ¼ τ þ τ0 and s ¼ τ − τ0, we can derive
the transition rate as

Γg→e ¼ 2c2
Z

τf−τi

τi−τf
e−iEs−ilωsGþ

l ðsÞds: ð60Þ

To avoid any transient effects and to let the detector reach a
thermal equilibrium with the scalar field, we can further
take the limits τi → −∞ and τf → ∞.

To calculate the positive-frequency Wightman function
Gþ

l ðx; x0Þ, we use the ðχ; ξ; r; θÞ coordinates and expand the
Minkowski vacuum state by Eq. (48). When expanding the
field operator ψðxÞ by Eq. (31), we only keep the modes
with σ ¼ þ. This is because when we calculate the
interaction Hamiltonian, Eq. (55), the Dirac delta function,
δðx03 − x3Þ, restricts the field operator to the points fol-
lowed by the detector. Since the detector is running in the
right region, the modes with σ ¼ −, which have no
definition for ξ > 0, will not take part in the calculation.
Also, the points along the detector’s trajectory are given by
Eqs. (7) and (8). One may verify that Gþ

l ðx; x0Þ indeed only
depends on s ¼ τ − τ0. The result is

Gþ
l ðsÞ ¼

X
m

X
Q

Z
∞

0

dΩ
�
Jmðũm;Qr0ÞKiΩðũm;Q=aÞ
r�Jmþ1ðum;QÞð1 − e−2ΩπÞ

�
2

×
4 sinhðΩπÞ

π
½e−2ΩπeiΩasδðl −mÞ þ e−iΩas

× δðlþmÞ�: ð61Þ

Note that the Rindler energy is related to the proper energy
by Eq. (28). By substituting Gþ

l ðsÞ into Eq. (60), we can
derive the transition rate to be

Γg→e ¼ C
X
m

X
Q

Z
∞

−mω
dE

�
Jmðũm;Qr0ÞKiðEþmωÞ=aðũm;Q=aÞ
Jmþ1ðum;QÞð1 − e−2πðEþmωÞ=aÞ

�
2

sinh

�ðE þmωÞπ
a

�
½e−2πðEþmωÞ=aδðl −mÞδðE − EÞ

þ δðlþmÞδðEþ EÞ�; ð62Þ

where all unimportant constants are absorbed into a single
constant C. The terms in the second square bracket bear the
selection rules that we are looking for. The first term
describes the process in which the detector absorbs a particle
in state jE; li to jump from the ground state to the excited
state, while the second term says that the detector emits a
particle in state j − E;−li, or equivalently, the detector

absorbs a particle in state jE; li. Hence, the detector is only
coupled to the particles with OAM l, as we required.
The summation related to Q is messy, but it will turn out
to be insignificant, so we just write it as IðE; m;ωÞ ¼P∞

Q¼1½Jmðũm;Qr0ÞKiðEþmωÞ=aðũm;Q=aÞ=Jmþ1ðum;QÞ�2 with
a useful property that IðE; m;ωÞ ¼ Ið−E;−m;ωÞ. Then,
the transition rate is given by

Γg→e ¼ C
Z

∞

−lω
dE

sinhððE þ lωÞπ=aÞ
1 − e−2ðEþlωÞπ=a IðE; l;ωÞe−2ðEþlωÞπ=aδðE − EÞ þ C

Z
∞

lω
dE

sinhððE − lωÞπ=aÞ
1 − e−2ðE−lωÞπ=a

× IðE;−l;ωÞδðEþ EÞ: ð63Þ

Note that the lower limits of the integral, �lω, are
excluded. Similarly, by letting jei; lii ¼ je; li and jef; lfi ¼
jg; 0i, one can derive the transition rate, Γe→g, from the
excited state to the ground state.

The detailed balance relation states that if the detector is
initially in thermal equilibrium with the field, the popula-
tions of different states will not change in time after the
detector starts to interact with the field—i.e.,
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Pe

Pg
¼ Γg→e

Γe→g
; ð64Þ

where Pg and Pe are the probabilities that the detector is in
the states jg; 0i and je; li, respectively. This relation will
show us the thermal characteristics of Rindler particles. If
ω ¼ 0 or l ¼ 0, one may verify that the detailed balance is
given by

Pe

Pg
¼ e−2πE=a: ð65Þ

This is precisely the Boltzmann distribution for the energy
gap E in the Davies-Unruh temperature T ¼ a=ð2πÞ. If the
detector starts to rotate, the transition rates should be
calculated in three different cases based on the relation
between E and�lω, and these cases correspond to different
processes. We plot these cases in Fig. 5, where the red lines
indicate the integral ranges for the two integrals in the
transition rates. In the first case, where E ≤ −lω, only
integrals with the lower limit being lω survive. Hence, Γg→e

corresponds to the process where the detector emits a
particle in j − E;−li, and for Γe→g, the detector will absorb
one such particle. In contrast, when E ≤ lω, only integrals
with the lower limit being−lω contribute, and the transition
rates Γg→e and Γe→g are related to the absorbing or emitting
particles in jE; li by the detector, respectively. In the last
case, where E > jlωj, only terms with δðE − EÞ are non-
zero, and the transition rates describe the same process as in
the second case. However, all cases will yield the same
detailed balance relation,

Pe

Pg
¼ e−2πðEþlωÞ=a: ð66Þ

This relation can be interpreted in two different kinds of
frames. In the eye of an inertial observer, this is still a
Boltzmann distribution, but the energy needed to jump
from jg; 0i to je; li is shifted by lω. One may ask the reason
for this energy shift. First, we note that the energy of a
Rindler particle is defined in the rest frame of the detector,
as stated before Eq. (27). Meanwhile, the energy registered
by an inertial observer should be calculated in the comov-
ing inertial frame of the detector. This frame is different
from the rest frame, since the latter one can be noninertial.

Let us denote the coordinates in the comoving inertial
frame as (t, r, θ, z). The tangent vectors of the observer’s
worldline form the Killing vector field in Eq. (2). The last
term, aKz, is only responsible for the generation of Rindler
particles, so we can focus on the rest part, which defines the
rotational motion of the detector on the transverse plane,
and redefine the Killing vector field as v ¼ ∂t þ ω∂θ. We
can transform to a rotating coordinate system ðτ; r0; θ0Þ by

τ ¼ t; r0 ¼ r; θ0 ¼ θ − ωt; ð67Þ

if this system is adapted to the detector by requiring τ to be
its proper time [20]. The rotating coordinate system is the
one that is defined in the rest frame. Suppose the detector
can be excited by a particle with energy E and OAM lwhen
it does not rotate, so its transition probability contains
factors of e−iEteilθ in the comoving inertial frame, as can
seen from Eq. (58) with ω ¼ 0. Then, after the detector
starts to rotate, t and θ should be replaced by τ and θ0.
Hence, these factors will be transformed back to the inertial
frame as e−iðEþlωÞteilθ. Therefore, the energy registered by
an inertial observer is shifted by lω. We plot the population
of the excited state je; li in Fig. 6 with E being set to 1.
When lω increases, the energy gap from jg; 0i to je; li
becomes greater, resulting in a higher probability that the
detector stays in the state jg; 0i. On the other hand, when lω
decreases, the energy gap is narrowed down, and it is easier
for the detector to jump to the state je; li. When lω
approaches −E from the right, the energy gap will approach
zero. The energy-time uncertainty principle requires that
the transition time approach infinity. This makes the
detector unable to determine whether it detects a particle
or not. If lω keeps decreasing, the two detector states will
exchange their roles. je; li will have a lower energy
eigenvalue than jg; 0i. In this case, the detector actually
emits a positive energy particle to jump to je; li. As lω goes

(b) (c)

FIG. 5. The integral ranges for three different cases. The red
lines indicate the integral ranges for the two integrals in the
transition rates. Note that the points of�lω are excluded from the
integrals.
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FIG. 6. Probability that the detector is in the states je; li. E and
a are set to 1 and 10, respectively.
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lower, je; li will have lower and lower energy eigenvalues,
and it would be easier for the detector to decay to je; li.
It will be a different story in the rest frame, where the

detector always interacts with particles in states jE; li when
lω > −E. Let us start from lω ¼ 0, where, as usual, the
detector detects a thermal Rindler particle bath. When lω
increases, the average particle number in the field is
diminished, and it is harder and harder for the detector
to jump to a higher energy state. A reverse process happens
when lω decreases. When lω approaches −E from the
right, the energy gap in the inertial frame will approach
zero, while the average particle number explodes to infinity.
It now has equal rates for absorption and stimulated
emission. Also, these particles are vacuum noise, which
would impair the detection of entanglement when we
explore spatial entanglement later. This would cause the
phenomena of decoherence and entanglement degradation.
When lω reaches −E, the mode with energy E is forbidden.
Instead, the negative-energy mode takes its place. Now, if
the detector wants to jump to je; li, it cannot absorb a jE; li
particle, since there are none of them; it actually emits a
j − E;−li particle. If lω keeps decreasing, the average
particle number of j − E;−li in the field decreases, as well.
Therefore, the detector has a higher chance to emit such a
particle and jump to state je; li.

VII. OAM ENTANGLEMENT IN ROTATING
ACCELERATED FRAME

Before we explore the OAM entanglement, we shall
study the one-particle state in Minkowski spacetime. In
previous sections, we define a new set of Minkowski modes

fðσÞmΩQðxμÞ by their annihilation and creation operators in
Eqs. (41) and (42). But what kind of particles do these
modes describe? Clearly, by the definition of the function

PðσÞ
Ω ðk3Þ, their labels, and the single-mode Bogoliubov

transformation, we know they define particles with OAM
m, Rindler energyΩ, and transverse wave numberQ. These
particles are no longer monochromatic wave packets;
instead, they are linear combinations with a distribution

PðσÞ
Ω ðk3Þ of these wave packets. There is another important

question: How will these particles move? More specifically,
can these particles be detected by an observer in the Rindler
right region or in the Rindler left region? The original
modes glEk3ðxμÞ describe particles that can be detected
either in the Rindler right region or in the Rindler left
region. Nothing stops us from doing this. Just by switching
the sign of k3, the particles will move in the opposite

region. Will the particles defined by fðσÞmΩQðxμÞ behave

similarly? We start by letting the operator aðþÞ†
l act on the

Minkowski vacuum state,

aðþÞ†
l j0iM ¼ j1liM; ð68Þ

where we omit the labels Ω and Q, since we mainly study
the degrees of freedom of OAM. By using the single-mode
Bogoliubov transformation, Eq. (45), we have

j1liM ¼ Ce−ðEþlωÞπ=ð2aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh

ðE þ lωÞπ
a

r X∞
fnm¼0g

× ð−1Þ
P

j
jnje−π

P
j
ðEþjωÞnj=a ffiffiffiffiffiffiffiffiffiffiffiffiffi

nl þ 1
p

× j � � � ; nm;…; nl þ 1; � � �iRj � � � ; nm;…; nl; � � �iL:
ð69Þ

From this expression, we can see that the operator aðþÞ†
l

defines a particle moving in the Rindler right region—i.e.,
it can only be detected by an observer moving in the

Rindler right region. Similarly, að−Þ†l will create a particle
moving in the opposite region.
Now, we study the OAM entanglement based on the one-

particle states. Unlike the degrees of freedom of spin
angular momentum (SAM), which is specified in a
finite-dimensional space—e.g., 2 for photons—OAM can
assume well-defined values of lℏ where l ¼ 0;�1;�2;…
that span an infinite-dimensional Hilbert space [35–47]. Due
to the fact that information may be encoded in a high-
dimensional space, OAM is a potential source for future
quantum communications [37,40,41]. For now, let us con-
centrate on the two-dimensional entanglement, defined by

jψi ¼ 1ffiffiffi
2

p ðj1−liAj1liB þ j1liAj1−liBÞ; ð70Þ

where l is the particleOAM, and the subscriptsA andBmean
that the first particle is stored by the observer Alice, while the
second one is stored by Bob. Then, let Bob send the particle
he stores to a Rindler observer moving in the right region, so

this particlemaybe expressed byaðþÞ†
m j0iB withm ¼ �l.We

require that all modes in this system can be detected with the
same energy E > 0. SinceΩ ¼ ðE � lωÞ=a > 0, the angular
velocity of the observer is restricted by−E=l < ω < E=l. By
using the expression for the Minkowski one-particle state in
the Rindler coordinates, we can write the entangled state as

jψi ¼ C
X
n−l

X
nl

ð−1Þ−ln−lþlnle−π½ðE−lωÞn−lþðEþlωÞnl�=a

×

�
e−ðEþlωÞπ=ð2aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnl þ 1Þ sinh

�ðE þ lωÞπ
a

�s

× j1−liAjn−l; nl þ 1iRjn−l; nliL þ e−ðE−lωÞπ=ð2aÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn−l þ 1Þ sinh

�ðE − lωÞπ
a

�s
j1liAjn−l þ 1; nliR

× jn−l; nliL
�
; ð71Þ
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where C ¼ 2e−2Eπ=a½cothððE − lωÞπ=aÞ − 1�−1=2½cothððEþ
lωÞπ=aÞ − 1�−1=2 is the normalization constant. The density
operator may be derived by ρ ¼ jψihψ j. Since the entangle-
ment will be measured between Alice and the Rindler
observer, we can partially trace out the L part in the density
operator, resulting in ρAR. Therefore, the system purity,P, is
calculated by [48–50]

P ¼ trððρARÞ2Þ ¼ 1

4
ðe−2πðEþlωÞ=a − 1Þð−4þ e−4Eπ=a

þ e−4ðE−lωÞπ=a þ 3e−2ðE−lωÞπ=a − e−2ðEþlωÞπ=aÞ: ð72Þ

Tomeasure the entanglement, we first notice that the Rindler
particles are thermal and noncorrelated, so we can approx-
imately calculate the entanglement by setting n�l ¼ 0. We
will use negativityN to quantify the entanglement [51–53].
First,we partially transpose the density operator, with respect
to the R part, giving

ρARPT ¼ C2ðf21j1−liAj1liRh1−ljAh1ljR þ f1f2j1−liAj1−liR
× h1ljAh1ljR þ f1f2j1liAj1liRh1−ljAh1−ljR þ f22

× j1liAj1−liRh1ljAh1−ljRÞ; ð73Þ

where f1 ¼ e−ðEþlωÞπ=ð2aÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhððE þ lωÞπ=aÞp

and f2 ¼
e−ðE−lωÞπ=ð2aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhððE − lωÞπ=aÞp

. Its eigenvalues are
C2f21,C

2f22, and�C2f1f2. Hence, the negativity is given by

N ¼ e−5Eπ=aðe2ðEþlωÞπ=a − 1Þðe2ðE−lωÞπ=a − 1Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh

�ðE þ lωÞπ
a

�
sinh

�ðE − lωÞπ
a

�s
: ð74Þ

We can do a sense check. When the acceleration a → 0 and
the angular velocity ω → 0, the parity P → 1 and the
negativity N → 1=2. That means no decoherence or entan-
glement degradation happens, as one would expect. We plot
the purities and the negativities with different OAM l and
positiveω in Fig. 7. One can easily find that there are similar
curves for ω < 0. The curves show that as the angular
velocity ω increases, the coherence and the entanglement of
the system degrade.Whenω → E=l, they will be completely
destroyed. From the perspective of the rotating accelerated
detector, this is the case where it can interact with an infinite
number of thermal particles besides the entangled particle.
The detector cannot distinguish thermal and entangled
particles; they are totally the same thing. Therefore, the
entanglement is completely destroyed. To see the degrada-
tion strength for different OAM modes, we define the
decay angular velocity as the one by which the negativity
of the system drops to 1=e of the initial value—i.e.,
N ðωDÞ ¼ N ða ¼ 0;ω ¼ 0Þ=e, with a definite acceleration
a. Numerically, we find that the decay angular velocities are

0.885, 0.442, 0.177, 0.0984, and 0.0443 for l ¼ 1, 2, 5, 9, and
20, respectively, which shows that higher-order OAMmodes
will suffer more severe degradation.
As we have mentioned, the degrees of freedom of OAM

have the potential to create high-dimensional entanglement.
Will this fact help us further reduce the required ω if we
want to use such entanglement to verify the existence of
Rindler particles? Let us study how the high-dimensional
entanglement is impacted in the rotating accelerated
frame. Suppose we have a high-dimensional two-particle
entangled state

jψi ¼ 1ffiffiffiffi
D

p
XM
l¼−M

j1−liAj1liB; ð75Þ

where D ¼ 2M þ 1 is the dimension of entanglement, and
again, the subscripts A and B mean the observers Alice and
Bob, respectively. Then Bob sends his particle to a Rindler
observer moving in the right region. As in the two-
dimensional entanglement, similar calculations will give
us that the entangled state can be written as

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

(a)

(b)

FIG. 7. Curves for (a) purities and (b) negativities with OAM
l ¼ 1, 2, 5, 9, and 20. We set E ¼ 1 and a ¼ 1.
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jψi ¼ Cffiffiffiffi
D

p
XM
l¼−M

e−ðEþlωÞπ=ð2aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh

ðE þ lωÞπ
a

r X∞
fnm¼0g

ð−1Þ
P

j
jnje−π

P
j
ðEþjωÞnj=a ffiffiffiffiffiffiffiffiffiffiffiffiffi

nl þ 1
p

j1−liA

× jn−M;…; nl þ 1;…; nMiRjn−M;…; nl;…; nMiL; ð76Þ

where the index m runs from −M to M, the normalization
constant C ¼ ðQM

m¼−M ½1 − e−2πðEþmωÞ=a�Þ1=2, and we only
keep track of OAM modes from −M to M. The system
purity is given by

P ¼ 1

ð2M þ 1Þ2
YM

m¼−M
tanh

�ðE þmωÞπ
a

� XM
l¼−M

XM
j¼−M

× ½1þ e−2ðEþlωÞπ=a�−1½1þ e−2ðEþjωÞπ=a�−1; ð77Þ

and the negativity is given by

N ¼
XM
l¼−M

Xl−1
j¼−M

2C2

D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh

�ðE þ lωÞπ
a

�
sinh

�ðE þ jωÞπ
a

�s

× e−ð2EþlωþjωÞπ=ð2aÞ: ð78Þ

The purities and negativities for M ¼ 1, 2, 5, 9, and 20 are
shown in Fig. 8.
One can find from Fig. 8(a) that a higher-dimensional

system will be impacted more severely when the angular
velocity ω increases. One may notice that, unlike in
Fig. 7(a), for high-dimensional systems, the purities at
ω ¼ 0 are different. This reflects the fact that a higher-
dimensional system will suffer more degradation when the
accelerationa picks up.Wewill come back to this point soon.
One may feel that Fig. 8(b) does not clearly show which
entanglement degrades faster. So, to quantify the degrada-
tion, we can calculate the decay angular velocity ωD. The
results are 0.899, 0.449, 0.176, 0.0931, and 0.0368 for
M ¼ 1, 2, 5, 9, and 20, respectively. Compared with the
two-dimensional case, higher-dimensional entanglement
does not show obvious advantages. It may indicate that
the system dimension is insensitive to angular velocity; only
the highest order of OAM modes makes a difference.
Meanwhile, our previous study [17] shows that for a linearly
accelerated observer, if the entanglement dimension is given,
then the highest order of OAM modes does not lead to
different decay acceleration. In summary, if we want to
obtain stronger entanglement degradation with a smaller
acceleration, we should increase the entanglement dimen-
sion; on the other hand, we should increase the highest order
of OAM modes if we want to obtain stronger entanglement
degradation with a smaller angular velocity.

VIII. OTHER ROTATING
ACCELERATED FRAMES

As stated in the Introduction, all stationary trajectories in
Minkowski spacetime can be generated by the generators of
the Poincaré group. Generally, we can write the corre-
sponding Killing field as

∂τ ¼ Pt þ aKz þ ω3Jz þ ω1Jx ð79Þ

by choosing appropriate coordinates. Along this trajectory,
the rotation direction of the observer may be parallel
(ω1 ¼ 0, ω3 ≠ 0), nonparallel (ω1 ≠ 0), or orthogonal
(ω1 ≠ 0, ω3 ¼ 0) to the boost direction.
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FIG. 8. Curves for purities and negativities with maximal OAM
M ¼ 1, 2, 5, 9, and 20. We set E ¼ 1 and a ¼ 1.
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Actually, we can split the rotating accelerated motion
into two cases. The first case is the so-called planar motion
with ω1 ≠ 0, ω3 ¼ 0. This case is rather complicated and
should be analyzed by considering two different condi-
tions: a < ω1 or a > ω1 [23]. In the former condition,
a < ω1, the motion can be boosted into a pure circular
motion, and it has the Minkowski vacuum state. Therefore,
there is no OAM spectral for the vacuum state with this
motion. Meanwhile, if a > ω1, the motion can be trans-
formed into a linear accelerated motion along the z
direction with a drift with constant velocity along the y
direction (Note that our choice of acceleration and rotation
directions are different from those in Ref. [23]). Hence, the
OAM spectral has a trivial and even distribution, as studied
in Ref. [17].
The other case is the nonplanar motion with ω3 ≠ 0. We

now show that all nonplanar trajectories can be transformed
into the same form. Let us transform the Killing field,
Eq. (79), by a boost of βŷ and a spatial translation of x0x̂þ
y0ŷ þ z0ẑ (where the hats mean unit vectors) into

∂τ ¼ −βγω3Kx0 þ γðaþ βω1ÞKz0 þ γðaβ þ ω1ÞJx0
þ γω3Jz0 þ γð1þ βω3x0 − az0 − βω1z0ÞPt0

þ ω3y0Px0 þ ½−γω3x0 þ γω1z0 þ βγðaz0 − 1Þ�Py0

− ω1y0Pz0 ; ð80Þ

with γ ¼ ð1 − β2Þ−1=2. Now, we require the rotation direc-
tion to be parallel to the acceleration direction and all
temporal and spatial translation to vanish—i.e.,
γω3=½γðaβ þ ω1Þ� ¼ γðaþ βω1Þ=ð−βγω3Þ—and all terms
before Pμ0 are zero. Then, we can derive the spatial
translation to be x0 ¼ ω1=ðaω3Þ, y0 ¼ 0, z0 ¼ 1=a. The
restriction that jβj ≤ 1 leaves the solution to β as

β ¼ −ðω2
1 þ ω2

3 þ a2Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðω2
1 þ ω2

3 þ a2Þ2 − 4a2ω2
1

p
2aω1

:

ð81Þ

By varying ω1, one can verify that jβj ≤ 1. Thus, we
transform all nonplanar motion into motion where the
rotation and acceleration directions are parallel, and this
motion is discussed in all previous sections. Hence, our
previous results can be easily generalized into these non-
planar motions.

IX. CONCLUSION

In this paper, we mainly explore the OAM spectrum of
Rindler particles in the Minkowski vacuum and the OAM
entanglement degradation due to these particles in a
rotating accelerated frame. First, the spacetime structure
experienced by a rotating accelerated observer is studied.

The Rindler coordinates and metric are then constructed.
The Klein-Gordon equation is quantized in the cylindrical
and the Rindler coordinates. The former gives scalar
particles in the usual Minkowski spacetime, while the
latter shows that the scalar field can also be expressed
by another set of particles, called the Rindler particles. To
find the relation between these two different kinds of
particles, their Bogoliubov transformation is identified.
This somewhat messy transformation can be further written
by a single-mode transformation, based on which the OAM
spectrum of Rindler particles in the Minkowski vacuum is
explored. In contrast with the linear accelerated case, here a
new kind of particle with negative energy is allowed to
exist. We study how the expected particle numbers for
different OAM modes change as the angular velocity ω
varies, and under what conditions the Rindler particles can
exist. The results show that the ensemble average of the
total OAM approaches zero as ω → 0, which is consistent
with our earlier study [17]. The total OAM also approaches
zero when ω → ∞, reflecting the fact that the points of
spacetime on the transverse plane are ill-defined in this
case. To understand how the rotating accelerated observer
(detector) actually experiences, the UD detector is studied.
Its transition rate and the detailed balance relation are
analyzed. The results can be interpreted in the comoving
inertial frame and the rest frame, respectively. As seen in a
comoving inertial frame, the results manifest a Boltzmann
distribution, but with an energy shift, while from the
perspective of the rest frame, the particle numbers of
positive- and negative-energy modes affect the state pop-
ulation. Then, the OAM entanglement is explored. We find
that the entanglement dimension is insensitive to the
angular velocity ω; only the highest order of OAM modes
matters. Last, we discuss the general rotating accelerated
trajectories and show that we can generalize our results to
these stationary trajectories.
There are several questions to be explored. First, the

linearly accelerated motion can be related to trajectories
with constant radii near a Schwarzschild black hole, so can
the rotating accelerated observer be extended to a similar
case—e.g., near a rotating black hole? Second, the entan-
glement dimension and the highest order of OAM modes
are mainly affected by acceleration and rotation, respec-
tively. What causes this difference, and do they reflect
different aspects of the spacetime structure? Third, there are
many sources for gravitational waves and fluctuations.
They will introduce dynamical structures into the space-
time. How will the particle definition and OAM spectrum
be affected? Normally, the amplitudes of the waves and
fluctuations are small, so we anticipate that the particle
definition may still be usable in approximation, but the
energy and OAM spectra may need to be modified to reflect
the presence of the waves and fluctuations. These questions
motivate us to deepen our study in this area.
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