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Reflection coefficient of a reflectionless kink
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Classically, reflectionless kinks transmit all incident radiation. Recently, we have used an analyticity
argument together with a solution of the Lippmann-Schwinger equation to write down the leading quantum
correction to the reflection probability. The argument was fast, but rather indirect. In the present paper, we
calculate the reflection coefficient and probability by methodically grinding through the Schrodinger
picture time evolution. We find the same answer. This answer contains contributions not considered in the
traditional calculation of meson-kink scattering in 1991. However, as a result of these contributions, our
total result is zero in the case of the Sine-Gordon model, and so it is consistent with integrability.
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I. INTRODUCTION

The understanding of the interactions of solitons with
perturbative excitations has many potential applications,
from searches for cosmic strings in the cosmic microwave
[1] and gravity wave [2] backgrounds to soliton-soliton
scattering, where soliton-bulk interactions play a key role
[3-7].

At tree level, these interactions have long been under-
stood [8]. However, there is reason to believe that quantum
corrections qualitatively change the situation, as is thought
to be the case for the oscillon [9,10] and Q-ball [11]
lifetimes and dynamics [12]. This is because, in the
quantum theory, the leading quantum corrections appear
to make reflectionless kinks reflect perturbative mesons.
The leading quantum corrections to the scattering of kinks
with mesons were studied in a series of papers [13—15]
culminating in Ref. [16]. Recently, in Ref. [17], we have
used the Lippmann-Schwinger equations to provide a
quick derivation of the one-loop quantum corrections to
the elastic scattering amplitude. The result did not agree
with Ref. [16]. At least some of the differences are due to
the fact that some terms were explicitly dropped in
Ref. [16] as they were considered to be loop corrections;
however, we have shown that, in the case of the Sine-
Gordon theory, these terms in fact cancel other terms of the
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form of those that were kept, and this cancellation is in fact
a consequence of the integrability of the model.

Our derivation made several assumptions about analy-
ticity and ignored final states that did not correspond to
elastic scattering. While the Sine-Gordon theory did
provide a valuable check of our results, more general
models possess a cubic coupling at the minima, which
yields interactions far from the kink that are not present in
the Sine-Gordon model. This, together with the fact that
our result disagrees with the standard result of Ref. [16],
motivates an independent and robust recalculation of this
scattering amplitude.

The present paper does just this. We provide a derivation
of the amplitude in gory detail by considering an initial
meson wave packet incident on a kink and evolving it in
time, evaluating every contributing diagram up to second
order in the coupling constant.

This is done using the linearized soliton perturbation
theory of Refs. [18,19], reviewed in Sec. IL. It is a
Hamiltonian approach, which uses a decomposition of
the fields in normal modes following Ref. [20]. In particular,
no collective coordinate is introduced, removing many of
the complications present in traditional approaches [21,22].
The transition from a Hamiltonian to a kink Hamiltonian,
central to all approaches to quantum solitons since Ref. [23],
takes the form of a passive unitary transformation on
the regularized theory. This is in contrast with previous
approaches, which regularize the vacuum and kink sectors
separately and then need to introduce an arbitrary and often
inconsistent matching condition for the regulators [24].

In Sec. III we calculate all contributions to the scattering
amplitude not involving zero modes. The pieces of the final
state containing zero modes are fixed by translation invari-
ance [19]. However, there are contributions to the amplitude
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involving processes in which zero modes are created and
then are absorbed by the free evolution of the kink center of
mass. These are the hardest to calculate. In Secs. IV and V
we methodically calculate the final states containing four
and two zero modes. These are, as expected, determined by
translation invariance. However, in Sec. VI we show that
these calculations can be easily modified to generate the
final states that have no zero modes, but arise from
intermediate states involving zero modes. This provides
the final contribution to the elastic scattering amplitude.

The contributions found here agree precisely with those
of Ref. [17]. This suggests that, in the future, long
calculations such as that of the present paper may be
unnecessary. One may simply read the amplitudes off of
the solution to the Lippmann-Schwinger equations, as was
done in Ref. [17].

II. REVIEW
A. The theory

A number of efficient formalisms are available for
treating quantum solitons. At one loop, as reviewed in
Refs. [25,26], reliable and efficient spectral methods have
long been available. Recently a classical-quantum corre-
spondence has been introduced in Refs. [27,28] that cannot
treat nonlinearities, but has been applied even well beyond
the perturbative regime [29]. However, elastic scattering
occurs at the next order, so these formalisms will not be
suitable.

We will instead use linearized soliton perturbation
theory. Linearized soliton perturbation theory was devel-
oped at one loop in Ref. [18] and beyond in Ref. [19]. So
far, it has only been applied to 1 + 1-dimensional models of
a scalar field ¢(x) and its conjugate z(x),

H:/dx:H(x):a,
_ 7)) | 00 V(Vig()
Hx) =——+—F"—+——— (21

because in these models all ultraviolet divergences are
removed by the normal ordering ::,. However, the
formalism is also compatible with a cutoff regularization
and counterterms [30], and so we feel that it can be
generalized to more interesting models.

The potential V is required to have degenerate minima so
that there will be classical kink solutions ¢(x, ) = f(x).
We specialize to the case of reflectionless kinks, however,
we have shown in Ref. [31] that calculations such as those
that follow are effortlessly generalized to reflective kinks.
In the present context, the leading quantum contribution to
the reflection probability would arise from cross terms
between the amplitude calculated here, adjusted as in
Ref. [31], and the leading order amplitude [8,32].

We will expand perturbatively in the coupling constant A.
In Refs. [31,33] we have seen that meson multiplication
and Stokes scattering occur at order O(v/4) in the ampli-
tude. We will see that elastic scattering amplitudes begin at
order O(A).

The normal ordering will be defined at mass m, which in
turn is defined by

m? = VI (V/if (o).
IV (Vid(x))

o(Vag(x))"

where the masses V) (v/Af(o0)) and V) (V2f(=c0))
need to agree in order for a stationary kink state to
exist [34].

VO (Vad(x)) = (2.2)

B. States and sectors

The field ¢(x) has perturbative excitations. As usual,
these are created and destroyed by operators A" and A that
are in turn constructed by decomposing ¢ (x) and z(x) into
plane waves. This is to be expected, as plane waves are the
solutions of the linearized classical equations of motion.
We refer to such perturbative excitations as mesons. The
Fock space consisting of the vacuum plus some finite
number of mesons will be called the vacuum sector.

In the presence of a kink, the linearized equations of
motion become the Sturm-Liouville equation

VEO(Vaf(x))a(x) = wa(x) + g (),

P(x,1) = f(x) + e7"g(x). (2.3)

The solutions to this equation are normal modes g(x).
Normal modes can be divided into three categories,
depending on their frequency w. First, there is a single
zero mode

f'(x)
VQo

gp(x) = — (2.4)

with frequency wgz = 0. Here Q; is the order O(A/?7")
quantum correction to the kink mass, so Q is just the
classical kink mass. Second, for every real number k
there is a continuum mode with w, = vVm? + k?. Finally,
there may be discrete, real shape modes gg(x) with
0 < wg < m. We chose the convention g; = g_; and fix
the normalizations via

/ dxlgp (D) =1, / dxay, (x)a, (v) = 278(k, ~ ky),

/ dxas, (¥)a3, (x) = b, (2.5)
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Following Ref. [20], we may use the normal modes to
decompose the Schrodinger picture fields

0 = doan() + Y05% (B + 52 Jauto

s By

w0 = moau) + Y57 (8 -5 Jauto). 29

where we have defined the shorthand

. B! dk dk
Bi=—%  B_,=Bq, —= = .7
£ 20, -s = Bs izﬂ /27: + ; (2.7)

The canonical commutation relations satisfied by ¢(x)
and 7(x) imply that ¢y, 7o, B, and B* satisfy the algebra

[450,”0] =1, [BS],B?EJ = 5sls2’

[Bkl , BH = 216(k, — k»). (2.8)
The interpretation of these new operators is straightfor-
ward. In states with a kink, the operator Bi creates a
continuum normal mode, which we also call a meson. The
operator B§ excites an internal shape mode. The operators
¢ and 7z, correspond to the position and momentum of the
kink’s center of mass.

We refer to the kink ground state plus any number of
mesons and shape modes with any wave function com-
posed of ¢, as a kink sector state.

C. The Kkink sector

How do we construct a kink sector state? In classical field
theory, vacuum sector states correspond to fields ¢ (x, ¢) that
are close to a minimum of the potential, which we take be
zero, while kink sector states correspond to ¢(x, t) close to
f(x). Thus, one can turn a vacuum sector state into a kink
sector state by shifting ¢(x, 1) — ¢(x,1) + f(x).

In quantum field theory, one needs to be careful because
such a shift may be incompatible with the regularization
[35]. Instead, we will work directly in the regularized
theory and will, as described below, make use of the unitary
displacement operator

D; = Exp [—i / dxf(x)n(x)]. (2.9)

In the absence of a momentum cutoff, this indeed shifts
the field.

The key observation is that acting the operator D, on a
vacuum sector state yields a kink sector state, and all kink
sector states can be constructed in this way. Indeed, this is
just the old coherent state construction of soliton states
[36,37]. For example, we may write the soliton ground state

as D;|0), where |0) is some state in the vacuum sector, and
a Hamiltonian eigenstate with one soliton and one meson as
Dy|ky), where |k;) is another vacuum sector state.

The appearance of a D factor in every state is annoying,
and so we will remove it with a passive transformation. We
stress that this passive transformation is a convenience,
merely relabeling the coordinates on the Hilbert space. The
passive transformation is defined as follows.

We define a “frame” to be an identification of Hilbert
space (projective) vectors with states. The usual identifi-
cation of Hilbert space vectors with states is called the
“defining frame.” Then we define the “kink frame” as
follows. In the kink frame, the Hilbert space vector |y) is
identified with the state that is identified with the Hilbert
space vector Dy|yr) in the defining frame. In other words,
ly) in the kink frame is just our old state D|y) without
bothering to write the D;. So in the kink frame, we write |0)
for the kink ground state and |k,) for a state with one kink
and one meson.

Of course, as is always the case with passive trans-
formations, one needs to simultaneously transform the
operators that act on the states. For example, in the kink
frame, time evolution and spatial translations are generated
by the kink Hamiltonian and momentum

H' = DjHD;.

P =DjPD;.  (2.10)

These are easily evaluated. The kink momentum is

P'=\/Qymy + P,

where the 7 term is the momentum of the kink center of
mass, while P represents the momentum in the mesons. The
kink Hamiltonian is

P= —/dxﬂ(x)dxzf)(x), (2.11)

H' =) H,  Hy=0Q, H;=0,
n=0
., v
Hp =2 / da (f?—f(x» 19" (x) g
n.

where H/, is of order O(A"/*7'). We will write H)
momentarily.

(2.12)

D. The perturbation theory

What have we gained by decomposing kink sector states
into Dy |y) and then dropping the D,? The main advantage
of this formalism is that |yr) may be found perturbatively
using the eigenvalue equation for H’. This is the main
advantage of linearized perturbation theory, the nonpertur-
bative problem of finding the kink states becomes entirely
perturbative. Similarly, Schrodinger picture time evolution
may be performed perturbatively using e~
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The perturbation theory begins with the free part of the
kink Hamiltonian,

/ 5 dk .
H, = 01 + Hiee, Hpree = ? + ZkakBk' (213)

Recall that Q is a scalar, it is just the one-loop correction to
the kink mass. The zr(z) /2 term is the kinetic energy of the
kink center of mass, while the other terms are quantum
harmonic oscillators for the shape and continuum modes.
We will always work in the center of mass frame. The
ground state |0), of the free Hamiltonian is the quantum
field theory state, which is the ground state of all of these
quantum mechanical models; in other words, it is the
unique state that satisfies
70|0)g = Bi[0)o = Bs|0)g =0 (2.14)
We can write any state in the kink sector by applying
creation operators B* and zero modes ¢, to this state. B*
converts H’ eigenstates into other H’, eigenstates, which
we will denote with a subscript 0,

Bii "'BMO)O = ki ky)o- (2.15)
We are interested not in eigenstates |k; - --k,), of the
free Hamiltonian HY, but rather in eigenstates |k, - - - k,,) of

the full Hamiltonian H'. To find these, perturbatively, we
decompose them in powers of the coupling

= lki k)
i=0

(2.16)

where |k; - - - k,); is of order O(4"/?) when expanded in the
basis that we will describe shortly. The perturbative
expansion starts with the approximation i =0 given
in Eq. (2.15).

As the Hamiltonian is translation invariant, we may
specialize to states that are translation invariant. In other
words, we are only interested in states annihilated by P’.
Now the states are described by a wave function in the kink
center of mass position ¢, but translation invariance means
that, if we find the part of a state near' ¢, = 0, then we can
use translation invariance to reconstruct it elsewhere. Thus,
we expand about ¢y = 0. In terms of operators, this means
that we consider a polynomial expansion in ¢, which is a
good approximation for the part of the state near the zero
eigenvalue of ¢,. In summary, a basis of states is given by

"This crude notation means that we decompose the state into
eigenvalues of ¢, and then consider components with eigenval-
ues close to zero. It is explained more precisely in Ref. [38].

¢y By, - B} |0). (2.17)

We refer to the part of a state” with m = 0 as the primary
part and the m > 0 part as the descendants. In Ref. [19] we
showed that all of the descendants are determined by
translation invariance P’|y/) = 0. Therefore, we only use
perturbation theory to determine the primaries.

The last ingredient that we will need for our perturbative
treatment is Wick’s theorem [39], which relates the normal
ordering : :, to a normal ordering : :,, in which 7, and B,
appear at the end,

" (x): /=" (x) 2

las(x)
Z ;CUS

ZZ’"m' j—Zm)
I(X) /dk|gk(x |2 -1

2w 2wy

(2.18)

The contraction factor Z (x) will be represented pictorially
below as a loop that begins and ends at the same vertex.
This theorem lets us convert the formula (2.12) for the
interactions in the kink Hamiltonian into the formulas that
will appear in the text.

III. CONTRIBUTIONS WITH NO ZERO MODES

We are interested in the following process. Meson 1
strikes the kink from the left. An interaction occurs at order
O(2) and meson 2 leaves the kink, again to the left. The
initial and final states both contain a single unexcited kink
and a single meson.

A. Generalities

1. Initial condition

More precisely, our system begins in the state

dk,
r=0
1= 0) = /2,r

where meson 1 is centered at a position x, < 0 relative to
the kink in a wave packet of width ¢ and average
momentum ky > 0. Recall that |k;) is the translation-
invariant H' eigenstate consisting of a single kink and a
single meson with momentum k. It is invariant under
simultaneous translations of the kink and the meson,
preserving their separation. The state was constructed
explicitly up to order O(4) in Ref. [38].

—62(k1—k0)2_i(kl_k0)x0|k]>’ (31)

2 . .

We use the letter m as both a non-negative integer index
counting zero modes and as a real, positive number describing the
meson mass.

085019-4



REFLECTION COEFFICIENT OF A REFLECTIONLESS KINK

PHYS. REV. D 109, 085019 (2024)

We will be interested in the limits

X0
— _) _w’
(o2

(3.2)

mo — 0.

The first limit states that the initial meson wave packet does
not overlap with the kink, while the second limit states that
the wave packet is nearly monochromatic.

As |k;) is a translation-invariant Hamiltonian eigenstate,
|t = 0) is also translation-invariant. However, it is not a
Hamiltonian eigenstate, as each |k;) has a different eigen-
value. The Hamiltonian and momentum commute [H, P| =
[H', P'| = 0 and so, evolving in time, the state will remain
translation invariant.

The details of the initial state will not be relevant to the
elastic scattering amplitude. In other words, if we perform
the following calculation with a different initial state,
then the amplitude will be unchanged so long as the
smearing of the initial kink-meson relative momentum
involves Fourier modes corresponding to momenta much
less than m and the initial meson is fully localized to the
left of the kink. Of course, we cannot begin with the meson
in a momentum eigenstate, as that would not be localized
to the left of the kink. The choice of a Gaussian wave
packet is convenient because it is simple and also normal-
izable, a property which we will use in Sec. VII when we
divide by the norm squared in the definition of the elastic
scattering probability.

2. Evolution operator

The Schrodinger picture evolution operator is

U(t) = et = i: U,(1). (3.3)
n=0

Here we have decomposed it into the order O(1"/?)
contributions U,,. Up to order O(4), these are

e 4 ryr e
Uy(t)=e 1 U (1) = —il dry et =m) [l g =it

t
Uy(1) =i / iz, =420 F it
0

t t - o -
_\/0 dTl A dee_lHZ<I_TZ)H/3€_IH2<TZ_T'>H/3€_IH271 )
(3.4)

We will define x,, which, before the collision, is the
meson’s position at time ¢, and also ?,, the collision time, by

ko
= — 1, . 3.5
Xp = Xo + o, k (3.5)
We will be interested in the limit (7 — z.)/6 — o0, so that
by the end of the experiment meson 2 is far from the kink.

Fa kq

FIG. 1. Time runs to the left. This is a schematic drawing of the
following process. Meson 1 travels. Then it emits and absorbs
the same virtual particle and in the process becomes meson 2.
This interaction is proportional to Z (x), which falls exponentially
in mx far from the kink, thus the interaction necessarily happens
close to the kink. However, the kink is not drawn.

As mo — oo, in the support of the Gaussian ¢~ (ki—0)’

we may approximate k; ~ ky and so linearly expand

k
= wy, + i (ky = ko).

0

Wy

(3.6)

B. One interaction

The simplest process that leads to elastic scattering is
drawn in Fig. 1. Meson 1, with momentum k/, interacts via
the interaction

2
(1)/ . j. d k i Bk
H4 - 5/ (2]_[)2 VI—klszkz 20);1

at time 7,. Here Hftl)’ is a term in H). This interaction

involves a virtual meson that it both creates and annihilates,
and it leaves meson 2, with momentum k,. Each loop at the
same vertex gives a factor of the function Z (x).

Here we have used the shorthand V to denote an n-point
function defined as follows:

(3.7)

Voo = / AV (Vf () g, (x) - g, (%),

Vi, = / VO (VAf ()T (X)g, () - 4, (2).
(3.8)

where we remind the reader that the loop factor Z(x) was
defined in Eq. (2.18).

This interaction is proportional to A already, and so a
final state proportional to A may only arise if one acts it on a
state of order O(4°). In other words, we must act it on the
leading order term of the Hamiltonian eigenstate |k, ),

[k1)o = Bj,10)o- (3.9)
This is not a Hamiltonian eigenstate, but it is an eigenstate
of the free Hamiltonian H.
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Acting the interaction (3.7) on |k;), one finds

i A dk
H{ ko = 40— | 37 Ves ko (3.10)
1

Our goal is to obtain U(z)|t = 0). Now we are ready to calculate one term, the contribution from the interaction Hftw.

Let us write the corresponding part of the evolution operator as

1 xyt .y
U,(t) = —i / dryemith=r) gV g=ithyn (3.11)
0

This is an abuse of our notation, as we have already defined U, (t) to be the complete evolution operator at order O(1) and
(3.11) is just one term in U,(¢); however, it would be cumbersome to give separate names to every term in the evolution
operator.

Evolving the initial state, we find

dk,

! —iH (t—1,) gV —iH,
Uy()[t=0) =—i | drje"™UH, Tem"on | —
0 2r

_ /ldfle_iH/z<l_Tl>H£ /dkl -0 (ky—ky)? —i(ki—ko)xo—iwy, 7| |k1>0
0

—02(ky—ko)?—i(k; —k
e~ (ki—ko)*=i(ky n)xo|kl>0

2

- — /tdTle_iH/ZO_Tl)Hgl)le_iw"OTl /L;kl e—a‘(kl ko)?=i(ky—ko)x., ko (3.12)
0 T

Using (3.10), one finds

A d*k Vi t ; ; 2 2
U, (Dlf=0) = —iZ e 1Ko d —iwy, (t=11) ,~iog 71 ,~0° (ky—ko)*~i(ki—ko)x,,
2( )| > l4/ (271_)2 wk] /0 T1€ e 0oe

ky)o-

Recall that, as mo — oo, k; is very close to k in the support of the Gaussian weight. This means that wy, is very close to
wy,, and so we replace the wy, in the denominator with w; . However, we cannot do the same with phase factors of the form
kixo, for example, because |xo| > o, and so this would create an error in the phase of order xy/c which is very large. In
summary, we will make the approximations

_ _ i(ky—k
O, = Wy, g4, (x) = gy, (x)e’i=kolx, (3.13)
but we will not drop the (k; — kg)x terms. The second approximation comes from the fact that, for a reflectionless kink,
gi(x) consists of e times various terms that vary with respect to k with a characteristic scale of order O(m), which is

much greater than 1/c and so these terms may be considered to be constant over the width of the Gaussian e~ th=ko)?*,
This leaves

Uyl = 0y = —i - [ 4k / iz, e =50 / AV (VA (1)) (x)ai, (4) i, ()

4Cl)k0

dk, _, —i x
X/zﬂj ? (ki —ko)>=i(k1 ko) (2, — |k2>

’1 \/7_[ & e_iwkz

4wy, 2n0 | 2m

' /0 ' dry i) / dxV O (VAF(x))T(x)gg, (x) 8, (x) e~ 70 ey
(3.14)

Now Z(x) has its support at x ~ O(1/m) and so x/o tends to 0 in our limit. So can we drop the x/¢ term in the Gaussian
factor? A shift in x of order O(1/m) would shift the dummy variable x, and so z; by of order O(1/m) for relativistic

mesons. This would in turn shift the phase factor e ~/(“0~®)% by a phase of order (@, — @y, )/ m. However, as we will see
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momentarily and is anyway clear from momentum conservation, y, and @y, are quite close, differing by of order O(1/0),
and so the corresponding phase shift would be of order O(1/(mo)), which vanishes in our limit.
In conclusion, we may safely drop the x from the Gaussian term, and so pull it out of the x integral, leaving

. A dk o~ ! —x2 /(46%)—i(wy, —wy, )7
Va0l =0) = _l4a)k % 27;2 Viig-r,€ kztA dry e /)0 =00 )0 ),
A dk —0%(wy, —wy, )2 w? [k —i(wy, —wy,
_ —lﬂ 2 “er2 Tk, @ —zwkzte *( ko k2>2 ko/ku (x, Az)[f|k2>0. (315)
0

The expression (wy, — @y, ) vanishes at k, = £k, and so the Gaussian factor has two peaks. The k, = k, peak corresponds

to forward scattering. We are not interested in it, so we will drop it. About the other peak we may use (3.6) to rewrite the
(g, — wy,) terms as (ko + ky)ko/wy, and so

. A dk2 —zw/c

Ul = 0) = =i 1V iy gy bt ko ) (3.16)

C. A tadpole

All other contributions to elastic scattering involve two HY interactions. In this subsection, we will consider the

interactions

HY = dky Nf~dk, idk’ B_y\ Bi,

Vv B ( B,
I Z: —kikok B, | By +2wk, 2ay,
p  Vagdk By
Hy" =— N —V| By 3.17

3 2 I 2 K + 2wk, (3.17)

In the interaction H gl ) ' attime 7, the meson k; changes to k, and a virtual meson of momentum k' is emitted or absorbed. At

this point we allow both k" and also k, to be a continuum or a shape mode, since we do not yet know which will be the
virtual meson. In the tadpole interaction H gz)/’ at time 7, the virtual meson is absorbed or emitted and another virtual meson
travels in a loop to the same vertex. Finally, we will restrict our attention to final states in which meson 2 is a continuum
excitation. This restriction is not really necessary, as it is not hard to show that if the final state consists, instead, of a kink
and an excited shape mode, since this cannot be on shell, the amplitude vanishes.

As drawn in Fig. 2, the interactions may occur in either order. The evolution operator is

UA(t / dTl/ dee iy (1-1) [ (2) e—iH’z(rz—‘rl)Hgl)/e—iH’zrl (318)

ko ky ko ky

< < < <
<€ Y Y <

FIG. 2. Right: while meson 1 approaches, a virtual particle pair comes in and out of existence, leaving behind it a virtual particle. We
will say that the virtual particle is created by a tadpole, although one might rightly note that it is emitted by the kink that is never drawn.
This virtual particle merges with meson 1, leaving meson 2. Left: meson 1 emits a virtual particle, becoming meson 2. This emitted
virtual particle decays via a virtual particle pair tadpole process.
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if 7, < 7, and, otherwise, it is

t T - eyl syl
UB(1) = — A dr, A " dryem M=) gV =ity (=n) g2V ity (3.19)

1. The case t; < 7,

In this case, projecting out the three-meson sector and remembering the factor of 2 from the choice of contractions of By,
the interaction terms act as

(1)/ \/_Idkz dk'V i ix k'),
271' 20)k 2
@ VAVr_y ViVig,
kk'Yy = ky k. 3.20
ko =5 S o+ S, (3.20

As always, when considering the leading contribution to the initial state, one begins at time z; with

- ; dk ;
e~Hyn |t = 0)y = e @™ /z_ﬂle_GZ(kl—ko)Z_z(kl—ko)xq k1), (3.21)

where x; is defined in the first expression in Eq. (3.5). At time ¢ this evolves to

dk
Ué(t)‘t _ __/ 2/ dTl/ d’Z'zI —l(uk T1—iwy (1—71)— i, (t—11)

x / Ky oo =ith—toysy, Yokt VIR o
a)k ()%

2r
/
_ de/ d’L’]/ dTZIdk VI k' —lwkorl—iwk/(‘rz—rl)—iwkz(t—rl)
Sa)k 2r (%

dk —02 (ky—ko)?—i(k,—ko) (x;, —x
></de<3)(ﬂf(x))g_ko(x)gkz(x)gk,(x)/2ﬂle 2 (ky —ko)2—i(ky —ko) (x;, )|k2)0

____ dkz/ d’[l/ deidk,@e—ia’koﬂ—iwk’(12—71)—iwk2(f—71)
8a)k 277,'6 2 wy

x / dxVO (VA (x))a_t, () g, () g (x)e ™70 k), (3.22)

2. Showing that the first interaction occurs near the kink

Unlike the previous process, the x integrand no longer obviously has compact support unless k" is a shape mode. To see
that it in fact does have compact support, even if £ is not a shape mode, when integrated over k” and 7,, let us first multiply
the integrand by a normalized bump function e~(~9°/(40) /(2. /z5),

A r\r [ dk, dk’ VI ¥ - _ eV —imn (-
UA "’ MNt=0) =——— Y- V& d iwy, T =Wy (13— ) —iwy, (1—71)
2(%:1)] Jo 8y, 271'627‘[6/ / / TZI 2r  wy ’ ’
/ dx VO (VAL (x))g-r, (x)a, (x)gu (x)e™ 1 =/ U6 ) (3.23)

where |%| > 6 > 1/m and 6 < o. This will allow us to determine the contribution to the integral arising from x ~ %. We
will now show that it vanishes for all & satisfying || > 6> 1/m.
As the x integral now has support at |x| ~ |%| > 1/m, we may replace

O (VAL (X))@, (X8, (x) gy (x) (3.24)
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by its asymptotic value at |x| > 1/m. In the case of classically reflectionless kinks, this is
Bee ™ if x < —=1/m
gr(x) = Zikx -
Dre ™ if x> 1/m,

B =IDil* =1,  Bi=B,,  D;=D, (3.25)

where the phases B, and D, vary slowly with respect to k.
For concreteness, choose X < 0, as the following argument proceeds identically with the other sign choice. Then we

replace V) (V£ (x))g_s, (x), (x)gp (x) with V(_3]{)()L,{2k,e‘5<‘k0+k2+k/>x, where

v<_3,3L,< v = VO (Vaf (=0)) By, Bi, By (3.26)

The support of the state near X is then

/
U?()AC, t)|t:0>0:_Lﬁﬁ dkz/ d‘L'I/ de/dk —iwy, Ty ~iwy (=1, )=iwy, (t-1))

8wy, 2mo 2n6

VI ¥ ,3)L / —k ) _ 2 N2 an2
\% .| d otha K )x o= (¥ x)?/(46%) ,—(x—2)%/ (487) .
wp | hokak xe ¢ )o
As & < o, in the support of the bump function, we may replace ¢~ —0)*/(40) with ¢~ (% =9/ (40") anqg pull it out of the x

integral. Then

dk 4 .
UQ(JAC, I)lt _ 0>0 A 2/ dTl / de/ —zwkofl—zwk/(rz—rl)—twkz(t—rl)

8a)k 27m
VI 1
y

V_:;kokzk’e (%, —-3)?/(406%)-6>(— k0+k2+k’) (—k0+k2+k’)5c|k2>0‘

Now K’ is close to ko — k, as a result of the Gaussian e~ (~fo+k2+¥)* Physically, this is because the virtual meson is created
at X, which is far from the kink where mesons cannot transfer momentum to the kink. This means that we may expand about
k/ ~ ko - kz,

—k
D = Wpo—k, + 2 (—k() + k2 + k/) (327)
WD, —k,
We then find
a A \/_ dk2 (3)L iwy, T —iw T—7 ) —iw, T
U?(x’ t)‘t = O>0 = ka 216 27 V—ko ko ko~ kz/ dTl / dTZe kT kgt (72771 )=i0py (1-71)

/ , k
o~ =22/ 40%) / K VIk kbt ko) (1) 1K)
2r WD, —k,

A \/_ dk2 (3)L —iwy, T —iw (1= ) =iy, (1—71)
- 8a)k 2rnc | 2n V_k‘)kzko kz/ dﬁ/ drge P T

L / dyVO (VAf ()T () et ()

D, —k,

o=~/ (40?)

dak’' e —i(—kgth k’( kok T_fl>
X E e~ (“kothtK)? (koo i) y+‘“k k<2 ) |k2>0
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P VEVE [k o

— V_ dTl dee iy 11 —iwgy g, (12—71 ) =iy, (1=11)
8wy, 2no 2n6 2 Trokoko—k

o o~ le =22/t L

Wk, —ky

—/dyV (VAf())Z(y )ka—ko()’)e_< %

2
i—y+ e ) 452
x=y -kz( 2=11) ) /( >|k2>0.

Now unlike x, which was the location of the first interaction, y, the location of the second interaction, must be close to the

kink. This is mandated by the Z(y) term which has support at y ~

O(1/m). Therefore, y/& can be set to zero, implying that

the corresponding Gaussian factor is y independent and can be pulled out of the y integral,

VA1)t = 0)y = — & VAV

dky /3L
8wy, 2n02n6 ) 2n

{0 T\~ 10k, (T2=71 ) =iy, (1-71)
—kokzko kz/ drl/ drye™" "% 0k 2

2
x e~ —56)2/(402)6_ (jﬁ_”l? kAZ (72_11>> /(48%) Vzvkz—ko |k2>0.

Finally, consider the 7, Gaussian integration. Depending
on the values of 7| and X, the range of integration may or
may not overlap with the support of the second Gaussian
factor. If it does not overlap, this integral trivially vanishes.
If it does overlap, then it overlaps for a range of
6wy, i,/ (kg — ky) > 6. During this time, the phase
e~ decreases by more than @y,_i,0 > MG units.

Thus, the integral yields a factor of less than e™'%" which
vanishes in our limit mé — oc0. We thus conclude that,
including a bump function near x = %,

(3.28)

for [%| > 1/m. In other words, there is no contribution to
U4(1)|t = 0), from x near %. As a result, the position x of
the first interaction is necessarily inside the kink

A — I v
U2 <t>|t - 0>0 8(/)k 27[(7

dk dk' Vv
2/ dTl/ deIQ,][ al)'k/k

Whey—k,

O(1/m), where the mesons and kink may exchange
momentum.

To make this statement more quantitative, assume for a
moment that the limit |%|/o is nonzero. As the limit mo
tends to oo, in this case mXx also tends to co. One therefore
can choose 6 so that |%| > 6> 1/m. Now the results of
this subsubsection imply that such a X does not contribute
to the integral. Thus, contributions to the integral can only
arise when the limit of |%|/o tends to zero. In other words,
the support of our original integral is at the limit |x|/c — O,
where we may drop the x/o term in the Gaussian
exponential.

3. Continuing with the computation

This long argument has been made to justify dropping
the x/o term in Eq. (3.22), as the x integral has support at
x| < o,

—lu)ko‘r] —iwy (1y=1))=iay, (1-11) e—x%l /(46%) V—kokzk’ ‘k2>

— de —zmk II% V_kokzk’VI—k’/ dT xr] /(46? )e—i(wko—a)kz)fl (e—ia)kr(t—rl) _ 1) |k2>0
0

80)k 27r0' 2 27 a)i/

_ . dk2 —la)k [Idk V kokzk’VI kr
Sko 2n a)i/

2

w? %

(mk —W )[c
0 2

2 k()( 2 2_ko 2
. —0°—H Wy, =0, —wy) -0y, —wy,)
x (e_lwk/(t_‘c)e e —e o " T k)

— A1 +A2,

(3.29)

where A; and A, are the contributions arising from the first and second terms in the parentheses.
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Consider A}, which arose from the 7, = ¢ late time limit of the 7, integration. This has support at @y ~ @y, + @y, where
the virtual meson is on shell. In fact, it is unrelated to elastic scattering; instead, it represents a quantum correction to meson
multiplication.

Now consider the k' integral of A,. In the support of the Gaussian, @, may be expanded to linear order in k" as in
Eq. (3.6). Recall that the linear coefficient is the group velocity. Then, the size of the support of the Gaussian factor is equal
to 1/ times the ratio of the k to the k’ velocities, which is of order unity. Over this range, the phase e~ (/~c) changes by
of order (¢t — t.)/o. This leads to a suppression factor of less than e~ (=)o after K/ integration, and so this term vanishes.
This argument, of course, does not apply if k' is a shape mode, in which case it is discrete. We will turn to that case in
Appendix B.

What about A,? This has two peaks, at k, = £k(. The positive sign corresponds to forward scattering, which we are not
interested in here. Therefore, we keep the negative sign,

A dk, _. dk'V_j v Vi_y )
Ay =i— —2 _’w"zligikolz)kz 1ok e—"z(ko+k2)2+l(kn+k2)xo|k2>0.
k/

4. The case t{ > 7,

If the tadpole creates the virtual meson that is then absorbed by the incoming meson, then the interaction terms act
as follows:

\f dk’
1Ky I Vwlki k')

Vi dk
=V gor k2o, (3.30)

kiK'
| > 4Cl)k @y 2

leading to the final state,
dk dk'Vi_p , .
UBDIt=0), = ——— V= 2 d YI-K —twk 7 —iwy (1) =12) =iy, (1-1)
2 (1) Jo = 8a)k 2710 / / Tzi 2r wy ’
—(x,, —x)?/ (46
/de (VA ()@, (%)8, (x)gu (x)e™ ™/ ED iy (3.31)

Integrating over 7,, we obtain two terms corresponding to the two limits of integration,

US (1)t =0), = Bl + B,,

B . /de/ Idk/ VI K —lwkofl—iwkz(l—‘rl)
ka 2n6 2n

/ dxV O (VAF (x))8 s, (x) g, (x)gu (x)e =074 o),

B, = _'—— dkz/ Tlidk Vi e~ @ity )r—io, (-7
8wy, 2ro 2n a)k,

/ dxVO (VAF(x))ar, (6) i, (6) g (x)e™ =74 oy (3.32)

The calculation of B, proceeds identically to that of A,, leading to the same result. Summing them, yields a factor of 2,

L[ dk A
A B —i —iwy,t ,—c* (ko+ky)?+i(ko+ka)xo
T
dk'V_ kokzk’VZ K
RO LI S ] 2 3.33
2 a)k, [ka)o- ( )
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We will show that A; and B, cancel other contributions, and
so, when these contributions are added, this expression is in
fact equal to (U5 (1) + U5(1))|t = 0),.

5. Initial state corrections

There are also two initial state corrections, corresponding
intuitively to the case in which either of these interactions
has occurred in the distant past. More precisely, these
correspond to the evolution of the |k;), subleading term
in the |k;) in Eq. (3.1).

These corrections were found in Ref. [40]. The corre-
sponding amplitudes are again of order O(4), but now the

initial state is suppressed by a factor of /4, while the

evolution operator is order O(+v/2). In other words, the only
corrections that lead to elastic scattering are those that can
be transmuted into a single backward traveling meson using
a single interaction HY.

We will not draw these, but given any diagram in this
paper, one may arrive at the corresponding diagram for
initial state corrections as follows. First choose a time 7.
Then remove the part of the diagram at earlier times 7 < 7,
corresponding to everything that appears to the right of the
time 7.

In the first case, one considers a virtual meson in the
meson cloud about the kink. After a time 7., the incoming
meson strikes the virtual meson and creates the final
meson. The virtual meson contributes a phase factor of
e~ (@ Fo=on) which oscillates rapidly with respect to &’
unless the @y, = wy, + wy, corresponding to the limit in
which the virtual meson is on shell. Like the A; term in the
parentheses in Eq. (3.29), the k' integration over a domain
of order O(1/c) leads to interference in the e~ phase
which annihilates this correction.

The second initial state contribution arises from a
quantum correction to the incoming meson, which consists
of two mesons of momenta k, and k; — k,, one of which
interacts with a virtual meson created by the kink once they
arrive at the kink, after a time 7, ~7.. One needs to
integrate over 7,, and each value is weighted by a phase
e Pk Ag @y —r, > m, one finds of order mt. oscil-
lations, and so after integrating over k' this contribution is
hopelessly suppressed.

What if the virtual meson is a shape mode? Then k' is
discrete and cannot be integrated, so this argument fails.
The shape mode contribution to the meson cloud falls
exponentially with the distance from the kink, so one can
ignore the second initial state contribution.

More generally, the only corrections to the initial state
that do not vanish when the meson is far from the kink and
can contribute to elastic scattering after an interaction H%
consist of components of |k;); with two mesons and no
zero modes. In Ref. [40] this contribution to |k;), was
quantified,

ViRV

k)02 —
)y 2 4<21 wp

kiK"Y, (3.34)

where the 02 superscript means that we are interested in the
no zero-mode, two-meson Fock space in the kink sector.
We have dropped all terms that vanish when the meson
and kink are well separated, but they are summarized
in Eq. (B6).

The corresponding contribution to the initial state is

|[ = ()>(1)2 = /&e—ﬂz(kl—koy—i(kl—ko)xo|k1>(1)2

27
_ VA [k i,
2 2

dK' Vi
— kiK' 3.35
Y k), (3.35)

Evolving this to time ¢, at order O(v/2), using the
interaction H;l)/ from Eq. (3.17), one finds

t .-
Uy (1)|t = 0)%2 = —i / dr, e~ =) g’
0

e~ |t = 0)§? = —B,. (3.36)

We thus conclude that B,, which arose from the early
time limit of the 7, integration, is canceled by an initial state
correction. One may then suspect that A;, which arises
from the late time limit of the 7, integration, is canceled by
a final state correction. As we will show in Appendix B, this
is partly true. The corrections to the final state are given in
Eq. (B6) and two of the five are canceled by A;.

D. A bubble

The contribution that motivates our project is drawn in
Fig. 3. There are again two interactions. At time 7y, the
interaction

A~ dk a’k’
Hgl)/ — ii_l I—Zv_k A%
4 427 4 (og)? Rk

B_.B_, \B
M) Zh (3.37)

x | By B}, +
( kl kz 12([)](/1(1)](/2 wkl

connects the incoming meson 1 with two virtual mesons 1’
and 2'. These might lie in the continuum, but they may also
be shape modes, or perhaps one of each. In particular, if

both are shape modes, this corresponds to an unstable
resonance. Next, at time 7,, the interaction
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ks

kg kl

FIG. 3. Left: we see meson 1 splitting into two virtual mesons that recombine into meson 2. Right: two virtual mesons and meson 2 are
created together, and later the two virtual mesons annihilate themselves together with meson 1.

(2)/ dky f~ d*K' . s 3ByBy
I I szk ks k2 By, Bz+ 4a)kra)k, (3'38)

connects the two virtual mesons to the outgoing meson 2. We expect the amplitude to have a peak at the energy of the twice-
excited shape mode.

1. The case t; < 7,

In this case, projecting out five-meson final states and remembering a factor of 2 from the choice of which annihilation
operator annihilates which virtual meson, the interactions act as

k1Ko,

dzk’ Vo dk
H{Y |k \[ — Sl AN \[I 2 Viactick (3.39)

2w C()k/ a)k/

The evolution operator (3.18) and the early state (3.21) then yield

A dk ! ! Jlk/ —iwy, T1—i(wy +w )(Ty—11 )—iwy, (-7
Us (1)t =0)y = 16 2_2/ d’rl/ drzz:@ )ze o1 =iy Ty ) (e =ion, (1-r2)
T Jo 7 T

% /dkl =07 (ky—ko)*=i(ky—ko)xc, V_k kiky Vk2 K=k |k2>
O)k! a)k/

2 / / . . .
_ /dkz/ dTl/ dfzi d’k Vk -k - e—la)kOTl—l(wk/l+wkr2)(‘tz—‘t1)—la)k2(l—f2>
16C()k0 C()kl Cl)k/

dk - - —i(ky—ko)(x;, —x
/d)CV (\/_f(X)) _ko(x)gk/l (x)gkrz()c)/z_ﬂle 6% (ky—ko )2 =i (ky—ko ) ( 7 )|k2>0

2 i . . .
_ dkz/ d’[l/ d’CZI d’ k' Vk —k|— e_’“’koTl_l(“)k’]+”’k’2)(72_71)_’“’k2<’_72>
16(1),< 27[6 wy Wy

/ dx VO (VA (%)@, ()i (¥)gi (x)e™ ™7 4 ) (3.40)

2. Showing that the first interaction occurs near the kink

Again, we would like to drop the x/o term when &} and k) are both continuum modes so that the x integrand does not
have compact support. In this subsubsection we will try to argue that, even when k) and k), are continuum modes, after
performing the other integrals, the x integral vanishes except when x/o tends to zero. The argument will be similar to the
tadpole case, but not quite the same.
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As in the previous case, to see that it has compact support if integrated over X’ and 7,, we multiply the integrand by the

normalized bump function e~(~%?/(4%") /(2 /75), where || 3 6 > 1/m and 6 < . We also choose & < 0, promising the
reader that the manipulations are identical in the case X > 0.

Again, this allows us to replace V) (v/Af(x x))8_g, (x)gkr] (x)gk/ (x) with yBE “kok 1€ ~i(-kotK+K3)x The support of the state

near X is then

()L
/1 dk k/ Vk k’ k’V_ i
UA(&.1)|t = 0)y = — VT VT 2/ d’[l/ d@/ > kokyky

16wy, 2n6 2n6 Wy O,

ek +H)x = (e =0/ (40%) o= (x-3)°/(467)

)
dk2 dzk’ Vi, V(—k K,
= dTl de
16a)k 2710' Wy O,
e

% —iwg T — l(a)k/ +wk/ (rp—71)— iy, (= Tz)e x, —x) /(462) -5 (—koJrk/l+k/2)ze—i(—k0+k'l+k/2)5c|k2>0. (341)

X e

_za)ko‘rl—l(a)k/] +a)k/2)(72—11 )iy, (1=13) / k2>0

Now £k} is close to ky — k| as a result of the Gaussian =@ (R tKi+K)°  Again, this is because the virtual mesons are created
at X, which is far from the kink where mesons cannot transfer momentum to the kink. Expanding &} about &} ~ k, — k,

/

ky — Kk
a)k/2 = wko_k«l + a(ik k/l (—ko + kll + k/Z) (342)
0"

We then find

2 dk X X o~
U/z‘(x,t)|t:0>0:—16wk 27:0 2/ d’L’]/ drye~ (e =/ (40%)

/ —I(U;\ 71— I(Uk/ +oy, k/)(Tz—Tl)—lwkz(l—Tz)
VvV V() 62 (ko kKN —i =k K K 5 ko_k,I _
k’ k2 k’ k —ko k/k/ ( 0+ 1+ 2) l( o+ 1+ 2) x+m ,(TZ T])
koK, k
[k2)0
a)k! a)k/
dkz _
_ P dTl d‘L’ze (3, —%)%/(40%)
16a)k 271’0'
3 . e—z(ukorl z(wk/l +{"k07k’1)(72_71)+lwk272
!
—kok ko—K, O Dz
10T
/ 1)1 ()84, ()11, 9)
k/
(ko Ky ik 1) oyt ()
‘ |ka)o
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_ A \/. \/. dk2 —m}k l/ dTl/ dee xfl —%)?/(40%)

16wy, 276 276

dk e—lwko‘rl—t(a}k/l +wk0_krl)(72—11)+twk212

—k k Kok,
2r okiko Wy Oy,

ko= Il 6’2 )

o (e ) 2/(4
/ dyVO (Vs (), (¥)8-k, (1) 8-k 41, (v)e < o ) [k2)o- (3.43)

First, we studied the one vertex interaction, in which we found that x must be close to the kink because of the Z (x) loop
factor. Then we turned to a tadpole interaction, in which x was not obviously close, but y was close because of an Z(y) term,
which allowed us to show that x is close. However, in the case of the present interaction, even y is not obviously small.

To show that the y integral has support at small y, after integration over z,, we will insert another normalized
bump function e~ (=9)7/(45%) /(26 /) into the y integral, which satisfies the same limits as the x bump function, in
particular, m|9| > 1. Again, for concreteness, we will make the irrelevant choice $ < 0. Then we may replace

VO (), (V)8-x ()84, 11, (v) with V,(f)fk, gtk e~ik=k0)y and the localized final state is
‘ 27 1

U‘g()%,j), l‘)|t _ 0>0 _ A \/_ dkz —zwkz / dTl / d1'2€ (%, =%) 2/(46%)

16a)k 276
A : —lkaT]—l(a}k/l erko_kr] )(12=11)+iwg, 7y
“r 3)L
V<—k> k’ k k’ V/(c -k —ko+K'
2 0> 0 2 1~ "0 1 a)k,] wko_k,]

2
. —(fc—w%(rz—m) /(45)
X/dye_l(k2_k0>ye ko=, |k2>0
A dk
_ / 2 —sz / dTl/ d1'2€ (%, =%) 2/(46?)
16Cl)k

dK . _’wko"l_’(a’k’l Jr(uko_krl )(72—71)+iwg, 7
1yl vt
! / / /
o —kok ko=, ¥ k=Kl —ko K, O Ot
R . . koK,
=62 (ky—ko)*—=i(ky—ko) ()H’ﬁ(TZ_TI ))
o
- | 16)o. (3.44)

The term ¢~% (2=%0)* ensures that the outgoing meson 2 has the same momentum as the incoming meson 1. Thus, this
process describes forward scattering, which we are not interested in. The reason, of course, is that we chose both |x| and
ly| to be greater than O(1/m), so that both interactions occurred far from the kink. Thus, no momentum could be
exchanged between the kink and the mesons.

We therefore conclude that only y ~ O(1/m) can contribute to elastic scattering if |x| > O(1/m). In particular, |y/5|
limits to zero and so may be dropped in Eq. (3.43), leading to

A dk
U3 (3, 1)|t =0) = — VAT [ K /d’l’l/ drye™ =/ (47%)

16wy, 2no 2n6

ko

2
—i —i —7)+i o koK .
/dk’, ¢TI0 F O ST LT —<x+w - m—m) /4%)
X _

e 1
27'[ D Dy _f!
1 0%
(3L
X V—ko,k/,,ko—k/] sz,—k’l,—k0+k’] |k2>0' (345)

Finally, we turn to the integrals of the interaction times. The 7, integral yields a Gaussian whose exponential is equal to
—62(a)k/] + wpy-r, — wk2)2 divided by a velocity squared, while the 7; integral yields a Gaussian whose exponential is
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—o*(ko + k,)?, where we have chosen the sign of k, to
yield elastic scattering and not forward scattering. In
the support of this later Gaussian, we may replace wy,
by @y, in the former Gaussian, so that its exponential is
—6% (g, + O — @)
values of k, and k), as two-body decay to two particles of
the same mass as the original particle cannot simultane-
ously conserve momentum and energy. Therefore, the first

This is of order —62m? for all

L JE

16wy, 27o

A ()t = 0)y = -

Xe

i

16a)k 2ro

X e

_ it e /&e—ia)kz(t—tl.)x k' ¥
16k, 2z (27)2 Wy e (0,

(112

k .
—o? kZO(wko —wy —wy ) —i(oy +oy —wy, ) (1—t,) R (wko wk2
x [ e 0 [T T —e Q2 |k2>

Note that there is no pole at w;, = wy + oy, as the sum of

the two terms in the parentheses has a simple zero there,
leaving a term proportional to ¢ — z.. Of course, this does
nonetheless diverge if one naively takes a t — oo limit
before integrating over the meson momenta.

As in the tadpole case, the first term in the parentheses
corresponds not to elastic scattering, but rather to meson
multiplication. One may again note that over the support of
the Gaussian its phase varies many times, and so it should
not contribute once the virtual meson momenta have been
integrated. This argument applies here as it did there, away

U(1)]t = 0)y =

11!2

@ —0'2
-0 k_zo(wko _wk2>2 e

[
kzo (g, _wk’] _("k’2 )=

exponential vanishes, and we find that Uj(%,1)|t = 0),
vanishes when the first interaction is localized near any X
that is not of order O(1/m), as was the case for the previous
two interactions.

3. Continuing with the computation

Finally, we are justified in dropping the x/o factor in
Eq. (3.40), which leaves

dk Pk Vi_w_wV_ e
Ky i1 / dﬁ/ dT?I kp—k,—k, V —kol 1,
a)k/](l)kfz

2
X7 (46%)— l(’“ko_’“ﬂ —oy Vo —i u)k/ +‘”k’ —wy, )7

[k2)o

Vi-k -1,V -kokk,

dkz iyt dr dzk’ w_rV_
! wk' Wy, (wkz — W= a’k’)

—x7,/(40%)- 1((1)k0—(1)kr] —(1)k/2)1] <e—i((uk/] +wkrz —wkz)t _ e—l(mk/ J””k’ —wy, )7 ) |k >

Vo=t —k, V kol 1,

— Wy — 0
K — o)
(112

(3.46)

from w;, = Wy + O . What about at wy, = Op + oy,
where the momenta cannot be freely varied as the surface is
constrained?

Since the integrand is in fact everywhere finite, there is a
vanishingly small contribution from any vanishingly small
neighborhood of @y, = wy + wy,. One may therefore
remove such a neighborhood from the domain of integra-
tion; in other words, one may evaluate the integral close
to @y, = wy + wy, using a principal value prescription
without changing the value of the integral

i A —iawyt, /de —za)kz(t—z,.)I Jzkl VkZ_k/l_k/ZV_kOk/lk/Z
16k0 2w (27[)2 (l)kfl a)k/z

(wry—ny )2]—i(wk'l oy —awy, )(1—1,)

k>)o- 3.47
e— K)o (347)

The principal value is additive, so the two terms in the numerator may be separated, yielding the sum of two principal

values.

In the support of the overall Gaussian, we may replace Vit -k, with Vgt 1, - We do not replace the k, in the phase, as
it is multiplied by a group velocity factor times 7, which is the scale at which the naive divergence is cut off.
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Now consider the k), integral of the first term,

2002 12 2
—c (wko/ko)(wko —oy —wké) e—l(wk/] +wk/2 —wy, ) (t—t,)

(3.48)
C()k2 - C()k/] - C()k/z

In the limit m(¢ —z.) — oo, the phase rotates so quickly
that the k) integral is exponentially suppressed, being
roughly of order exp(—(t—1.)*/c?). This vanishes as
we take (r—1.)/oc — oo so that the final wave packet
has no overlap with the kink. However, when the denom-
inator is less than this exponentially suppressed factor, as
occurs near the poles, this argument fails. The poles lie at

K= £/ (o, -0y P =P =k, (349)
where we have introduced the positive momentum notation
k;. Therefore, we must evaluate the contribution from a
neighborhood of order O(1/(¢—1.)) of the poles.

Near each of these poles, the contribution to the principal
value is nonzero as a result of the phase factor. Near each
pole, the phase decreases as @y, increases and so as |k |
increases. As a result, near the k), = —k; pole, the phase
increases with k) and near the k) = k; pole it decreases.
This implies that the principal value is F iz times the
residue at the k, = +k; pole. The residue is —ay, /&5, times

U3 (1)t = 0)o =

the various coefficients of the square brackets evaluated at
the pole, at both poles. Summing the contributions at the
two poles, one finds

wklz / /
(8(ky — kp) + 6(k5 + kp))

|k/ | = l7l'5<a)k/2 + a)kf] - (l)kz).
2

(3.50)

We have argued that we may replace the first term in
square brackets with ind(—wy, + oy + wy, ). This may in
turn be absorbed into the other principal value term using
the Sokhotski—Plemelj theorem,

1
iné(—wy, + wp + oy ) +PV
’ : : —Wp, + Wp + o

- : , (3.51)

—Wg, + Cl)k/l + C()k'2 —l€

where the limit € - 07 is implicit.

In conclusion, we may replace the first term in the
parentheses with an ¢ shift. Now, we are interested in
elastic, not forward, scattering, so we will choose the sign
of k, in the Gaussian peak considered, removing the
forward scattering part, yielding

A . dk .
_iFkO e 1kyle /2_7: e—lwkz(t—tc)e—az(k0+k2)2

Vo=t —k, V —kolt

a’k'
X .
I (27)? oy @ (wr, — O — @ + i€)

[k2)o- (3.52)

In the denominator, we have replaced wy, with @, using the fact that they are equal in the support of the Gaussian in our
mo — oo limit. We recognize the +ie in the final state as the usual one appearing in the in states in the Lippmann-

Schwinger equation.

4. The case t1 > 7,

This case is identical, except that the virtual mesons exchange their creation and annihilation operators. This leads to the

final state

U3 (1)t =0) =

16a)k 277.'6

dkz/ / I ({lk/ sz k/ /
de e
a)k/ a)kf

« e ok, (1-12) /de (ff( )) _ko(x)gkll (x)gk/z(x)e_(xr]—x)2/(462)|k2>0,

—iay, 11=i(oy +oy )(1,-1)
1 2

(3.53)

Therefore, an identical derivation to the one above follows. The 7, integral leads to a (wy, +wy + @y ) in the

denominator so there is not even superficially a pole, and no ie is required. The 7| integral again gives two terms, and this
time it is the second term that corresponds to an on shell ¥’ and vanishes upon integration. As these two terms differ by a
sign, and as it is the first and not the second term that remains, one obtains an overall sign flip with respect to the 7; < 7,
case, yielding
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US(o)|r = l16k0

d*K

27r

Vo=tV -k i

(27)? O Oy, (@, + o + O)k’)

Adding these two contributions, we find

(U4 (1) + UF ()t = 0)g = 8k0

dk2 —uukz

[k2)o- (3.54)

t —52(k0+k2)2+i(k0+k2)x0

(oy, + @) Vig-t,-1,V -k 1,

dzk’
X i(zﬂ_)z N |k2>0'
o Wy, <wk0 - (wkr] + wkrz) + le)

IV. ¢4 TERMS

Recall that translation invariance dictates all terms with
zero modes [19]. These terms have two contributions. First,
there is the cloud of mesons around the incoming or
outcoming meson. Next, there is the cloud of mesons
around the kink. In both cases, the quantum corrections
contain more mesons than the leading order kets or, more
precisely, more B* operators, except when the incoming or
outgoing meson is close to the kink, in which case the
incoming or outgoing meson may be absorbed by the kink
[41]. In particular, in the asymptotic past and future, when
the incoming and outgoing meson are far from the kink,
these quantum corrections to components with zero modes
¢o will all have at least two mesons.

This argument implies that there should not be any terms
with zero modes and only one meson or, more precisely,
terms of the form ¢}'B*|0), with m > 0, at times ¢ late
enough that the meson has traveled far from the kink. In the
current section, we will verify that this is indeed the case for
terms with ¢] in the final state U(z)|t = 0) at order O(2),
which is the leading order at which ¢¢ may arise.

A. The main contribution

Let us begin with the case in which e™#" is evaluated at
order O(4) and | = 0) at order O(1).

We will consider the interactions

H(31)/ _ \/71/& BkI

BB -k~ 2w ¢07

2 VA [ dky ;
In this case, meson 1 is annihilated by ng at time 7,

@)

while meson 2 is created by H;
in Fig. 4.

There are two cases to consider, corresponding to the
sign of 7| — 7,.

at time 7,. This is drawn

(3.55)

|
1. 71 <71y

First, consider the case 7; < 7,, in which meson 1 is
absorbed by the kink before meson 2 is emitted. Now the
interactions act as

Vv
Vo = VAT 45100,

_ VA [ dk
/ 2V33k2¢3|k2>0-

HY' 30}, (4.2)

The corresponding contribution to the final state is

d*k \% \%
Ué<r>|r=o>o=——/ /drl/dz LARLIE

—lwy, (t—15) —liwg, T

xXe
% e_”z(kl_k0>2_i(kl_k0)x0¢g|k2>0‘ (4.3)
2.71> 1,

Next we turn to the case in which meson 2 is emitted
before meson 1 is absorbed. Now the interactions act as

ko ki
< 9 o <
4 7
- -
7 7
/// ///
(z)(] s 7 o 7
s P
[ [ ¢0
- -
- 7 - 7
- 4 - 4
7’ 7’
Ve Ve

FIG. 4. Meson 1 is absorbed by the kink, leaving two
zero modes. The kink also emits meson 2, together with two
more zero modes.

085019-18



REFLECTION COEFFICIENT OF A REFLECTIONLESS KINK PHYS. REV. D 109, 085019 (2024)
2 Vi [ dk
HY )y =% [ G2 Vandilkakels
1 VB Vip-k
HL Bilkiko)o = VA= 22 ko + VIS o (44)
2 1
leading to the contribution
d’k Vs,V
US(1)|t = 0)y = / / dq/ dr, 2 BB
% o0k, (1=T2) =iy 71 y=0> (ki —ko)*~i(k1~ko) xo¢4|k2> (4.5)
where we have removed the forward scattering part, proportional to |k ).
The integrand is equal to the previous case, and so these contributions are easily added,
A dkV 1%
(U3 + VROl =00y =~ [ (35325 a0 e
wy,
/ dfl/ dT l(l)kzl'z l(l)k]l']¢4|k2>
d°k Vp- leBBkZ ? (ki —ko)*=i(ki~ko)xo —iw,t i
- ek Ptk (1 — ¢ (1 = o7 )ik
8/(271’) w%]wk2 ol*2/0
_ / &’k Vip- kIVBBkZ az(kl—ko)z(l _ e—iwkzt)
- 8) (27)? W, Wy,
x (e~ithi=ko)xo — g=i0ny! gmilki=ko)x) | o) (4.6)

The Gaussian factor implies that k; has its support in a
domain of width of order O(1/s). The phase changes
rapidly in this domain, x,/c times and x,/c times in the
first and the second terms of the last parentheses. This leads
to an exponential suppression, after integrating over k;, of
order O(e™%/(47")) and O(e™*7/(4e")), respectively. These
both converge rapidly to O in our limit in which /¢ and
o/xy tend to zero. We thus conclude that there is no ¢
contribution.

B. Initial state contributions

Contributions may also arise from subleading terms in the
initial state |r = 0). Were |t = 0) an eigenstate of the full
Hamiltonian H’, there would be three contributions, arising
from terms of form 3|k k;)o. #3l0)0, and @3lk,) o, with
k, # ki, in the initial state. However, |r =0) is not a
Hamiltonian eigenstate, it is an asymptotic state. As shown
in Ref. [41], where the asymptotic states are evaluated
explicitly, the second and third terms are therefore not
present. This fact can be derived directly by considering the
Hamiltonian eigenstate and integrating over the wave packet
(3.1). Terms in which the k; meson has been annihilated
contain an integral over k; that vanishes similarly.

This leaves terms of the first form. There is only one such
quantum correction [41],

VA

dkz VBB
|k1>1|¢g = —7 :

271' a)k2

dilkika)o.  (4.7)

This yields a quantum correction to the initial wave packet
|t =0),

de -

lt=0), = (kl—ko)z—i(kl—ko)xo|k1>l

/dkl Idkz —02 (ky—ko)?—i(k; —ko)xo

Voniy ¢o|k k2)o- (4.8)

We evolve this with
t .- -
U(t) = —i/ drle"HzO_T')Hgl)'e_’Hle (4.9)
0

to produce the contribution
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/CQ kl

FIG. 5. Meson 1 is destroyed by a tadpole (right and bottom) or converted into two zero modes (left) and meson 2 is created by a

tadpole (left and bottom) or together with two zero modes (right).

Ui (1)t

d’k VBB—k, vBBkz

zg (1

(2r)? w%l Wy,

to the final state, where we removed the forward scattering
part in the first line. We also removed the contribution from
final states in which there is an excited shape mode and no
continuum mesons, as these terms do not correspond to
elastic scattering and anyway vanish as they can never
conserve energy on shell.

The contributions arising from the continuum k, integral
cancel the second term in the first parentheses in the last
expression in Eq. (4.6). We have already argued that these
terms each vanish at large ¢, but for completeness if we add
the present contribution to (4.6) we obtain

A / d’k Vi, Ve,
27)* @} oy,

% e—ﬁz(kl—ko)z(e—i(kl—ko)xo

— el gmilhimko)x ) pd o) (4.11)
As argued above, this vanishes upon performing the k,
integration. It would not vanish were x; close to zero,
reflecting the fact that, during the meson-kink collision,
there are indeed nonvanishing ¢ terms with a single
meson. We will see below that these terms are important,
as they lead to ¢ terms that are necessary to maintain
translation invariance.

Equation (4.10) also includes contributions in which k,
is a shape mode. In this case, the final state is not a kink and
a meson, but instead an excited kink. It therefore does not
correspond to elastic scattering. In the case of this process,
the final energy is necessarily less than that of the initial

_ e—ia)k]t)e

2
l/l/ Tl/ d-k VBB ki VBBk7 e~ ° 2(ky—ko)?—i (ki —ko ) xo— ioy, 71— twk2t¢4|k >
ky Pk

—62(ky—ko)?—i(k, —ko)xo—iu)kz [¢3 | k2>0 (4 10)

state and so this can never be on shell, so one can show that
after k, integration the amplitude vanishes exponentially
int—t.

C. A generalization

We have just shown that the interaction terms (4.1) in HY,
those that are proportional to ¢3, do not lead to any
contribution proportional to ¢ at any time 7 except within
of order O(o) of ¢,.. In particular, such contributions vanish
at large times, when the experiment ends. The argument
relied on the fact that this term is proportional to g%(x),
which is localized at |x| ~ 1/m < o, which let us drop
x/c terms.

The interaction HY,

possesses a similar term,
T

VA f~dk' B_y
==Y v B+ (412
3, 2}527; ”‘( k+2wk/> (4.12)

The same arguments may then be applied to calculate the
final state of the process shown in the bottom panel of
Fig. 5 to show that there is no contribution to the state
U(t)|t = 0) proportional to Z2(x).

What about the initial state contribution? Again from
Ref. [41] the leading correction to the |k;) asymptotic
state is

A dk, V
= —£ ——2_Ih |k1 k2>0’

1)
V1, 2 421

(4.13)
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which is identical to (4.7) except the ¢3 is missing and the
g% (x) has been replaced by Z (x), which again is supported
at [x| ~ 1/m. Thus, even this contribution can be calculated
identically.

In fact, one can do better. One can repeat the argument
with the sum of these two contributions,

Vaf~di’ B_y
p = TZ:Z (Vv + Vi) (Bzi +5— >

H/
3 2a)k/

(4.14)

The argument again proceeds identically, but now one can
see that even terms with one Z and one ¢3, seen in the top
of Fig. 5, vanish at all times 7.

V. $> TERMS

In this section, we systematically study the components
of the state at a time ¢ that have two zero modes or, more
precisely, a factor of ¢3|k,),. Contributions to such states
can be decomposed into four categories, to each of which
we dedicate a subsection. First, we consider contributions
with a single four-point interaction. The other three cat-
egories each contain two three-point interactions. Of these,
in the first, both zero modes arise from the same interaction.
In the second, one zero mode arises from each interaction.
In the last, each interaction generates two zero modes, as in
Sec. IV, but two of these zero modes are eliminated by the
kinetic term for the kink center of mass.

A. A single interaction

The simplest contribution to final states of the form
#3|ky), arises from a single interaction,

(ay 4 d’k . By
H, —E/WVBB—WQ kzﬂ;qfﬁo- (5.1)
Acting on an initial meson |k;),, it yields
A [dk,
k — 1% ky)o. (5.2
Vit = g [ G2 Vanessdillels (52
This leads to the final state,
A [ &k Vg, _
U =0 — 5 152 —iwy,t
a0l =00y = =i [ e e
X /Idl-le—i(wko—wkz)’fl
0
x o0 (ki=ko)?=i(ki—ko)xr, ¢(2)|k2>0. (5.3)

The corresponding process is drawn in Fig. 6.

N
N

\\\\
¢o
0 S .
N N
NN
NN
AR
~
S
k N k
2 AN 1
< O <

FIG. 6. Meson 1 converts into meson 2, emitting two zero
modes in the process.

B. A virtual meson that decays to two zero modes

Next let us consider the contribution with two H}
interactions drawn in Fig. 7. In the first, at time 7; meson
1 changes to meson 2 and a virtual meson of momentum &’
is emitted or absorbed. In the second, at time 7, the virtual
meson is absorbed or emitted and two zero modes are
created.

The two relevant interactions are

dK B_;
(1>’ \/—I I V_ kkszk (Bi +
2 20)k/
2 VaAg~dK
( = I— Vear <

1. The case t; < 7,

'\ B
2wk| ’

>¢0 (5.4)

In this case, the virtual meson is emitted by meson 1,

o _ VxR dka R dK YV o
Hy kyk 5.5
LSS et ek (59
and it is then absorbed by the kink,
P \/_ VBB 1 \/ZVBB—kz 20
kyk')g = k).
ko =3 3 dRlkdo + 5 3 dilK
(5.6)
—_ %0
)
k/
ks ky

FIG. 7. Right: a virtual meson is created together with two zero
modes. The virtual meson strikes meson 1 and turns it into meson
2. Left: meson 1 nucleates a virtual meson, which decays into two
zero modes.
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The resulting final state is

d’k dk' Vv Vear
UA(1)|t = 0)y = — / i‘ /dﬁ/ dr, ikl T BBZL
a)k (%

% e—lmk (t=11) =iy (=11 ) —iwy Ty P 2 (ky—ko)?—i(k;—k) Xz, ¢2‘k2>

_ it / o i%;_k'bk’vw‘k’ i
8) 2n)*4=2z w0}
! : 2 2
XA dﬁe—l((vko—a’kz)ﬁe—ﬂ (ky—ko)*—i(k1—ko)x., ¢(2)|k2>0, (57)

where, in the 7, integration, we have dropped the boundary term at 7, = ¢ as it corresponds to the limit in which the virtual
meson goes on shell. Like the two-process cases above, this term vanishes after k' is integrated, as its phase oscillates
rapidly.

2. The case t; > T,

In this case, the virtual meson is first emitted by the kink

2 Vg~ dk
H )y =5 Y5 Vsl (58)
and then it is absorbed by meson 1,
_ Vaxf~dky Vi
W1k, kY, I i oy (5.9)

leading to the final state

d’k dK’ Vo Vap
UB(D]t = 0)y = — / Y5 /d/ PEN ALY
a)kwk/

Xe—lwkz(f—‘fl) iwy (1,-73) lwko‘fl 62 (ki —ko)?—i(k;—ko) X11¢2|k2>
_ A / Pk f~dk' V_g i Vi it
8 (277.')2 2r a)kla)i,

/ dT —i (”"0 (l)k2>’[| P 2 (ky—ko )i (k1 —kg) Xz ¢2|k2> (510)
0

This time, when performing the 7, integral, we have dropped the contribution from 7, = 0. This term is in fact exactly
canceled by an initial state contribution, but anyway corresponds to the on-shell limit of our virtual meson in which the &’
integration yields zero.

This contribution to the final state is equal to that of Eq. (5.7) with the other ordering. Adding them then yields a factor
of 2. Using the Ward identity (AS8), this can be summarized,

- dk'V_j v _
UA(t UB(Ntr=0 :/ b Lo L S A iyt
(U5 (1) + U5 (1))[t = 0)o 10, e dean o
o /rdTle—i((ukO—wkz)ﬁ 6—52(k|—k0)2—i(k|—k0)x,| ¢(2)|k2)0. (5'11)
0
Here we have used the shorthand
A= / dxg; (x)g;(x). (5.12)
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where i and j run over the normal mode indices B, S, and k.
Intuitively, the matrix A represents the momentum operator
acting on the mesons.

C. One zero mode at each vertex

Next we turn to the case in which there is a single
zero mode created at each interaction of the form

(VA/2) [ dxgg(x)po: ¢ (x):,. At times 7, and 7,, we
place the interactions

dk dk’ B_yv\ B
(1)/ \/_I 1 I VB 6k 2Bk/ + Pk ¢0’
2a)k/ 26%
VA f~dk dk’ B_y
(2)/ I 2 I VBk’szkz < : K > do.

(5.13)

respectively, bearing in mind that we are interested in the
components of the final state with a single meson. This is
drawn in Fig. 8.

U3 (1)t = 0)o =

FIG. 8. Meson 1 turns into a virtual meson, emitting a zero
mode. The virtual meson emits yet another zero mode, converting
into meson 2.

1. The case t; < 7,

At each interaction, the meson interacts with the kink,
exciting a single zero mode,

\%
k) = ﬂjj‘”‘ Vot 41y,

2r
2 dk VB—kk;
HE olk)o = VI G2 k), (5.14)

The corresponding contribution to the final state is

/ Idk’/ g / iz, Vg kk’VB Vi V-t
| o

x e—lwk2 (t—12)—iwy (1—171) l(Ule] —67 (ky—ko)*—i(k,—ko) x0¢2|k > (515)
If we first integrate 7, from O to 7,, dropping the vanishing contribution from z; = 0, we obtain
A dk’ Vv Vp_p
U0t =0l = =i [ Sz 5 [ e, Lokt
4 COk C()kf Cl)k - C()kf)
X e l(wkl wkz)rze—o- (ky—ko)?>=i(ky—ko) x0¢2|k2>
_ —lé —twk Idk// VB ki k’VB —K'k,
4 COk wy wk, - wy)
X e_’(wko wk,)TZ =07 (ky—ko)*=i(k1—ko)xz, ¢2|k2> (516)
If instead we first integrate 7, from z; to ¢, and drop the vanishing contribution at 7, = ¢, then we obtain
A d2k dk' Vi w Vi
s == [ g [, VoV
4 wk Wy a)k2 wy)
% e_l((”kl —(uk,)rl Pd 2(ky ko )2 —i (ki ko) x0¢2|k2>
2
=iz / kv, zidk' / Vit Va-ri,
4 (l)kf (l)kz - (l)kf>
% e—t(wko—wkz)fze—u (ky—ko)?>=i(ky—ko) Xr ¢2|k2> (517)
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Of course, this must equal (5.16), as the finite z; integrals commute. In particular, both must equal their average, which will
be more convenient below,

/1 d’k dk’ Vv Ve
U4 (1|t =0)y = / o~ ik xi: / dry ~BhK Bk B—ki k'Y B—k'k,
'3 O

y [ L :|€—i(mk0—mk2)rz ¢~ brmho itk g2 ) (5.18)
Wy — C()kz wy — Cl)kl

2. The case 1 > 7,

Now the first interaction creates two new mesons,

f dk dK’'
Ok, iZijm%ww (5.19)

while the second destroys one of these together with meson 1,

fVB k-

4 oy, Wy

\/_VB k,
4

Vit gy 4 VE Voot

k 2
o R (520)

HY ki ko) = £ BRlka)o +

where the last term will correspond to forward scattering and we will remove it when calculating the final state. As k¥’ and k,
are both dummy variables, in the case of the |k) term, we can and will exchange their names, so that the final state is
proportional to |k,) and the first two terms on the right-hand side are equal.

Evolving to time ¢, we find the state

&’k ~f~dk’ Vi_iw Vi
UB(1)]r = 0)y = — / I /dﬁ/ dr, LBtk Y Bkl
(l)k ()%
X e_lme (t—15) "‘)k’ T1-T5) m)‘]‘r] —0 (kl ko) —i(ky—ko x0¢2|k > (521)
Integration over z; from 7, to ¢, dropping 7; = ¢, yields

2k /
US (1)t =0), = ’1/ @’k e~k tidk / dr, Ve-tiwV-rk,
4 Wy, Wy a)k1 + a)k,)

% e_l(wk[]_wk2)TZe o (ky=ko)?—=i(ki—ko)x, ¢2|k2>

0

whereas integration over 7,, dropping 7, = 0, would instead yield

/1 d2k i dk’' Vit Vp-rk
Uz ()l =0)o = / : I / ey @ (@ +a’2k’)
2

x e~ (@ko—ﬂ)Az)Tz —02 (ky—ko)*~i(k1—ko) x12¢2|k2>

Averaging, one finds

/1 _ dk’' Vp- kaB Kk
UB(1)|t =0), = ix, dz 2
H0le=0) =i [ 5o I e
1

:| e~ (@07 e—ﬂz(kl —ko)?—i(k1=ko)xc, ¢(2)|k2>0 (522)

X +
Wy, + O O + Op
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3. Conclusions

Finally, we add the contribution (5.18) from the case 7; < 7, to obtain

(U4(1) + UB(1))]t = 0)g = ii/ dﬂl)cz e_;wkzti

(2
1

dk’ / ‘i Vi Ve,
27 0 2 W,

< v
2 2 2
Wy — O, O — O

- :| e_i(a’ko_wkz)Tze_o'z(kl_kﬂ)z_i(kl_k0>X12 ¢(2)|k2>0 (523)

Using the Ward identity (A7) this can be simplified somewhat,

(U4(1) + UF (1))t = 0)g = i%/%@o/ 2

! : 2 2
X/ dTZe—l(wkU—wkz)fze—ﬂ (ki1—ko) _l(kl_ko)x12¢(2)|k2>0.
0

Now we can see the reason that we chose the compli-
cated prescription of averaging over the two orders of time
integration. Although of course these integrals commute,
we see that the average prescription used here leads to the
combination VA 4+ AV in round brackets in (5.24) which is
the same as that in the Ward identity (A16), even without
setting kg = —k».

Could we have simply set ky = —k, and just chose one
ordering for the time integrals? Well, the uncertainty
principle says that ky + k, will be of order O(1/¢), which
indeed tends to zero at large ¢, although it is dimensionful
and so one needs to be more careful. The problem, as we

will see below, is that the e~i7!/2 term in the evolution
operator contains, at first order, —iﬂ%l‘/ 2, which leads to a
zero-mode-free term proportional to ¢. In all, this contri-
bution would be proportional to #(ky + k), which is indeed
dimensionless and does not tend to zero at large t.
Therefore, in terms with zero modes we need to be careful
about factors of ky + k, or, equivalently, @;, — @y, or, even
worse, a)kz - Cl)kl .

We note that there are neither initial nor final state
corrections, as they would consist of a single meson and a
Ayp term that vanishes when folded into the initial or final
wave packet, which is far from the kink or, more precisely,
the support of gg(x).

d’k e'i”’kZ’Id—H (Vi Dowr, + Dy, Vi,
7)?

2n wy,

(5.24)

D. Two zero modes from four zero modes

The final contribution to the two zero-mode sector of the
final state arises from interactions in which four zero modes
are created, two by each of two H’ terms in (4.1), and then
two of these four zero modes are destroyed by the 73/2 in
the free Hamiltonian HY,. This process is depicted in Fig. 9.

The free propagator H), consists of a z3/2 term, as well
as harmonic oscillator terms for the normal modes. These
all commute, and so the respective parts of the free
propagator may be factorized. Concretely, consider a basis
element of the kink sector ¢{'|k; ---k,)o. Then the free
propagator acts as

T gk, - k) = e—i”’Te‘i”gT/2¢81|k1 e kn)os

n
w = E (Uk".
i=1

(5.25)

The contribution of interest in this subsection uses a single
3 to reduce the number of zero modes from 4 to 2 and so
corresponds to the term

FIG.9. This process is as in Fig. 4. However, two of the four zero modes are annihilated by the 773 /2 term in the free Hamiltonian H).
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‘ 2 mm-NDT .
e"“’T<—170T>¢6"|k1"'kn>o:l ( 5 ) e_’wT¢6”_2|k1"'kn>o- (5.26)

Now observe that e= T ¢! |k - - - k,), is the result of the free evolution in which no zero modes are annihilated. And so,
once one has calculated the m zero-mode sector at an arbitrary time 7 as an integral over the various interaction times, one
need only include a factor of im(m — 1)T/2 in the integrand to obtain the contribution to the m — 2 zero-mode sector. This
needs to be done during the free evolution between each pair of interactions, as two zero modes may, in principle, be
annihilated between any pair of interactions. Here T is the time that passes between the pair of interactions.

In kink-meson elastic scattering at order O(4), the only pair of interactions that creates four zero modes is written as an
integral of interaction times in Eqgs. (4.3) and (4.5). Consider first the case 7; < 7,. Then, including the factors of
im(m — 1)T/2, where m = 2 between the interactions and m = 4 after both, one obtains the final state contribution,

A

U(1)]r =0)o = —3 / Pk Voo Vit v ==k =t01-10b0 g3 k) (5.27)
2 0 8 (2][)2 wkl A 01%2/0» .
where
t t . .
IA = l/ dTl / deelwkaz_lthl ((T2 - T1> + 6(f - Tz)). (528)
0 T

Despite the linear growth in 7, the arguments above show that the 7, = ¢ contribution vanishes exponentially and so we may

drop it,
! ; 0 t .
IA = i/ dTle—zwklﬁ <6l‘ -1 + 51_> / drzezwkzrz
0 aa)kz 7

t ) . p) eiwk271
= —/ drie ' <6t -7+ 51—)
0 6a)k2 Cl)k2

' —i(wy, —w, )7y 5i
- / T ——— (—6t + 67, + —’) (5.29)
0

(l)kz (l)k2

Integrating 7, first and dropping 7; = 0 would instead yield

t . 0 T .
Iy = i/ dtye'P™ <6t - 57, — i—) / ’ drje '™
0 owy, ) Jo

' e~ i@y —o,)n i
- / dr, S <—6t + 67, — ) (5.30)
0

C()kl a)kl

In the case 7; > 75, one finds

) / (dzk Vs, VBB, o

VROl =000 =5 | G

8 ’136’_62("'_kO)Z_i(k'_kU)x°¢(2)\k2>07 (5.31)

1

where

t T , :
Iz = i/ dr, / l drye" 7N (1) — 1) + 6(1 — 77)). (5.32)
0 0

Now we drop the vanishing 7, = 0 contribution to arrive at
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t .
IB_Z/ d’l']e_lwkl‘[l <6t—5T] +l
o P}

0 ) / T gl We see that the naively divergent (¢ — 7;) terms cancel in
Tre 2
Dy, ) Jo

I, + I. This linear divergence would be caused by the fact
. i, —aop, )t ) that the constant (]53 term, created at time 7, or 7,, would
— / dr, e <6t — 67, — L) ) (5.33)  create ¢j at a constant rate as a result of the z5/2 in H5. The
0 Wy Wy, cancellation occurs because, as we have shown, the qﬁg term
itself vanishes at late times.
Summing the two cases, and again replacing I, and Iy
, by the average of the expressions obtained from the two
(o ellenmonn 5i i ion ord finds th ibution to the final
Iy = / dr, 61— 61, +—). (5.34) integration orders, one finds the contribution to the fina
0 W D, state to be

2

while integrating 7; first and then renaming z, would give

A &k i Ves—k,Vesk 1 1
UAt UBt t:o —_'_/ —iwy,t ~ Bb—ky " bBky
(0 =00 =21 [ e ™ 0 or Ton

X /tdTZe—i(ka—wkz)Tze—ﬁz(kl—ko)z—i(kl—ko)xrz¢(2)|k2>0‘ (5.35)
0

Again, it will be convenient to rewrite this using a Ward identity,

y) &k i (Vg Ais + Vs, Ay )
US(1) 4+ US(1))|t = 0)g = —i / e~ ! — —
( 2() 2 ) | >O 4\//1—Q0 (271.)2 wy,
e /td,rze—i(wko—wkz)fze—ﬁz(kl—ko)z—i(kl—ko)xrz ¢(2)|k2>0 (5.36)
0

E. The total

Finally, we are ready to add the two zero-mode, one-meson contributions to the elastic scattering of the final state given in
Egs. (5.3), (5.11), (5.24), and (5.36),

l de —iw S ! —i(wy, —wp, )T —06>(ky—ko)>—i(ky—ko)x
U(t)|l‘:0>:lz/(2ﬂ_)2€ kz’i/) drye (o kz)ze (k1 —ko)*—i(k; —ko) 12¢%‘k2>0’

where

1
S» = —Vap_iyk, T N |:_VBB—k|Asz — Vi, Ak B
0

dk’

+ IZ (V_k o A_wp + Vi wA_pr, + By_g,Vp—ii,)| = 0. (5.37)

The last equality is a result of the Ward identity (A 16) for translation invariance. This implies that no ¢3 terms appear at first
order in the one-meson sector, as is demanded by translation invariance.

VI. FROM ZERO MODES TO NO ZERO MODES

Recall that any translation-invariant state in the kink sector is entirely determined by its primary components, those with
no zero modes. Furthermore, the reduced inner product of Ref. [38] allows one to compute amplitudes using only the no
zero-mode sector of the final state. Therefore, the computation of any initial value problem reduces to the computation of
the no zero-mode sector of the final state.

So then why have we wasted so much space calculating the sector of the final state with zero modes? Because, following
the strategy of Sec. VD, we can easily modify those computations to yield the zero-mode free parts of the final state
resulting from interactions that create zero modes, which are later destroyed by the free H evolution.
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FIG. 10. This interaction is as in Fig. 6. However, the two zero modes are absorbed by the 73/2 kinetic term for the kink center
of mass.

A. A single interaction im(m—-1)T/2=i(t—1), (6.1)
As always, the simplest case is that with a single
interaction; in this case, that of Eq. (5.1). This creates =~ Where T =t — 7, is the time after the creation of the zero
m = 2 zero modes, and so we must insert a factor of modes. This changes the ¢3 part of the final state, given in
Eq. (5.3), into the ¢ part

d*k Vg , ! 4 , ,
/ BB—kk; P d’l’l (l _ Tl)e—z(wko—(ukz)rl e~ ° (ky—ko)? =i (ky —ko ),
0

ka)o- (6.2)

[\
3
(S
S
>

This process in drawn in Fig. 10.

B. A virtual meson that decays to two zero modes

Next we turn to the interactions (5.4) in which a virtual meson is emitted by meson 1 at time 7; and it is absorbed by the
kink, creating two zero modes, at time z,. The process in which these two zero modes are removed by the free evolution,
drawn in Fig. 11, contains a factor of

im(m—1)T/2 =i(t—1,) (6.3)

with respect to the ¢ contributions calculated in Sec. V B.
Including this factor in Eq. (5.7), one finds that the contribution from the case 7; < 7, is

d*k dk’ —kikok VBB—K
ol =00 =it [ G5, [ [ arn i ey

% e—lwkz(l—‘tl) iwy (Ty=11 ) =iy T, e—a (ky—ko)?=i(ky—ko) X, |k >

2 / &Pk ~f~dK'V ik VBB _ioy, 1
__t e ] S Y ky
8) 224271 w0’

x /t dr, <t -7+ ! >e—i(wko—wk2)fl e—ﬂz(kl—ko)z—i(kl—ko)xrl |k2>0’ (64)
0 Wy

where again we have dropped the contribution at 7, = 1,
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FIG. 11. This interaction is as in Fig. 7. However, the two zero modes are annihilated by the ”(2) /2 term in the free evolution.

4 / Pk KV ik VBB ity 001
8) 2n)*4=2zn  ww)

t : 2 2
/ drle_l(wko_wkz_wk’)fle_a (ky—ko)*—i(ky k0>xr1|k2>0

dk, Idklv kokzk'VBB K e~ i@k Top)t / dre” L X7,/ (40%) |k2>
82710 0

a)koa)k/
_i o [P IR Y tobok BB o 1Py, Pl g 10 ) (65)
SN/A«QO 2w 2w kowkr

The k' integration causes this term to vanish, as the integrand oscillates quickly. This argument fails if X" is a discrete shape
mode, and so we will handle this case separately in Appendix B.
Similarly, in the case z; > 7,, we include the factor in Eq. (5.10),

dk’ V i Vep-i
0Bl =) = -ig [ (os Yo 5e [[an [ an BT

X e—lwkz(f—fl)—lwk'(fl— 2)_lwk0716_5 (ky=ko)?=i(ki1—ko)x, k2>0

— _é/ﬁ dk/V kakIVBB K —la),(zt
(2r)? 2T yor

" / ‘i, (t—rl _ )e—i<wko—wk2>f.e—aZ(kl—k())Z—i(kl—ko)xf, ko, (6.6)
0 Wy
Adding the two contributions, one finds
d’k dk'V _i D _pp

UA(t UB(Nt =0 / I 1ky PN

(U3(0)+ VRO = 0)y =~ S :
X / dr,(t — Tl)e_i(wko_wk2>71 e_o'z(kl_ko)z_i(kl_kﬂ)xrl 1k3)o.- (6.7)

0

C. One zero mode at each vertex

Now consider the case in which each vertex creates a single zero mode ¢, . Since the only operator in the free Hamiltonian
that annihilates zero modes is 77:% /2, no zero modes can be annihilated until both are created. The time T will therefore be
equal to ¢t minus whichever of 7| and 7, is greater. This process is drawn in Fig. 12.
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FIG. 12. Most of this paper is about the computation of this term, which is the only contribution to the scattering amplitude resulting
from zero modes. The process is as in Fig. 8, except that the two zero modes are annihilated by the z3/2 in the free evolution operator.

If 7, < 7,, then Eq. (5.15) is modified to

D T V' S ) (Y
U3 ()]t = 0)y = —iZ/ e"%’I—IAiB bk

(27)? 2r wy, Oy
% e—”z(kl—ko)z—i(kl—ko)xo|k2>0’
t t . .
IA = / dTl / d’l'ze_l(wk/_wkz)rz_l(wkl —op)n (t - T2). (68)
0 7

Integrating 7, first yields a factor of

t . T .
I, = / dee_l(w“/_wkZ)Tz(t _ 72)/ dTle—l(wk]—wk/)r]
0 0

i ! ;
= 7/ drze_’@h_‘”kz)fz (t—1,), (6.9)
0

a)kl - @y

whereas integrating 7, first would yield

t . t .
I, = d’l’] e_l(wkl —wy )Ty f—i 0 dTZe—l(u)k/—rx)kz)Tz
0 awk’ T

i t : i
= 7/ drle_’(“"'l_“’kz)“ (t -7 — 7> . (6.10)
Dy, — W' Jo Wy, — Wy

Again, the integrals commute and so these expressions are equal. It will be convenient to use the average.
If 7; > 7,, then Eq. (5.21) is modified to

A de . dk/ Voo oVe u
Uz (1)l = 0)y = =i / e"“’kzti— [, LBokik Y Bk

(277,')2 271' a)k]a)k/
% e—”2<k1—k0)2—i(k1—ko)xo|k2>0’
t 7 . .
Iy = / dr, / drye' OO )niog tou)n (p 7, (6.11)
0 0

Integrating 7; first,

I, = /t d’[zei(wk,-"_wkz)fz <l —; 0 > /t dTle—i(wkl+wk/)Tl
0 owy 7

. , ' .
__ ! / dee_’(wk‘ —wy, )7 (l -7+ L )7 (6.12)
op + g, Jo Wy + O,

while integrating z, first,
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i ' :
Ip=——— / drie™ @ @)T (f 7)), (6.13)

Wy + @y, Jo

Now, replacing all dummy variables 7, with 7; and averaging over the integral orderings, one finds

t . iy .
1A+113_/0Ch’le_l(wk‘_wkz)rl {’( ) - 7T - 2)(1—71)

a)kl —(l)k/ a)kz _a)k/

1 1
+ + . 6.14
2wy, + wy )? 2(ay, — wk’)2:| ( )

Reinserting these integrals in the equations for the final states, one finds

A [ dk g~dK Ve Vewk,
UA t UB Nlr=0), =— - 1 2 ,—lwgy !

! 1 1 i i
X dTl (t - Tl) < + ) - -
/0 l a)%] - a)%2 - o) 2o (wy, + op)?* 20p(0, — wp)?

x e 1@k =0,)71 e_az(kl_k())z_i(kl_k())xrl k2>0 =A+B,
where
Aot / &’k Id_k/(vB—klk’Akz—k’ + VB—k’sz—klk’)e_iwkzt
420, ) (2r)*4=2x Wy,
X /r dr, ([ _ Tl)e_i(wko_wkz)TI e—f’z(kl—ko)z—i(kl—ko)xq k2>0 (615)
0
and
B —i%/ d*k dk' Vi1 Vp-ri, .
8) (2n)*4=2z  wwy
! 1 1 ; 2 2
X dr + e~ (@ =0,)T1 =07 (ki —ko)* =ik =ko)xey 1y 6.16
A l [(wk. top) (g, —op)? lk2bo (6.16)

While the term A looks like that seen in the previous processes, the term B is different, in that it does not contain a t — 7
factor. We will see that it is the only term in this section that contributes to elastic scattering.

D. No zero modes from four zero modes

The last process that leads to a single meson creates two zero modes in each of two interactions in Eq. (4.1) and lets them
both be destroyed by the ¢~m7/2 in the free evolution operator. It is drawn in Fig. 13.

Consider first 7; < 7,. Now, as always, two zero modes are created at 7; and two more at 7,. There are two ways in which
the zero modes may be destroyed. First, the linear —iz3(z, — 7;)/2 term in the evolution operator may destroy two zero

ko k1 ko k1
//. -7, ”/;. Vi
b0 G0 .
/////QSO /////¢O ////¢O ////
/0@ /0@ 4jq et
T5/2 T5/2 T5/8 @==22"" ¢y

FIG. 13. This is as in Fig. 4 except that all four zero modes are annihilated by the kink center of mass kinetic term in the free evolution
operator.
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modes between times 7; and 7,, and then the linear
—in(t — 7,)/2 term in the evolution operator may destroy
two zero modes between times 7, and ¢. This contributes a
factor of

[~ ”To( -171)/2, ¢o][

= (11 —1)(t —12)

%(t - 72)/27 ¢(2)]
(6.17)

to the ¢ term in the final state with respect to the ¢ term
calculated in Sec. IV.

But it may also be that all four zero modes survive until
7, and so are annihilated by the —z§(7 — 7,)*/8 quadratic

term in the free evolution operator between times 7, and z.
This possibility contributes a factor of
(=75t = 72)?/8.¢5) = =3(t = 2)%. (618
Of course, these processes, having the same final state, add
coherently and so lead to a total weight that is the sum of
these factors,
(t —15) (=314 71 + 213). (6.19)

The contribution (4.3) to the ¢3 sector of the final state
then becomes

2
UA(1)]t = 0) = _g / (;’_’;Z 1 emionst Y88k VBB o2ty bbb g,
T

t t . .
IA = / dTl / de@lmeTZ_lmle] (t - Tz)(—3t + 7 + 21'2).
0 T

a)kl

(6.20)

Let us first integrate 7,, as usual dropping 7, =  as its contribution vanishes after the other integrals have been performed,

t . 0
Iy = / drje”'u ™ (t+ i—) (—
0 aa)k2
t .
=i / dry e/ (@ =0k)n <t—71 +1i
0

3t+71 —2l—

J > /rdeeiwkZTZ
0a)k2 7

d d 1
) (s ) L
aa)kz aa)kz (Ukz

' 5i(t — 4
= [ dmerion o) {—3(t—n)2+7l( n) +—2]. (6.21)
WD, Jo Wy, a)k2
On the other hand, performing the 7; integration first leads to
! 1 d 7 .
I, = / dr,e'®a™ (l‘ — 1-2) (_31‘ +1i + 212) / dl.le—l{l)k]‘[]
0 0(0,(1 0
N L /t deei(wkz_wk‘ )Tz(l‘ -1 -3(t—1) — L . (6.22)
W, Jo Wy,

Consider now 7; > 7,. The factor that one must now include is obtained by exchanging 7, and 7, in Eq. (6.19),

(Z—Tl)(—3t+T2 +2T1).

This modifies the contribution (4.5) to

A d’k
U0t = 0 = 5 [ 5 1ne

t T . .
Iy = / dr, / l drye 70T (t — 1) (=3t + 75 + 27¢).
0 0

Now we first integrate 7, dropping 7| = f,

(6.23)

—iwy, zVBB —k; VBBkz =0 (ki—=ko)?=i(ki—ko) x0|k2>

a)kl

(6.24)
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! i 0 0 ' i
IB = / deelwszz <[ - l—> ( 3t —+ T + 2i —) / dT]e_’wlel
0 0a)k] dwy,
' ‘ 9 o0\ 1
_ d —z((ukl -y, )T f— . _3(r— 2i i
% 7 2 ( & law,q) ( =) 2 ) o

j 1 . Si(t— 4
_ _L/ dTZe—z(wkl—wkz)fz |:—3(t _ 2.2)2 _ M + _2:| . (6,25)
@, Jo Wy, Wy

1

On the other hand, integrating 7, first,

t . a r ]
132/ drle""’klfl(t—rl)<—3t—i—+2fl)/]dfzelwkzrz
0 aa)kz 0

i [t : i
= —— [ drjeri@non)n (- 1)) [ =3(r - — . 6.26
o Jo TieT W TR Tl)( ( T])+wk2> (6.26)

Again, we replace the dummy variables 7, with 7; and average over integration orders to obtain

T 1 1 2i 2i
IA+IB:/ d‘L’ Ky k2)1|:—2<t—‘[1)<g+—2)+—3——3:|. (627)

(l)kl a)k2 a)kl

We note that, at k; = %k,, corresponding to the average value in elastic scattering, the terms that are linearly divergent in
t — 7| are nonzero, but the constant piece vanishes. As a result, these terms will not contribute to our final amplitude. The
contribution to the final state is

d*k Vgp_i, Vs, _
A B _ _ 1 2o iwy, t
W30 + VB0 = 00 = [ e

! 1 1 i i
X dTI (I—Tl) T+T _73+73
0 @y, B, @y, D

x e~ H @k =01)T1 e_az<kl_k0)2_i(kl_k0)xrl ‘k2>0 =C+D,

where
d k Vep—i, A, + Ve, Ak, iy
4\/AQ Wy,
X / dr(t — 7 )e—i(wko—wkz)‘f] e—f’z(kl—ko)z—i(kl—ko)xq |k2>0 (6.28)
0
and

D= / d*k Vpp_r,Vpsk, .
4 (

277.') a)kl
! 1 1 . 2 2
d _ —i(o, —wp, )t1 ,—0° (ki—ko)>—i(ki—ko)x. ko) 6.29
X /0 7 [602] 0)22:| e 0 e ! | 2>0 ( )

In this section, like the two before it, we have been careful to distinguish &, &k, and k,, even though they only differ by of
order O(1/c). Our care has paid off, because these differences were multiplied by factors of # — 7 and even (¢ — 7)? in terms
where zero modes were canceled. These factors resulted from the fact that the free evolution leads to a constant rate of
demotion from ¢ to ¢p=2.

However, now we have already calculated these factors, and they are not present in D. Therefore, in D, one can safely
take our limit mo — oo, which implies that, in the support of our e (ki=ko)® weight, k; may be replaced with k. Thus, with
the usual argument that x/¢ is negligible when multiplied by gz(x), we may write
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; 2
D= E/ d k2 VBBkz e—iwkzl/ dTl |: 1 L?):| e—i(mko—mkz)‘r]
4 (27[) (Uko 0 a)ko ka

/ VO (VA (1)) g (1) g, ()¢~ ko itti=ho)tvs =)y

_iym &Me-iww[i 1}

420 | 2m o a)z0 wzz

/ dryo= /o)l =o )1 |y
0

A [dky Vies—i,VEBr, —iwt —ilwr o i | | 1 2kt ho)?
= — - - 90 - 2 WOy~ Wiy )le | | p—O 0+ka) k . 630
4 ) 2z ko core 0} o} ¢ [k2)o (6.30)
0 2
In the support of the e~ (kotk) 5o that k, = —ky + O(1/0), we can see that the term in square brackets is 1/ a)io times a

factor of order O(1/(mo)) and so vanishes as mo — oo. Thus, D will not contribute to the amplitude and we will not
consider it further.

E. The total

Finally, we are ready to add the contributions in Egs. (6.2), (6.7), (6.15), (6.16), and (6.28) to the one-meson, no zero-
mode part of the final state. Recall that these are the contributions arising from interactions that created zero modes, which
were later annihilated. The sum is

Us(1)|t =0)y =B -~ /(‘ﬂ" 52 iy

27)* wy,

t ) ‘
X/ dTl(l‘—Tl)e_l(wko_wkz)flg_”z(kl_kﬂ)z—l(kl—ko)xq
0

ks)o. (6.31)

The quantity S, was defined in Eq. (5.37) where it was noted that S, = 0 as a result of the Ward identity (A16). This
leaves B.
The quantity B was defined in Eq. (6.16). It is

__AVE dk2 dk VB Vit V-i'k, i1
8 27[0' Wy, Oy

1 .
% d =2,/ (40%) =iy~ )y k
[(wko + 601&)2 - (wkz - wk’)2:| A e ' k2o

_ A / dky Idk' Vi VBt —
koa)k/

e—n'z(k0+k2)2—i(mk0—mk2)t(: |k2>0. (632)

) [(wko + wy)? - (g, = wk’)z]

In the support of e thothe)” e may set wy, = wy, and so manipulate

[(wr, = 0 )* + (0, + @ )?]

1 1 A v B_gy—r
VB—kOk’VB—k’kz[ + ] == :

(0, +op)* (@, —wp)? 100
_ 28 By

Yo (@l ) (6.33)

Here we replaced V_py, with Vg ;. , which yields a phase e~/>"%0)x_ However, the g3(x) is supported at x ~ O(1/m)
and k, + k is of order O(1/5) so the argument of the phase is of order 1/(om) which tends to zero, so the phase factor
tends to unity.
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Therefore, we conclude

1 /
= —i
4Q0ko
dk’
X P (wko +

dky _, 4
T2 ooyt g0 (kothka)*+ilko+kz)xo

-

K

}) [k2)o- (6.34)

This, together with the terms found in Sec. 111, is the part of the final state corresponding to meson with no zero modes that is

not forward scattered.

VII. THE ELASTIC SCATTERING PROBABILITY
Adding together the contributions to the final state from Egs. (3.16), (3.33), (3.55), and (6.32), finally, we find

sl = 0) = =i [ G2 et Rlk)er btk it ), .1
where the reflection coefficient is
R(ky) = A(A(ky) + B(ky) + C(ky) + D(k)) (7.2)
and
A =g X5, <(a) e e )2) T
0 ky T Dk k, — @K K
Blks) = .
R
D(k,) (0r + o)V ik, V kot 1, (73)

For example, A(k,) is just the coefficient in B in Eq. (6.32)
divided by A. We remind the reader that U, is not unitary, as
we have defined it to be just the part of the evolution
operator that leads to one nonforward meson and no zero
modes. Note that at k, = —k; one may simplify

1 kK w% +a)ﬁ,
A(=ky) = — A yA (7.4
h0) =g Lo (o) i (74

Following Ref. [17], it is easy to see that the probability
of elastic scattering is |R(—kg)|*. This calculation is done
using the reduced inner product of [38], which carefully
removes the divergences arising from the infinite moduli
space. Using

B
i B
Bl =",

ki )o = B 0,
[k1)o=Bj, |0)o 2o,

<O|0>red = @v

(7.5)

1

1 I 2K
8kO (2”)2 a)k/l a)k«Z (wﬁo - (a)k/] + 0)k/2>2 + i(:‘)

one finds that at leading order the reduced inner product
of |ky) and |ky) is \/Qy276(ky — ky)/(2wy,). Subleading
corrections are computed in Ref. [38] and it is argued that
they vanish in the present case in Ref. [17].

The reduced norm squared of the elastic scattered part of
the final state (7.1) is then

(1 = UL U1 = 0) g = VQ_olR<—"°>'2Ww;ko'
(7.6)

Here we have used the fact that 6m — oo to approximate R
to be independent of &, over the support of the Gaussian, so
that it could be pulled out of the integral, evaluated at —k,.

On the other hand, the reduced norm squared of the total
final state is equal to the reduced norm squared of the initial
state |t = 0), as a result of the unitarity of the evolution,
which is
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<t = Olt - red \/_4\/_770wk (7'7)

The probability of elastic scattering is just the ratio of these

two reduced norms,

(1 = UL () U5 (1)|t = O)yeq
<t = O|t = O>red

Indeed, the reduced norm was developed just to solve this
problem.

P =

= |R(=ko)>.  (7.8)

VIII. APPLICATIONS

After a long calculation, we have recovered the results of
Ref. [17]. What have we gained?

We have drawn diagrams corresponding to each process.
Yet, no Feynman rules have been given that would derive the
corresponding contribution to the amplitude from the dia-
grams. We intend to use this collection of examples to guide
the derivation of such Feynman rules for kink sector
perturbation theory. With this, we hope that such calculations
in the future may be much faster. Indeed, the fact that the
derivation of the elastic scattering amplitude in Ref. [17] was
so short gives us hope that such a simplification is possible.

A more streamlined framework will allow for higher
order computations. These have several potential applica-
tions. First, by summing bubble diagrams, one may see a
complex shift in the location of the pole corresponding to
the twice-excited shape mode resonance. The width of this
resonance should correspond to the lifetime of this unstable
state calculated in Ref. [42], which agrees with the classical
field theory calculation of Ref. [43]. One can test to see
whether, like in the vacuum sector, also in the kink sector
the lifetimes of unstable states may be read off of the
imaginary parts of the self-energies.

The situation potentially differs qualitatively from the
familiar vacuum sector case when one goes beyond leading
order. Here zero modes created at one bubble may
annihilate those created at another. It remains to be seen
whether this simply leads to subleading corrections cor-
responding to larger bubbles or else a qualitative change in
the structures of these resonances. Either way, we hope to
calculate these subleading corrections, as they may yield,
for the first time, the correction to the lifetime of an
unstable excited soliton state.

Finally, we would like to study higher order diagrams to
search for a kink sector Lehmann-Symanzik-Zimmermann
reduction theorem. In this paper and in Ref. [31], we have
observed that initial and final state corrections always seem
to cancel, by a number of different mechanisms. This leads
one to wonder just how generic this result is and whether
bubbles on external legs can be easily summed.

If one considers initial conditions with multiple mesons,
one may also study meson fusion. Using coherent states to

create a classical limit as in [42], this should allow a study of
the negative radiation pressure observed in Refs. [44—46].

Of course, kinks themselves have limited phenomeno-
logical interest. In general, 1 + 1d scalar models with kinks
are instead used as toy models either for QCD [23] or for
quantum gravity [47,48]. In the near future, we hope to
generalize linearized soliton perturbation theory to solitons
in more dimensions, and so the answers to the above
questions may have more relevant applications.
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APPENDIX A: WARD IDENTITIES

Consider the n-point functions

Vi / VO (VAf(x)an () ga (1), (AD)

where A; runs over continuum modes k, shape modes S,
and the zero mode B. These correspond to n-point
functions with external legs A; corresponding to various
zero and normal modes. The generalization containing
factors of Z(x) is obvious.

Now consider an n-point function containing at least one
zero mode. The n-point function is symmetric, so let us put
the zero mode in the last index A, = B. Then V4 .4
satisfies a Ward identity corresponding to translation
invariance. Schematically, the Ward identity is

1 S fadA
Vaia s = \//1—?0; EAA,-—A’VA]--~A,-,,A’A,-+,---An,l-
(A2)

The matrix A, defined in Eq. (5.12), plays the role of the
momentum operator. Here, breaking from our usual nota-
tion, the symbol I includes not only shape modes but also
the zero mode. The constant factor of 1/1Q, is the result of
various conventions.

These are derived by noting that

VD (Vaf(x))
VAQo

and integrating by parts to move the derivative onto the
other factors g4 (x). The identity, in the form of the normal
mode completeness relation (A10), which is a standard
result in Sturm-Liouville theory, is inserted to turn g/, (x)
into a AA[A/, matrix, which represents translations on the

" (Vaf (x))gp(x) = - (A3)

normal modes. In this appendix, some such Ward identities
will be derived.
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Note that the only continuous global symmetry in our
model is translation invariance. However, in more general
models in which global symmetries are explicitly broken by
classical solutions, we expect the same results to hold for
the corresponding zero modes. Note that this is true even if,
as in the present case, the ground state in the soliton sector
preserves the classically broken symmetry as a result of the
Coleman-Mermin-Wagner theorem.

1. Warm up

In the special case N =3 we can use the fact that

@) (VAf(x)) satisfies the Sturm-Liouville equations of
motion of the normal modes to simplify the Ward identities
further. This will be the first approach below.

Using

VBipk, = (8k, (%)@, (X) — @, (=

\/U
\/— =

mZ

= — ﬁ (gk2 (i)gkl (5\()

_gkz(_
1 /x

+ — dx|q’
VAQg J-x

— o} ) Ak,
VAQo
m2+k1k2

= _W (a1, (¥)gy, (%)

(@,

Note that the term in the first parentheses is proportional to
e**kitk) which, by the Riemann-Lebesgue lemma, will
vanish when folded into any integrable function of k; + k-,
such as our normalizable wave functions. One might have
expected it to be proportional to §(k; + k,), however, it
remains finite when k; + k, = 0 and so the constant of
proportionality is zero. The left side also remains finite at
ki + k, = 0 because gz(x) has compact support. Thus,
taking the limit * — oo, one arrives at

(A7)

In the above derivation, k; and k, could be continuum
modes or shape modes. However, the derivation also

T+ 00 (x) + g

— g, (=R)gy, (=3)) +

one can expand

Vi, = / dxVO (VA (1)) s ()8, (D)8, (2)
- dx(v<3><ﬂf<x>>f'<x>)gkz (Vg ()

dx0, (VO(VAF () + Cu, )

v/
X 8k, (%)@, (%) (AS)
where Cy i, is independent of x but otherwise arbitrary.

a. Approach one

As Cyk, 1s x independent, its derivative vanishes and we
may drop it. Now, cut off the integration at £X, such that
|| > 1/m and integrate by parts,

2)gr, (%))
Caxve M(VAS(x)) (1, (0)g, (¥) + g, () g, (1)

X)a, (-1))

() (@, + 0)ay, (x)]

- (8r, (X)g, (%) — ar, (—%) gy, (—3)) + ﬁ (g, (R)gf, (%) — g, (~2)g}, (—3))

(A6)

applies to the case in which k; or k, is the zero mode.
In this case, the corresponding frequency in the Sturm-
Liouville equation satisfied by g(x) vanishes and so one
obtains

b. Approach two

If we keep the C;;, when integrating by parts, one
arrives at
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m2
VBiok, = —%(gb (2)ar, (&) — g, (—%) g, (—2)).
+ \//11—Qo/ dx(v<2)(\//_1f(x)) + Cklkz) (8, (X)gf, (%) + @ (x)gy, (%)), (A9)

where X is a spatial cutoff, which should be taken to infinity. The boundary term on the first line oscillates rapidly and so
vanishes as a distribution unless k; + k, = 0. It therefore may only contribute a divergent term at k; + k, = 0, but Vg ¢,
has no such large x divergence as gz(x) has compact support. Therefore, the boundary term always vanishes and we will

drop it. Now insert the completeness relation

to change the ¢'(x) terms to ¢/(y), leaving the boundary terms implicit,

1
kazk] —\/l—?/dx/dyé(x—y) (V(z)

S(x—y) =apx I—gk/ x)8_p(y) (A10)
(VAF()) + Cui, ) (81, (¥)8}, () + 8, (), ()
/ x(v! w7mw4m)@umym%+%m%um%
ka g (X)Apg, + 8, (X)g_p (X)Ak’kz)}
Vi, Ak, + Vi, Apr, + id—i (Vi Brg, + Vkl—k/Ak’kz)] : (A11)

v/lQo

Here the C terms each vanish as a result of the orthonor-
mality of the normal modes g as well the antisymmetry of A.

This Ward identity relates three-point functions with
contractions of two-point functions with A. We will see
below that it can be generalized to an expression relating
any n-point function with a contraction of (n — 1)-point
functions with A.

2. Infrared divergences

One needs to be aware of the infrared divergences that
arise when some subset of the k; sum to zero. These result
from the fact that the e~** factors in the corresponding
gy (x) at large |x| have a product that does not oscillate, and
so some integrals diverge. For example, consider the
manipulation

Apk, :/dXle (x)axgkz(x)

—/m%um%u>
— Akzkl .

= 8k, ()81, (¥)[%
= g, (g, (1) %

Generally, we drop the boundary term and summarize the
result by stating that A ;, is antisymmetric. This is justified

(A12)

because, if we take the limit |X| — oo of the boundary term
at the end, it oscillates rapidly in |%| and so vanishes as a
distribution. However, this argument fails if k; = —k,.
Thus, the antisymmetry is only up to a correction with
support at k; = —k,, such as a Dirac § function. In practice,
in the case of kinks in gapped theories considered here, this
term is proportional to k;6(k; + k,), which in fact is
antisymmetric. In principle, such contributions may lead
to finite effects in quantities of interest, and one must
always be aware of them and must determine when they
may contribute. For example, in the case of the one-loop
mass correction, the general formula of Ref. [20] is
proportional to (w; —,)? and so it vanishes even when
the coefficient contains a 5(k — p).

In general, we expect such divergences in our (n — 1)-
point functions on the right-hand side of the Ward iden-
tities, but we do not expect them in the n-point functions on
the left-hand side because these include a gz (x) which has
compact support. Let us now show that this expectation is
fulfilled in the case at hand, and a divergence on the right-
hand side of the Ward identity does not lead to one on the
left-hand side.

The three-point function Vg ,, plays an important role,
as the vertex factor connecting a zero mode to two mesons.
We now ask whether it is sensitive to ¢ function terms in
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Vi k,- In the last line of (A11), one can see that the shift  also vanishes in the sense of a distribution, while we recall
Vik, = Vi, + 5(ky + ky) leads to the shift Vi, = that an infinite distribution is excluded by the fact that
Viik, + (Dik, + Dii,)/v/20o. This of course would QB(X) has-compact support. Therefore, again we are not
interested in such contributions, and so we conclude that a
5(k; 4 ky) contribution to the two-point function does not
affect the three-point function.

vanish were Ay ; truly antisymmetric, but as we reviewed
above this argument fails at k; = —k,. However, a finite
contribution on a codimension one surface like k; = —k,

3. Computation

This time, expand

Vi, = / VO (VIF ()G (X ar, (g, (¥)

- \/L_ dx (v<4> (VAf(x)f' (X)) 95 (%) 8k, (*) gy, (x)

\/—/dxa V(Vaf(x ))+Ck]kz)gB(X)gkz(x)gk,(X), (A13)

where Cy , is independent of x but otherwise arbitrary.
As gz(x) vanishes asymptotically, no boundary term is introduced when we integrate by parts,

Vins, M [ ax(vOWir) + Cis,)oulas(ac (g ()

m / dx(VOWAF(x)) + Cu, ) (85(1)a1, (¥)af, (+)

+85(xX) 8k, (X)) (X) + 8k, (X) 8k, (x)g5(x))- (Al4)

Note that the Cy , terms vanish as they are the integral of a total derivative of a bounded function. Of course, this is obvious
because Cy, is arbitrary.
Now insert the completeness relation

3= ) = as000s ) + Y5 e ) (A1

to change the ¢'(x) terms to ¢'(y),

Vans, =g [ v [ ot =) (VOWIF0) + Cu) (an()as (), 0
Fasla, <x>g;2< )+ a1, (a6, ()5 (1)

VA + Co) | B 000, 000, + B0, (),

-7z (v
Y S @00 ()0 ()8, + (), ()0 (1) e, + 5, (1), ()00 (1))
1 /

dk
=0 |:VBBk2 Ape, + Vg, Apr, + Iz_,, (Vo Bk, + Vo -1 Buk, + Vklkz—k/Ak/B):|' (Al6)
0

Now shifting Vy x,_x by 8(k; 4k, — k') changes the answer, with a shift proportional to Ap . 4,-
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APPENDIX B: SUBLEADING CORRECTIONS
TO STOKES SCATTERING

1. Shape modes

In some models, the kink possesses shape modes. In that
case, the virtual meson above could be a shape mode. That
invalidates two of the arguments made above.

First of all, several times above we stated that the &’
integrand oscillates so rapidly that, once £’ is integrated out,
the contribution to the amplitude will be exponentially
suppressed by interference. If k" is discrete, this argument
does not work.

Second, we used the reduced inner product. The kink has
an infinite moduli space of classical solutions, related by
translation invariance. By choosing one kink solution, we
have fixed the translation symmetry. This can be done
consistently in the ratio of matrix elements, like in our
formula for the probability. However, when one fixes a
symmetry, a determinant term must be included.

This determinant was calculated in Ref. [38]. Including it
in the inner product, we found that the inner product is
nonvanishing not only when all mesons have the same
momenta, but also the inner product is nonvanishing
between two states that differ by one meson with momen-
tum k’. However, in this case, there is a suppression factor
that is schematically v/AA 5.

As the zero mode B is localized close to the kink, if the
virtual meson has traveled far, then it will be disjoint from

Uy (1))t = 0)y = — / duje

gz(x) and this term will cancel. However, a shape mode is
bound to the kink and so cannot travel far. Therefore, one
can expect a contribution to the inner product arising from
virtual shape modes.

However, this contribution is suppressed by a factor of
/4, and so one must consider evolution U, () at order
O(+/2). This evolution has been comprehensively studied
in Refs. [31,33]. The conclusion is that, if the kink starts in
its ground state, the only allowed process is the creation of
two quanta. If both are continuum mesons, this process is
called meson multiplication. If one is a shape mode, this is
called Stokes scattering.

We thus conclude that Stokes scattering, included in
U,(t)|t = 0),, may, in principal, lead to a nonvanishing
inner product with respect to a nonforward meson and so
contribute to our process.

Of course, this cannot really happen, as the conservation
of energy would imply w;, = @y, — ws, which is the wrong
energy for the recoil meson. However, in this appendix, we
will try to show how this contribution vanishes.

2. Stokes scattering

Consider the interaction H" from Eq. (3.17). It acts on
meson 1 as in Eq. (3.20). At leading order, this leads to the
final state

(=) {1 ity / %e—nZ(k.—w—i(kl—kom|k1>0

T

—l VA dkl Ide Idk’ —i(wp, +op )t /t d,l_le—i(wko—wkz—wk/)‘r]
0

o V—klkzk’ o= ki—koP=ilki—ko)x.,

a)kl

Stokes scattering corresponds to the case k' =

kyk')q. (B1)

S and k, is a continuum mode. Of course, this expression is symmetric in &/

and k, and so if k, = S then one can rename it k’. This freedom leads to a factor of 2.
Abusing our notation again, we will define U, (t) be the Stokes scattering part, which is equivalent to considering only

Stokes terms in the definition of H gl)/,

[
2 ) (2n)?

X E V- Z—kikS e ° ? (ki —ko)>=i(ky—ko)xe,

C()kl

. t .
e—z(wk2+ws)t d‘[l e—z(wko—mkz—ms)rl
0

k> S),. (B2)

Now, we make the usual approximation that ey, in the denominator is @y, and again using the fact that g4(x) has compact

support, we find
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VL)l = 0y = ~i 2 E

2 2z0 ) 27 ay,

dky Vighos i

g, Fws)t

X /t dr, e~ (@ =wr,—w5)T) e"‘% /(4c7) |k25>0
0

_ \/_ e~ /deZV koky S —a (01, / ko) (@ =0, =5 ) =i( @, +w5) (11, |k S>

(B3)

3. Reduced inner product

To obtain the corresponding contribution to the probability, one needs to project this final state onto one meson final

states, using the projection

val

72wk2|k2 (ks|.

(B4)

What is the reduced inner product of this final state with a single meson state |k,)?
There are two contributions. The first comes from the leading part |k,), of |k,). Using the master formula (4.14) of
Ref. [38] with y°%(k,S) = 1/2, one finds that the term contracting the shape mode and the zero mode is

<k2|U1( )|t = O>Ored =

f e @xylc Z—V koszASB =07 (@ ko) (@1y =k, =5 )* =i (0, +5) (1— te)
kowswy,

(BS)

Here we have remembered the factor of 1/(2w,) from Bg, which is built into the normalization of our states |k;),.

However, there are also contributions, at the same order, from the two-meson quantum corrections |k,),,

_2m6(ky — ky)
7’1k2 (k. k) =

276(ky — ky)

1~ K Vi,
Ay \/ A .
A ( K+ 4Q0 o )

Here y})(k;---k,) is the coefficient that arises when
decomposmg the state |y) into the basis @f'|k; - k,)
at order O(A/2). It is defined to include a factor of Q}/* so
that it contains no powers of the coupling A.

We are interested in the case where k| or k) is a
shape mode. At late times, the meson k, is far from the
kink and so cannot interact with a shape mode. As a result,
after all of the usual integrations, the V_p term will

vanish.

— k) po Ik’

VAoV _iik,

4wk2(wk2 — Wy = wk;)

(B6)

Now k, is the momentum of the asymptotic meson, so it
is by assumption not a shape mode, as we are calculating
the amplitude to produce an asymptotic meson. Therefore,
in the 8(k}, — k,) term, it must be that &/ is the shape mode
and similarly for the other 6 term.

We need to sum over whether &/ or &) is the shape mode.
Now, remembering the factors of 1/(2ws) and 1/(2wy,)
from the contractions of the two mesons, one can see that
the A terms cancel half of (B5). The other half is canceled
by the contribution from Eq. (6.5),

\/_ dk'V i w Ay
kU (H)t=0 e k! M i
0< 2| ]( )| >0red 16 Izﬂ_ kowk’wkz
X e ° (wko/ku)z(wko—wk2—wk/)z—i(wszrwk/)(t—tc)‘ (B7)
This leaves the two tadpole terms, which are proportional V7g. They yield an inner product of
ol UL (1)}t = 0)greq = i 2CE0 ¢yt LS VIS o om0 1), (BS)
8 koa)sa)kz
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This term appears to be a disaster, as it contributes to the
final probability with a final energy wy, that is not close to
the initial energy w,.

However, the term looks reminiscent of the tadpole
interactions studied in Sec. III C. Indeed, the inner product
of Ay, the first term in the parentheses in Eq. (3.29), with
o(ka|, exactly cancels this term.
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