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Classically, reflectionless kinks transmit all incident radiation. Recently, we have used an analyticity
argument together with a solution of the Lippmann-Schwinger equation to write down the leading quantum
correction to the reflection probability. The argument was fast, but rather indirect. In the present paper, we
calculate the reflection coefficient and probability by methodically grinding through the Schrödinger
picture time evolution. We find the same answer. This answer contains contributions not considered in the
traditional calculation of meson-kink scattering in 1991. However, as a result of these contributions, our
total result is zero in the case of the Sine-Gordon model, and so it is consistent with integrability.
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I. INTRODUCTION

The understanding of the interactions of solitons with
perturbative excitations has many potential applications,
from searches for cosmic strings in the cosmic microwave
[1] and gravity wave [2] backgrounds to soliton-soliton
scattering, where soliton-bulk interactions play a key role
[3–7].
At tree level, these interactions have long been under-

stood [8]. However, there is reason to believe that quantum
corrections qualitatively change the situation, as is thought
to be the case for the oscillon [9,10] and Q-ball [11]
lifetimes and dynamics [12]. This is because, in the
quantum theory, the leading quantum corrections appear
to make reflectionless kinks reflect perturbative mesons.
The leading quantum corrections to the scattering of kinks
with mesons were studied in a series of papers [13–15]
culminating in Ref. [16]. Recently, in Ref. [17], we have
used the Lippmann-Schwinger equations to provide a
quick derivation of the one-loop quantum corrections to
the elastic scattering amplitude. The result did not agree
with Ref. [16]. At least some of the differences are due to
the fact that some terms were explicitly dropped in
Ref. [16] as they were considered to be loop corrections;
however, we have shown that, in the case of the Sine-
Gordon theory, these terms in fact cancel other terms of the

form of those that were kept, and this cancellation is in fact
a consequence of the integrability of the model.
Our derivation made several assumptions about analy-

ticity and ignored final states that did not correspond to
elastic scattering. While the Sine-Gordon theory did
provide a valuable check of our results, more general
models possess a cubic coupling at the minima, which
yields interactions far from the kink that are not present in
the Sine-Gordon model. This, together with the fact that
our result disagrees with the standard result of Ref. [16],
motivates an independent and robust recalculation of this
scattering amplitude.
The present paper does just this. We provide a derivation

of the amplitude in gory detail by considering an initial
meson wave packet incident on a kink and evolving it in
time, evaluating every contributing diagram up to second
order in the coupling constant.
This is done using the linearized soliton perturbation

theory of Refs. [18,19], reviewed in Sec. II. It is a
Hamiltonian approach, which uses a decomposition of
the fields in normal modes following Ref. [20]. In particular,
no collective coordinate is introduced, removing many of
the complications present in traditional approaches [21,22].
The transition from a Hamiltonian to a kink Hamiltonian,
central to all approaches to quantum solitons since Ref. [23],
takes the form of a passive unitary transformation on
the regularized theory. This is in contrast with previous
approaches, which regularize the vacuum and kink sectors
separately and then need to introduce an arbitrary and often
inconsistent matching condition for the regulators [24].
In Sec. III we calculate all contributions to the scattering

amplitude not involving zero modes. The pieces of the final
state containing zero modes are fixed by translation invari-
ance [19]. However, there are contributions to the amplitude
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involving processes in which zero modes are created and
then are absorbed by the free evolution of the kink center of
mass. These are the hardest to calculate. In Secs. IV and V
we methodically calculate the final states containing four
and two zero modes. These are, as expected, determined by
translation invariance. However, in Sec. VI we show that
these calculations can be easily modified to generate the
final states that have no zero modes, but arise from
intermediate states involving zero modes. This provides
the final contribution to the elastic scattering amplitude.
The contributions found here agree precisely with those

of Ref. [17]. This suggests that, in the future, long
calculations such as that of the present paper may be
unnecessary. One may simply read the amplitudes off of
the solution to the Lippmann-Schwinger equations, as was
done in Ref. [17].

II. REVIEW

A. The theory

A number of efficient formalisms are available for
treating quantum solitons. At one loop, as reviewed in
Refs. [25,26], reliable and efficient spectral methods have
long been available. Recently a classical-quantum corre-
spondence has been introduced in Refs. [27,28] that cannot
treat nonlinearities, but has been applied even well beyond
the perturbative regime [29]. However, elastic scattering
occurs at the next order, so these formalisms will not be
suitable.
We will instead use linearized soliton perturbation

theory. Linearized soliton perturbation theory was devel-
oped at one loop in Ref. [18] and beyond in Ref. [19]. So
far, it has only been applied to 1þ 1-dimensional models of
a scalar field ϕðxÞ and its conjugate πðxÞ,

H ¼
Z

dx∶HðxÞ∶a;

HðxÞ ¼ π2ðxÞ
2

þ ð∂xϕðxÞÞ2
2

þ Vð ffiffiffi
λ

p
ϕðxÞÞ
λ

; ð2:1Þ

because in these models all ultraviolet divergences are
removed by the normal ordering ∶∶a. However, the
formalism is also compatible with a cutoff regularization
and counterterms [30], and so we feel that it can be
generalized to more interesting models.
The potential V is required to have degenerate minima so

that there will be classical kink solutions ϕðx; tÞ ¼ fðxÞ.
We specialize to the case of reflectionless kinks, however,
we have shown in Ref. [31] that calculations such as those
that follow are effortlessly generalized to reflective kinks.
In the present context, the leading quantum contribution to
the reflection probability would arise from cross terms
between the amplitude calculated here, adjusted as in
Ref. [31], and the leading order amplitude [8,32].

We will expand perturbatively in the coupling constant λ.
In Refs. [31,33] we have seen that meson multiplication
and Stokes scattering occur at order Oð ffiffiffi

λ
p Þ in the ampli-

tude. We will see that elastic scattering amplitudes begin at
order OðλÞ.
The normal ordering will be defined at massm, which in

turn is defined by

m2 ¼ Vð2Þð
ffiffiffi
λ

p
fð�∞ÞÞ;

VðnÞð
ffiffiffi
λ

p
ϕðxÞÞ ¼ ∂

nVð ffiffiffi
λ

p
ϕðxÞÞ

∂ð ffiffiffi
λ

p
ϕðxÞÞn ; ð2:2Þ

where the masses Vð2Þð ffiffiffi
λ

p
fð∞ÞÞ and Vð2Þð ffiffiffi

λ
p

fð−∞ÞÞ
need to agree in order for a stationary kink state to
exist [34].

B. States and sectors

The field ϕðxÞ has perturbative excitations. As usual,
these are created and destroyed by operators A† and A that
are in turn constructed by decomposing ϕðxÞ and πðxÞ into
plane waves. This is to be expected, as plane waves are the
solutions of the linearized classical equations of motion.
We refer to such perturbative excitations as mesons. The
Fock space consisting of the vacuum plus some finite
number of mesons will be called the vacuum sector.
In the presence of a kink, the linearized equations of

motion become the Sturm-Liouville equation

Vð2Þð
ffiffiffi
λ

p
fðxÞÞgðxÞ ¼ ω2gðxÞ þ g00ðxÞ;

ϕðx; tÞ ¼ fðxÞ þ e−iωtgðxÞ: ð2:3Þ

The solutions to this equation are normal modes gðxÞ.
Normal modes can be divided into three categories,
depending on their frequency ω. First, there is a single
zero mode

gBðxÞ ¼ −
f0ðxÞffiffiffiffiffiffi
Q0

p ð2:4Þ

with frequency ωB ¼ 0. Here Qi is the order Oðλi=2−1Þ
quantum correction to the kink mass, so Q0 is just the
classical kink mass. Second, for every real number k
there is a continuum mode with ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
. Finally,

there may be discrete, real shape modes gSðxÞ with
0 < ωS < m. We chose the convention g�k ¼ g−k and fix
the normalizations via

Z
dxjgBðxÞj2¼1;

Z
dxgk1ðxÞg�k2ðxÞ¼2πδðk1−k2Þ;Z

dxgS1ðxÞg�S2ðxÞ¼δS1S2 : ð2:5Þ

JARAH EVSLIN and HUI LIU PHYS. REV. D 109, 085019 (2024)

085019-2



Following Ref. [20], we may use the normal modes to
decompose the Schrödinger picture fields

ϕðxÞ ¼ ϕ0gBðxÞ þ
XZ dk

2π

�
B‡
k þ

B−k

2ωk

�
gkðxÞ;

πðxÞ ¼ π0gBðxÞ þ i
XZ dk

2π

�
ωkB

‡
k −

B−k

2

�
gkðxÞ; ð2:6Þ

where we have defined the shorthand

B‡
k ¼

B†
k

2ωk
; B−S ¼BS;

XZ dk
2π

¼
Z

dk
2π

þ
X
S

: ð2:7Þ

The canonical commutation relations satisfied by ϕðxÞ
and πðxÞ imply that ϕ0; π0; B, and B‡ satisfy the algebra

½ϕ0; π0� ¼ i;
h
BS1 ; B

‡
S2

i
¼ δS1S2 ;h

Bk1 ; B
‡
k2

i
¼ 2πδðk1 − k2Þ: ð2:8Þ

The interpretation of these new operators is straightfor-
ward. In states with a kink, the operator B‡

k creates a
continuum normal mode, which we also call a meson. The
operator B‡

S excites an internal shape mode. The operators
ϕ0 and π0 correspond to the position and momentum of the
kink’s center of mass.
We refer to the kink ground state plus any number of

mesons and shape modes with any wave function com-
posed of ϕ0 as a kink sector state.

C. The kink sector

How dowe construct a kink sector state? In classical field
theory, vacuum sector states correspond to fields ϕðx; tÞ that
are close to a minimum of the potential, which we take be
zero, while kink sector states correspond to ϕðx; tÞ close to
fðxÞ. Thus, one can turn a vacuum sector state into a kink
sector state by shifting ϕðx; tÞ → ϕðx; tÞ þ fðxÞ.
In quantum field theory, one needs to be careful because

such a shift may be incompatible with the regularization
[35]. Instead, we will work directly in the regularized
theory and will, as described below, make use of the unitary
displacement operator

Df ¼ Exp

�
−i
Z

dxfðxÞπðxÞ
�
: ð2:9Þ

In the absence of a momentum cutoff, this indeed shifts
the field.
The key observation is that acting the operator Df on a

vacuum sector state yields a kink sector state, and all kink
sector states can be constructed in this way. Indeed, this is
just the old coherent state construction of soliton states
[36,37]. For example, we may write the soliton ground state

as Dfj0i, where j0i is some state in the vacuum sector, and
a Hamiltonian eigenstate with one soliton and one meson as
Dfjk1i, where jk1i is another vacuum sector state.
The appearance of aDf factor in every state is annoying,

and so we will remove it with a passive transformation. We
stress that this passive transformation is a convenience,
merely relabeling the coordinates on the Hilbert space. The
passive transformation is defined as follows.
We define a “frame” to be an identification of Hilbert

space (projective) vectors with states. The usual identifi-
cation of Hilbert space vectors with states is called the
“defining frame.” Then we define the “kink frame” as
follows. In the kink frame, the Hilbert space vector jψi is
identified with the state that is identified with the Hilbert
space vector Dfjψi in the defining frame. In other words,
jψi in the kink frame is just our old state Dfjψi without
bothering to write theDf. So in the kink frame, we write j0i
for the kink ground state and jk1i for a state with one kink
and one meson.
Of course, as is always the case with passive trans-

formations, one needs to simultaneously transform the
operators that act on the states. For example, in the kink
frame, time evolution and spatial translations are generated
by the kink Hamiltonian and momentum

H0 ¼ Df
†HDf; P0 ¼ Df

†PDf: ð2:10Þ

These are easily evaluated. The kink momentum is

P0 ¼
ffiffiffiffiffiffi
Q0

p
π0 þ P; P ¼ −

Z
dxπðxÞ∂xϕðxÞ; ð2:11Þ

where the π0 term is the momentum of the kink center of
mass, while P represents the momentum in the mesons. The
kink Hamiltonian is

H0 ¼
X∞
n¼0

H0
n; H0

0 ¼ Q0; H0
1 ¼ 0;

H0
n>2 ¼ λ

n
2
−1
Z

dx
VðnÞð ffiffiffi

λ
p

fðxÞÞ
n!

∶ϕnðxÞ∶a; ð2:12Þ

where H0
n is of order Oðλn=2−1Þ. We will write H0

2

momentarily.

D. The perturbation theory

What have we gained by decomposing kink sector states
into Dfjψi and then dropping the Df? The main advantage
of this formalism is that jψi may be found perturbatively
using the eigenvalue equation for H0. This is the main
advantage of linearized perturbation theory, the nonpertur-
bative problem of finding the kink states becomes entirely
perturbative. Similarly, Schrödinger picture time evolution
may be performed perturbatively using e−iH

0t.
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The perturbation theory begins with the free part of the
kink Hamiltonian,

H0
2 ¼ Q1 þHfree; Hfree ¼

π20
2
þ
XZ dk

2π
ωkB

‡
kBk: ð2:13Þ

Recall thatQ1 is a scalar, it is just the one-loop correction to
the kink mass. The π20=2 term is the kinetic energy of the
kink center of mass, while the other terms are quantum
harmonic oscillators for the shape and continuum modes.
We will always work in the center of mass frame. The
ground state j0i0 of the free Hamiltonian is the quantum
field theory state, which is the ground state of all of these
quantum mechanical models; in other words, it is the
unique state that satisfies

π0j0i0 ¼ Bkj0i0 ¼ BSj0i0 ¼ 0: ð2:14Þ

We can write any state in the kink sector by applying
creation operators B‡ and zero modes ϕ0 to this state. B‡

converts H0
2 eigenstates into other H0

2 eigenstates, which
we will denote with a subscript 0,

B‡
k1
� � �B‡

kn
j0i0 ¼ jk1 � � � kni0: ð2:15Þ

We are interested not in eigenstates jk1 � � � kni0 of the
free Hamiltonian H0

2, but rather in eigenstates jk1 � � � kni of
the full Hamiltonian H0. To find these, perturbatively, we
decompose them in powers of the coupling

jk1 � � � kni ¼
X∞
i¼0

jk1 � � � knii; ð2:16Þ

where jk1 � � � knii is of order Oðλi=2Þ when expanded in the
basis that we will describe shortly. The perturbative
expansion starts with the approximation i ¼ 0 given
in Eq. (2.15).
As the Hamiltonian is translation invariant, we may

specialize to states that are translation invariant. In other
words, we are only interested in states annihilated by P0.
Now the states are described by a wave function in the kink
center of mass position ϕ0, but translation invariance means
that, if we find the part of a state near1 ϕ0 ¼ 0, then we can
use translation invariance to reconstruct it elsewhere. Thus,
we expand about ϕ0 ¼ 0. In terms of operators, this means
that we consider a polynomial expansion in ϕ0, which is a
good approximation for the part of the state near the zero
eigenvalue of ϕ0. In summary, a basis of states is given by

ϕm
0 B

‡
k1
� � �B‡

kn
j0i0: ð2:17Þ

We refer to the part of a state2 withm ¼ 0 as the primary
part and the m > 0 part as the descendants. In Ref. [19] we
showed that all of the descendants are determined by
translation invariance P0jψi ¼ 0. Therefore, we only use
perturbation theory to determine the primaries.
The last ingredient that we will need for our perturbative

treatment is Wick’s theorem [39], which relates the normal
ordering ∶∶a to a normal ordering ∶∶b, in which π0 and Bk
appear at the end,

∶ϕjðxÞ∶a ¼
Xbj2c
m¼0

j!
2mm!ðj − 2mÞ! I

mðxÞ∶ϕj−2mðxÞ∶b;

IðxÞ ¼
Z

dk
2π

jgkðxÞj2 − 1

2ωk
þ
X
S

jgSðxÞj2
2ωS

: ð2:18Þ

The contraction factor IðxÞ will be represented pictorially
below as a loop that begins and ends at the same vertex.
This theorem lets us convert the formula (2.12) for the
interactions in the kink Hamiltonian into the formulas that
will appear in the text.

III. CONTRIBUTIONS WITH NO ZERO MODES

We are interested in the following process. Meson 1
strikes the kink from the left. An interaction occurs at order
OðλÞ and meson 2 leaves the kink, again to the left. The
initial and final states both contain a single unexcited kink
and a single meson.

A. Generalities

1. Initial condition

More precisely, our system begins in the state

jt ¼ 0i ¼
Z

dk1
2π

e−σ
2ðk1−k0Þ2−iðk1−k0Þx0 jk1i; ð3:1Þ

where meson 1 is centered at a position x0 < 0 relative to
the kink in a wave packet of width σ and average
momentum k0 > 0. Recall that jk1i is the translation-
invariant H0 eigenstate consisting of a single kink and a
single meson with momentum k1. It is invariant under
simultaneous translations of the kink and the meson,
preserving their separation. The state was constructed
explicitly up to order OðλÞ in Ref. [38].

1This crude notation means that we decompose the state into
eigenvalues of ϕ0 and then consider components with eigenval-
ues close to zero. It is explained more precisely in Ref. [38].

2We use the letter m as both a non-negative integer index
counting zero modes and as a real, positive number describing the
meson mass.
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We will be interested in the limits

x0
σ
→ −∞; mσ → ∞: ð3:2Þ

The first limit states that the initial meson wave packet does
not overlap with the kink, while the second limit states that
the wave packet is nearly monochromatic.
As jk1i is a translation-invariant Hamiltonian eigenstate,

jt ¼ 0i is also translation-invariant. However, it is not a
Hamiltonian eigenstate, as each jk1i has a different eigen-
value. The Hamiltonian and momentum commute ½H;P� ¼
½H0; P0� ¼ 0 and so, evolving in time, the state will remain
translation invariant.
The details of the initial state will not be relevant to the

elastic scattering amplitude. In other words, if we perform
the following calculation with a different initial state,
then the amplitude will be unchanged so long as the
smearing of the initial kink-meson relative momentum
involves Fourier modes corresponding to momenta much
less than m and the initial meson is fully localized to the
left of the kink. Of course, we cannot begin with the meson
in a momentum eigenstate, as that would not be localized
to the left of the kink. The choice of a Gaussian wave
packet is convenient because it is simple and also normal-
izable, a property which we will use in Sec. VII when we
divide by the norm squared in the definition of the elastic
scattering probability.

2. Evolution operator

The Schrödinger picture evolution operator is

UðtÞ ¼ e−iH
0t ¼

X∞
n¼0

UnðtÞ: ð3:3Þ

Here we have decomposed it into the order Oðλn=2Þ
contributions Un. Up to order OðλÞ, these are

U0ðtÞ ¼ e−iH
0
2
t; U1ðtÞ ¼−i

Z
t

0

dτ1e−iH
0
2
ðt−τ1ÞH0

3e
−iH0

2
τ1 ;

U2ðtÞ ¼−i
Z

t

0

dτ1e−iH
0
2
ðt−τ1ÞH0

4e
−iH0

2
τ1

−
Z

t

0

dτ1

Z
t

0

dτ2e−iH
0
2
ðt−τ2ÞH0

3e
−iH0

2
ðτ2−τ1ÞH0

3e
−iH0

2
τ1 :

ð3:4Þ

We will define xt, which, before the collision, is the
meson’s position at time t, and also tc, the collision time, by

xt ¼ x0 þ
k0
ωk0

t; tc ¼ −
ωk0

k0
x0: ð3:5Þ

We will be interested in the limit ðt − tcÞ=σ → ∞, so that
by the end of the experiment meson 2 is far from the kink.

As mσ → ∞, in the support of the Gaussian e−σ
2ðk1−k0Þ2

we may approximate k1 ∼ k0 and so linearly expand

ωk1 ¼ ωk0 þ
k0
ωk0

ðk1 − k0Þ: ð3:6Þ

B. One interaction

The simplest process that leads to elastic scattering is
drawn in Fig. 1. Meson 1, with momentum k1, interacts via
the interaction

Hð1Þ0
4 ¼ λ

2

Z
d2k
ð2πÞ2 VI−k1k2B

‡
k2

Bk1

2ωk1

ð3:7Þ

at time τ1. Here Hð1Þ0
4 is a term in H0

4. This interaction
involves a virtual meson that it both creates and annihilates,
and it leaves meson 2, with momentum k2. Each loop at the
same vertex gives a factor of the function IðxÞ.
Here we have used the shorthand V to denote an n-point

function defined as follows:

Vk1���kn ¼
Z

dxVðnÞð
ffiffiffi
λ

p
fðxÞÞgk1ðxÞ � � � gknðxÞ;

VIk1���kn−2 ¼
Z

dxVðnÞð
ffiffiffi
λ

p
fðxÞÞIðxÞgk1ðxÞ � � � gkn−2ðxÞ;

ð3:8Þ

where we remind the reader that the loop factor IðxÞ was
defined in Eq. (2.18).
This interaction is proportional to λ already, and so a

final state proportional to λmay only arise if one acts it on a
state of order Oðλ0Þ. In other words, we must act it on the
leading order term of the Hamiltonian eigenstate jk1i,

jk1i0 ¼ B‡
k1
j0i0: ð3:9Þ

This is not a Hamiltonian eigenstate, but it is an eigenstate
of the free Hamiltonian H0

2.

FIG. 1. Time runs to the left. This is a schematic drawing of the
following process. Meson 1 travels. Then it emits and absorbs
the same virtual particle and in the process becomes meson 2.
This interaction is proportional to IðxÞ, which falls exponentially
in mx far from the kink, thus the interaction necessarily happens
close to the kink. However, the kink is not drawn.

REFLECTION COEFFICIENT OF A REFLECTIONLESS KINK PHYS. REV. D 109, 085019 (2024)

085019-5



Acting the interaction (3.7) on jk1i0 one finds

Hð1Þ0
4 jk1i0 ¼

λ

4ωk1

Z
dk2
2π

VI−k1k2 jk2i0: ð3:10Þ

Our goal is to obtain UðtÞjt ¼ 0i. Now we are ready to calculate one term, the contribution from the interaction Hð1Þ0
4 .

Let us write the corresponding part of the evolution operator as

U2ðtÞ ¼ −i
Z

t

0

dτ1e−iH
0
2
ðt−τ1ÞHð1Þ0

4 e−iH
0
2
τ1 : ð3:11Þ

This is an abuse of our notation, as we have already defined U2ðtÞ to be the complete evolution operator at order OðλÞ and
(3.11) is just one term in U2ðtÞ; however, it would be cumbersome to give separate names to every term in the evolution
operator.
Evolving the initial state, we find

U2ðtÞjt ¼ 0i ¼ −i
Z

t

0

dτ1e−iH
0
2
ðt−τ1ÞHð1Þ0

4 e−iH
0
2
τ1

Z
dk1
2π

e−σ
2ðk1−k0Þ2−iðk1−k0Þx0 jk1i0

¼ −i
Z

t

0

dτ1e−iH
0
2
ðt−τ1ÞHð1Þ0

4

Z
dk1
2π

e−σ
2ðk1−k0Þ2−iðk1−k0Þx0−iωk1

τ1 jk1i0

¼ −i
Z

t

0

dτ1e−iH
0
2
ðt−τ1ÞHð1Þ0

4 e−iωk0
τ1

Z
dk1
2π

e−σ
2ðk1−k0Þ2−iðk1−k0Þxτ1 jk1i0: ð3:12Þ

Using (3.10), one finds

U2ðtÞjt ¼ 0i ¼ −i
λ

4

Z
d2k
ð2πÞ2

VI−k1k2
ωk1

Z
t

0

dτ1e
−iωk2

ðt−τ1Þe−iωk0
τ1e−σ

2ðk1−k0Þ2−iðk1−k0Þxτ1 jk2i0:

Recall that, asmσ → ∞, k1 is very close to k0 in the support of the Gaussian weight. This means that ωk1 is very close to
ωk0 , and so we replace the ωk1 in the denominator with ωk0 . However, we cannot do the same with phase factors of the form
k1x0, for example, because jx0j ≫ σ, and so this would create an error in the phase of order x0=σ which is very large. In
summary, we will make the approximations

ωk1 ¼ ωk0 ; g−k1ðxÞ ¼ g−k0ðxÞeiðk1−k0Þx; ð3:13Þ

but we will not drop the ðk1 − k0Þx terms. The second approximation comes from the fact that, for a reflectionless kink,
gkðxÞ consists of e−ikx times various terms that vary with respect to k with a characteristic scale of order OðmÞ, which is
much greater than 1=σ and so these terms may be considered to be constant over the width of the Gaussian e−σ

2ðk1−k0Þ2 .
This leaves

U2ðtÞjt ¼ 0i ¼ −i
λ

4ωk0

Z
dk2
2π

Z
t

0

dτ1e
−iωk2

ðt−τ1Þ−iωk0
τ1

Z
dxVð4Þð

ffiffiffi
λ

p
fðxÞÞIðxÞg−k0ðxÞgk2ðxÞ

×
Z

dk1
2π

e−σ
2ðk1−k0Þ2−iðk1−k0Þðxτ1−xÞjk2i0

¼ −i
λ

4ωk0

ffiffiffi
π

p
2πσ

Z
dk2
2π

e−iωk2
t
Z

t

0

dτ1e
−iðωk0

−ωk2
Þτ1
Z

dxVð4Þð
ffiffiffi
λ

p
fðxÞÞIðxÞg−k0ðxÞgk2ðxÞe−ðxτ1−xÞ

2=ð4σ2Þjk2i0:

ð3:14Þ

Now IðxÞ has its support at x ∼Oð1=mÞ and so x=σ tends to 0 in our limit. So can we drop the x=σ term in the Gaussian
factor? A shift in x of order Oð1=mÞ would shift the dummy variable xτ1 and so τ1 by of order Oð1=mÞ for relativistic
mesons. This would in turn shift the phase factor e−iðωk0

−ωk2
Þτ1 by a phase of order ðωk0 − ωk2Þ=m. However, as we will see
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momentarily and is anyway clear from momentum conservation, ωk0 and ωk2 are quite close, differing by of order Oð1=σÞ,
and so the corresponding phase shift would be of order Oð1=ðmσÞÞ, which vanishes in our limit.
In conclusion, we may safely drop the x from the Gaussian term, and so pull it out of the x integral, leaving

U2ðtÞjt ¼ 0i ¼ −i
λ

4ωk0

ffiffiffi
π

p
2πσ

Z
dk2
2π

VIk0−k2e
−iωk2

t
Z

t

0

dτ1e
−x2τ1=ð4σ2Þ−iðωk0

−ωk2
Þτ1 jk2i0

¼ −i
λ

4k0

Z
dk2
2π

VIk0−k2e
−iωk2

te−σ
2ðωk0

−ωk2
Þ2ω2

k0
=k2

0
−iðωk0

−ωk2
Þtc jk2i0: ð3:15Þ

The expression ðωk0 − ωk2Þ vanishes at k2 ¼ �k0 and so the Gaussian factor has two peaks. The k2 ¼ k0 peak corresponds
to forward scattering. We are not interested in it, so we will drop it. About the other peak we may use (3.6) to rewrite the
ðωk0 − ωk2Þ terms as ðk0 þ k2Þk0=ωk0 and so

U2ðtÞjt ¼ 0i ¼ −i
λ

4k0

Z
dk2
2π

e−iωk2
tVIk0−k2e

−σ2ðk0þk2Þ2þiðk0þk2Þx0 jk2i0: ð3:16Þ

C. A tadpole

All other contributions to elastic scattering involve two H0
3 interactions. In this subsection, we will consider the

interactions

Hð1Þ0
3 ¼

ffiffiffi
λ

p

2

XZ dk1
2π

XZ dk2
2π

XZ dk0

2π
V−k1k2k0B

‡
k2

�
B‡
k0 þ

B−k0

2ωk0

�
Bk1

2ωk1

;

Hð2Þ0
3 ¼

ffiffiffi
λ

p

2

XZ dk0

2π
VIk0

�
B‡
k0 þ

B−k0

2ωk0

�
: ð3:17Þ

In the interactionHð1Þ0
3 , at time τ1 the meson k1 changes to k2 and a virtual meson of momentum k0 is emitted or absorbed. At

this point we allow both k0 and also k2 to be a continuum or a shape mode, since we do not yet know which will be the

virtual meson. In the tadpole interactionHð2Þ0
3 , at time τ2 the virtual meson is absorbed or emitted and another virtual meson

travels in a loop to the same vertex. Finally, we will restrict our attention to final states in which meson 2 is a continuum
excitation. This restriction is not really necessary, as it is not hard to show that if the final state consists, instead, of a kink
and an excited shape mode, since this cannot be on shell, the amplitude vanishes.
As drawn in Fig. 2, the interactions may occur in either order. The evolution operator is

UA
2 ðtÞ ¼ −

Z
t

0

dτ1

Z
t

τ1

dτ2e−iH
0
2
ðt−τ2ÞHð2Þ0

3 e−iH
0
2
ðτ2−τ1ÞHð1Þ0

3 e−iH
0
2
τ1 ð3:18Þ

FIG. 2. Right: while meson 1 approaches, a virtual particle pair comes in and out of existence, leaving behind it a virtual particle. We
will say that the virtual particle is created by a tadpole, although one might rightly note that it is emitted by the kink that is never drawn.
This virtual particle merges with meson 1, leaving meson 2. Left: meson 1 emits a virtual particle, becoming meson 2. This emitted
virtual particle decays via a virtual particle pair tadpole process.
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if τ1 < τ2 and, otherwise, it is

UB
2 ðtÞ ¼ −

Z
t

0

dτ1

Z
τ1

0

dτ2e−iH
0
2
ðt−τ1ÞHð1Þ0

3 e−iH
0
2
ðτ1−τ2ÞHð2Þ0

3 e−iH
0
2
τ2 : ð3:19Þ

1. The case τ1 < τ2
In this case, projecting out the three-meson sector and remembering the factor of 2 from the choice of contractions of Bk0 ,

the interaction terms act as

Hð1Þ0
3 jk1i0 ¼

ffiffiffi
λ

p

2

XZ dk2
2π

XZ dk0

2π

V−k1k2k0

2ωk1

jk2k0i0;

Hð2Þ0
3 jk2k0i0 ¼

ffiffiffi
λ

p

2

VI−k0

2ωk0
jk2i0 þ

ffiffiffi
λ

p

2

VI−k2
2ωk2

jk0i0: ð3:20Þ

As always, when considering the leading contribution to the initial state, one begins at time τ1 with

e−iH
0
2
τ1 jt ¼ 0i0 ¼ e−iωk0

τ1

Z
dk1
2π

e−σ
2ðk1−k0Þ2−iðk1−k0Þxτ1 jk1i0; ð3:21Þ

where xτ1 is defined in the first expression in Eq. (3.5). At time t this evolves to

UA
2 ðtÞjt ¼ 0i0 ¼ −

λ

8

Z
dk2
2π

Z
t

0

dτ1

Z
t

τ1

dτ2
XZ dk0

2π
e−iωk0

τ1−iωk0 ðτ2−τ1Þ−iωk2
ðt−τ1Þ

×
Z

dk1
2π

e−σ
2ðk1−k0Þ2−iðk1−k0Þxτ1

V−k1k2k0VI−k0

ωk1ωk0
jk2i0

¼ −
λ

8ωk0

Z
dk2
2π

Z
t

0

dτ1

Z
t

τ1

dτ2
XZ dk0

2π

VI−k0

ωk0
e−iωk0

τ1−iωk0 ðτ2−τ1Þ−iωk2
ðt−τ1Þ

×
Z

dxVð3Þð
ffiffiffi
λ

p
fðxÞÞg−k0ðxÞgk2ðxÞgk0 ðxÞ

Z
dk1
2π

e−σ
2ðk1−k0Þ2−iðk1−k0Þðxτ1−xÞjk2i0

¼ −
λ

8ωk0

ffiffiffi
π

p
2πσ

Z
dk2
2π

Z
t

0

dτ1

Z
t

τ1

dτ2
XZ dk0

2π

VI−k0

ωk0
e−iωk0

τ1−iωk0 ðτ2−τ1Þ−iωk2
ðt−τ1Þ

×
Z

dxVð3Þð
ffiffiffi
λ

p
fðxÞÞg−k0ðxÞgk2ðxÞgk0 ðxÞe−ðxτ1−xÞ

2=ð4σ2Þjk2i0: ð3:22Þ

2. Showing that the first interaction occurs near the kink

Unlike the previous process, the x integrand no longer obviously has compact support unless k0 is a shape mode. To see
that it in fact does have compact support, even if k0 is not a shape mode, when integrated over k0 and τ2, let us first multiply
the integrand by a normalized bump function e−ðx−x̂Þ2=ð4σ̂2Þ=ð2 ffiffiffi

π
p

σ̂Þ,

UA
2 ðx̂; tÞjt ¼ 0i0 ¼ −

λ

8ωk0

ffiffiffi
π

p
2πσ

ffiffiffi
π

p
2πσ̂

Z
dk2
2π

Z
t

0

dτ1

Z
t

τ1

dτ2
XZ dk0

2π

VI−k0

ωk0
e−iωk0

τ1−iωk0 ðτ2−τ1Þ−iωk2
ðt−τ1Þ

×
Z

dxVð3Þð
ffiffiffi
λ

p
fðxÞÞg−k0ðxÞgk2ðxÞgk0 ðxÞe−ðxτ1−xÞ

2=ð4σ2Þ−ðx−x̂Þ2=ð4σ̂2Þjk2i0; ð3:23Þ

where jx̂j ≫ σ̂ ≫ 1=m and σ̂ ≪ σ. This will allow us to determine the contribution to the integral arising from x ∼ x̂. We
will now show that it vanishes for all x̂ satisfying jx̂j ≫ σ̂ ≫ 1=m.
As the x integral now has support at jxj ∼ jx̂j ≫ 1=m, we may replace

Vð3Þð
ffiffiffi
λ

p
fðxÞÞg−k0ðxÞgk2ðxÞgk0 ðxÞ ð3:24Þ
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by its asymptotic value at jxj ≫ 1=m. In the case of classically reflectionless kinks, this is

gkðxÞ ¼
(
Bke−ikx if x ≪ −1=m
Dke−ikx if x ≫ 1=m;

jBkj2 ¼ jDkj2 ¼ 1; B�
k ¼ B−k; D�

k ¼ D−k; ð3:25Þ

where the phases Bk and Dk vary slowly with respect to k.
For concreteness, choose x̂ < 0, as the following argument proceeds identically with the other sign choice. Then we

replace Vð3Þð ffiffiffi
λ

p
fðxÞÞg−k0ðxÞgk2ðxÞgk0 ðxÞ with Vð3ÞL

−k0k2k0
e−ið−k0þk2þk0Þx, where

Vð3ÞL
−k0k2k0

¼ Vð3Þð
ffiffiffi
λ

p
fð−∞ÞÞB−k0Bk2Bk0 : ð3:26Þ

The support of the state near x̂ is then

UA
2 ðx̂; tÞjt ¼ 0i0 ¼ −

λ

8ωk0

ffiffiffi
π

p
2πσ

ffiffiffi
π

p
2πσ̂

Z
dk2
2π

Z
t

0

dτ1

Z
t

τ1

dτ2

Z
dk0

2π
e−iωk0

τ1−iωk0 ðτ2−τ1Þ−iωk2
ðt−τ1Þ

×
VI−k0

ωk0
Vð3ÞL
−k0k2k0

Z
dxe−ið−k0þk2þk0Þxe−ðxτ1−xÞ

2=ð4σ2Þe−ðx−x̂Þ2=ð4σ̂2Þjk2i0:

As σ̂ ≪ σ, in the support of the bump function, we may replace e−ðxτ1−xÞ
2=ð4σ2Þ with e−ðxτ1−x̂Þ

2=ð4σ2Þ and pull it out of the x
integral. Then

UA
2 ðx̂; tÞjt ¼ 0i0 ¼ −

λ

8ωk0

ffiffiffi
π

p
2πσ

Z
dk2
2π

Z
t

0

dτ1

Z
t

τ1

dτ2

Z
dk0

2π
e−iωk0

τ1−iωk0 ðτ2−τ1Þ−iωk2
ðt−τ1Þ

×
VI−k0

ωk0
Vð3ÞL
−k0k2k0

e−ðxτ1−x̂Þ
2=ð4σ2Þ−σ̂2ð−k0þk2þk0Þ2e−ið−k0þk2þk0Þx̂jk2i0:

Now k0 is close to k0 − k2 as a result of the Gaussian e−σ̂
2ð−k0þk2þk0Þ2 . Physically, this is because the virtual meson is created

at x̂, which is far from the kink where mesons cannot transfer momentum to the kink. This means that we may expand about
k0 ∼ k0 − k2,

ωk0 ¼ ωk0−k2 þ
k0 − k2
ωk0−k2

ð−k0 þ k2 þ k0Þ: ð3:27Þ

We then find

UA
2 ðx̂; tÞjt ¼ 0i0 ¼ −

λ

8ωk0

ffiffiffi
π

p
2πσ

Z
dk2
2π

Vð3ÞL
−k0;k2;k0−k2

Z
t

0

dτ1

Z
t

τ1

dτ2e
−iωk0

τ1−iωk0−k2 ðτ2−τ1Þ−iωk2
ðt−τ1Þ

× e−ðxτ1−x̂Þ
2=ð4σ2Þ

Z
dk0

2π

VI−k0

ωk2−k0
e−σ̂

2ð−k0þk2þk0Þ2e
−ið−k0þk2þk0Þ

�
x̂þ k0−k2

ωk0−k2
ðτ2−τ1Þ

�
jk2i0

¼ −
λ

8ωk0

ffiffiffi
π

p
2πσ

Z
dk2
2π

Vð3ÞL
−k0;k2;k0−k2

Z
t

0

dτ1

Z
t

τ1

dτ2e
−iωk0

τ1−iωk0−k2 ðτ2−τ1Þ−iωk2
ðt−τ1Þ

× e−ðxτ1−x̂Þ
2=ð4σ2Þ 1

ωk2−k0

Z
dyVð3Þð

ffiffiffi
λ

p
fðyÞÞIðyÞgk2−k0ðyÞ

×
Z

dk0

2π
e−σ̂

2ð−k0þk2þk0Þ2e
−ið−k0þk2þk0Þ

�
x̂−yþ k0−k2

ωk0−k2
ðτ2−τ1Þ

�
jk2i0
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¼ −
λ

8ωk0

ffiffiffi
π

p
2πσ

ffiffiffi
π

p
2πσ̂

Z
dk2
2π

Vð3ÞL
−k0;k2;k0−k2

Z
t

0

dτ1

Z
t

τ1

dτ2e
−iωk0

τ1−iωk0−k2 ðτ2−τ1Þ−iωk2
ðt−τ1Þ

× e−ðxτ1−x̂Þ
2=ð4σ2Þ 1

ωk2−k0

Z
dyVð3Þð

ffiffiffi
λ

p
fðyÞÞIðyÞgk2−k0ðyÞe

−
�
x̂−yþ k0−k2

ωk0−k2
ðτ2−τ1Þ

�
2

=ð4σ̂2Þjk2i0:

Now unlike x, which was the location of the first interaction, y, the location of the second interaction, must be close to the
kink. This is mandated by the IðyÞ term which has support at y ∼Oð1=mÞ. Therefore, y=σ̂ can be set to zero, implying that
the corresponding Gaussian factor is y independent and can be pulled out of the y integral,

UA
2 ðx̂; tÞjt ¼ 0i0 ¼ −

λ

8ωk0

ffiffiffi
π

p
2πσ

ffiffiffi
π

p
2πσ̂

Z
dk2
2π

Vð3ÞL
−k0;k2;k0−k2

Z
t

0

dτ1

Z
t

τ1

dτ2e
−iωk0

τ1−iωk0−k2 ðτ2−τ1Þ−iωk2
ðt−τ1Þ

× e−ðxτ1−x̂Þ
2=ð4σ2Þe

−
�
x̂þ k0−k2

ωk0−k2
ðτ2−τ1Þ

�
2

=ð4σ̂2Þ VI ;k2−k0
ωk2−k0

jk2i0:

Finally, consider the τ2 Gaussian integration. Depending
on the values of τ1 and x̂, the range of integration may or
may not overlap with the support of the second Gaussian
factor. If it does not overlap, this integral trivially vanishes.
If it does overlap, then it overlaps for a range of
σ̂ωk0−k2=ðk0 − k2Þ > σ̂. During this time, the phase
e−iωk0−k2 τ2 decreases by more than ωk0−k2 σ̂ > mσ̂ units.

Thus, the integral yields a factor of less than e−m
2σ̂2 , which

vanishes in our limit mσ̂ → ∞. We thus conclude that,
including a bump function near x ¼ x̂,

UA
2 ðx̂; tÞjt ¼ 0i0 ¼ 0 ð3:28Þ

for jx̂j ≫ 1=m. In other words, there is no contribution to
UA

2 ðtÞjt ¼ 0i0 from x near x̂. As a result, the position x of
the first interaction is necessarily inside the kink

x ∼Oð1=mÞ, where the mesons and kink may exchange
momentum.
To make this statement more quantitative, assume for a

moment that the limit jx̂j=σ is nonzero. As the limit mσ
tends to ∞, in this case mx̂ also tends to ∞. One therefore
can choose σ̂ so that jx̂j ≫ σ̂ ≫ 1=m. Now the results of
this subsubsection imply that such a x̂ does not contribute
to the integral. Thus, contributions to the integral can only
arise when the limit of jx̂j=σ tends to zero. In other words,
the support of our original integral is at the limit jxj=σ → 0,
where we may drop the x=σ term in the Gaussian
exponential.

3. Continuing with the computation

This long argument has been made to justify dropping
the x=σ term in Eq. (3.22), as the x integral has support at
jxj ≪ σ,

UA
2 ðtÞjt ¼ 0i0 ¼ −

λ

8ωk0

ffiffiffi
π

p
2πσ

Z
dk2
2π

Z
t

0

dτ1

Z
t

τ1

dτ2
XZ dk0

2π

VI−k0

ωk0
e−iωk0

τ1−iωk0 ðτ2−τ1Þ−iωk2
ðt−τ1Þe−x

2
τ1
=ð4σ2ÞV−k0k2k0 jk2i0

¼ −i
λ

8ωk0

ffiffiffi
π

p
2πσ

Z
dk2
2π

e−iωk2
t
XZ dk0

2π

V−k0k2k0VI−k0

ω2
k0

Z
t

0

dτ1e
−x2τ1=ð4σ2Þe−iðωk0

−ωk2
Þτ1
�
e−iωk0 ðt−τ1Þ − 1

�
jk2i0

¼ −i
λ

8k0

Z
dk2
2π

e−iωk2
t
XZ dk0

2π

V−k0k2k0VI−k0

ω2
k0

e−iðωk0
−ωk2

Þtc

×

�
e−iωk0 ðt−tcÞe

−σ2
ω2
k0
k2
0

ðωk0
−ωk2

−ωk0 Þ2 − e
−σ2

ω2
k0
k2
0

ðωk0
−ωk2

Þ2�jk2i0
¼ A1 þ A2; ð3:29Þ

where A1 and A2 are the contributions arising from the first and second terms in the parentheses.
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Consider A1, which arose from the τ2 ¼ t late time limit of the τ2 integration. This has support at ωk0 ∼ ωk2 þ ωk0 , where
the virtual meson is on shell. In fact, it is unrelated to elastic scattering; instead, it represents a quantum correction to meson
multiplication.
Now consider the k0 integral of A1. In the support of the Gaussian, ωk0 may be expanded to linear order in k0 as in

Eq. (3.6). Recall that the linear coefficient is the group velocity. Then, the size of the support of the Gaussian factor is equal
to 1=σ times the ratio of the k0 to the k0 velocities, which is of order unity. Over this range, the phase e−iωk0 ðt−tcÞ changes by
of order ðt − tcÞ=σ. This leads to a suppression factor of less than e−ðt−tcÞ2=σ2 after k0 integration, and so this term vanishes.
This argument, of course, does not apply if k0 is a shape mode, in which case it is discrete. We will turn to that case in
Appendix B.
What about A2? This has two peaks, at k2 ¼ �k0. The positive sign corresponds to forward scattering, which we are not

interested in here. Therefore, we keep the negative sign,

A2 ¼ i
λ

8k0

Z
dk2
2π

e−iωk2
t
XZ dk0

2π

V−k0k2k0VI−k0

ω2
k0

e−σ
2ðk0þk2Þ2þiðk0þk2Þx0 jk2i0:

4. The case τ1 > τ2
If the tadpole creates the virtual meson that is then absorbed by the incoming meson, then the interaction terms act

as follows:

Hð2Þ0
3 jk1i0 ¼

ffiffiffi
λ

p

2

XZ dk0

2π
VIk0 jk1k0i0;

Hð1Þ0
3 jk1k0i0 ¼

ffiffiffi
λ

p

4ωk1ωk0

XZ dk2
2π

V−k1k2−k0 jk2i0; ð3:30Þ

leading to the final state,

UB
2 ðtÞjt ¼ 0i0 ¼ −

λ

8ωk0

ffiffiffi
π

p
2πσ

Z
dk2
2π

Z
t

0

dτ1

Z
τ1

0

dτ2
XZ dk0

2π

VI−k0

ωk0
e−iωk0

τ1−iωk0 ðτ1−τ2Þ−iωk2
ðt−τ1Þ

×
Z

dxVð3Þð
ffiffiffi
λ

p
fðxÞÞg−k0ðxÞgk2ðxÞgk0 ðxÞe−ðxτ1−xÞ

2=ð4σ2Þjk2i0: ð3:31Þ

Integrating over τ2, we obtain two terms corresponding to the two limits of integration,

UB
2 ðtÞjt ¼ 0i0 ¼ B1 þ B2;

B1 ¼ i
λ

8ωk0

ffiffiffi
π

p
2πσ

Z
dk2
2π

Z
t

0

dτ1
XZ dk0

2π

VI−k0

ω2
k0

e−iωk0
τ1−iωk2

ðt−τ1Þ

×
Z

dxVð3Þð
ffiffiffi
λ

p
fðxÞÞg−k0ðxÞgk2ðxÞgk0 ðxÞe−ðxτ1−xÞ

2=ð4σ2Þjk2i0;

B2 ¼ −i
λ

8ωk0

ffiffiffi
π

p
2πσ

Z
dk2
2π

Z
t

0

dτ1
XZ dk0

2π

VI−k0

ω2
k0

e−iðωk0
þωk0 Þτ1−iωk2

ðt−τ1Þ

×
Z

dxVð3Þð
ffiffiffi
λ

p
fðxÞÞg−k0ðxÞgk2ðxÞgk0 ðxÞe−ðxτ1−xÞ

2=ð4σ2Þjk2i0: ð3:32Þ

The calculation of B1 proceeds identically to that of A2, leading to the same result. Summing them, yields a factor of 2,

A2 þ B1 ¼ i
λ

4k0

Z
dk2
2π

e−iωk2
te−σ

2ðk0þk2Þ2þiðk0þk2Þx0

×
XZ dk0

2π

V−k0k2k0VI−k0

ω2
k0

jk2i0: ð3:33Þ
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Wewill show that A1 and B2 cancel other contributions, and
so, when these contributions are added, this expression is in
fact equal to ðUA

2 ðtÞ þUB
2 ðtÞÞjt ¼ 0i0.

5. Initial state corrections

There are also two initial state corrections, corresponding
intuitively to the case in which either of these interactions
has occurred in the distant past. More precisely, these
correspond to the evolution of the jk1i1 subleading term
in the jk1i in Eq. (3.1).
These corrections were found in Ref. [40]. The corre-

sponding amplitudes are again of order OðλÞ, but now the
initial state is suppressed by a factor of

ffiffiffi
λ

p
, while the

evolution operator is orderOð ffiffiffi
λ

p Þ. In other words, the only
corrections that lead to elastic scattering are those that can
be transmuted into a single backward traveling meson using
a single interaction H0

3.
We will not draw these, but given any diagram in this

paper, one may arrive at the corresponding diagram for
initial state corrections as follows. First choose a time τ.
Then remove the part of the diagram at earlier times τ0 < τ,
corresponding to everything that appears to the right of the
time τ.
In the first case, one considers a virtual meson in the

meson cloud about the kink. After a time tc, the incoming
meson strikes the virtual meson and creates the final
meson. The virtual meson contributes a phase factor of
e−iðωk0þωk0

−ωk2
Þtc , which oscillates rapidly with respect to k0

unless the ωk2 ¼ ωk0 þ ωk0 , corresponding to the limit in
which the virtual meson is on shell. Like the A1 term in the
parentheses in Eq. (3.29), the k0 integration over a domain
of order Oð1=σÞ leads to interference in the e−iωk0 tc phase
which annihilates this correction.
The second initial state contribution arises from a

quantum correction to the incoming meson, which consists
of two mesons of momenta k2 and k1 − k2, one of which
interacts with a virtual meson created by the kink once they
arrive at the kink, after a time τ2 ∼ tc. One needs to
integrate over τ2, and each value is weighted by a phase
e−iωk0−k2 τ2 . As ωk0−k2 > m, one finds of order mtc oscil-
lations, and so after integrating over k0 this contribution is
hopelessly suppressed.
What if the virtual meson is a shape mode? Then k0 is

discrete and cannot be integrated, so this argument fails.
The shape mode contribution to the meson cloud falls
exponentially with the distance from the kink, so one can
ignore the second initial state contribution.
More generally, the only corrections to the initial state

that do not vanish when the meson is far from the kink and
can contribute to elastic scattering after an interaction H0

3

consist of components of jk1i1 with two mesons and no
zero modes. In Ref. [40] this contribution to jk1i1 was
quantified,

jk1i021 ¼ −
ffiffiffi
λ

p

2

XZ dk0

2π

VIk0

ωk0
jk1k0i0; ð3:34Þ

where the 02 superscript means that we are interested in the
no zero-mode, two-meson Fock space in the kink sector.
We have dropped all terms that vanish when the meson
and kink are well separated, but they are summarized
in Eq. (B6).
The corresponding contribution to the initial state is

jt ¼ 0i021 ¼
Z

dk1
2π

e−σ
2ðk1−k0Þ2−iðk1−k0Þx0 jk1i021

¼ −
ffiffiffi
λ

p

2

Z
dk1
2π

e−σ
2ðk1−k0Þ2−iðk1−k0Þx0

×
XZ dk0

2π

VIk0

ωk0
jk1k0i0: ð3:35Þ

Evolving this to time t, at order Oð ffiffiffi
λ

p Þ, using the

interaction Hð1Þ0
3 from Eq. (3.17), one finds

U1ðtÞjt ¼ 0i021 ¼ −i
Z

t

0

dτ1e−iH
0
2
ðt−τ1ÞHð1Þ0

3

e−iH
0
2
τ1 jt ¼ 0i021 ¼ −B2: ð3:36Þ

We thus conclude that B2, which arose from the early
time limit of the τ2 integration, is canceled by an initial state
correction. One may then suspect that A1, which arises
from the late time limit of the τ2 integration, is canceled by
a final state correction. As wewill show in Appendix B, this
is partly true. The corrections to the final state are given in
Eq. (B6) and two of the five are canceled by A1.

D. A bubble

The contribution that motivates our project is drawn in
Fig. 3. There are again two interactions. At time τ1, the
interaction

Hð1Þ0
3 ¼

ffiffiffi
λ

p

4

XZ dk1
2π

XZ d2k0

ð2πÞ2 V−k1k01k
0
2

×

 
B‡
k0
1
B‡
k0
2
þ B−k0

1
B−k0

2

12ωk0
1
ωk0

2

!
Bk1

ωk1

ð3:37Þ

connects the incoming meson 1 with two virtual mesons 10
and 20. These might lie in the continuum, but they may also
be shape modes, or perhaps one of each. In particular, if
both are shape modes, this corresponds to an unstable
resonance. Next, at time τ2, the interaction
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Hð2Þ0
3 ¼

ffiffiffi
λ

p

6

XZ dk2
2π

XZ d2k0

ð2πÞ2 Vk2k01k
0
2
B‡
k2

 
B‡
k0
1
B‡
k0
2
þ 3B−k0

1
B−k0

2

4ωk0
1
ωk0

2

!
ð3:38Þ

connects the two virtual mesons to the outgoing meson 2. We expect the amplitude to have a peak at the energy of the twice-
excited shape mode.

1. The case τ1 < τ2
In this case, projecting out five-meson final states and remembering a factor of 2 from the choice of which annihilation

operator annihilates which virtual meson, the interactions act as

Hð1Þ0
3 jk1i0 ¼

ffiffiffi
λ

p

4

XZ d2k0

ð2πÞ2
V−k1k01k

0
2

ωk1

jk01k02i0; Hð2Þ0
3 jk01k02i0 ¼

ffiffiffi
λ

p

4

XZ dk2
2π

Vk2−k01−k
0
2

ωk0
1
ωk0

2

jk2i0: ð3:39Þ

The evolution operator (3.18) and the early state (3.21) then yield

UA
2 ðtÞjt ¼ 0i0 ¼ −

λ

16

Z
dk2
2π

Z
t

0

dτ1

Z
t

τ1

dτ2
XZ d2k0

ð2πÞ2 e
−iωk0

τ1−iðωk0
1
þωk0

2
Þðτ2−τ1Þ−iωk2

ðt−τ2Þ

×
Z

dk1
2π

e−σ
2ðk1−k0Þ2−iðk1−k0Þxτ1

V−k1k01k
0
2
Vk2−k01−k

0
2

ωk1ωk0
1
ωk0

2

jk2i0

¼ −
λ

16ωk0

Z
dk2
2π

Z
t

0

dτ1

Z
t

τ1

dτ2
XZ d2k0

ð2πÞ2
Vk2−k01−k

0
2

ωk0
1
ωk0

2

e
−iωk0

τ1−iðωk0
1
þωk0

2
Þðτ2−τ1Þ−iωk2

ðt−τ2Þ

×
Z

dxVð3Þð
ffiffiffi
λ

p
fðxÞÞg−k0ðxÞgk01ðxÞgk02ðxÞ

Z
dk1
2π

e−σ
2ðk1−k0Þ2−iðk1−k0Þðxτ1−xÞjk2i0

¼ −
λ

16ωk0

ffiffiffi
π

p
2πσ

Z
dk2
2π

Z
t

0

dτ1

Z
t

τ1

dτ2
XZ d2k0

ð2πÞ2
Vk2−k01−k

0
2

ωk0
1
ωk0

2

e
−iωk0

τ1−iðωk0
1
þωk0

2
Þðτ2−τ1Þ−iωk2

ðt−τ2Þ

×
Z

dxVð3Þð
ffiffiffi
λ

p
fðxÞÞg−k0ðxÞgk01ðxÞgk02ðxÞe−ðxτ1−xÞ

2=ð4σ2Þjk2i0: ð3:40Þ

2. Showing that the first interaction occurs near the kink

Again, we would like to drop the x=σ term when k01 and k02 are both continuum modes so that the x integrand does not
have compact support. In this subsubsection we will try to argue that, even when k01 and k02 are continuum modes, after
performing the other integrals, the x integral vanishes except when x=σ tends to zero. The argument will be similar to the
tadpole case, but not quite the same.

FIG. 3. Left: we see meson 1 splitting into two virtual mesons that recombine into meson 2. Right: two virtual mesons and meson 2 are
created together, and later the two virtual mesons annihilate themselves together with meson 1.
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As in the previous case, to see that it has compact support if integrated over k0 and τ2, we multiply the integrand by the
normalized bump function e−ðx−x̂Þ2=ð4σ̂2Þ=ð2 ffiffiffi

π
p

σ̂Þ, where jx̂j ≫ σ̂ ≫ 1=m and σ̂ ≪ σ. We also choose x̂ < 0, promising the
reader that the manipulations are identical in the case x̂ > 0.

Again, this allows us to replace Vð3Þð ffiffiffi
λ

p
fðxÞÞg−k0ðxÞgk01ðxÞgk02ðxÞ with Vð3ÞL

−k0k01k
0
2
e−ið−k0þk0

1
þk0

2
Þx. The support of the state

near x̂ is then

UA
2 ðx̂; tÞjt ¼ 0i0 ¼ −

λ

16ωk0

ffiffiffi
π

p
2πσ

ffiffiffi
π

p
2πσ̂

Z
dk2
2π

Z
t

0

dτ1

Z
t

τ1

dτ2

Z
d2k0

ð2πÞ2
Vk2−k01−k

0
2
Vð3ÞL
−k0k01k

0
2

ωk0
1
ωk0

2

× e
−iωk0

τ1−iðωk0
1
þωk0

2
Þðτ2−τ1Þ−iωk2

ðt−τ2Þ
Z

dxe−ið−k0þk0
1
þk0

2
Þxe−ðxτ1−xÞ

2=ð4σ2Þe−ðx−x̂Þ2=ð4σ̂2Þjk2i0

¼ −
λ

16ωk0

ffiffiffi
π

p
2πσ

Z
dk2
2π

Z
t

0

dτ1

Z
t

τ1

dτ2

Z
d2k0

ð2πÞ2
Vk2−k01−k

0
2
Vð3ÞL
−k0k01k

0
2

ωk0
1
ωk0

2

× e
−iωk0

τ1−iðωk0
1
þωk0

2
Þðτ2−τ1Þ−iωk2

ðt−τ2Þe−ðxτ1−x̂Þ
2=ð4σ2Þ−σ̂2ð−k0þk0

1
þk0

2
Þ2e−ið−k0þk0

1
þk0

2
Þx̂jk2i0: ð3:41Þ

Now k02 is close to k0 − k01 as a result of the Gaussian e
−σ̂2ð−k0þk0

1
þk0

2
Þ2 . Again, this is because the virtual mesons are created

at x̂, which is far from the kink where mesons cannot transfer momentum to the kink. Expanding k02 about k
0
2 ∼ k0 − k01,

ωk0
2
¼ ωk0−k01 þ

k0 − k01
ωk0−k01

ð−k0 þ k01 þ k02Þ: ð3:42Þ

We then find

UA
2 ðx̂; tÞjt ¼ 0i0 ¼ −

λ

16ωk0

ffiffiffi
π

p
2πσ

Z
dk2
2π

Z
t

0

dτ1

Z
t

τ1

dτ2e
−ðxτ1−x̂Þ2=ð4σ2Þ

×
Z

dk01
2π

e
−iωk0

τ1−iðωk0
1
þωk0−k

0
1
Þðτ2−τ1Þ−iωk2

ðt−τ2Þ

×
Z

dk02
2π

Vk2−k01−k
0
2
Vð3ÞL
−k0k01k

0
2

ωk0
1
ωk0

2

e
−σ̂2ð−k0þk0

1
þk0

2
Þ2−ið−k0þk0

1
þk0

2
Þ
�

x̂þ k0−k
0
1

ωk0−k
0
1

ðτ2−τ1Þ
�
jk2i0

¼ −
λ

16ωk0

ffiffiffi
π

p
2πσ

Z
dk2
2π

e−iωk2
t
Z

t

0

dτ1

Z
t

τ1

dτ2e
−ðxτ1−x̂Þ2=ð4σ2Þ

×
Z

dk01
2π

Vð3ÞL
−k0;k01;k0−k

0
1

e
−iωk0

τ1−iðωk0
1
þωk0−k

0
1
Þðτ2−τ1Þþiωk2

τ2

ωk0
1
ωk0−k01

×
Z

dyVð3Þð
ffiffiffi
λ

p
fðyÞÞgk2ðyÞg−k01ðyÞgk01−k0ðyÞ

×
Z

dk02
2π

e
−σ̂2ð−k0þk0

1
þk0

2
Þ2−ið−k0þk0

1
þk0

2
Þ
�

x̂−yþ k0−k
0
1

ωk0−k
0
1

ðτ2−τ1Þ
�
jk2i0
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¼ −
λ

16ωk0

ffiffiffi
π

p
2πσ

ffiffiffi
π

p
2πσ̂

Z
dk2
2π

e−iωk2
t
Z

t

0

dτ1

Z
t

τ1

dτ2e
−ðxτ1−x̂Þ2=ð4σ2Þ

×
Z

dk01
2π

Vð3ÞL
−k0;k01;k0−k

0
1

e
−iωk0

τ1−iðωk0
1
þωk0−k

0
1
Þðτ2−τ1Þþiωk2

τ2

ωk0
1
ωk0−k01

×
Z

dyVð3Þð
ffiffiffi
λ

p
fðyÞÞgk2ðyÞg−k01ðyÞg−k0þk0

1
ðyÞe

−

�
x̂−yþ k0−k

0
1

ωk0−k
0
1

ðτ2−τ1Þ
�

2

=ð4σ̂2Þ
jk2i0: ð3:43Þ

First, we studied the one vertex interaction, in which we found that x must be close to the kink because of the IðxÞ loop
factor. Then we turned to a tadpole interaction, in which xwas not obviously close, but ywas close because of an IðyÞ term,
which allowed us to show that x is close. However, in the case of the present interaction, even y is not obviously small.
To show that the y integral has support at small y, after integration over τ2, we will insert another normalized

bump function e−ðy−ŷÞ2=ð4σ̂2Þ=ð2σ̂ ffiffiffi
π

p Þ into the y integral, which satisfies the same limits as the x bump function, in
particular, mjŷj ≫ 1. Again, for concreteness, we will make the irrelevant choice ŷ < 0. Then we may replace

Vð3Þð ffiffiffi
λ

p
fðyÞÞgk2ðyÞg−k01ðyÞg−k0þk0

1
ðyÞ with Vð3ÞL

k2;−k01;−k0þk0
1
e−iðk2−k0Þy and the localized final state is

UA
2 ðx̂; ŷ; tÞjt ¼ 0i0 ¼ −

λ

16ωk0

ffiffiffi
π

p
2πσ̂

Z
dk2
2π

e−iωk2
t
Z

t

0

dτ1

Z
t

τ1

dτ2e
−ðxτ1−x̂Þ2=ð4σ2Þ

×
Z

dk01
2π

Vð3ÞL
−k0;k01;k0−k

0
1
Vð3ÞL
k2;−k01;−k0þk0

1

e
−iωk0

τ1−iðωk0
1
þωk0−k

0
1
Þðτ2−τ1Þþiωk2

τ2

ωk0
1
ωk0−k01

×
Z

dye−iðk2−k0Þye
−

�
x̂−yþ k0−k

0
1

ωk0−k
0
1

ðτ2−τ1Þ
�

2

=ð4σ̂2Þ
jk2i0

¼ −
λ

16ωk0

Z
dk2
2π

e−iωk2
t
Z

t

0

dτ1

Z
t

τ1

dτ2e
−ðxτ1−x̂Þ2=ð4σ2Þ

×
Z

dk01
2π

Vð3ÞL
−k0;k01;k0−k

0
1
Vð3ÞL
k2;−k01;−k0þk0

1

e
−iωk0

τ1−iðωk0
1
þωk0−k

0
1
Þðτ2−τ1Þþiωk2

τ2

ωk0
1
ωk0−k01

× e
−σ̂2ðk2−k0Þ2−iðk2−k0Þ

�
x̂þ k0−k

0
1

ωk0−k
0
1

ðτ2−τ1Þ
�
jk2i0: ð3:44Þ

The term e−σ̂
2ðk2−k0Þ2 ensures that the outgoing meson 2 has the same momentum as the incoming meson 1. Thus, this

process describes forward scattering, which we are not interested in. The reason, of course, is that we chose both jxj and
jyj to be greater than Oð1=mÞ, so that both interactions occurred far from the kink. Thus, no momentum could be
exchanged between the kink and the mesons.
We therefore conclude that only y ∼Oð1=mÞ can contribute to elastic scattering if jxj ≫ Oð1=mÞ. In particular, jy=σ̂j

limits to zero and so may be dropped in Eq. (3.43), leading to

UA
2 ðx̂; tÞjt ¼ 0i0 ¼ −

λ

16ωk0

ffiffiffi
π

p
2πσ

ffiffiffi
π

p
2πσ̂

Z
dk2
2π

e−iωk2
t
Z

t

0

dτ1

Z
t

τ1

dτ2e
−ðxτ1−x̂Þ2=ð4σ2Þ

×
Z

dk01
2π

e
−iωk0

τ1−iðωk0
1
þωk0−k

0
1
Þðτ2−τ1Þþiωk2

τ2

ωk0
1
ωk0−k01

e
−

�
x̂þ k0−k

0
1

ωk0−k
0
1

ðτ2−τ1Þ
�

2

=ð4σ̂2Þ

× Vð3ÞL
−k0;k01;k0−k

0
1
Vk2;−k01;−k0þk0

1
jk2i0: ð3:45Þ

Finally, we turn to the integrals of the interaction times. The τ2 integral yields a Gaussian whose exponential is equal to
−σ̂2ðωk0

1
þ ωk0−k01 − ωk2Þ2 divided by a velocity squared, while the τ1 integral yields a Gaussian whose exponential is
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−σ2ðk0 þ k2Þ2, where we have chosen the sign of k2 to
yield elastic scattering and not forward scattering. In
the support of this later Gaussian, we may replace ωk2
by ωk0 in the former Gaussian, so that its exponential is
−σ̂2ðωk0

1
þ ωk0−k01 − ωk0Þ2. This is of order −σ̂2m2 for all

values of k0 and k01, as two-body decay to two particles of
the same mass as the original particle cannot simultane-
ously conserve momentum and energy. Therefore, the first

exponential vanishes, and we find that UA
2 ðx̂; tÞjt ¼ 0i0

vanishes when the first interaction is localized near any x̂
that is not of orderOð1=mÞ, as was the case for the previous
two interactions.

3. Continuing with the computation

Finally, we are justified in dropping the x=σ factor in
Eq. (3.40), which leaves

UA
2 ðtÞjt ¼ 0i0 ¼ −

λ

16ωk0

ffiffiffi
π

p
2πσ

Z
dk2
2π

e−iωk2
t
Z

t

0

dτ1

Z
t

τ1

dτ2
XZ d2k0

ð2πÞ2
Vk2−k01−k

0
2
V−k0k01k

0
2

ωk0
1
ωk0

2

× e
−x2τ1=ð4σ2Þ−iðωk0

−ωk0
1
−ωk0

2
Þτ1−iðωk0

1
þωk0

2
−ωk2

Þτ2 jk2i0
¼ i

λ

16ωk0

ffiffiffi
π

p
2πσ

Z
dk2
2π

e−iωk2
t
Z

t

0

dτ1
XZ d2k0

ð2πÞ2
Vk2−k01−k

0
2
V−k0k01k

0
2

ωk0
1
ωk0

2
ðωk2 − ωk0

1
− ωk0

2
Þ

× e
−x2τ1=ð4σ2Þ−iðωk0

−ωk0
1
−ωk0

2
Þτ1
�
e
−iðωk0

1
þωk0

2
−ωk2

Þt − e
−iðωk0

1
þωk0

2
−ωk2

Þτ1
�
jk2i0

¼ i
λ

16k0
e−iωk0

tc

Z
dk2
2π

e−iωk2
ðt−tcÞ

XZ d2k0

ð2πÞ2
Vk2−k01−k

0
2
V−k0k01k

0
2

ωk0
1
ωk0

2
ðωk2 − ωk0

1
− ωk0

2
Þ

×

�
e
−σ2

ω2
k0
k2
0

ðωk0
−ωk0

1
−ωk0

2
Þ2−iðωk0

1
þωk0

2
−ωk2

Þðt−tcÞ
− e

−σ2
ω2
k0
k2
0

ðωk0
−ωk2

Þ2�jk2i0: ð3:46Þ

Note that there is no pole at ωk2 ¼ ωk0
1
þ ωk0

2
, as the sum of

the two terms in the parentheses has a simple zero there,
leaving a term proportional to t − tc. Of course, this does
nonetheless diverge if one naively takes a t → ∞ limit
before integrating over the meson momenta.
As in the tadpole case, the first term in the parentheses

corresponds not to elastic scattering, but rather to meson
multiplication. One may again note that over the support of
the Gaussian its phase varies many times, and so it should
not contribute once the virtual meson momenta have been
integrated. This argument applies here as it did there, away

from ωk2 ¼ ωk0
1
þ ωk0

2
. What about at ωk2 ¼ ωk0

1
þ ωk0

2
,

where the momenta cannot be freely varied as the surface is
constrained?
Since the integrand is in fact everywhere finite, there is a

vanishingly small contribution from any vanishingly small
neighborhood of ωk2 ¼ ωk0

1
þ ωk0

2
. One may therefore

remove such a neighborhood from the domain of integra-
tion; in other words, one may evaluate the integral close
to ωk2 ¼ ωk0

1
þ ωk0

2
using a principal value prescription

without changing the value of the integral

UA
2 ðtÞjt ¼ 0i0 ¼ i

λ

16k0
e−iωk0

tc

Z
dk2
2π

e−iωk2
ðt−tcÞ

XZ d2k0

ð2πÞ2
Vk2−k01−k

0
2
V−k0k01k

0
2

ωk0
1
ωk0

2

× e
−σ2

ω2
k0
k2
0

ðωk0
−ωk2

Þ2
PV

2
64e

−σ2
ω2
k0
k2
0

½ðωk0
−ωk0

1
−ωk0

2
Þ2−ðωk0

−ωk2
Þ2�−iðωk0

1
þωk0

2
−ωk2

Þðt−tcÞ
− 1

ωk2 − ωk0
1
− ωk0

2

3
75jk2i0: ð3:47Þ

The principal value is additive, so the two terms in the numerator may be separated, yielding the sum of two principal
values.
In the support of the overall Gaussian, we may replace Vk2−k01−k

0
2
with Vk0−k01−k

0
2
. We do not replace the k2 in the phase, as

it is multiplied by a group velocity factor times t, which is the scale at which the naive divergence is cut off.
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Now consider the k02 integral of the first term,

e
−σ2ðω2

k0
=k2

0
Þðωk0

−ωk0
1
−ωk0

2
Þ2
e
−iðωk0

1
þωk0

2
−ωk2

Þðt−tcÞ

ωk2 − ωk0
1
− ωk0

2

: ð3:48Þ

In the limit mðt − tcÞ → ∞, the phase rotates so quickly
that the k02 integral is exponentially suppressed, being
roughly of order expð−ðt − tcÞ2=σ2Þ. This vanishes as
we take ðt − tcÞ=σ → ∞ so that the final wave packet
has no overlap with the kink. However, when the denom-
inator is less than this exponentially suppressed factor, as
occurs near the poles, this argument fails. The poles lie at

k02 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωk2 − ωk0

1
Þ2 −m2

q
¼ �kI; ð3:49Þ

where we have introduced the positive momentum notation
kI . Therefore, we must evaluate the contribution from a
neighborhood of order Oð1=ðt − tcÞÞ of the poles.
Near each of these poles, the contribution to the principal

value is nonzero as a result of the phase factor. Near each
pole, the phase decreases as ωk0

2
increases and so as jk02j

increases. As a result, near the k02 ¼ −kI pole, the phase
increases with k02 and near the k02 ¼ kI pole it decreases.
This implies that the principal value is ∓ iπ times the
residue at the k02 ¼ �kI pole. The residue is −ωk0

2
=k02, times

the various coefficients of the square brackets evaluated at
the pole, at both poles. Summing the contributions at the
two poles, one finds

iπ
ωk0

2

jk02j
ðδðk02 − kIÞ þ δðk02 þ kIÞÞ ¼ iπδðωk0

2
þ ωk0

1
− ωk2Þ:

ð3:50Þ

We have argued that we may replace the first term in
square brackets with iπδð−ωk2 þ ωk0

1
þ ωk0

2
Þ. This may in

turn be absorbed into the other principal value term using
the Sokhotski–Plemelj theorem,

iπδð−ωk2 þ ωk0
1
þ ωk0

2
Þ þ PV

�
1

−ωk2 þ ωk0
1
þ ωk0

2

�

¼ 1

−ωk2 þ ωk0
1
þ ωk0

2
− iϵ

; ð3:51Þ

where the limit ϵ → 0þ is implicit.
In conclusion, we may replace the first term in the

parentheses with an ϵ shift. Now, we are interested in
elastic, not forward, scattering, so we will choose the sign
of k2 in the Gaussian peak considered, removing the
forward scattering part, yielding

UA
2 ðtÞjt ¼ 0i0 ¼ −i

λ

16k0
e−iωk0

tc

Z
dk2
2π

e−iωk2
ðt−tcÞe−σ2ðk0þk2Þ2

×
XZ d2k0

ð2πÞ2
Vk0−k01−k

0
2
V−k0k01k

0
2

ωk0
1
ωk0

2
ðωk0 − ωk0

1
− ωk0

2
þ iϵÞ jk2i0: ð3:52Þ

In the denominator, we have replaced ωk2 with ωk0 , using the fact that they are equal in the support of the Gaussian in our
mσ → ∞ limit. We recognize the þiϵ in the final state as the usual one appearing in the in states in the Lippmann-
Schwinger equation.

4. The case τ1 > τ2
This case is identical, except that the virtual mesons exchange their creation and annihilation operators. This leads to the

final state

UB
2 ðtÞjt ¼ 0i0 ¼ −

λ

16ωk0

ffiffiffi
π

p
2πσ

Z
dk2
2π

Z
t

0

dτ1

Z
τ1

0

dτ2
XZ d2k0

ð2πÞ2
Vk2−k01−k

0
2

ωk0
1
ωk0

2

e
−iωk0

τ1−iðωk0
1
þωk0

2
Þðτ1−τ2Þ

× e−iωk2
ðt−τ2Þ

Z
dxVð3Þð

ffiffiffi
λ

p
fðxÞÞg−k0ðxÞgk01ðxÞgk02ðxÞe−ðxτ1−xÞ

2=ð4σ2Þjk2i0: ð3:53Þ

Therefore, an identical derivation to the one above follows. The τ2 integral leads to a ðωk2 þ ωk0
1
þ ωk0

2
Þ in the

denominator so there is not even superficially a pole, and no iϵ is required. The τ1 integral again gives two terms, and this
time it is the second term that corresponds to an on shell k0 and vanishes upon integration. As these two terms differ by a
sign, and as it is the first and not the second term that remains, one obtains an overall sign flip with respect to the τ1 < τ2
case, yielding
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UB
2 ðtÞjt ¼ 0i0 ¼ i

λ

16k0
e−iωk0

tc

Z
dk2
2π

e−iωk2
ðt−tcÞe−σ2ðk0þk2Þ2

×
XZ d2k0

ð2πÞ2
Vk0−k01−k

0
2
V−k0k01k

0
2

ωk0
1
ωk0

2
ðωk0 þ ωk0

1
þ ωk0

2
Þ jk2i0: ð3:54Þ

Adding these two contributions, we find

ðUA
2 ðtÞ þUB

2 ðtÞÞjt ¼ 0i0 ¼ −i
λ

8k0

Z
dk2
2π

e−iωk2
te−σ

2ðk0þk2Þ2þiðk0þk2Þx0

×
XZ d2k0

ð2πÞ2
ðωk0

1
þ ωk0

2
ÞVk0−k01−k

0
2
V−k0k01k

0
2

ωk0
1
ωk0

2

�
ω2
k0
−
�
ωk0

1
þ ωk0

2

�
2 þ iϵ

� jk2i0: ð3:55Þ

IV. ϕ4
0 TERMS

Recall that translation invariance dictates all terms with
zero modes [19]. These terms have two contributions. First,
there is the cloud of mesons around the incoming or
outcoming meson. Next, there is the cloud of mesons
around the kink. In both cases, the quantum corrections
contain more mesons than the leading order kets or, more
precisely, more B‡ operators, except when the incoming or
outgoing meson is close to the kink, in which case the
incoming or outgoing meson may be absorbed by the kink
[41]. In particular, in the asymptotic past and future, when
the incoming and outgoing meson are far from the kink,
these quantum corrections to components with zero modes
ϕ0 will all have at least two mesons.
This argument implies that there should not be any terms

with zero modes and only one meson or, more precisely,
terms of the form ϕm

0 B
‡j0i0 with m > 0, at times t late

enough that the meson has traveled far from the kink. In the
current section, we will verify that this is indeed the case for
terms with ϕ4

0 in the final state UðtÞjt ¼ 0i at order OðλÞ,
which is the leading order at which ϕ4

0 may arise.

A. The main contribution

Let us begin with the case in which e−iHt is evaluated at
order OðλÞ and jt ¼ 0i at order Oð1Þ.
We will consider the interactions

Hð1Þ0
3 ¼

ffiffiffi
λ

p

2

Z
dk1
2π

VBB−k1
Bk1

2ωk1

ϕ2
0;

Hð2Þ0
3 ¼

ffiffiffi
λ

p

2

Z
dk2
2π

VBBk2B
‡
k2
ϕ2
0: ð4:1Þ

In this case, meson 1 is annihilated by Hð1Þ0
3 at time τ1,

while meson 2 is created by Hð2Þ0
3 at time τ2. This is drawn

in Fig. 4.
There are two cases to consider, corresponding to the

sign of τ1 − τ2.

1. τ1 < τ2
First, consider the case τ1 < τ2, in which meson 1 is

absorbed by the kink before meson 2 is emitted. Now the
interactions act as

Hð1Þ0
3 jk1i0 ¼

ffiffiffi
λ

p VBB−k1
4ωk1

ϕ2
0j0i0;

Hð2Þ0
3 ϕ2

0j0i0 ¼
ffiffiffi
λ

p

2

Z
dk2
2π

VBBk2ϕ
4
0jk2i0: ð4:2Þ

The corresponding contribution to the final state is

UA
2 ðtÞjt¼0i0¼−

λ

8

Z
d2k
ð2πÞ2

Z
t

0

dτ1

Z
t

τ1

dτ2
VBB−k1VBBk2

ωk1

×e−iωk2
ðt−τ2Þ−iωk1

τ1

×e−σ
2ðk1−k0Þ2−iðk1−k0Þx0ϕ4

0jk2i0: ð4:3Þ

2. τ1 > τ2
Next we turn to the case in which meson 2 is emitted

before meson 1 is absorbed. Now the interactions act as

FIG. 4. Meson 1 is absorbed by the kink, leaving two
zero modes. The kink also emits meson 2, together with two
more zero modes.
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Hð2Þ0
3 jk1i0 ¼

ffiffiffi
λ

p

2

Z
dk2
2π

VBBk2ϕ
2
0jk1k2i0;

Hð1Þ0
3 ϕ2

0jk1k2i0 ¼
ffiffiffi
λ

p VBB−k2
4ωk2

ϕ4
0jk1i0 þ

ffiffiffi
λ

p VBB−k1
4ωk1

ϕ4
0jk2i0; ð4:4Þ

leading to the contribution

UB
2 ðtÞjt ¼ 0i0 ¼ −

λ

8

Z
d2k
ð2πÞ2

Z
t

0

dτ1

Z
τ1

0

dτ2
VBB−k1VBBk2

ωk1

× e−iωk2
ðt−τ2Þ−iωk1

τ1e−σ
2ðk1−k0Þ2−iðk1−k0Þx0ϕ4

0jk2i0; ð4:5Þ

where we have removed the forward scattering part, proportional to jk1i0.
The integrand is equal to the previous case, and so these contributions are easily added,

ðUA
2 ðtÞ þUB

2 ðtÞÞjt ¼ 0i0 ¼ −
λ

8

Z
d2k
ð2πÞ2

VBB−k1VBBk2

ωk1

e−σ
2ðk1−k0Þ2−iðk1−k0Þx0e−iωk2

t

×
Z

t

0

dτ1

Z
t

0

dτ2e
iωk2

τ2−iωk1
τ1ϕ4

0jk2i0

¼ λ

8

Z
d2k
ð2πÞ2

VBB−k1VBBk2

ω2
k1
ωk2

e−σ
2ðk1−k0Þ2−iðk1−k0Þx0ð1 − e−iωk2

tÞð1 − e−iωk1
tÞϕ4

0jk2i0

¼ λ

8

Z
d2k
ð2πÞ2

VBB−k1VBBk2

ω2
k1
ωk2

e−σ
2ðk1−k0Þ2ð1 − e−iωk2

tÞ

× ðe−iðk1−k0Þx0 − e−iωk0
te−iðk1−k0ÞxtÞϕ4

0jk2i0: ð4:6Þ

The Gaussian factor implies that k1 has its support in a
domain of width of order Oð1=σÞ. The phase changes
rapidly in this domain, x0=σ times and xt=σ times in the
first and the second terms of the last parentheses. This leads
to an exponential suppression, after integrating over k1, of
order Oðe−x20=ð4σ2ÞÞ and Oðe−x2t =ð4σ2ÞÞ, respectively. These
both converge rapidly to 0 in our limit in which σ=t and
σ=x0 tend to zero. We thus conclude that there is no ϕ4

0

contribution.

B. Initial state contributions

Contributions may also arise from subleading terms in the
initial state jt ¼ 0i. Were jt ¼ 0i an eigenstate of the full
Hamiltonian H0, there would be three contributions, arising
from terms of form ϕ2

0jk1k2i0, ϕ2
0j0i0, and ϕ4

0jk2i0, with
k2 ≠ k1, in the initial state. However, jt ¼ 0i is not a
Hamiltonian eigenstate, it is an asymptotic state. As shown
in Ref. [41], where the asymptotic states are evaluated
explicitly, the second and third terms are therefore not
present. This fact can be derived directly by considering the
Hamiltonian eigenstate and integrating over the wave packet
(3.1). Terms in which the k1 meson has been annihilated
contain an integral over k1 that vanishes similarly.

This leaves terms of the first form. There is only one such
quantum correction [41],

jk1i1jϕ2
0
¼ −

ffiffiffi
λ

p

2

XZ dk2
2π

VBBk2

ωk2

ϕ2
0jk1k2i0: ð4:7Þ

This yields a quantum correction to the initial wave packet
jt ¼ 0i,

jt ¼ 0i1 ¼
Z

dk1
2π

e−σ
2ðk1−k0Þ2−iðk1−k0Þx0 jk1i1

¼ −
ffiffiffi
λ

p

2

Z
dk1
2π

XZ dk2
2π

e−σ
2ðk1−k0Þ2−iðk1−k0Þx0

×
VBBk2

ωk2

ϕ2
0jk1k2i0: ð4:8Þ

We evolve this with

U1ðtÞ ¼ −i
Z

t

0

dτ1e−iH
0
2
ðt−τ1ÞHð1Þ0

3 e−iH
0
2
τ1 ð4:9Þ

to produce the contribution
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U1ðtÞjt ¼ 0i1 ¼
iλ
8

Z
t

0

dτ1

Z
d2k
ð2πÞ2

VBB−k1VBBk2

ωk1ωk2

e−σ
2ðk1−k0Þ2−iðk1−k0Þx0−iωk1

τ1−iωk2
tϕ4

0jk2i0

¼ λ

8

Z
d2k
ð2πÞ2

VBB−k1VBBk2

ω2
k1
ωk2

ð1 − e−iωk1
tÞe−σ2ðk1−k0Þ2−iðk1−k0Þx0−iωk2

tϕ4
0jk2i0 ð4:10Þ

to the final state, where we removed the forward scattering
part in the first line. We also removed the contribution from
final states in which there is an excited shape mode and no
continuum mesons, as these terms do not correspond to
elastic scattering and anyway vanish as they can never
conserve energy on shell.
The contributions arising from the continuum k2 integral

cancel the second term in the first parentheses in the last
expression in Eq. (4.6). We have already argued that these
terms each vanish at large t, but for completeness if we add
the present contribution to (4.6) we obtain

UðtÞjt ¼ 0i ¼ λ

8

Z
d2k
ð2πÞ2

VBB−k1VBBk2

ω2
k1
ωk2

× e−σ
2ðk1−k0Þ2ðe−iðk1−k0Þx0

− e−iωk0
te−iðk1−k0ÞxtÞϕ4

0jk2i0: ð4:11Þ

As argued above, this vanishes upon performing the k1
integration. It would not vanish were xt close to zero,
reflecting the fact that, during the meson-kink collision,
there are indeed nonvanishing ϕ4

0 terms with a single
meson. We will see below that these terms are important,
as they lead to ϕ2

0 terms that are necessary to maintain
translation invariance.
Equation (4.10) also includes contributions in which k2

is a shape mode. In this case, the final state is not a kink and
a meson, but instead an excited kink. It therefore does not
correspond to elastic scattering. In the case of this process,
the final energy is necessarily less than that of the initial

state and so this can never be on shell, so one can show that
after k1 integration the amplitude vanishes exponentially
in t − tc.

C. A generalization

We have just shown that the interaction terms (4.1) inH0
3,

those that are proportional to ϕ2
0, do not lead to any

contribution proportional to ϕ4
0 at any time t except within

of order OðσÞ of tc. In particular, such contributions vanish
at large times, when the experiment ends. The argument
relied on the fact that this term is proportional to g2BðxÞ,
which is localized at jxj ∼ 1=m ≪ σ, which let us drop
x=σ terms.

The interaction H0
3

			
I
possesses a similar term,

H0
3

				
I
¼

ffiffiffi
λ

p

2

XZ dk0

2π
VIk0

�
B‡
k0 þ

B−k0

2ωk0

�
: ð4:12Þ

The same arguments may then be applied to calculate the
final state of the process shown in the bottom panel of
Fig. 5 to show that there is no contribution to the state
UðtÞjt ¼ 0i proportional to I2ðxÞ.
What about the initial state contribution? Again from

Ref. [41] the leading correction to the jk1i asymptotic
state is

jk1i1
				
I
¼ −

ffiffiffi
λ

p

2

XZ dk2
2π

VIk2

ωk2

jk1k2i0; ð4:13Þ

FIG. 5. Meson 1 is destroyed by a tadpole (right and bottom) or converted into two zero modes (left) and meson 2 is created by a
tadpole (left and bottom) or together with two zero modes (right).
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which is identical to (4.7) except the ϕ2
0 is missing and the

g2BðxÞ has been replaced by IðxÞ, which again is supported
at jxj ∼ 1=m. Thus, even this contribution can be calculated
identically.
In fact, one can do better. One can repeat the argument

with the sum of these two contributions,

H0
3

				
I ;ϕ2

0

¼
ffiffiffi
λ

p

2

XZ dk0

2π
ðVIk0 þ VBBk0ϕ

2
0Þ
�
B‡
k0 þ

B−k0

2ωk0

�
:

ð4:14Þ

The argument again proceeds identically, but now one can
see that even terms with one I and one ϕ2

0, seen in the top
of Fig. 5, vanish at all times t.

V. ϕ2
0 TERMS

In this section, we systematically study the components
of the state at a time t that have two zero modes or, more
precisely, a factor of ϕ2

0jk2i0. Contributions to such states
can be decomposed into four categories, to each of which
we dedicate a subsection. First, we consider contributions
with a single four-point interaction. The other three cat-
egories each contain two three-point interactions. Of these,
in the first, both zero modes arise from the same interaction.
In the second, one zero mode arises from each interaction.
In the last, each interaction generates two zero modes, as in
Sec. IV, but two of these zero modes are eliminated by the
kinetic term for the kink center of mass.

A. A single interaction

The simplest contribution to final states of the form
ϕ2
0jk2i0 arises from a single interaction,

Hð1Þ0
4 ¼ λ

2

Z
d2k
ð2πÞ2 VBB−k1k2B

‡
k2

Bk1

2ωk1

ϕ2
0: ð5:1Þ

Acting on an initial meson jk1i0, it yields

Hð1Þ0
4 jk1i0 ¼

λ

4ωk1

Z
dk2
2π

VBB−k1k2ϕ
2
0jk2i0: ð5:2Þ

This leads to the final state,

U2ðtÞjt ¼ 0i0 ¼ −i
λ

4

Z
d2k
ð2πÞ2

VBB−k1k2
ωk1

e−iωk2
t

×
Z

t

0

dτ1e
−iðωk0

−ωk2
Þτ1

× e−σ
2ðk1−k0Þ2−iðk1−k0Þxτ1ϕ2

0jk2i0: ð5:3Þ

The corresponding process is drawn in Fig. 6.

B. A virtual meson that decays to two zero modes

Next let us consider the contribution with two H0
3

interactions drawn in Fig. 7. In the first, at time τ1 meson
1 changes to meson 2 and a virtual meson of momentum k0
is emitted or absorbed. In the second, at time τ2 the virtual
meson is absorbed or emitted and two zero modes are
created.
The two relevant interactions are

Hð1Þ0
3 ¼

ffiffiffi
λ

p

2

XZ d2k
ð2πÞ2

XZ dk0

2π
V−k1k2k0B

‡
k2

�
B‡
k0 þ

B−k0

2ωk0

�
Bk1

2ωk1

;

Hð2Þ0
3 ¼

ffiffiffi
λ

p

2

XZ dk0

2π
VBBk0

�
B‡
k0 þ

B−k0

2ωk0

�
ϕ2
0: ð5:4Þ

1. The case τ1 < τ2
In this case, the virtual meson is emitted by meson 1,

Hð1Þ0
3 jk1i0 ¼

ffiffiffi
λ

p

2

XZ dk2
2π

XZ dk0

2π

V−k1k2k0

2ωk1

jk2k0i0 ð5:5Þ

and it is then absorbed by the kink,

Hð2Þ0
3 jk2k0i0 ¼

ffiffiffi
λ

p

2

VBB−k0

2ωk0
ϕ2
0jk2i0 þ

ffiffiffi
λ

p

2

VBB−k2
2ωk2

ϕ2
0jk0i0:

ð5:6Þ

FIG. 7. Right: a virtual meson is created together with two zero
modes. The virtual meson strikes meson 1 and turns it into meson
2. Left: meson 1 nucleates a virtual meson, which decays into two
zero modes.

FIG. 6. Meson 1 converts into meson 2, emitting two zero
modes in the process.
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The resulting final state is

UA
2 ðtÞjt ¼ 0i0 ¼ −

λ

8

Z
d2k
ð2πÞ2

XZ dk0

2π

Z
t

0

dτ1

Z
t

τ1

dτ2
V−k1k2k0VBB−k0

ωk1ωk0

× e−iωk2
ðt−τ1Þ−iωk0 ðτ2−τ1Þ−iωk0

τ1e−σ
2ðk1−k0Þ2−iðk1−k0Þxτ1ϕ2

0jk2i0
¼ i

λ

8

Z
d2k
ð2πÞ2

XZ dk0

2π

V−k1k2k0VBB−k0

ωk1ω
2
k0

e−iωk2
t

×
Z

t

0

dτ1e
−iðωk0

−ωk2
Þτ1e−σ

2ðk1−k0Þ2−iðk1−k0Þxτ1ϕ2
0jk2i0; ð5:7Þ

where, in the τ2 integration, we have dropped the boundary term at τ2 ¼ t as it corresponds to the limit in which the virtual
meson goes on shell. Like the two-process cases above, this term vanishes after k0 is integrated, as its phase oscillates
rapidly.

2. The case τ1 > τ2
In this case, the virtual meson is first emitted by the kink

Hð2Þ0
3 jk1i0 ¼

ffiffiffi
λ

p

2

XZ dk0

2π
VBBk0ϕ

2
0jk1k0i0 ð5:8Þ

and then it is absorbed by meson 1,

Hð1Þ0
3 jk1k0i0 ¼

ffiffiffi
λ

p

4

XZ dk2
2π

V−k1k2−k0

ωk1ωk0
jk2i0; ð5:9Þ

leading to the final state

UB
2 ðtÞjt ¼ 0i0 ¼ −

λ

8

Z
d2k
ð2πÞ2

XZ dk0

2π

Z
t

0

dτ1

Z
τ1

0

dτ2
V−k1k2k0VBB−k0

ωk1ωk0

× e−iωk2
ðt−τ1Þ−iωk0 ðτ1−τ2Þ−iωk0

τ1e−σ
2ðk1−k0Þ2−iðk1−k0Þxτ1ϕ2

0jk2i0
¼ i

λ

8

Z
d2k
ð2πÞ2

XZ dk0

2π

V−k1k2k0VBB−k0

ωk1ω
2
k0

e−iωk2
t

×
Z

t

0

dτ1e
−iðωk0

−ωk2
Þτ1e−σ

2ðk1−k0Þ2−iðk1−k0Þxτ1ϕ2
0jk2i0: ð5:10Þ

This time, when performing the τ2 integral, we have dropped the contribution from τ2 ¼ 0. This term is in fact exactly
canceled by an initial state contribution, but anyway corresponds to the on-shell limit of our virtual meson in which the k0
integration yields zero.
This contribution to the final state is equal to that of Eq. (5.7) with the other ordering. Adding them then yields a factor

of 2. Using the Ward identity (A8), this can be summarized,

ðUA
2 ðtÞ þUB

2 ðtÞÞjt ¼ 0i0 ¼ i
λ

4
ffiffiffiffiffiffiffiffi
λQ0

p
Z

d2k
ð2πÞ2

XZ dk0

2π

V−k1k2k0Δ−k0B

ωk1

e−iωk2
t

×
Z

t

0

dτ1e
−iðωk0

−ωk2
Þτ1e−σ

2ðk1−k0Þ2−iðk1−k0Þxτ1ϕ2
0jk2i0: ð5:11Þ

Here we have used the shorthand

Δij ¼
Z

dxgiðxÞg0jðxÞ; ð5:12Þ
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where i and j run over the normal mode indices B, S, and k.
Intuitively, the matrix Δ represents the momentum operator
acting on the mesons.

C. One zero mode at each vertex

Next we turn to the case in which there is a single
zero mode created at each interaction of the form
ð ffiffiffi

λ
p

=2Þ R dxgBðxÞϕ0∶ϕ2ðxÞ∶b. At times τ1 and τ2, we
place the interactions

Hð1Þ0
3 ¼

ffiffiffi
λ

p

2

XZ dk1
2π

XZ dk0

2π
VB−k1k0

�
2B‡

k0 þ
B−k0

2ωk0

�
Bk1

2ωk1

ϕ0;

Hð2Þ0
3 ¼

ffiffiffi
λ

p

2

XZ dk2
2π

XZ dk0

2π
VBk0k2B

‡
k2

�
B‡
k0 þ

B−k0

ωk0

�
ϕ0;

ð5:13Þ

respectively, bearing in mind that we are interested in the
components of the final state with a single meson. This is
drawn in Fig. 8.

1. The case τ1 < τ2
At each interaction, the meson interacts with the kink,

exciting a single zero mode,

Hð1Þ0
3 jk1i0 ¼

ffiffiffi
λ

p XZ dk0

2π

VB−k1k0

2ωk1

ϕ0jk0i0;

Hð2Þ0
3 ϕ0jk0i0 ¼

ffiffiffi
λ

p XZ dk2
2π

VB−k0k2
2ωk0

ϕ2
0jk2i0: ð5:14Þ

The corresponding contribution to the final state is

UA
2 ðtÞjt ¼ 0i0 ¼ −

λ

4

Z
d2k
ð2πÞ2

XZ dk0

2π

Z
t

0

dτ1

Z
t

τ1

dτ2
VB−k1k0VB−k0k2

ωk1ωk0

× e−iωk2
ðt−τ2Þ−iωk0 ðτ2−τ1Þ−iωk1

τ1e−σ
2ðk1−k0Þ2−iðk1−k0Þx0ϕ2

0jk2i0: ð5:15Þ

If we first integrate τ1 from 0 to τ2, dropping the vanishing contribution from τ1 ¼ 0, we obtain

UA
2 ðtÞjt ¼ 0i0 ¼ −i

λ

4

Z
d2k
ð2πÞ2 e

−iωk2
t
XZ dk0

2π

Z
t

0

dτ2
VB−k1k0VB−k0k2

ωk1ωk0 ðωk1 − ωk0 Þ
× e−iðωk1

−ωk2
Þτ2e−σ2ðk1−k0Þ2−iðk1−k0Þx0ϕ2

0jk2i0
¼ −i

λ

4

Z
d2k
ð2πÞ2 e

−iωk2
t
XZ dk0

2π

Z
t

0

dτ2
VB−k1k0VB−k0k2

ωk1ωk0 ðωk1 − ωk0 Þ
× e−iðωk0

−ωk2
Þτ2e−σ

2ðk1−k0Þ2−iðk1−k0Þxτ2ϕ2
0jk2i0: ð5:16Þ

If instead we first integrate τ2 from τ1 to t, and drop the vanishing contribution at τ2 ¼ t, then we obtain

UA
2 ðtÞjt ¼ 0i0 ¼ −i

λ

4

Z
d2k
ð2πÞ2 e

−iωk2
t
XZ dk0

2π

Z
t

0

dτ1
VB−k1k0VB−k0k2

ωk1ωk0 ðωk2 − ωk0 Þ
× e−iðωk1

−ωk2
Þτ1e−σ2ðk1−k0Þ2−iðk1−k0Þx0ϕ2

0jk2i0
¼ −i

λ

4

Z
d2k
ð2πÞ2 e

−iωk2
t
XZ dk0

2π

Z
t

0

dτ2
VB−k1k0VB−k0k2

ωk1ωk0 ðωk2 − ωk0 Þ
× e−iðωk0

−ωk2
Þτ2e−σ

2ðk1−k0Þ2−iðk1−k0Þxτ2ϕ2
0jk2i0: ð5:17Þ

FIG. 8. Meson 1 turns into a virtual meson, emitting a zero
mode. The virtual meson emits yet another zero mode, converting
into meson 2.
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Of course, this must equal (5.16), as the finite τi integrals commute. In particular, both must equal their average, which will
be more convenient below,

UA
2 ðtÞjt ¼ 0i0 ¼ i

λ

8

Z
d2k
ð2πÞ2 e

−iωk2
t
XZ dk0

2π

Z
t

0

dτ2
VB−k1k0VB−k0k2

ωk1ωk0

×

�
1

ωk0 − ωk2

þ 1

ωk0 − ωk1

�
e−iðωk0

−ωk2
Þτ2e−σ

2ðk1−k0Þ2−iðk1−k0Þxτ2ϕ2
0jk2i0: ð5:18Þ

2. The case τ1 > τ2
Now the first interaction creates two new mesons,

Hð2Þ0
3 jk1i0 ¼

ffiffiffi
λ

p

2

XZ dk2
2π

XZ dk0

2π
VBk0k2ϕ0jk1k2k0i0; ð5:19Þ

while the second destroys one of these together with meson 1,

Hð1Þ0
3 ϕ0jk1k2k0i0 ¼

ffiffiffi
λ

p

4

VB−k1−k0

ωk1ωk0
ϕ2
0jk2i0 þ

ffiffiffi
λ

p

4

VB−k1−k2
ωk1ωk2

ϕ2
0jk0i0 þ

ffiffiffi
λ

p

4

VB−k2−k0

ωk2ωk0
ϕ2
0jk1i0; ð5:20Þ

where the last term will correspond to forward scattering and we will remove it when calculating the final state. As k0 and k2
are both dummy variables, in the case of the jk0i term, we can and will exchange their names, so that the final state is
proportional to jk2i and the first two terms on the right-hand side are equal.
Evolving to time t, we find the state

UB
2 ðtÞjt ¼ 0i0 ¼ −

λ

4

Z
d2k
ð2πÞ2

XZ dk0

2π

Z
t

0

dτ1

Z
τ1

0

dτ2
VB−k1k0VB−k0k2

ωk1ωk0

× e−iωk2
ðt−τ2Þ−iωk0 ðτ1−τ2Þ−iωk1

τ1e−σ
2ðk1−k0Þ2−iðk1−k0Þx0ϕ2

0jk2i0: ð5:21Þ

Integration over τ1 from τ2 to t, dropping τ1 ¼ t, yields

UB
2 ðtÞjt ¼ 0i0 ¼ i

λ

4

Z
d2k
ð2πÞ2 e

−iωk2
t
XZ dk0

2π

Z
t

0

dτ2
VB−k1k0VB−k0k2

ωk1ωk0 ðωk1 þ ωk0 Þ
× e−iðωk0

−ωk2
Þτ2e−σ

2ðk1−k0Þ2−iðk1−k0Þxτ2ϕ2
0jk2i0;

whereas integration over τ2, dropping τ2 ¼ 0, would instead yield

UB
2 ðtÞjt ¼ 0i0 ¼ i

λ

4

Z
d2k
ð2πÞ2 e

−iωk2
t
XZ dk0

2π

Z
t

0

dτ2
VB−k1k0VB−k0k2

ωk1ωk0 ðωk2 þ ωk0 Þ
× e−iðωk0

−ωk2
Þτ2e−σ

2ðk1−k0Þ2−iðk1−k0Þxτ2ϕ2
0jk2i0:

Averaging, one finds

UB
2 ðtÞjt ¼ 0i0 ¼ i

λ

8

Z
d2k
ð2πÞ2 e

−iωk2
t
XZ dk0

2π

Z
t

0

dτ2
VB−k1k0VB−k0k2

ωk1ωk0

×

�
1

ωk2 þ ωk0
þ 1

ωk1 þ ωk0

�
e−iðωk0

−ωk2
Þτ2e−σ

2ðk1−k0Þ2−iðk1−k0Þxτ2ϕ2
0jk2i0: ð5:22Þ
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3. Conclusions

Finally, we add the contribution (5.18) from the case τ1 < τ2 to obtain

ðUA
2 ðtÞ þUB

2 ðtÞÞjt ¼ 0i0 ¼ i
λ

4

Z
d2k
ð2πÞ2 e

−iωk2
t
XZ dk0

2π

Z
t

0

dτ2
VB−k1k0VB−k0k2

ωk1

×

�
1

ω2
k0 − ω2

k2

þ 1

ω2
k0 − ω2

k1

�
e−iðωk0

−ωk2
Þτ2e−σ

2ðk1−k0Þ2−iðk1−k0Þxτ2ϕ2
0jk2i0: ð5:23Þ

Using the Ward identity (A7) this can be simplified somewhat,

ðUA
2 ðtÞ þUB

2 ðtÞÞjt ¼ 0i0 ¼ i
λ

4
ffiffiffiffiffiffiffiffi
λQ0

p
Z

d2k
ð2πÞ2 e

−iωk2
t
XZ dk0

2π

ðVB−k1k0Δ−k0k2 þ Δk0−k1VB−k0k2Þ
ωk1

×
Z

t

0

dτ2e
−iðωk0

−ωk2
Þτ2e−σ

2ðk1−k0Þ2−iðk1−k0Þxτ2ϕ2
0jk2i0: ð5:24Þ

Now we can see the reason that we chose the compli-
cated prescription of averaging over the two orders of time
integration. Although of course these integrals commute,
we see that the average prescription used here leads to the
combination VΔþ ΔV in round brackets in (5.24) which is
the same as that in the Ward identity (A16), even without
setting k0 ¼ −k2.
Could we have simply set k0 ¼ −k2 and just chose one

ordering for the time integrals? Well, the uncertainty
principle says that k0 þ k2 will be of order Oð1=tÞ, which
indeed tends to zero at large t, although it is dimensionful
and so one needs to be more careful. The problem, as we
will see below, is that the e−iπ

2
0
t=2 term in the evolution

operator contains, at first order, −iπ20t=2, which leads to a
zero-mode-free term proportional to t. In all, this contri-
bution would be proportional to tðk0 þ k2Þ, which is indeed
dimensionless and does not tend to zero at large t.
Therefore, in terms with zero modes we need to be careful
about factors of k0 þ k2 or, equivalently, ωk2 − ωk0 or, even
worse, ωk2 − ωk1 .
We note that there are neither initial nor final state

corrections, as they would consist of a single meson and a
ΔkB term that vanishes when folded into the initial or final
wave packet, which is far from the kink or, more precisely,
the support of gBðxÞ.

D. Two zero modes from four zero modes

The final contribution to the two zero-mode sector of the
final state arises from interactions in which four zero modes
are created, two by each of two H0

3 terms in (4.1), and then
two of these four zero modes are destroyed by the π20=2 in
the free Hamiltonian H0

2. This process is depicted in Fig. 9.
The free propagator H0

2 consists of a π
2
0=2 term, as well

as harmonic oscillator terms for the normal modes. These
all commute, and so the respective parts of the free
propagator may be factorized. Concretely, consider a basis
element of the kink sector ϕm

0 jk1 � � � kni0. Then the free
propagator acts as

e−iH
0
2
Tϕm

0 jk1 � � � kni0 ¼ e−iωTe−iπ
2
0
T=2ϕm

0 jk1 � � � kni0;

ω ¼
Xn
i¼1

ωkn : ð5:25Þ

The contribution of interest in this subsection uses a single
π20 to reduce the number of zero modes from 4 to 2 and so
corresponds to the term

FIG. 9. This process is as in Fig. 4. However, two of the four zero modes are annihilated by the π20=2 term in the free Hamiltonian H0
2.
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e−iωT
�
−i

π20
2
T

�
ϕm
0 jk1 � � � kni0 ¼ i

mðm − 1ÞT
2

e−iωTϕm−2
0 jk1 � � � kni0: ð5:26Þ

Now observe that e−iωTϕm
0 jk1 � � � kni0 is the result of the free evolution in which no zero modes are annihilated. And so,

once one has calculated the m zero-mode sector at an arbitrary time τ as an integral over the various interaction times, one
need only include a factor of imðm − 1ÞT=2 in the integrand to obtain the contribution to the m − 2 zero-mode sector. This
needs to be done during the free evolution between each pair of interactions, as two zero modes may, in principle, be
annihilated between any pair of interactions. Here T is the time that passes between the pair of interactions.
In kink-meson elastic scattering at order OðλÞ, the only pair of interactions that creates four zero modes is written as an

integral of interaction times in Eqs. (4.3) and (4.5). Consider first the case τ1 < τ2. Then, including the factors of
imðm − 1ÞT=2, where m ¼ 2 between the interactions and m ¼ 4 after both, one obtains the final state contribution,

UA
2 ðtÞjt ¼ 0i0 ¼ −

λ

8

Z
d2k
ð2πÞ2

VBB−k1VBBk2

ωk1

e−iωk2
tIAe−σ

2ðk1−k0Þ2−iðk1−k0Þx0ϕ2
0jk2i0; ð5:27Þ

where

IA ¼ i
Z

t

0

dτ1

Z
t

τ1

dτ2e
iωk2

τ2−iωk1
τ1ððτ2 − τ1Þ þ 6ðt − τ2ÞÞ: ð5:28Þ

Despite the linear growth in t, the arguments above show that the τ2 ¼ t contribution vanishes exponentially and so we may
drop it,

IA ¼ i
Z

t

0

dτ1e
−iωk1

τ1

�
6t − τ1 þ 5i

∂

∂ωk2

�Z
t

τ1

dτ2e
iωk2

τ2

¼ −
Z

t

0

dτ1e
−iωk1

τ1

�
6t − τ1 þ 5i

∂

∂ωk2

�
eiωk2

τ1

ωk2

¼
Z

t

0

dτ1
e−iðωk1

−ωk2
Þτ1

ωk2

�
−6tþ 6τ1 þ

5i
ωk2

�
: ð5:29Þ

Integrating τ1 first and dropping τ1 ¼ 0 would instead yield

IA ¼ i
Z

t

0

dτ2e
iωk2

τ2

�
6t − 5τ2 − i

∂

∂ωk1

�Z
τ2

0

dτ1e
−iωk1

τ1

¼
Z

t

0

dτ1
e−iðωk1

−ωk2
Þτ1

ωk1

�
−6tþ 6τ1 −

i
ωk1

�
: ð5:30Þ

In the case τ1 > τ2, one finds

UB
2 ðtÞjt ¼ 0i0 ¼ −

λ

8

Z
d2k
ð2πÞ2

VBB−k1VBBk2

ωk1

e−iωk2
tIBe−σ

2ðk1−k0Þ2−iðk1−k0Þx0ϕ2
0jk2i0; ð5:31Þ

where

IB ¼ i
Z

t

0

dτ1

Z
τ1

0

dτ2e
iωk2

τ2−iωk1
τ1ððτ1 − τ2Þ þ 6ðt − τ1ÞÞ: ð5:32Þ

Now we drop the vanishing τ2 ¼ 0 contribution to arrive at
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IB ¼ i
Z

t

0

dτ1e
−iωk1

τ1

�
6t − 5τ1 þ i

∂

∂ωk2

�Z
τ1

0

dτ2e
iωk2

τ2

¼
Z

t

0

dτ1
e−iðωk1

−ωk2
Þτ1

ωk2

�
6t − 6τ1 −

i
ωk2

�
; ð5:33Þ

while integrating τ1 first and then renaming τ2 would give

IB ¼
Z

t

0

dτ1
e−iðωk1

−ωk2
Þτ1

ωk1

�
6t − 6τ1 þ

5i
ωk1

�
: ð5:34Þ

We see that the naively divergent ðt − τ1Þ terms cancel in
IA þ IB. This linear divergence would be caused by the fact
that the constant ϕ4

0 term, created at time τ1 or τ2, would
create ϕ2

0 at a constant rate as a result of the π
2
0=2 inH

0
2. The

cancellation occurs because, as we have shown, the ϕ4
0 term

itself vanishes at late times.
Summing the two cases, and again replacing IA and IB

by the average of the expressions obtained from the two
integration orders, one finds the contribution to the final
state to be

ðUA
2 ðtÞ þUB

2 ðtÞÞjt ¼ 0i0 ¼ −i
λ

4

Z
d2k
ð2πÞ2 e

−iωk2
t VBB−k1VBBk2

ωk1

�
1

ω2
k1

þ 1

ω2
k2

�

×
Z

t

0

dτ2e
−iðωk0

−ωk2
Þτ2e−σ

2ðk1−k0Þ2−iðk1−k0Þxτ2ϕ2
0jk2i0: ð5:35Þ

Again, it will be convenient to rewrite this using a Ward identity,

ðUA
2 ðtÞ þ UB

2 ðtÞÞjt ¼ 0i0 ¼ −i
λ

4
ffiffiffiffiffiffiffiffi
λQ0

p
Z

d2k
ð2πÞ2 e

−iωk2
t ðVBB−k1Δk2B þ VBBk2Δ−k1BÞ

ωk1

×
Z

t

0

dτ2e
−iðωk0

−ωk2
Þτ2e−σ

2ðk1−k0Þ2−iðk1−k0Þxτ2ϕ2
0jk2i0: ð5:36Þ

E. The total

Finally, we are ready to add the two zero-mode, one-meson contributions to the elastic scattering of the final state given in
Eqs. (5.3), (5.11), (5.24), and (5.36),

UðtÞjt ¼ 0i ¼ i
λ

4

Z
d2k
ð2πÞ2 e

−iωk2
t S2
ωk1

Z
t

0

dτ2e
−iðωk0

−ωk2
Þτ2e−σ

2ðk1−k0Þ2−iðk1−k0Þxτ2ϕ2
0jk2i0;

where

S2 ¼ −VBB−k1k2 þ
1ffiffiffiffiffiffiffiffi
λQ0

p
�
−VBB−k1Δk2B − VBBk2Δ−k1B

þ
XZ dk0

2π
ðV−k1k2k0Δ−k0B þ VB−k1k0Δ−k0k2 þ Δk0−k1VB−k0k2Þ

�
¼ 0: ð5:37Þ

The last equality is a result of the Ward identity (A16) for translation invariance. This implies that no ϕ2
0 terms appear at first

order in the one-meson sector, as is demanded by translation invariance.

VI. FROM ZERO MODES TO NO ZERO MODES

Recall that any translation-invariant state in the kink sector is entirely determined by its primary components, those with
no zero modes. Furthermore, the reduced inner product of Ref. [38] allows one to compute amplitudes using only the no
zero-mode sector of the final state. Therefore, the computation of any initial value problem reduces to the computation of
the no zero-mode sector of the final state.
So then why have we wasted so much space calculating the sector of the final state with zero modes? Because, following

the strategy of Sec. V D, we can easily modify those computations to yield the zero-mode free parts of the final state
resulting from interactions that create zero modes, which are later destroyed by the free H0

2 evolution.
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A. A single interaction

As always, the simplest case is that with a single
interaction; in this case, that of Eq. (5.1). This creates
m ¼ 2 zero modes, and so we must insert a factor of

imðm − 1ÞT=2 ¼ iðt − τ1Þ; ð6:1Þ

where T ¼ t − τ1 is the time after the creation of the zero
modes. This changes the ϕ2

0 part of the final state, given in
Eq. (5.3), into the ϕ0

0 part

U2ðtÞjt ¼ 0i0 ¼
λ

4

Z
d2k
ð2πÞ2

VBB−k1k2
ωk1

e−iωk2
t
Z

t

0

dτ1ðt − τ1Þe−iðωk0
−ωk2

Þτ1e−σ
2ðk1−k0Þ2−iðk1−k0Þxτ1 jk2i0: ð6:2Þ

This process in drawn in Fig. 10.

B. A virtual meson that decays to two zero modes

Next we turn to the interactions (5.4) in which a virtual meson is emitted by meson 1 at time τ1 and it is absorbed by the
kink, creating two zero modes, at time τ2. The process in which these two zero modes are removed by the free evolution,
drawn in Fig. 11, contains a factor of

imðm − 1ÞT=2 ¼ iðt − τ2Þ ð6:3Þ

with respect to the ϕ2
0 contributions calculated in Sec. V B.

Including this factor in Eq. (5.7), one finds that the contribution from the case τ1 < τ2 is

UA
2 ðtÞjt ¼ 0i0 ¼ −i

λ

8

Z
d2k
ð2πÞ2

XZ dk0

2π

Z
t

0

dτ1

Z
t

τ1

dτ2
V−k1k2k0VBB−k0

ωk1ωk0
ðt − τ2Þ

× e−iωk2
ðt−τ1Þ−iωk0 ðτ2−τ1Þ−iωk0

τ1e−σ
2ðk1−k0Þ2−iðk1−k0Þxτ1 jk2i0

¼ −
λ

8

Z
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XZ dk0

2π

V−k1k2k0VBB−k0

ωk1ω
2
k0

e−iωk2
t

×
Z

t

0

dτ1

�
t − τ1 þ

i
ωk0

�
e−iðωk0

−ωk2
Þτ1e−σ

2ðk1−k0Þ2−iðk1−k0Þxτ1 jk2i0; ð6:4Þ

where again we have dropped the contribution at τ2 ¼ t,

FIG. 10. This interaction is as in Fig. 6. However, the two zero modes are absorbed by the π20=2 kinetic term for the kink center
of mass.
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i
λ

8
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¼ i
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8
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ωk0ω
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=ð4σ2Þjk2i0

¼ i
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XZ dk0
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V−k0k2k0Δ−k0B

k0ωk0
e−σ

2ðωk0
=k0Þ2ðωk0

−ωk2
−ωk0 Þ2−iðωk2

þωk0 Þðt−tcÞjk2i0: ð6:5Þ

The k0 integration causes this term to vanish, as the integrand oscillates quickly. This argument fails if k0 is a discrete shape
mode, and so we will handle this case separately in Appendix B.
Similarly, in the case τ1 > τ2, we include the factor in Eq. (5.10),

UB
2 ðtÞjt ¼ 0i0 ¼ −i

λ

8

Z
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ð2πÞ2

XZ dk0

2π

Z
t

0

dτ1

Z
τ1

0

dτ2
V−k1k2k0VBB−k0

ωk1ωk0
ðt − τ2Þ

× e−iωk2
ðt−τ1Þ−iωk0 ðτ1−τ2Þ−iωk0

τ1e−σ
2ðk1−k0Þ2−iðk1−k0Þxτ1 jk2i0

¼ −
λ
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Z
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XZ dk0
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V−k1k2k0VBB−k0

ωk1ω
2
k0

e−iωk2
t

×
Z

t

0

dτ1

�
t − τ1 −

i
ωk0

�
e−iðωk0

−ωk2
Þτ1e−σ

2ðk1−k0Þ2−iðk1−k0Þxτ1 jk2i0: ð6:6Þ

Adding the two contributions, one finds

ðUA
2 ðtÞ þ UB

2 ðtÞÞjt ¼ 0i0 ¼ −
λ

4
ffiffiffiffiffiffiffiffi
λQ0

p
Z

d2k
ð2πÞ2

XZ dk0

2π

V−k1k2k0Δ−k0B

ωk1

e−iωk2
t

×
Z

t

0

dτ1ðt − τ1Þe−iðωk0
−ωk2

Þτ1e−σ
2ðk1−k0Þ2−iðk1−k0Þxτ1 jk2i0: ð6:7Þ

C. One zero mode at each vertex

Now consider the case in which each vertex creates a single zero mode ϕ0. Since the only operator in the free Hamiltonian
that annihilates zero modes is π20=2, no zero modes can be annihilated until both are created. The time T will therefore be
equal to t minus whichever of τ1 and τ2 is greater. This process is drawn in Fig. 12.

FIG. 11. This interaction is as in Fig. 7. However, the two zero modes are annihilated by the π20=2 term in the free evolution.
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If τ1 < τ2, then Eq. (5.15) is modified to

UA
2 ðtÞjt ¼ 0i0 ¼ −i

λ

4
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−iωk2
t
XZ dk0
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IA ¼
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t
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dτ1

Z
t
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dτ2e
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−ωk0 Þτ1ðt − τ2Þ: ð6:8Þ

Integrating τ1 first yields a factor of

IA ¼
Z

t

0

dτ2e
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Z
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0
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¼ i
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Z
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−ωk2
Þτ2ðt − τ2Þ; ð6:9Þ

whereas integrating τ2 first would yield

IA ¼
Z

t

0

dτ1e
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�Z
t

τ1
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−iðωk0−ωk2

Þτ2
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Z
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0
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Þτ1
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t − τ1 −

i
ωk2 − ωk0

�
: ð6:10Þ

Again, the integrals commute and so these expressions are equal. It will be convenient to use the average.
If τ1 > τ2, then Eq. (5.21) is modified to

UB
2 ðtÞjt ¼ 0i0 ¼ −i
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þωk0 Þτ1ðt − τ1Þ: ð6:11Þ

Integrating τ1 first,

IB ¼
Z

t
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dτ2e
iðωk0þωk2

Þτ2
�
t − i

∂

∂ωk0

�Z
t

τ2

dτ1e
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dτ2e
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�
; ð6:12Þ

while integrating τ2 first,

FIG. 12. Most of this paper is about the computation of this term, which is the only contribution to the scattering amplitude resulting
from zero modes. The process is as in Fig. 8, except that the two zero modes are annihilated by the π20=2 in the free evolution operator.
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IB ¼ −
i

ωk0 þ ωk2

Z
t

0

dτ1e
−iðωk1

−ωk2
Þτ1ðt − τ1Þ: ð6:13Þ

Now, replacing all dummy variables τ2 with τ1 and averaging over the integral orderings, one finds

IA þ IB ¼
Z

t
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þ 1

2ðωk2 − ωk0 Þ2
�
: ð6:14Þ

Reinserting these integrals in the equations for the final states, one finds

ðUA
2 ðtÞ þ UB

2 ðtÞÞjt ¼ 0i0 ¼
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where
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ffiffiffiffiffiffiffiffi
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2ðk1−k0Þ2−iðk1−k0Þxτ1 jk2i0 ð6:15Þ

and

B ¼ −i
λ

8

Z
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VB−k1k0VB−k0k2
ωk1ωk0

e−iωk2
t

×
Z

t

0

dτ1

�
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ðωk1 þ ωk0 Þ2
þ 1

ðωk2 − ωk0 Þ2
�
e−iðωk0

−ωk2
Þτ1e−σ

2ðk1−k0Þ2−iðk1−k0Þxτ1 jk2i0: ð6:16Þ

While the term A looks like that seen in the previous processes, the term B is different, in that it does not contain a t − τ
factor. We will see that it is the only term in this section that contributes to elastic scattering.

D. No zero modes from four zero modes

The last process that leads to a single meson creates two zero modes in each of two interactions in Eq. (4.1) and lets them
both be destroyed by the e−iπ

2
0
T=2 in the free evolution operator. It is drawn in Fig. 13.

Consider first τ1 < τ2. Now, as always, two zero modes are created at τ1 and two more at τ2. There are two ways in which
the zero modes may be destroyed. First, the linear −iπ20ðτ2 − τ1Þ=2 term in the evolution operator may destroy two zero

FIG. 13. This is as in Fig. 4 except that all four zero modes are annihilated by the kink center of mass kinetic term in the free evolution
operator.
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modes between times τ1 and τ2, and then the linear
−iπ20ðt − τ2Þ=2 term in the evolution operator may destroy
two zero modes between times τ2 and t. This contributes a
factor of

½−iπ20ðτ2 − τ1Þ=2;ϕ2
0�½−iπ20ðt − τ2Þ=2;ϕ2

0�
¼ ðτ1 − τ2Þðt − τ2Þ ð6:17Þ

to the ϕ0
0 term in the final state with respect to the ϕ4

0 term
calculated in Sec. IV.
But it may also be that all four zero modes survive until

τ2 and so are annihilated by the −π40ðt − τ2Þ2=8 quadratic

term in the free evolution operator between times τ2 and t.
This possibility contributes a factor of

½−π40ðt − τ2Þ2=8;ϕ4
0� ¼ −3ðt − τ2Þ2: ð6:18Þ

Of course, these processes, having the same final state, add
coherently and so lead to a total weight that is the sum of
these factors,

ðt − τ2Þð−3tþ τ1 þ 2τ2Þ: ð6:19Þ

The contribution (4.3) to the ϕ4
0 sector of the final state

then becomes

UA
2 ðtÞjt ¼ 0i0 ¼ −
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Let us first integrate τ2, as usual dropping τ2 ¼ t as its contribution vanishes after the other integrals have been performed,
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Z
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On the other hand, performing the τ1 integration first leads to
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: ð6:22Þ

Consider now τ1 > τ2. The factor that one must now include is obtained by exchanging τ1 and τ2 in Eq. (6.19),

ðt − τ1Þð−3tþ τ2 þ 2τ1Þ: ð6:23Þ

This modifies the contribution (4.5) to
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2 ðtÞjt ¼ 0i0 ¼ −

λ

8

Z
d2k
ð2πÞ2 IBe

−iωk2
t VBB−k1VBBk2

ωk1

e−σ
2ðk1−k0Þ2−iðk1−k0Þx0 jk2i0;

IB ¼
Z

t

0

dτ1

Z
τ1

0

dτ2e
iωk2

τ2−iωk1
τ1ðt − τ1Þð−3tþ τ2 þ 2τ1Þ: ð6:24Þ

Now we first integrate τ1, dropping τ1 ¼ t,
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On the other hand, integrating τ2 first,
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t
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: ð6:26Þ

Again, we replace the dummy variables τ2 with τ1 and average over integration orders to obtain

IA þ IB ¼
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t
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dτ1e
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�
: ð6:27Þ

We note that, at k1 ¼ �k2, corresponding to the average value in elastic scattering, the terms that are linearly divergent in
t − τ1 are nonzero, but the constant piece vanishes. As a result, these terms will not contribute to our final amplitude. The
contribution to the final state is

ðUA
2 ðtÞ þUB
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and

D ¼ iλ
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In this section, like the two before it, we have been careful to distinguish k0, k1, and k2, even though they only differ by of
orderOð1=σÞ. Our care has paid off, because these differences were multiplied by factors of t − τ and even ðt − τÞ2 in terms
where zero modes were canceled. These factors resulted from the fact that the free evolution leads to a constant rate of
demotion from ϕm

0 to ϕm−2
0 .

However, now we have already calculated these factors, and they are not present in D. Therefore, in D, one can safely
take our limitmσ → ∞, which implies that, in the support of our e−σ

2ðk1−k0Þ2 weight, k1 may be replaced with k0. Thus, with
the usual argument that x=σ is negligible when multiplied by gBðxÞ, we may write
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D ¼ iλ
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In the support of the e−σ
2ðk0þk2Þ2 , so that k2 ¼ −k0 þOð1=σÞ, we can see that the term in square brackets is 1=ω3

k0
times a

factor of order Oð1=ðmσÞÞ and so vanishes as mσ → ∞. Thus, D will not contribute to the amplitude and we will not
consider it further.

E. The total

Finally, we are ready to add the contributions in Eqs. (6.2), (6.7), (6.15), (6.16), and (6.28) to the one-meson, no zero-
mode part of the final state. Recall that these are the contributions arising from interactions that created zero modes, which
were later annihilated. The sum is

U2ðtÞjt ¼ 0i0 ¼ B −
λ

4

Z
d2k
ð2πÞ2

S2
ωk1

e−iωk2
t

×
Z

t

0

dτ1ðt − τ1Þe−iðωk0
−ωk2

Þτ1e−σ
2ðk1−k0Þ2−iðk1−k0Þxτ1 jk2i0: ð6:31Þ

The quantity S2 was defined in Eq. (5.37) where it was noted that S2 ¼ 0 as a result of the Ward identity (A16). This
leaves B.
The quantity B was defined in Eq. (6.16). It is
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In the support of e−σ
2ðk0þk2Þ2 we may set ωk0 ¼ ωk2 and so manipulate
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�
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�
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ðω2
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k0 Þ: ð6:33Þ

Here we replaced VB−k0k2 with VB−k0−k0 , which yields a phase e−iðk2þk0Þx. However, the gBðxÞ is supported at x ∼Oð1=mÞ
and k2 þ k0 is of order Oð1=σÞ so the argument of the phase is of order 1=ðσmÞ which tends to zero, so the phase factor
tends to unity.
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Therefore, we conclude

U2ðtÞjt ¼ 0i0 ¼ −i
1

4Q0k0

Z
dk2
2π

e−iωk2
te−σ

2ðk0þk2Þ2þiðk0þk2Þx0

×
XZ dk0

2π
ðω2

k0
þ ω2

k0 Þ
Δ−k0k0Δ−k0−k0

ωk0
jk2i0: ð6:34Þ

This, together with the terms found in Sec. III, is the part of the final state corresponding to meson with no zero modes that is
not forward scattered.

VII. THE ELASTIC SCATTERING PROBABILITY

Adding together the contributions to the final state from Eqs. (3.16), (3.33), (3.55), and (6.32), finally, we find

U2ðtÞjt ¼ 0i ¼ −i
Z

dk2
2π

e−iωk2
tRðk2Þe−σ2ðk0þk2Þ2þiðk0þk2Þx0 jk2i0; ð7:1Þ

where the reflection coefficient is

Rðk2Þ ¼ λðAðk2Þ þ Bðk2Þ þ Cðk2Þ þDðk2ÞÞ ð7:2Þ

and

Aðk2Þ ¼
1

8k0

XZ dk0

2π

 
1

ðωk0 þ ωk0 Þ2
þ 1

ðωk2 − ωk0 Þ2
!
VB−k0k0VB−k0k2

ωk0
;

Bðk2Þ ¼
VIk0−k2
4k0

;

Cðk2Þ ¼ −
1

4k0

XZ dk0

2π

V−k0k2k0VI−k0

ω2
k0

;

Dðk2Þ ¼
1

8k0

XZ d2k0

ð2πÞ2
ðωk0

1
þ ωk0

2
ÞVk0−k01−k

0
2
V−k0k01k

0
2

ωk0
1
ωk0

2

�
ω2
k0
−
�
ωk0

1
þ ωk0

2

�
2 þ iϵ

� : ð7:3Þ

For example, Aðk2Þ is just the coefficient in B in Eq. (6.32)
divided by λ. We remind the reader thatU2 is not unitary, as
we have defined it to be just the part of the evolution
operator that leads to one nonforward meson and no zero
modes. Note that at k2 ¼ −k0 one may simplify

Að−k0Þ¼
1

4k0λQ0

XZ dk0

2π

�
ω2
k0
þω2

k0

ωk0

�
Δ−k0k0Δ−k0−k0 : ð7:4Þ

Following Ref. [17], it is easy to see that the probability
of elastic scattering is jRð−k0Þj2. This calculation is done
using the reduced inner product of [38], which carefully
removes the divergences arising from the infinite moduli
space. Using

jk1i0¼B‡
k1
j0i0; B‡†

k1
¼ Bk1

2ωk1

; h0j0ired ¼
ffiffiffiffiffiffi
Q0

p
; ð7:5Þ

one finds that at leading order the reduced inner product
of jk1i and jk2i is

ffiffiffiffiffiffi
Q0

p
2πδðk1 − k2Þ=ð2ωk1Þ. Subleading

corrections are computed in Ref. [38] and it is argued that
they vanish in the present case in Ref. [17].
The reduced norm squared of the elastic scattered part of

the final state (7.1) is then

ht ¼ 0jU†
2ðtÞU2ðtÞjt ¼ 0ired ¼

ffiffiffiffiffiffi
Q0

p
jRð−k0Þj2

ffiffiffi
π

p

4
ffiffiffi
2

p
πσωk0

:

ð7:6Þ

Here we have used the fact that σm → ∞ to approximate R
to be independent of k2 over the support of the Gaussian, so
that it could be pulled out of the integral, evaluated at −k0.
On the other hand, the reduced norm squared of the total

final state is equal to the reduced norm squared of the initial
state jt ¼ 0i, as a result of the unitarity of the evolution,
which is
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ht ¼ 0jt ¼ 0ired ¼
ffiffiffiffiffiffi
Q0

p ffiffiffi
π

p

4
ffiffiffi
2

p
πσωk0

: ð7:7Þ

The probability of elastic scattering is just the ratio of these
two reduced norms,

P ¼ ht ¼ 0jU†
2ðtÞU2ðtÞjt ¼ 0ired

ht ¼ 0jt ¼ 0ired
¼ jRð−k0Þj2: ð7:8Þ

Indeed, the reduced norm was developed just to solve this
problem.

VIII. APPLICATIONS

After a long calculation, we have recovered the results of
Ref. [17]. What have we gained?
We have drawn diagrams corresponding to each process.

Yet, no Feynman rules have been given that would derive the
corresponding contribution to the amplitude from the dia-
grams. We intend to use this collection of examples to guide
the derivation of such Feynman rules for kink sector
perturbation theory.With this, we hope that such calculations
in the future may be much faster. Indeed, the fact that the
derivation of the elastic scattering amplitude in Ref. [17] was
so short gives us hope that such a simplification is possible.
A more streamlined framework will allow for higher

order computations. These have several potential applica-
tions. First, by summing bubble diagrams, one may see a
complex shift in the location of the pole corresponding to
the twice-excited shape mode resonance. The width of this
resonance should correspond to the lifetime of this unstable
state calculated in Ref. [42], which agrees with the classical
field theory calculation of Ref. [43]. One can test to see
whether, like in the vacuum sector, also in the kink sector
the lifetimes of unstable states may be read off of the
imaginary parts of the self-energies.
The situation potentially differs qualitatively from the

familiar vacuum sector case when one goes beyond leading
order. Here zero modes created at one bubble may
annihilate those created at another. It remains to be seen
whether this simply leads to subleading corrections cor-
responding to larger bubbles or else a qualitative change in
the structures of these resonances. Either way, we hope to
calculate these subleading corrections, as they may yield,
for the first time, the correction to the lifetime of an
unstable excited soliton state.
Finally, we would like to study higher order diagrams to

search for a kink sector Lehmann-Symanzik-Zimmermann
reduction theorem. In this paper and in Ref. [31], we have
observed that initial and final state corrections always seem
to cancel, by a number of different mechanisms. This leads
one to wonder just how generic this result is and whether
bubbles on external legs can be easily summed.
If one considers initial conditions with multiple mesons,

one may also study meson fusion. Using coherent states to

create a classical limit as in [42], this should allow a study of
the negative radiation pressure observed in Refs. [44–46].
Of course, kinks themselves have limited phenomeno-

logical interest. In general, 1þ 1d scalar models with kinks
are instead used as toy models either for QCD [23] or for
quantum gravity [47,48]. In the near future, we hope to
generalize linearized soliton perturbation theory to solitons
in more dimensions, and so the answers to the above
questions may have more relevant applications.
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APPENDIX A: WARD IDENTITIES

Consider the n-point functions

VA1���An
¼
Z

dxVðnÞð
ffiffiffi
λ

p
fðxÞÞgA1

ðxÞ � � � gAn
ðxÞ; ðA1Þ

where Ai runs over continuum modes k, shape modes S,
and the zero mode B. These correspond to n-point
functions with external legs Ai corresponding to various
zero and normal modes. The generalization containing
factors of IðxÞ is obvious.
Now consider an n-point function containing at least one

zero mode. The n-point function is symmetric, so let us put
the zero mode in the last index An ¼ B. Then VA1���An−1B

satisfies a Ward identity corresponding to translation
invariance. Schematically, the Ward identity is

VA1���An−1B ¼ 1ffiffiffiffiffiffiffiffi
λQ0

p
Xn−1
i¼1

XZ dA0

2π
ΔAi−A0VA1���Ai−1A0Aiþ1���An−1

:

ðA2Þ

The matrix Δ, defined in Eq. (5.12), plays the role of the
momentum operator. Here, breaking from our usual nota-
tion, the symbol

PR
includes not only shape modes but also

the zero mode. The constant factor of
ffiffiffiffiffiffiffiffi
λQ0

p
is the result of

various conventions.
These are derived by noting that

VðnÞð
ffiffiffi
λ

p
fðxÞÞgBðxÞ ¼ −

∂xVðn−1Þð ffiffiffi
λ

p
fðxÞÞffiffiffiffiffiffiffiffi

λQ0

p ðA3Þ

and integrating by parts to move the derivative onto the
other factors gAðxÞ. The identity, in the form of the normal
mode completeness relation (A10), which is a standard
result in Sturm-Liouville theory, is inserted to turn g0AðxÞ
into a ΔAiAj

matrix, which represents translations on the
normal modes. In this appendix, some such Ward identities
will be derived.
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Note that the only continuous global symmetry in our
model is translation invariance. However, in more general
models in which global symmetries are explicitly broken by
classical solutions, we expect the same results to hold for
the corresponding zero modes. Note that this is true even if,
as in the present case, the ground state in the soliton sector
preserves the classically broken symmetry as a result of the
Coleman-Mermin-Wagner theorem.

1. Warm up

In the special case N ¼ 3 we can use the fact that
Vð2Þð ffiffiffi

λ
p

fðxÞÞ satisfies the Sturm-Liouville equations of
motion of the normal modes to simplify the Ward identities
further. This will be the first approach below.
Using

gBðxÞ ¼ −
f0ðxÞffiffiffiffiffiffi
Q0

p ; ðA4Þ

one can expand

VBk2k1 ¼
Z

dxVð3Þð
ffiffiffi
λ

p
fðxÞÞgBðxÞgk2ðxÞgk1ðxÞ

¼ −
1ffiffiffiffiffiffi
Q0

p
Z

dx
�
Vð3Þð

ffiffiffi
λ

p
fðxÞÞf0ðxÞ

�
gk2ðxÞgk1ðxÞ

¼ −
1ffiffiffiffiffiffiffiffi
λQ0

p
Z

dx∂x
�
Vð2Þð

ffiffiffi
λ

p
fðxÞÞ þ Ck1k2

�
× gk2ðxÞgk1ðxÞ; ðA5Þ

where Ck1k2 is independent of x but otherwise arbitrary.

a. Approach one

As Ck1k2 is x independent, its derivative vanishes and we
may drop it. Now, cut off the integration at �x̂, such that
jx̂j ≫ 1=m and integrate by parts,

VBk2k1 ¼ −
m2ffiffiffiffiffiffiffiffi
λQ0

p ðgk2ðx̂Þgk1ðx̂Þ − gk2ð−x̂Þgk1ð−x̂ÞÞ

þ 1ffiffiffiffiffiffiffiffi
λQ0

p
Z

x̂

−x̂
dxVð2Þð

ffiffiffi
λ

p
fðxÞÞðgk2ðxÞg0k1ðxÞ þ g0k2ðxÞgk1ðxÞÞ

¼ −
m2ffiffiffiffiffiffiffiffi
λQ0

p ðgk2ðx̂Þgk1ðx̂Þ − gk2ð−x̂Þgk1ð−x̂ÞÞ

þ 1ffiffiffiffiffiffiffiffi
λQ0

p
Z

x̂

−x̂
dx½g0k1ðxÞðω2

k2
þ ∂

2
xÞgk2ðxÞ þ g0k2ðxÞðω2

k1
þ ∂

2
xÞgk1ðxÞ�

¼ −
m2ffiffiffiffiffiffiffiffi
λQ0

p ðgk2ðx̂Þgk1ðx̂Þ − gk2ð−x̂Þgk1ð−x̂ÞÞ þ
1ffiffiffiffiffiffiffiffi
λQ0

p ðg0k2ðx̂Þg0k1ðx̂Þ − g0k2ð−x̂Þg0k1ð−x̂ÞÞ

þ ðω2
k1
− ω2

k2
ÞΔk1k2ffiffiffiffiffiffiffiffi

λQ0

p

¼ −
m2 þ k1k2ffiffiffiffiffiffiffiffi

λQ0

p ðgk2ðx̂Þgk1ðx̂Þ − gk2ð−x̂Þgk1ð−x̂ÞÞ þ
ðω2

k1
− ω2

k2
ÞΔk1k2ffiffiffiffiffiffiffiffi

λQ0

p : ðA6Þ

Note that the term in the first parentheses is proportional to
e�ix̂ðk1þk2Þ which, by the Riemann-Lebesgue lemma, will
vanish when folded into any integrable function of k1 þ k2,
such as our normalizable wave functions. One might have
expected it to be proportional to δðk1 þ k2Þ, however, it
remains finite when k1 þ k2 ¼ 0 and so the constant of
proportionality is zero. The left side also remains finite at
k1 þ k2 ¼ 0 because gBðxÞ has compact support. Thus,
taking the limit x̂ → ∞, one arrives at

VBk2k1 ¼
ðω2

k1
− ω2

k2
ÞΔk1k2ffiffiffiffiffiffiffiffi

λQ0

p : ðA7Þ

In the above derivation, k1 and k2 could be continuum
modes or shape modes. However, the derivation also

applies to the case in which k1 or k2 is the zero mode.
In this case, the corresponding frequency in the Sturm-
Liouville equation satisfied by gðxÞ vanishes and so one
obtains

VBBk ¼
ω2
kΔkBffiffiffiffiffiffiffiffi
λQ0

p ; VBBB ¼ 0: ðA8Þ

b. Approach two

If we keep the Ck1k2 when integrating by parts, one
arrives at
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VBk2k1 ¼ −
ðm2 þ Ck1k2Þffiffiffiffiffiffiffiffi

λQ0

p ðgk2ðx̂Þgk1ðx̂Þ − gk2ð−x̂Þgk1ð−x̂ÞÞ;

þ 1ffiffiffiffiffiffiffiffi
λQ0

p
Z

dx
�
Vð2Þð

ffiffiffi
λ

p
fðxÞÞ þ Ck1k2

�
ðgk2ðxÞg0k1ðxÞ þ g0k2ðxÞgk1ðxÞÞ; ðA9Þ

where x̂ is a spatial cutoff, which should be taken to infinity. The boundary term on the first line oscillates rapidly and so
vanishes as a distribution unless k1 þ k2 ¼ 0. It therefore may only contribute a divergent term at k1 þ k2 ¼ 0, but VBk1k2
has no such large x divergence as gBðxÞ has compact support. Therefore, the boundary term always vanishes and we will
drop it. Now insert the completeness relation

δðx − yÞ ¼ gBðxÞgBðyÞ þ
XZ dk0

2π
gk0 ðxÞg−k0 ðyÞ ðA10Þ

to change the g0ðxÞ terms to g0ðyÞ, leaving the boundary terms implicit,

VBk2k1 ¼
1ffiffiffiffiffiffiffiffi
λQ0

p
Z

dx
Z

dyδðx − yÞ
�
Vð2Þð

ffiffiffi
λ

p
fðxÞÞ þ Ck1k2

�
ðgk2ðxÞg0k1ðyÞ þ gk1ðxÞg0k2ðyÞÞ

¼ 1ffiffiffiffiffiffiffiffi
λQ0

p
Z

dx
�
Vð2Þð

ffiffiffi
λ

p
fðxÞÞ þ Ck1k2

�h
gBðxÞgk2ðxÞΔBk1 þ gBðxÞgk1ðxÞΔBk2

þ
XZ dk0

2π
ðgk2ðxÞg−k0 ðxÞΔk0k1 þ gk1ðxÞg−k0 ðxÞΔk0k2Þ

i

¼ 1ffiffiffiffiffiffiffiffi
λQ0

p
�
VBk2ΔBk1 þ VBk1ΔBk2 þ

XZ dk0

2π
ðVk2−k0Δk0k1 þ Vk1−k0Δk0k2Þ

�
: ðA11Þ

Here the C terms each vanish as a result of the orthonor-
mality of the normal modes g as well the antisymmetry ofΔ.
This Ward identity relates three-point functions with

contractions of two-point functions with Δ. We will see
below that it can be generalized to an expression relating
any n-point function with a contraction of (n − 1)-point
functions with Δ.

2. Infrared divergences

One needs to be aware of the infrared divergences that
arise when some subset of the ki sum to zero. These result
from the fact that the e−ikix factors in the corresponding
gkiðxÞ at large jxj have a product that does not oscillate, and
so some integrals diverge. For example, consider the
manipulation

Δk1k2 ¼
Z

dxgk1ðxÞ∂xgk2ðxÞ

¼ gk1ðxÞgk2ðxÞj∞−∞ −
Z

dxgk2ðxÞ∂xgk1ðxÞ

¼ gk1ðx̂Þgk2ðx̂Þj∞−∞ − Δk2k1 : ðA12Þ

Generally, we drop the boundary term and summarize the
result by stating thatΔk1k2 is antisymmetric. This is justified

because, if we take the limit jx̂j → ∞ of the boundary term
at the end, it oscillates rapidly in jx̂j and so vanishes as a
distribution. However, this argument fails if k1 ¼ −k2.
Thus, the antisymmetry is only up to a correction with
support at k1 ¼ −k2, such as a Dirac δ function. In practice,
in the case of kinks in gapped theories considered here, this
term is proportional to k1δðk1 þ k2Þ, which in fact is
antisymmetric. In principle, such contributions may lead
to finite effects in quantities of interest, and one must
always be aware of them and must determine when they
may contribute. For example, in the case of the one-loop
mass correction, the general formula of Ref. [20] is
proportional to ðωk − ωpÞ2 and so it vanishes even when
the coefficient contains a δðk − pÞ.
In general, we expect such divergences in our (n − 1)-

point functions on the right-hand side of the Ward iden-
tities, but we do not expect them in the n-point functions on
the left-hand side because these include a gBðxÞ which has
compact support. Let us now show that this expectation is
fulfilled in the case at hand, and a divergence on the right-
hand side of the Ward identity does not lead to one on the
left-hand side.
The three-point function VBk1k2 plays an important role,

as the vertex factor connecting a zero mode to two mesons.
We now ask whether it is sensitive to δ function terms in
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Vk1k2 . In the last line of (A11), one can see that the shift
Vk1k2 → Vk1k2 þ δðk1 þ k2Þ leads to the shift VBk1k2 →
VBk1k2 þ ðΔk2k1 þ Δk1k2Þ=

ffiffiffiffiffiffiffiffi
λQ0

p
. This of course would

vanish were Δk1k2 truly antisymmetric, but as we reviewed
above this argument fails at k1 ¼ −k2. However, a finite
contribution on a codimension one surface like k1 ¼ −k2

also vanishes in the sense of a distribution, while we recall
that an infinite distribution is excluded by the fact that
gBðxÞ has compact support. Therefore, again we are not
interested in such contributions, and so we conclude that a
δðk1 þ k2Þ contribution to the two-point function does not
affect the three-point function.

3. Computation

This time, expand

VBBk2k1 ¼
Z

dxVð4Þð
ffiffiffi
λ

p
fðxÞÞg2BðxÞgk2ðxÞgk1ðxÞ

¼ −
1ffiffiffiffiffiffi
Q0

p
Z

dx
�
Vð4Þð

ffiffiffi
λ

p
fðxÞÞf0ðxÞ

�
gBðxÞgk2ðxÞgk1ðxÞ

¼ −
1ffiffiffiffiffiffiffiffi
λQ0

p
Z

dx∂x
�
Vð3Þð

ffiffiffi
λ

p
fðxÞÞ þ Ck1k2

�
gBðxÞgk2ðxÞgk1ðxÞ; ðA13Þ

where Ck1k2 is independent of x but otherwise arbitrary.
As gBðxÞ vanishes asymptotically, no boundary term is introduced when we integrate by parts,

VBBk2k1 ¼
1ffiffiffiffiffiffiffiffi
λQ0

p
Z

dx
�
Vð3Þð

ffiffiffi
λ

p
fðxÞÞ þ Ck1k2

�
∂xðgBðxÞgk2ðxÞgk1ðxÞÞ

¼ 1ffiffiffiffiffiffiffiffi
λQ0

p
Z

dx
�
Vð3Þð

ffiffiffi
λ

p
fðxÞÞ þ Ck1k2

�
ðgBðxÞgk2ðxÞg0k1ðxÞ

þgBðxÞgk1ðxÞg0k2ðxÞ þ gk1ðxÞgk2ðxÞg0BðxÞÞ: ðA14Þ

Note that the Ck1k2 terms vanish as they are the integral of a total derivative of a bounded function. Of course, this is obvious
because Ck1k2 is arbitrary.
Now insert the completeness relation

δðx − yÞ ¼ gBðxÞgBðyÞ þ
XZ dk0

2π
gk0 ðxÞg−k0 ðyÞ ðA15Þ

to change the g0ðxÞ terms to g0ðyÞ,

VBBk2k1 ¼
1ffiffiffiffiffiffiffiffi
λQ0

p
Z

dx
Z

dyδðx − yÞ
�
Vð3Þð

ffiffiffi
λ

p
fðxÞÞ þ Ck1k2

�
ðgBðxÞgk2ðxÞg0k1ðyÞ

þgBðxÞgk1ðxÞg0k2ðyÞ þ gk1ðxÞgk2ðxÞg0BðyÞÞ

¼ 1ffiffiffiffiffiffiffiffi
λQ0

p
Z

dx
�
Vð3Þð

ffiffiffi
λ

p
fðxÞÞ þ Ck1k2

��
g2BðxÞgk2ðxÞΔBk1 þ g2BðxÞgk1ðxÞΔBk2

þ
XZ dk0

2π
ðgBðxÞgk2ðxÞg−k0 ðxÞΔk0k1 þ gBðxÞgk1ðxÞg−k0 ðxÞΔk0k2 þ gk1ðxÞgk2ðxÞg−k0 ðxÞΔk0BÞ

�

¼ 1ffiffiffiffiffiffiffiffi
λQ0

p
�
VBBk2ΔBk1 þ VBBk1ΔBk2 þ

XZ dk0

2π
ðVBk2−k0Δk0k1 þ VBk1−k0Δk0k2 þ Vk1k2−k0Δk0BÞ

�
: ðA16Þ

Now shifting Vk1k2−k0 by δðk1 þ k2 − k0Þ changes the answer, with a shift proportional to ΔB;k1þk2 .
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APPENDIX B: SUBLEADING CORRECTIONS
TO STOKES SCATTERING

1. Shape modes

In some models, the kink possesses shape modes. In that
case, the virtual meson above could be a shape mode. That
invalidates two of the arguments made above.
First of all, several times above we stated that the k0

integrand oscillates so rapidly that, once k0 is integrated out,
the contribution to the amplitude will be exponentially
suppressed by interference. If k0 is discrete, this argument
does not work.
Second, we used the reduced inner product. The kink has

an infinite moduli space of classical solutions, related by
translation invariance. By choosing one kink solution, we
have fixed the translation symmetry. This can be done
consistently in the ratio of matrix elements, like in our
formula for the probability. However, when one fixes a
symmetry, a determinant term must be included.
This determinant was calculated in Ref. [38]. Including it

in the inner product, we found that the inner product is
nonvanishing not only when all mesons have the same
momenta, but also the inner product is nonvanishing
between two states that differ by one meson with momen-
tum k0. However, in this case, there is a suppression factor
that is schematically

ffiffiffi
λ

p
Δk0B.

As the zero mode B is localized close to the kink, if the
virtual meson has traveled far, then it will be disjoint from

gBðxÞ and this term will cancel. However, a shape mode is
bound to the kink and so cannot travel far. Therefore, one
can expect a contribution to the inner product arising from
virtual shape modes.
However, this contribution is suppressed by a factor offfiffiffi
λ

p
, and so one must consider evolution U1ðtÞ at order

Oð ffiffiffi
λ

p Þ. This evolution has been comprehensively studied
in Refs. [31,33]. The conclusion is that, if the kink starts in
its ground state, the only allowed process is the creation of
two quanta. If both are continuum mesons, this process is
called meson multiplication. If one is a shape mode, this is
called Stokes scattering.
We thus conclude that Stokes scattering, included in

U1ðtÞjt ¼ 0i0, may, in principal, lead to a nonvanishing
inner product with respect to a nonforward meson and so
contribute to our process.
Of course, this cannot really happen, as the conservation

of energy would imply ωk2 ¼ ωk1 − ωS, which is the wrong
energy for the recoil meson. However, in this appendix, we
will try to show how this contribution vanishes.

2. Stokes scattering

Consider the interaction Hð1Þ0 from Eq. (3.17). It acts on
meson 1 as in Eq. (3.20). At leading order, this leads to the
final state

U1ðtÞjt ¼ 0i0 ¼ −i
Z

t

0

dτ1e−iH
0
2
ðt−τ1ÞHð1Þ0

3 e−iH
0
2
τ1

Z
dk1
2π

e−σ
2ðk1−k0Þ2−iðk1−k0Þx0 jk1i0

¼ −i
ffiffiffi
λ

p

4

Z
dk1
2π

XZ dk2
2π

XZ dk0

2π
e−iðωk2

þωk0 Þt
Z

t

0

dτ1e
−iðωk0

−ωk2
−ωk0 Þτ1

×
V−k1k2k0

ωk1

e−σ
2ðk1−k0Þ2−iðk1−k0Þxτ1 jk2k0i0: ðB1Þ

Stokes scattering corresponds to the case k0 ¼ S and k2 is a continuum mode. Of course, this expression is symmetric in k0
and k2 and so if k2 ¼ S then one can rename it k0. This freedom leads to a factor of 2.
Abusing our notation again, we will define U1ðtÞ be the Stokes scattering part, which is equivalent to considering only

Stokes terms in the definition of Hð1Þ0
3 ,

U1ðtÞjt ¼ 0i0 ¼ −i
ffiffiffi
λ

p

2

Z
d2k
ð2πÞ2 e

−iðωk2
þωSÞt

Z
t

0

dτ1e
−iðωk0

−ωk2
−ωSÞτ1

×
X
S

V−k1k2S

ωk1

e−σ
2ðk1−k0Þ2−iðk1−k0Þxτ1 jk2Si0: ðB2Þ

Now, we make the usual approximation that ωk1 in the denominator is ωk0 , and again using the fact that gSðxÞ has compact
support, we find
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U1ðtÞjt ¼ 0i0 ¼ −i
ffiffiffi
λ

p

2

ffiffiffi
π

p
2πσ

Z
dk2
2π

V−k0k2S

ωk0

e−iðωk2
þωSÞt

×
Z

t

0

dτ1e
−iðωk0

−ωk2
−ωSÞτ1e−x

2
τ1
=ð4σ2Þjk2Si0

¼ −i
ffiffiffi
λ

p

2
e−iωk0

tc

Z
dk2
2π

X
S

V−k0k2S

k0
e−σ

2ðωk0
=k0Þ2ðωk0

−ωk2
−ωSÞ2−iðωk2

þωSÞðt−tcÞjk2Si0: ðB3Þ

3. Reduced inner product

To obtain the corresponding contribution to the probability, one needs to project this final state onto one meson final
states, using the projection

P ¼ 1ffiffiffiffiffiffi
Q0

p
Z

dk2
2π

2ωk2 jk2ihk2j: ðB4Þ

What is the reduced inner product of this final state with a single meson state jk2i?
There are two contributions. The first comes from the leading part jk2i0 of jk2i. Using the master formula (4.14) of

Ref. [38] with γ02ðk2SÞ ¼ 1=2, one finds that the term contracting the shape mode and the zero mode is

0hk2jU1ðtÞjt ¼ 0i0 red ¼ −i
ffiffiffi
λ

p

8
e−iωk0

tc
X
S

V−k0k2SΔSB

k0ωSωk2

e−σ
2ðωk0

=k0Þ2ðωk0
−ωk2

−ωSÞ2−iðωk2
þωSÞðt−tcÞ: ðB5Þ

Here we have remembered the factor of 1=ð2ωk2Þ from B‡†
k2
, which is built into the normalization of our states jk2i0.

However, there are also contributions, at the same order, from the two-meson quantum corrections jk2i1,

γ021k2ðk01; k02Þ ¼ −
2πδðk02 − k2Þ

4

�
Δk0

1
B þ

ffiffiffiffiffiffiffiffi
λQ0

p VIk0
1

ωk0
1

�
þ

ffiffiffiffiffiffiffiffi
λQ0

p
V−k2k01k

0
2

4ωk2ðωk2 − ωk0
1
− ωk0

2
Þ

−
2πδðk01 − k2Þ

4

�
Δk0

2
B þ

ffiffiffiffiffiffiffiffi
λQ0

p VIk0
2

ωk0
2

�
: ðB6Þ

Here γmn
iψ ðk1 � � � knÞ is the coefficient that arises when

decomposing the state jψi into the basis ϕm
0 jk1 � � � kni0

at order Oðλi=2Þ. It is defined to include a factor of Qi=2
0 so

that it contains no powers of the coupling λ.
We are interested in the case where k01 or k02 is a

shape mode. At late times, the meson k2 is far from the
kink and so cannot interact with a shape mode. As a result,
after all of the usual integrations, the V−k2k01k

0
2
term will

vanish.

Now k2 is the momentum of the asymptotic meson, so it
is by assumption not a shape mode, as we are calculating
the amplitude to produce an asymptotic meson. Therefore,
in the δðk02 − k2Þ term, it must be that k01 is the shape mode
and similarly for the other δ term.
We need to sum over whether k01 or k

0
2 is the shape mode.

Now, remembering the factors of 1=ð2ωSÞ and 1=ð2ωk2Þ
from the contractions of the two mesons, one can see that
the Δ terms cancel half of (B5). The other half is canceled
by the contribution from Eq. (6.5),

0hk2jU1ðtÞjt ¼ 0i0 red ¼ i

ffiffiffi
λ

p

16
e−iωk0

tc
XZ dk0

2π

V−k0k2k0Δ−k0B

k0ωk0ωk2

× e−σ
2ðωk0

=k0Þ2ðωk0
−ωk2

−ωk0 Þ2−iðωk2
þωk0 Þðt−tcÞ: ðB7Þ

This leaves the two tadpole terms, which are proportional VIS. They yield an inner product of

0hk2jU1ðtÞjt ¼ 0i0 red ¼ i
λ
ffiffiffiffiffiffi
Q0

p
8

e−iωk0
tc
V−k0k2SVIS

k0ω2
Sωk2

e−σ
2ðωk0

=k0Þ2ðωk0
−ωk2

−ωSÞ2−iðωk2
þωSÞðt−tcÞ: ðB8Þ
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This term appears to be a disaster, as it contributes to the
final probability with a final energy ωk2 that is not close to
the initial energy ωk0.

However, the term looks reminiscent of the tadpole
interactions studied in Sec. III C. Indeed, the inner product
of A1, the first term in the parentheses in Eq. (3.29), with

0hk2j, exactly cancels this term.
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