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The perturbative consistency of coherent states within interacting quantum field theory requires them to
be altered beyond the simple nonsqueezed form. Building on this point, we perform explicit construction of
consistent squeezed coherent states, required by the finiteness of physical quantities at the one-loop order.
Extending this analysis to two loops, we demonstrate that a non-Gaussian alteration of squeezed coherent
states is necessary. The modifications of the coherent state we propose are perturbative in ℏ and may be an
indication that coherence must be viewed through a nonlinearly redefined, background-dependent, degree
of freedom.
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I. INTRODUCTION

Coherent states are recognized as the quantum counter-
parts of classical configurations [1–3] (see also [4,5]), which
was precisely Schrödinger’s motivation for introducing
them. However, their utilization has been limited to systems
for which nonlinearities do not play a significant role. The
scope and implications of the coherent state representation
for various nonlinear classical systems within the quantum
field theoretic framework started emerging a little over a
decade ago, in the series of papers [6–10]. There, this class of
states is proposed as the prime candidate for the underlying
quantum description of classical backgrounds comprised of
interacting constituents.
For most of the classical systems, the implementation of

this framework is unnecessary, since the timescales over
which the configuration can be thought of as an isolated
one (even classically) tend to be significantly shorter than
the time it takes for quantum effects to become important.
The timescale for the significant quantum departure from
the classicality was coined as “quantum break time” in [9].
This phenomenon was explored further in [10–21]. The
argument is based on the idea that classical configurations

must be viewed fundamentally as quantum states with high
occupation numbers of aligned modes, such as condensates
or coherent states. As a result, quantum interactions
between these modes lead to the departure from coherence
and thereby from classicality. It was shown that the
quantum break time is generically expected to increase
for weaker quantum couplings. In particular, it scales as a
negative power of the coupling for classically stable
systems,1 while it becomes logarithmic if the system
exhibits a classical Lyapunov instability, with the coeffi-
cient set by the Lyapunov exponent [9,16,22].
Furthermore, it has been demonstrated that the funda-

mental quantum description in terms of coherent states can
be of utmost importance for classically (quasi)eternal
systems, such as black hole,2 de Sitter, and inflationary
spacetimes [6–13]. The implications of these concepts
for cosmic axions [14], ultralight scalar dark matter
models [25], and the onset of inflation [26,27] have also
been considered. See [28] for a related interesting dis-
cussion of the classicality in interacting bosonic systems.
Commonly, quantum backreaction on classical dynamics

is analyzed within the so-called background field method.
With this approach, nonequilibrium quantum processes are
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1The scaling in terms of negative powers of the quantum
coupling λ can be converted as a positive-power scaling in the
occupation number n, for a fixed collective coupling α ¼ λn. The
latter is the parameter controlling the magnitude of the classical
nonlinearities of the theory.

2For systems such as black holes, the phenomenology of the
quantum breaking can be significantly altered due to high
microstate degeneracy because of the so-called memory burden
effect [23,24].
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studied by analyzing the coupled evolution of the back-
ground field, which are represented by the one-point
expectation value of the field operator, and higher order
correlation functions, see, e.g., [29] and references therein.
Already within this approach, some of the quantum effects
can be captured successfully. A good example is provided
by a quartic scalar field theory, within which the homo-
geneous anharmonic oscillations tend to depart from a
classical trajectory increasingly quickly with increasing
amplitude of oscillations [30]. For a relatively recent
interesting work on a related subject see also [31]. The
background field method has been also employed recently
to analyze the stability of the homogeneous non-Abelian
electric field background [32,33].
However, the piecewise treatment of the state merely in

terms of a few correlation functions may obscure the
ramifications of some effects for the state of the system
in its entirety. Therefore, since coherent states are the prime
candidates for the full quantum description of classical
backgrounds as discussed above, their self-consistent con-
struction within interacting quantum field theory is of
fundamental importance.
The issue we have set out to resolve is best elucidated by

beginning with a theory of a free massive scalar field ϕ̂ in
the Schrödinger picture, governed by the Hamiltonian3

Ĥ0 ¼
Z

d3x

�
1

2
π̂2 þ 1

2
ð∇! ϕ̂Þ2 þ 1

2
m2ϕ̂2 þ Λ

�
: ð1Þ

Here π̂ is the canonical conjugate momentum of the scalar
field, m is the mass parameter, and Λ stands for the bare
vacuum energy that we use to adjust the lowest energy
eigenvalue to zero. The corresponding (vacuum) eigenstate
is denoted by j0i. In this case the coherent state corre-
sponding to a homogeneous field configuration can be
straightforwardly constructed as

jCiðt ¼ 0Þ ¼ e−i
R

d3xϕ0π̂j0i: ð2Þ

Even the time evolution would be straightforward to
compute and would give

jCiðtÞ ¼ e−iĤ0tjCiðt¼ 0Þ ¼ e−i
R
d3xϕ0ðcosðmtÞπ̂þm sinðmtÞϕ̂Þj0i;

ð3Þ

which is precisely what is expected from the classical
dynamics.
The question is how to modify (2) consistently upon

introducing interactions. For this, one could start by
considering the interacting theory

Ĥ ¼ Ĥ0 þ Ĥint; ð4Þ

together with a readjustment of Λ, to make the lowest
energy eigenstate jΩi to have a vanishing eigenvalue, i.e.,
ĤjΩi ¼ 0. One could then guess that a natural progression
to modify (2) for this interacting theory is to replace

j0i ⟶ jΩi: ð5Þ

From a first look, the state resulting from this choice

jCiðt ¼ 0Þ ¼ e−i
R

d3xϕ0π̂jΩi ð6Þ

seems to have all the right ingredients. It is constructed
from the vacuum of the theory and canonical degrees of
freedom, in this case the conjugate momentum. Notice that
in the Heisenberg picture, the operators at hand would have
been canonical degrees of freedom of the full theory with
the time evolution dictated by (4), rather than the ones of
the interaction picture with a free-theory dynamics.
The state (6) is a representative of a more general class of

states, which we refer to as nonsqueezed coherent states,
characterized by a set of c-number functions ϕclðxÞ; πclðxÞ
that determine the initial conditions for the system. Their
general form can be expressed as follows

jCi¼ exp

�
−i

Z
d3xðϕclðxÞπ̂ðxÞ−πclðxÞϕ̂ðxÞÞ

�
jΩi; ð7Þ

Initial conditions for the expectation values of the field and
its conjugate momentum are uniquely determined by the c-
number functions as

hCjϕ̂jCiðt ¼ 0Þ ¼ ϕclðxÞ; ð8Þ

hCjπ̂jCiðt ¼ 0Þ ¼ πclðxÞ: ð9Þ

If ϕclðxÞ and πclðxÞ remain finite as ℏ approaches zero, then
the evolution of the state (7) in this limit will be completely
captured by the replacement of these c-number functions
with time-dependent classical configurations satisfying the
same initial conditions.4

Constructing the state in terms of the operators of the
fully interacting theory rather than their asymptotic coun-
terparts offers certain advantages within the quantum field
theory framework. In particular, this approach enables
computations to be carried out without immediate reliance
on perturbation theory. This is made possible by the
application of canonical commutation relations, which
allow for efficient manipulations of the operators and the
vacuum involved in the construction of the state.

3In this paper we work in units of ℏ ¼ c ¼ 1.

4If we were to reintroduce ℏ explicitly, then we would have to
add a factor of ℏ−1 in the exponent of (7) for this property to be
fulfilled.
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Consequently, the transition to the interaction picture can
be postponed to a later stage, when the exact computation
reaches its limits and the necessity for a loop expansion
becomes apparent.
It was demonstrated in [18,19] that nonsqueezed coher-

ent states exhibit unrenormalizable perturbative divergen-
cies within interacting quantum field theories. This
phenomenon bears resemblance to certain initial-time
singularities encountered in the semiclassical analysis of
backreaction from fluctuations to the background [34,35] in
the context of scalar field theories with quartic interactions.
To understand the source of these divergences, it is
important to understand how nonsqueezed coherent states
determine the initial conditions for the two-point and
higher-order correlation functions. At the initial time, the
two-point correlation functions of canonical degrees of
freedom on the state jCi read

hCjϕ̂ðx; 0Þϕ̂ðy; 0ÞjCi ¼ ϕclðxÞϕclðyÞ
þ hΩjϕ̂ðx; 0Þϕ̂ðy; 0ÞjΩi; ð10Þ

hCjπ̂ðx; 0Þπ̂ðy; 0ÞjCi ¼ πclðxÞπclðyÞ
þ hΩjπ̂ðx; 0Þπ̂ðy; 0ÞjΩi: ð11Þ

Notice that we have not specified a theory yet, nevertheless
the expressions for initial conditions (8)–(11) are exact and
merely rely on the fact that one-point expectation values
vanish on the vacuum.
The reason (10) and (11) are interesting is because the

fluctuation part is given by the vacuum two-point function
and is independent of the background, i.e., of ϕclðxÞ and
πclðxÞ. We anticipate that it is exactly this property that fails
in giving a good perturbative behavior of the state. The
main issue is that initial conditions for correlators, when not
specified at an asymptotic time, should satisfy a minimal
amount of dressing and should provide certain divergences
when evaluated at coincidence. Only in this way, the
dynamics is renormalizable in the conventional sense.
Unfortunately, this minimal tuning cannot be satisfied by
the simplest class of coherent states.
At this point, it is crucial to highlight the nature of these

divergences. To demonstrate the failure of this state in
providing a perturbative dynamics, we can focus on the
theory of a massive scalar field with quartic interactions,
governed by the following Hamiltonian (4) with

Ĥint ¼
Z

d3x
�
λ

4!
ϕ̂4

�
: ð12Þ

Here λ is the bare coupling constant. Note, we have not
introduced the field renormalization explicitly as it equals
to unity at one-loop order for the quartic theory in question,
thus we keep it implicit for the time being and will manifest
it when we move to higher-order loop corrections.

The application of the Baker-Campbell-Hausdorff for-
mula, and taking into account that the vacuum expectation
values of an odd number of fields vanish for the quartic
theory in question (see [18]), straightforwardly leads to the
following exact statements:

∂
2
t hCjϕ̂jCiðt ¼ 0Þ ¼ Δϕcl − ϕcl

�
m2 þ λ

2
hΩjϕ̂2jΩi

�

−
λ

3!
ϕ3
cl; ð13Þ

hCjĤjCi ¼
Z

d3x

�
1

2
π2cl þ

1

2
ð∇!ϕclÞ2

þ 1

2

�
m2 þ λ

2
hΩjϕ̂2jΩi

�
ϕ2
cl þ

λ

4!
ϕ4
cl

�
: ð14Þ

These are the initial acceleration of the one-point function
of the field and the energy of the system. It is important to
emphasize that we have adjusted the bare vacuum energy
in a way that the expectation value (14) vanishes if the
c-number functions are sent to zero.
The bare mass term m2 comes with the entourage of the

divergent contribution hΩjϕ̂2jΩi, which corresponds to the
so-called bubble diagram and represents the same divergent
loop correction that arises from the standard analysis of
quantum corrections to the vacuum propagator at one loop.
However, the analogous S-matrix contribution to the
coupling constant is absent in Eqs. (13) and (14). In other
words, the energy and initial field acceleration of a non-
squeezed coherent state are sourced by the bare coupling
constant and not by its physical counterpart.
This discrepancy between the divergences provided

by a state at the initial time and the standard S-matrix
divergences is commonly referred to as the initial time
singularity [34,35]. The name arises from the observation
that, when we examine the evolution of the expectation
value of the field operator, we discover that the missing
S-matrix singularities are perturbatively generated at t > 0.
However, these singularities are not initially present and,
through the process of renormalization, they are effectively
shifted to the moment of initialization of the coherent state.
Because of this issue, nonsqueezed coherent states as given
by (7) can only be considered as physical states of the
theory if the required divergences that are not accounted for
within perturbation theory would somehow resum into
finite results. For instance, the finiteness of the bare
coupling constant appears to be essential for the validity
of these states.
However, if we would like to maintain physical quan-

tities to be perturbatively finite, we need to abandon the
simplicity of these states and instead allow for their
nontrivial squeezing and more. We will introduce the
corresponding procedure in detail starting from the next
sections. As an appetizer, we already mentioned that the
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root of all trouble comes from the quadratic correlation
function (10) and the fact that its fluctuation part is
independent of ϕcl. Therefore, it appears to us that the
only possibility forward is to build the coherent state
around an excited state instead of the vacuum, i.e.,

jCi¼ exp

�
−i

Z
d3xðϕclðxÞπ̂ðxÞ−πclðxÞϕ̂ðxÞÞ

�
jSi; ð15Þ

where jSi is the squeezed vacuum with the one-point
function of the field operator vanishing in this state. In the
next section, we will begin the analysis with ϕcl ¼ ϕ0 ¼
const and πcl ¼ 0 for simplicity. Also, the homogeneous
backgrounds are the ones usually studied within the
semiclassical framework and we can use the intuition
gained from those studies to fast track the computation.
The paper is organized as follows. In Sec. II, we derive

the squeezed coherent state which is capable of addressing
the initial time singularity at ℏ order. In Sec. III, we discuss
the emergence of initial time singularities at ℏ2 order. We
show that squeezed coherent states fall short of addressing
them at this order and that a non-Gaussian generalization is
required. In Sec. IV, we discuss initial time singularities in
scalar electrodynamics. We summarize the results in Sec. V.

II. SQUEEZED COHERENT STATES
AND ONE-LOOP DYNAMICS

As we have already mentioned, the trouble stems from
(10) and the fact that its fluctuation part is independent of
ϕcl. This point was already noticed in the semiclassical
analysis and the issue was often addressed by proposing a
specific way to fix initial conditions for fluctuations [34].
For simplicity, let us focus our discussion here on a

homogeneous scalar field configuration ϕ0 and the corre-
sponding quantum state within the theory governed by (12).
From the analysis of the effective potential for classically
stationary backgrounds á la Coleman-Weinberg, say in a
metastable vacuum case or spontaneous symmetry break-
ing scenario, we are accustomed to the background
dependent dynamical equations for quantum fluctuations
δϕ̂ ¼ ϕ̂ − ϕ0 (see, e.g., [36])

ð−□þm2 þ V 00ðϕ0ÞÞδϕ̂ ¼ 0; ð16Þ

indicating that the presence of the background ϕ0 intro-
duces a background-dependent contribution to the mass of
excitations

m2
exc ¼ m2 þ V 00ðϕ0Þ: ð17Þ

In this case, a natural choice for the vacuum of δϕ̂ would be
with respect to the mode functions of a massive particle
with mass mexc, so that the initial conditions for correlation
functions depend on ϕ0. Within the theory at hand (12), on

the other hand, an initial state with homogeneous ϕ0 is
classically oscillating. Therefore, the equation for fluctua-
tions (16) changes to

�
−□þm2 þ λ

2
ϕ2
clðtÞ

�
δϕ̂ ¼ 0; ð18Þ

with ϕclðtÞ being the solution to the classical equation of
motion with initial conditions ϕclð0Þ ¼ ϕ0 and ϕ̇clðtÞ ¼ 0.
Obviously, the fluctuation equation receives a time-depen-
dent effective mass m2

effðtÞ≡m2 þ λϕ2
clðtÞ=2. Thus, there

is no notion of a constant effective mass here.
Semiclassical analysis shows that if the initial condition of

quantum fluctuations in thevacuum is definedwith respect to
the background independent mode functions with mass m,
then the backreaction from these quantum fluctuations on the
background dynamics is singular. This so-called initial-time
singularity is absent if the initial conditions for the fluctuation
mode functions are chosen to be of the massive particle with
mass mexc ¼ meffð0Þ instead of m. This amounts to a
Bogoliubov transformation of the mode functions. All these
were illustrated in great detail in [34,35].
This raises the question of what this implies in terms of

the state of the system. It is well-known that different vacua
of the ladder operators related by the Bogoliubov trans-
formation have nontrivial particle content with respect to
each other and are connected by the so-called squeezing
operator; see, e.g., [37]. Therefore, an intelligent guess for
making the coherent state description of classical back-
grounds perturbatively finite is to consider squeezed
coherent states

jCSi ¼ exp

�
−i

Z
d3xϕ0π̂ðxÞ

�
jSi; with jSi ¼ e−iŜjΩi;

ð19Þ

where jSi is the squeezed vacuum, with the one-point
function of the field operator vanishing in this state.
Next, we demonstrate how the above-mentioned semi-

classical remedy for the initial-time singularity translates in
the coherent state picture, fixing the issues reported both in
(13) and (14). In the case of the homogeneous background,
the initial conditions that have been adopted in the semi-
classical analysis of [35] corresponds to the choice of the
basis for our coherent state (19) to satisfy

hSjϕ̂ðx;0Þϕ̂ðy;0ÞjSi ¼
Z

d3k
ð2πÞ3

eik⃗·ðx⃗−y⃗Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2þ λ

2
ϕ2
0

q ; ð20Þ

hSjπ̂ðx;0Þπ̂ðy;0ÞjSi ¼
Z

d3k
ð2πÞ3

1

2
eik⃗·ðx⃗−y⃗Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2þ λ

2
ϕ2
0

r
;

ð21Þ
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at least for the purposes of one-loop computations.
Notice that instead of bare mass we could have had
m2

ph ≡m2 þ λ
2
hΩjϕ̂2jΩi, incorporating the renormaliza-

tion prescription absorbing the divergent vacuum bubble.
However, for addressing the question of initial-time
singularity, we will be predominantly utilizing the above
expressions at the coincidence and therefore the difference
between m and mph would only manifest itself at higher
loops. Of course, it will be relevant for the analysis of
(n ≥ 2)-point correlation functions. However, for the time
being, we focus merely on the initial acceleration for the
one-point function and the expectation value of the
Hamiltonian.
The relevant question at this point concerns the explicit

form of the squeezed vacuum jSi that does the job. A class
of relevant squeezing operations can be characterized as

jSi ¼ exp f−iŜgjΩi; with

Ŝ ¼ 1

2

Z
d3xd3yDðx − yÞfϕ̂ðxÞπ̂ðxÞ þ π̂ðxÞϕ̂ðyÞg; ð22Þ

where Dðx − yÞ is a c-number function connected to the
initial conditions we want to imprint in correlation func-
tions. We demonstrate in Appendix A that an explicit form
of Dðx − yÞ reproducing initial conditions (20) and (21) is
given by

Dðx − yÞ ¼ −
1

4

Z
d3k
ð2πÞ3 ln

�
Ek

ωk

�
eik·ðx−yÞ: ð23Þ

Here, we introduced the notation for dispersion relations

ωk ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
and Ek ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
k þ λ

2
ϕ2
0

q
. In other words,

this is the choice that removes the initial time singularity at
one-loop order. Notice that there is a plethora of squeezing
operators for which the initial time-singularity is removed.
However, the high momentum contribution to the integrand
of (23) must be universal.
Expansion of Ŝ in terms of creation and annihilation

operators yields the following compact expression

Ŝ ¼ i
4

Z
d3k
ð2πÞ3 ln

�
Ek

ωk

�
ðaka−k − a†ka

†
−kÞ; ð24Þ

which the reader might be more familiar with from
quantum mechanics. The operator (24), written in terms
of ladder operators, was introduced in [34] to address the
initial time singularity appearing at order ℏ in the context of
the semiclassical analysis.
As illustrated in Appendix A, the presence of the

squeezed vacuum corresponds to implementing a
Bogoliubov transformation. When evaluating correlation
functions, this transformation allows us to compute any
correlator over the state jCSi by replacing the field content
with a rotated field

ϕ̂s ¼ eiŜϕ̂e−iŜ ¼
Z

d3k
ð2πÞ3 ffiffiffiffiffiffiffiffi

2Ek
p ðâkeik·x þ â†ke

−ik·xÞ; ð25Þ

π̂s ¼ eiŜπ̂e−iŜ ¼ ð−iÞ
Z

d3k
ð2πÞ3

ffiffiffiffiffiffi
Ek

2

r
ðâkeik·x − â†ke

−ik·xÞ:

ð26Þ

The correlation functions of these new operators are then
evaluated on the true vacuum jΩi. It is important to note
that the choice of this particular squeezing initiates mode
functions in such a way that avoids mixing �Ek frequency
modes, otherwise unavoidable in the absence of squeezing.
Also, the relations (A3) and (A4) imply that the effect of
squeezing can be resolved nonperturbatively through a
rotation of the operators.5 It is crucial to emphasize this
point because we will demonstrate that this is no longer the
case if the state needs to be further modified by including
an exponentiated cubic field operator.
For the modified coherent state (19), the expressions of

our interest take the following form

∂
2
t hCSjϕ̂jCSiðt ¼ 0Þ ¼ −ϕ0

�
m2 þ λ

2
hSjϕ̂2jSi

�
−

λ

3!
ϕ3
0;

ð28Þ

hCSjĤjCSi ¼
Z

d3x

�
1

2

�
m2þ λ

2
hSjϕ̂2jSi

�
ϕ2
0þ

λ

4!
ϕ4
0

þ 1

2
hSj

�
π̂2þð∇!ϕ̂Þ2þm2ϕ̂2þ λ

4!
ϕ̂4

�
jSi

−
1

2
hΩj

�
π̂2þð∇!ϕ̂Þ2þm2ϕ̂2þ λ

4!
ϕ̂4

�
jΩi

�
:

ð29Þ

Here the last two lines of (51) originate from the fact that
the bare vacuum energy parameter has been adjusted so that
hΩjĤjΩi ¼ 0. Moreover, we have assumed, keeping in
mind that we are interested in squeezed states, that the
expectation value of the odd power of fields in jSi vanishes.
Let us begin with the initial acceleration, which at the

one-loop level reads

5If t > 0, the rotated operator ϕ̂sðx; tÞ reads

eiŜðt0Þϕ̂ðx; tÞe−iŜðt0Þ ¼
Z

d3k
ð2πÞ3 ffiffiffiffiffiffiffiffi

2Ek
p

×

��
cosωkt− i

Ek

ωk
sinωkt

�
âkeik·x

þ
�
cosωktþ i

Ek

ωk
sinωkt

�
â†ke

−ik·x
�
: ð27Þ

A similar relation holds for the conjugate momentum.
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∂
2
t hCSjϕ̂jCSiðt ¼ 0Þ ¼ −ϕ0

0
B@m2 þ λ

2

Z
d3k
ð2πÞ3

×
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2 þ λ

2
ϕ2
0

q
1
CA −

λ

3!
ϕ3
0:

ð30Þ
The right-hand side immediately strikes us as a Coleman-
Weinberg potential. To see explicitly that the standard
(S-matrix) one-loop renormalization prescription for the
quartic theory at hand renders (30) finite, let us expand the
integrand in the Taylor series in the coupling constant. Up
to finite contributions it reduces to

λ

2

Z
d3k
ð2πÞ3

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2 þ λ

2
ϕ2
0

q ¼ δm2 þ δλ

3!
ϕ2
0 þ ðfiniteÞ;

ð31Þ
with δm2 and δλ standing for the standard expression of the
corresponding counterterms. So that (30) repackages into

∂
2
t hCSjϕ̂jCSiðt ¼ 0Þ ¼ −m2

phϕ0 −
λph
3!

ϕ3
0 þ ðfiniteÞ; ð32Þ

where, as usual, m2
ph ≡m2 þ δm2 and λph ≡ λþ δλ.

Here (finite) stands for the subtraction-dependent finite
contributions.
The procedure outlined above also addresses the one-

loop singularities of the Hamiltonian, when applied to
Eq. (29). However, it is crucial to take into account the
contributions from the second and third lines. Specifically,
in the case of the squeezed vacuum, these lines generate an
additional nontrivial correction. By considering all of these
factors together, we find that the renormalization of the
potential is achieved in the Hamiltonian by the same
squeezing that removes divergences in the equation of
motion for the one-point function, as it should.
At this point, it must be clear that we are not bound to

choose the squeezed vacuum jSi in a way that yields
precisely (20) and (21). The only parts required by consis-
tency are the divergencies. In other words, we could add any
finite contribution to both of those expressions, whichwould
correspond to a specific physical excitation of particles. In
fact, we could have chosen to parametrize them as

hSjϕ̂ðx; 0Þϕ̂ðy; 0ÞjSi ¼
Z

d3k
ð2πÞ3

eik⃗·ðx⃗−y⃗Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p

×

�
1 −

λϕ2
0

4

1

k2 þm2

�

þ
Z

d3k
ð2πÞ3 e

ik⃗·ðx⃗−y⃗ÞfðkÞ; ð33Þ

hSjπ̂ðx; 0Þπ̂ðy; 0ÞjSi ¼
Z

d3k
ð2πÞ3

1

2
eik⃗·ðx⃗−y⃗Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p

×

�
1þ λϕ2

0

4

1

k2 þm2

�

þ
Z

d3k
ð2πÞ3 e

ik⃗·ðx⃗−y⃗ÞgðkÞ; ð34Þ

where fðkÞ and gðkÞ are arbitrary functions, regular in the
k → 0 limit and decaying faster than k−3 for large momenta.
In their absence, the (finite) terms from the equations given
above are also absent. It must be also noted that the
magnitudes of these functions control the variance of the
state at the initial time and for certain values may result in a
classical departure from the validity of the mean-field
description of the system.
Notice also that the physical parameters will of course

experience running. The imposition of renormalization
conditions will fix the value of the potential energy for a
certain value of the background field. However, at different
values of ϕ0, the dynamics and the energy will be
determined by the interplay of running and of the initial
conditions for the two-point correlation functions.
This is the current state of affairs regarding the expect-

ation values of the field and the Hamiltonian in a scalar field
theory with quartic interaction, at one loop. Next, we delve
into the limitations of the squeezing operator when higher
loop corrections are taken into account.

III. BEYOND THE SQUEEZING OPERATOR
AND THE TWO-LOOP DYNAMICS

Now, the crucial question is whether the squeezing alone
in the form of (24) is capable of eliminating the initial-time
singularity across all orders of the loop expansion. This is
an important question because semiclassical perturbation
theory, when applied to highly occupied systems, typically
touches upon initial conditions merely for the mean field
and the mode functions for fluctuations.
Already at the two-loop order, the field renormalization

becomes unavoidable. Therefore, we introduce it from the
beginning by formulating the theory for physical operators.
The Hamiltonian for the renormalized degrees of freedom,
which are related to the bare ones by

ϕ̂ →
ffiffiffiffi
Z

p
ϕ̂; π̂ → π̂=

ffiffiffiffi
Z

p
; ð35Þ

becomes

Ĥ ¼
Z

d3x

�
1

2Z
π̂2 þ 1

2
Zð∇! ϕ̂Þ2 þ 1

2
Zm2ϕ̂2 þ λZ2

4!
ϕ̂4

�
:

ð36Þ
Since this redefinition is a canonical transformation, the
equal-time commutation relations remain canonically
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normalized. However, it changes the one for the ladder
operators. Taking into account that π̂ ¼ Z∂tϕ̂, the following
relation follows:

½ϕ̂ðxÞ; π̂ðyÞ� ¼ iδð3Þðx − yÞ ⇒ ½âk; â†k0 �
¼ ð2πÞ3Z−1δð3Þðk − k0Þ: ð37Þ

As was illustrated in [19], the finiteness of the dynamical
equation at t > 0 for the expectation value of the field
operator in a nonsqueezed coherent state is ensured by the
following two-loop mass prescription

m2
ph ¼ Zm2 þ

�
λ

2
−
λ

2

Z
d3p

ð2πÞ3ð2ωpÞ3
�
hϕ̂2i

−
λ2

3

Z
d3pd3q

ð2πÞ6ð8ωpωqωpþqÞ
1P
ωi

; ð38Þ

where Z is the field normalization and
P

ωi ¼ ωp þ
ωq þ ωpþq. In Appendix C we demonstrate that the
following prescription is also necessary in order to remove
all divergences

Z ¼ 1 −
λ2

3

Z
d3pd3q

ð2πÞ6ð8ωpωqωpþqÞ
1

ðPωiÞ3
ð39Þ

(in our previous work [19] the divergencies responsible for
the field renormalization were not accounted for). It should
be emphasized that the divergent parts of integrals appear-
ing in (38) and (39) contain the standard mass and field
renormalization divergences, which one encounters in the
S-matrix analysis at two loop.
In [19], it was observed that, for nonsqueezed coherent

states, (38) gives rise to an additional nonrenormalizable
two-loop initial-time singularity; the same applies to (39).
This is straightforward to see from (14), as nonsqueezed
coherent states provide merely bubble diagram divergen-
cies at the two-loop order; i.e., the two-loop contribution
factorizes into two one-loop integrals.
What about squeezed coherent states? We can begin by

examining the additional divergences that a squeezed coher-
ent state with the form (24), which we have invoked for the
one-loop renormalization, might introduce at the two-loop
level. For starters, let us point out that the introduction of Z
factors entails its explicit appearance in the squeezing
operator, once written in terms of ladder operators

Ŝ ¼ 1

2

Z
d3k
ð2πÞ3 Zðαkâkâ−k þ α�kâ

†
kâ

†
−kÞ; ð40Þ

which follows from (22). Here αk has been introduced as a
Fourier transform of a generic Dðx − yÞ of (22). Such an
appearance allows Z factors to naturally simplify upon the
commutation of Ŝ with various operators.

Specializing for the case αk ¼ i=2 lnðEk=ωkÞ as in (24),
it is straightforward to show that only the first divergent
two-loop integral of (38) is generated by the squeezing
operator. This is accomplished by including corrections that
arise from projecting the interacting vacuum of the theory
onto the noninteracting one, giving

hSjϕ̂2ðx; 0ÞjSi ¼
Z

d3k
ð2πÞ32Ek

�
1 −

λhϕ2i
ð2ωkÞ2

�
: ð41Þ

However, notice that this term would have been generated
also for nonsqueezed coherent states, albeit with Ek
replaced by ωk. This was expected since the bubble
diagram is the only divergence that is present also for
nonsqueezed coherent states.
The second possibility could involve constructing a new

squeezing operator designed to produce the missing diver-
gence, represented by the sunset contribution. This can be
achieved by choosing a different function αk. However, by
implementing this, we would encounter two issues. First,
the necessary squeezing parameter we have to introduce
must possess a ϕ0-independent part. Second, its effect
would have to alter quadratic correlation functions in a way
that would make the two-point function divergent at point
splitting. Therefore, the squeezing operator cannot, by
itself, address the two-loop divergences generated by the
sunset contribution to the bare mass and the bare field,
which we know for a fact have to be there from the textbook
analysis.
The only remaining option for addressing the missing

sunset divergence is to go beyond the conventional squeez-
ing and to consider the non-Gaussian extension of squeezed
states. In other words, we introduce the following new class
of states:

jCTi ¼ exp

�
−i

Z
d3xϕ0π̂ðxÞ

�
jTi with

jTi ¼ e−iŜe−iT̂ jΩi; ð42Þ

where T̂ is cubic in canonical degrees of freedom, or
equivalently in ladder operators. We construct it to have the
following momentum space representation6

T̂¼1

3

Z
d3kd3k0

ð2πÞ6 fγ�k;k0 â†kâ†k0 â†−k−k0 þγk;k0 âkâk0 â−k−k0 g; ð43Þ

with γk;k0 being a complex function of the momenta to be
specified later. We have chosen not to introduce operators
of the mixed form â†kâk0 â−k−k0 , since doing so would alter
the initial conditions of the one-point function of the

6This class of operators in the field space can be written as
T̂ ¼ R

d3xd3yd3zMαβγðx; y; zÞΦαðxÞΦβðyÞΦγðzÞ, with Φ1 ¼ ϕ̂
and Φ2 ¼ π̂.
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system. The ordering of the squeezing operator and T̂
within the state is also not arbitrary. The adopted order
ensures that when a correlation function is computed on the
state given by (42), the dispersion relations resulting from
the Fourier decomposition of fields correspond to the
dispersion with a shifted mass, owing to the influence of
Ŝ. Not to mention that all quantum fields undergo a shift
at the initial time due to the field displacement induced
by (42). In other words, at the initial time a general equal-
time correlation function evaluated on (42) takes the
following form:

hCT jOðϕ̂; π̂ÞjCTi ¼ hΩjOðϕ0 þ e−iT̂ϕ̂seiT̂ ; e−iT̂ π̂seiT̂ÞjΩi:
ð44Þ

Interestingly, unlike the squeezing and the shift operator,
the action of T̂ upon operators does not appear to have a
resummed form. It is straightforward to see that the unitary
operator eiT̂ is not a rotation in the space of ladder operators
due to its nonlinear nature, even with respect to a generic
operator as a parameter of a Bogoliubov transformation.
Namely, one readily obtains that

eiT̂ âpe−iT̂ ¼ âp −
Z

d3k1
ð2πÞ3 γp;k1 â

†
k1
â†−k1−p

þ
Z

d3k1d3k2
ð2πÞ6 γp;k1γk1;k2ðâk2 âk1 â†k1þk2−p

þ â†k1þk2−pâk1 âk2Þ þ � � � : ð45Þ

Clearly, the result of a non-Gaussian extension of the
coherent state is beyond the Bogoliubov transformation
due to the appearance of nested momentum integrals.
Moreover, the series does not seem to resum in any
particular form, rather the operators of increasing complex-
ity seem to emerge.

A. Removing the two-loop initial-time singularity

Let us now showcase an explicit form of jTi that
generates additional divergences at the initial time, required
by the two-loop mass and field renormalization. For this,
we merely need up to Oðλ2Þ contribution to the equation of
motion and the Hamiltonian. The extension of the analysis
to account for two-loop coupling constant renormalization
would inevitably invoke Oðλ3Þ terms that would make the
presentation cumbersome. On the other hand, we believe
that the demonstration with merely mass and field renorm-
alization serves as a sufficient proof of principle.
A straightforward analysis shows that an adequate

choice for γk;k0 coefficients of (43) fulfilling our needs
can be reduced to

T̂ ¼ i
λ

6

Z
d3kd3k0

ð2πÞ6 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EkEk0Ekþk0

p âkâk0 â−k−k0 − â†kâ
†
k0 â

†
−k−k0P

Ei

×

�
ϕ0 −

ϕ̈0

ðPEiÞ2
�
; ð46Þ

with
P

E ¼ Ek þ Ek0 þ Ekþk0 and ϕ̈0 denoting the initial
classical field acceleration. For the purposes of examining
Oðλ2Þ terms, we have ϕ̈0 ¼ −m2ϕ0. The form of (46) has
been designed in order to eliminate the initial time
singularity arising from two-loop mass and field renorm-
alization. Notice that, as long as we do not extend the
analysis to two-loop coupling constant counterterms, we
can use Ek and ωk interchangeably in (46). Moreover, the
field renormalization factor Z has been set to unity within
T̂, as the resulting error is beyond the loop order of our
interest here.
Notice that momentum-dependent coefficients other

than (46) can be considered as well. The key point is that,
similar to the squeezing operators, we need to ensure the
presence of a certain minimal non-Gaussianity in an
interacting field theory. Nevertheless, we retain the freedom
to have nontrivial finite momentum imprints.
For our discussion, it suffices to compute the leading

corrections induced on the two and three-point correlation
functions (see Appendix B for details)

hTjϕ̂2jTi0 ¼
Z

d3k
ð2πÞ32Ek

�
1 −

λhϕ2i
ð2ωkÞ2

þ λ2
Z

d3k0

ð2πÞ38EkEk0Ekþk0

×

�
ϕ0P
Ei

−
ϕ̈0

ðPEiÞ3
�

2
�
; ð47Þ

hTjϕ̂3jTi0 ¼ −λ
Z

d3kd3k0

ð2πÞ64EkEk0Ekþk0

1P
Ei

×

�
ϕ0 −

ϕ̈0

ðPEiÞ3
�
: ð48Þ

Here, correlation functions are given at coincidence to keep
their expression compact. One can straightforwardly verify
that the modified correlation functions are finite at point
splitting. Higher order corrections induced by jTi would
contribute starting with three loops. It must be noted that
the inclusion of T̂ introduces nontrivial conditions for the
connected part of the initial three-point function, which was
previously absent.
We proceed by examining expectation values of the

equation of motion and the Hamiltonian, as in the one-loop
case. The former, evaluated on the state jCTi at the initial
moment of time, reduces to
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Z∂2t hCT jϕ̂jCTiðt ¼ 0Þ ¼ −ϕ0

�
Zm2 þ λ

2
hTjϕ̂2ðx; 0ÞjTi

�
−
λZ2

3!
ϕ3
0 −

λ

3!
hTjϕ̂3ðx; 0ÞjTi: ð49Þ

Since the nontrivial part of Z starts at order ℏ2, we introduced it only in front of terms that have a classical part.
By expanding the quadratic and cubic correlation functions (47) and (48) in ϕ0 and substituting them into the equation of

motion (49), we obtain

Z∂2t hCT jϕ̂jCTiðt ¼ 0Þ ¼ −ϕ̈0

�
λ2

3

Z
d3kd3k0

ð2πÞ68ωkωk0ωkþk0

1

ðωk þ ωk0 þ ωkþk0 Þ3
�

− ϕ0

�
Zm2 þ

�
λ

2
−
λ2

2

Z
d3k

ð2πÞ3ð2ωkÞ3
�
hϕ2i − λ2

3

Z
d3kd3k0

ð2πÞ68ωkωk0ωkþk0

1

ωk þ ωk0 þ ωkþk0

�

þ λ1−loopph

3!
ϕ3
0 þOðλ3Þ: ð50Þ

Notice that the first λ2 term of the second line is the one obtained by projecting the interacting vacuum of the theory on the
noninteracting vacuum. The expression of the second line inside the parentheses is precisely the two-loop m2

ph defined in
(38). The first term on the right-hand side (i.e., the first line) combines with the left-hand side to cancel its divergent part
exactly. This is precisely what we designed T̂ in (46) for, hence the result should not be surprising.
Finally, we turn to the expectation value of the Hamiltonian and verify its finiteness. In this case, we want to focus on the

λ2 divergent terms appearing in

hCT jĤjCTi ¼
Z

d3x

�
Z
2

�
m2 þ λ

2
hTjϕ̂2jTi

�
ϕ2
0 þ

λZ2

4!
ϕ4
0 þ

λ

3!
hTjϕ̂3jTiϕ0

þ 1

2
hTj

�
π̂2 þ ð∇! ϕ̂Þ2 þm2ϕ̂2 þ λ

4!
ϕ̂4

�
jTi − 1

2
hΩj

�
π̂2 þ ð∇! ϕ̂Þ2 þm2ϕ̂2 þ λ

4!
ϕ̂4

�
jΩi

�
: ð51Þ

At first glance, the divergence from the cubic correlator in (51) does not combine with the bare mass as nicely as in the
equation of motion due to the difference in coefficients. A similar situation emerges for the term proportional to ϕ̈0 due to
the absence of a classical kinetic term for the initial configuration depicted by the state (42).
However, in this case, quadratic correlators are also important and we can check that the following relation holds for

the state

1

2
hTjπ̂2 þ ð∇! ϕ̂Þ2 þm2ϕ̂2jTi ¼ 1

2
hSjπ̂2 þ ð∇! ϕ̂Þ2 þm2ϕ̂2jSi þ λ2ϕ0

3!2

Z
d3k0d3k

ð2πÞ68EkEk0Ekþk0

1P
Ei

�
ϕ0 −

2ϕ̈0

ðPEiÞ2
�

þ ðfiniteÞ þOðλ3Þ: ð52Þ

This can be derived by explicitly evaluating the combina-
tion of operators present on the left-hand side and compar-
ing it to the right-hand side.
Using (52) back in (51), we see that the term proportional

to ϕ2
0 combines with analogous contributions from the

cubic correlation function in such away that the overall
divergence is eliminated via the mass prescription (38). In
contrast, the two terms proportional to ϕ0ϕ̈0 sum up to zero.
This makes the expectation value of the Hamiltonian finite.

IV. QUANTUM ELECTRODYNAMICS

We would like to finish the discussion of the initial-time
singularities by examining coherent states within electro-
dynamics coupled to scalar charges. In particular, we would

like to examine the perturbativity of coherent states within
the framework of the so-called Becchi-Rouet-Stora-Tyutin
(BRST) invariant quantization, as implemented in [38]. We
will not go into details of the framework here, for the basics
of the formalismwe refer the reader to [39–42]; see also [43].
The starting point is the gauge-fixed Lagrangian sup-

plemented with Faddeev-Popov ghosts

L ¼ −
1

4
F̂2
μν þ jDμΦ̂j2 −m2jΦ̂j2 − ∂μb̂Â

μ þ 1

2
ξb̂2

þ ∂μĉ∂μĉ; ð53Þ

with F̂μν ≡ ∂μÂν − ∂νÂμ and DμΦ̂≡ ∂μΦ̂ − igÂμΦ̂. Here
the gauge fixing has been implemented with the aid of the
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auxiliary degree of freedom b̂, which becomes a canonical
conjugate of Â0. The Faddeev-Popov fields ĉ and ˆ̄c are
anticommuting Lorentz scalars, as usual. Such a formu-
lation automatically fixes the issue of gauge redundancy
and the subsequent difficulties with the quantization. At
first sight, this construction seems to come with a price of
propagating unphysical degrees of freedom, namely the
longitudinal photon together with a temporal component
and ghost fields. However, at the same time this procedure
gives rise to the celebrated BRST symmetry, emerging as a
residual symmetry of the adopted gauge fixing procedure.
The associated fermionic conserved charge Q̂ serves as an
important discriminator in constructing the physical Hilbert
space of the theory. In particular, physical states in this
framework are those that are annihilated by the BRST
charge, Q̂jphysi ¼ 0.
The physical, i.e., BRST invariant, coherent states for the

electromagnetic field can be constructed as [38]

jAi ¼ e−i
R

d3xðAc
j ðxÞÊj−Ec

j ðxÞÂjþAc
0
b̂ÞjΩi; ð54Þ

where the quantities with a label “c” are the c-number
functions parametrizing the state, with Ec

j satisfying the
sourceless Gauss’ law ∂jEc

j ¼ 0. These functions set the
initial one-point function of the corresponding operators.
This class of states was shown to be annihilated by Q̂, for
arbitrary Ac

μ due to the BRST invariance of Êj and b̂. It is
important to point out that there is a subclass of these c-
number functions corresponding to the pure-gauge con-
figurations, so that the corresponding (54) are physically
equivalent (at the S-matrix level) to the vacuum state with
vanishing vector potential [38,44].
These are the so-called Glauber-Sudarshan states within

the BRST formalism. They are nonsqueezed coherent states
since they are characterized merely by the one-point
expectation values of the electromagnetic fields. The goal
of this section is to demonstrate that such states seem to
exhibit similar perturbative problems with renormalizabil-
ity once they are introduced within the interacting theory
(53), in a similar way as the scalar field example considered
in previous sections.
To show that (54) is indeed in need of squeezing, it is

instructive to examine the expectation value of the
Hamiltonian that corresponds to (53). As shown in [38],
this is straightforward to obtain and is given by

Ĥ ¼
Z

d3x

�
1

2
Ê2
j þ

1

4
F̂2
ij þ jΠ̂j2 þ jD̂jΦ̂j2 þm2jΦ̂j2

− Âj∂jb̂ −
ξ

2
b̂2 þ Êj∂jÂ0 þ igÂ0ðΦ̂ Π̂−Π̂†Φ̂†Þ

þ Π̂cΠ̂c̄ þ ∂j ˆ̄c∂jĉþ ΛB − gÂ0ρvac

�
: ð55Þ

Here ΛB denotes the bare vacuum energy that we adjust in
such a way that hΩjĤjΩi ¼ 0. Moreover, in the last term
ρvac refers to an infinite vacuum charge density. It has been
introduced to remove the latter from the Gauss’ law, i.e.,
ρvac ≡ ihΩjΦ̂ Π̂−Π̂†Φ̂†jΩi. Naively, one could associate
the introduction of such a counterterm with the Lorentz
violation. However, in this case, it remains innocuous as it
does not give rise to any physical effects, apart from
canceling the vacuum charge divergence. As a result, the
expectation value of the Hamiltonian in (54) reduces to

hAjĤjAi ¼
Z

d3x

�
1

2
ðE2

c þ B2
cÞ þ g2ðAc

jÞ2hΩjΦ̂†Φ̂jΩi
�

−
Z

dSjðEc
jA

c
0Þ; ð56Þ

where Bc is the magnetic field, with Bc
i ≡ ϵijk∂jAc

k. We
have also taken into account that the vacuum current
vanishes, i.e., ihΩjΦ̂∂jΦ̂† − Φ̂†

∂jΦ̂jΩi ¼ 0. The last term
of (56) is the surface integral, which can be dismissed for
configurations that die off fast enough at the boundary.
Evidently, we are encountering the same perturbative

issues here as we did for the nonsqueezed coherent states of
the scalar field theory. We can begin by noticing that there
is a background-dependent divergent contribution in (56),
and no bare parameters to hide it with. However, there is
one infinite constant we have not manifested yet. This is the
field renormalization constant that has to be infinite as we
learn from the S-matrix analysis. Given that we would aim
to initialize the renormalized electromagnetic field as Ec
and Bc, the field normalization that would ensure this
corresponds to introducing Z factor by replacing Ec →
Z−1=2Ec and Bc → Z1=2Bc. However, it is evident that this
does not solve the situation: the terms proportional to Z and
the term proportional to the scalar field bubble have a
different background dependence and cannot be combined.
In fact, the introduction of Z factors introduces additional
divergences that need to be addressed in this context.
All this seems to point towards the necessity for going

beyond the simple nonsqueezed coherent states in quantum
electrodynamics as well. In particular, the squeezing of
scalar modes seems to be a necessary condition to make the
energy (4) finite. This could have interesting consequences,
as it would imply that the initial conditions for a spectator
field on an electromagnetic background cannot be arbi-
trarily chosen.

V. SUMMARY

In this work, we have examined the perturbative con-
struction of coherent states as a fundamental description of
classical backgrounds.
As we demonstrated in [18,19] and have reiterated here

as well, such states lead to divergent contributions to
physical quantities in perturbation theory. For example,
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the expectation value of the Hamiltonian in (6) exhibits
an unrenormalizable feature already at one-loop order.
We have shown that to fix this issue it is necessary to
expand the discussion into the realm of squeezed coherent
states. The modification one needs to invoke corresponds to
altering initial conditions for the two-point function of (6).
In fact, the required initial state is such that it corresponds
to the vacuum of the Bogoliubov modes for fluctuations
of momenta k ≫

ffiffiffi
λ

p
ϕ0. This was noticed for the first time

in [34] in the context of the semiclassical analysis and we
highlighted it in the context of coherent states.
An important follow-up point we discussed in this work

is the failure of squeezed coherent states in addressing
initial time singularities, once two-loop corrections are
included. The extension of the analysis to this order
revealed that the correct construction of coherent states
in interacting theories requires the replacement

jΩi ⟶ jTi; ð57Þ

where jTi is the non-Gaussian vacuum, built by acting on
the true vacuum with exponential operators, with a cubic
exponent in the field operator and its conjugate momentum.
In particular, the modification of the initial-time cubic
correlation functions is crucial to reproduce all two-loop
divergences in the initial time field acceleration and the
energy. Although these corrections disappear once the
classical limit of the theory is considered, they imply that
coherent (squeezed) states do not have good perturbative
behavior when quantum corrections are included.
We would like to conclude by reiterating a few important

points. As we showed in [18,19], even though the initial
acceleration of the one-point function in the nonsqueezed
states exhibits a singularity, the one-point function itself is
regular. This is precisely the reason why we were able to
compare its quantum evolution in the state (6) to the
classical dynamics. We found that this configuration is
poised to deviate from the classical evolution due to the
conversion of the constituents of the condensate into
relativistic particles. For λϕ2

0 ≪ m2, the timescale of
significant departure is parametrically given by

tq ∼
�
λm

�
λ
ϕ2
0

m2

�
3
�−1

: ð58Þ

Nevertheless, as we have discussed, the nonsqueezed states
are unphysical within perturbation theory due to unreno-
malizable singularities in the expectation value of the
Hamiltonian. The minimal squeezing, as well as the
non-Gaussian modification, required for the perturbative
consistency does not alter tq as far as the one-point
correlation function is concerned. However, we have not
investigated the quantum breaking phenomenon from the
point of view of the higher order correlation functions. This
and other related questions will be discussed elsewhere.

The extension of our analysis to systems of our primary
interest such as black holes, de Sitter space and cosmic
inflation is not straightforward. The diffeomorphism invari-
ance of general relativity makes the construction of the
physical Hilbert space challenging. However, the behavior
of axionlike dark matter models within galaxies is captured
by Newtonian gravity, which simplifies the problem sig-
nificantly. One of the next logical steps would be to
implement our approach to investigate the scope of the
coherent state description of the dark matter distribution for
such models.
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APPENDIX A: CORRELATION FUNCTIONS
EVALUATED OVER THE SQUEEZED STATE

In this appendix, we show how to evaluate correlation
functions over the squeezed state jSi ¼ e−iŜjΩi. We
assume a Hermitian squeezing operator Ŝ ¼ Ŝ†, which
we parametrize as

Ŝ ¼ 1

2

Z
d3k
ð2πÞ3 ðαkâkâ−k þ α�kâ

†
kâ

†
−kÞ; ðA1Þ

where αk is a c-number function.
To evaluate a general correlation function over this state,

we start by applying the following notable relation:

hSjOðϕ̂; π̂ÞjSi ¼ hΩjeiŜOðϕ̂; π̂Þe−iŜjΩi
¼ hΩjOðeiŜϕ̂e−iŜ; eiŜπ̂e−iŜÞjΩi; ðA2Þ

with Oðϕ̂; π̂Þ as an arbitrary function of ϕ̂ and π̂. To derive
the last step, we expand O in powers of the field operator
and then we insert the identity operator Î ¼ eiŜe−iŜ in
between each power of ϕ̂ and π̂. Finally, we resum the
series.
We read from Eq. (A2) that any correlation function

evaluated over jSi can be equivalently computed as a
vacuum correlation function after making the following
replacement

ϕ̂ → eiŜϕ̂e−iŜ; ðA3Þ

π̂ → eiŜπ̂e−iŜ: ðA4Þ
Relations (A3) and (A4) can be expanded by applying the
Baker-Campbell-Hausdorff formula as

eiŜϕ̂e−iŜ ¼ ϕþ ½iŜ; ϕ̂� þ 1

2
½iŜ; ½iŜ; ϕ̂�� þ 1

3!
½iŜ; ½iŜ; ½iŜ; ϕ̂���

þ � � � : ðA5Þ
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We use the explicit form of Ŝ to evaluate the series of
commutators (A5). The series of commutators can be
resummed. By writing αk ¼ jαkjeiθk , we find the closed
expression

ϕ̂s ¼
Z

d3k
ð2πÞ3 ffiffiffiffiffiffiffiffi

2ωk
p fðcosh jαkj þ i sinh jαkjeiθkÞâk

þ ðcosh jαkj − i sinh jαkje−iθkÞâ†−kgeik·x; ðA6Þ

which is a Bogoliubov transformation of parameters
jαkj and θk, acting on the original ak and a†k. Here,
ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. A similar relation holds for the conjugate

momentum

π̂s ¼ ð−iÞ
Z

d3k
ð2πÞ3

ffiffiffiffiffiffi
ωk

2

r
fðcosh jαkj − i sinh jαkjeiθkÞâk

− ðcosh jαkj þ i sinh jαkje−iθkÞâ†−kgeik·x: ðA7Þ

By introducing the parameters θk ¼ π
2
and jαkj ¼ 1

2
lnðEk

ωk
Þ,

with E2
k ¼ k2 þm2 þ λ

2
ϕ2
0, we obtain

ϕ̂s ¼
Z

d3k
ð2πÞ3 ffiffiffiffiffiffiffiffi

2Ek
p ðâkeik·x þ â†ke

−ik·xÞ; ðA8Þ

π̂s ¼ ð−iÞ
Z

d3k
ð2πÞ3

ffiffiffiffiffiffi
Ek

2

r
ðâkeik·x − â†ke

−ik·xÞ: ðA9Þ

Correlation functions (20) and (21) at the initial time follow
from this new operators (A8) and (A9).

APPENDIX B: CORRELATION FUNCTIONS
EVALUATED OVER THE T STATE

In this appendix, we derive the procedure to evaluate
correlation functions over the non-Gaussian state

jTi ¼ eiT̂ jΩi; with

T̂ ¼ 1

3

Z
d3kd3k0

ð2πÞ6 fγ�k;k0 â†kâ†k0 â†−k−k0 þ γk;k0 âkâk0 â−k−k0g:

ðB1Þ

Since T̂ is Hermitian, we can apply the formula (A2), albeit
with Ŝ replaced by T̂. In other words, we have

hTjOðϕ̂; π̂ÞjTi ¼ hΩjOðeiT̂ϕ̂e−iT̂ ; eiT̂ π̂e−iT̂ÞjΩi: ðB2Þ

Now, we are left with evaluating the T-rotated field
operators, by applying the analog of (A5). In this case, there
is no closed form for the series of commutators since the
number of creation and annihilation operators increases as
we increase the number of nested commutators. However,
since we are interested in the effect of T̂ up to ℏ2

corrections, we can evaluate the series of commutators
up to

ϕ̂T ¼ eiT̂ϕ̂eiT̂ ≃ ϕ̂þ ½iT̂;ϕ� þ 1

2
½iT̂; ½iT̂; ϕ̂�� þ � � � ðB3Þ

By evaluating the commutators explicitly, we find that T̂
acts on the field operator with the nontrivial transformation

ϕ̂ → ϕ̂T ¼ ϕ̂þ i
Z

d3kd3k0

ð2πÞ6 ffiffiffiffiffiffiffiffi
2ωk

p ðγk;k0 âk0 â−k−k0e−ik·x − γ�k;k0e
ik·xâ†k0 â

†
−k−k0 Þ

þ 1

3

Z
d3kd3k0d3k00

ð2πÞ6 ffiffiffiffiffiffiffiffi
2ωk

p γk;k0γ
�
k;k00e

ik·xðâ†k00 âk0 â−K þ âk0 â
†
k00 â−K þ âk0 â−Kâ

†
k00 Þ þ H:c:; ðB4Þ

where K ¼ kþ k0 þ k00. Here, H.c. is the Hermitian conjugate of the second line. Also, we are assuming that γk1;k2 is
invariant under the momentum redefinition k1 → −k1 − k2 and k2 → −k1 − k2.
Using this redefinition, we can compute the quadratic and cubic correlation functions at the initial time

hTjϕ̂3ðxÞjTi ¼ hΩjϕ̂3
TðxÞjΩi ¼ i

Z
d3kd3k0

ð2πÞ6 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkωk0ωkþk0

p ðγk;k0 − γ�k;k0 Þ; ðB5Þ

hTjϕ̂2ðxÞjTi ¼ hΩjϕ̂2
TðxÞjΩi ¼

Z
d3k

ð2πÞ32ωk

�
1þ

Z
d3k0

ð2πÞ3 4jγk;k0 j
2

�
: ðB6Þ

By choosing the γk;k0 coefficient accordingly, the quadratic and cubic correlation functions (47) and (48) are reproduced.

APPENDIX C: RENORMALIZING THE EQUATION OF MOTION
OF THE ONE-POINT FUNCTION OF THE FIELD OPERATOR

In this appendix, we prove that the two-loop field prescription (39) makes the one-point function of the field operator
finite at t > 0.
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Let us start by recalling a result from [19]. The equation of motion for Φ, evaluated up to λ2 and ℏ2 corrections, reads

Zð∂2t þm2ÞΦðtÞ þ Z2λ

3!
Φ3ðtÞ þ λ

2
hϕ2iΦðtÞ − λ2

2
ΦðtÞ

Z
d3p

ð2πÞ3ð2ωpÞ2
Z

t

0

dt1Φ2ðt1Þ sin 2ωpðt1 − tÞ

−
λ2

3

Z
d3pd3q

ð2πÞ6ð8ωpωqωpþqÞ
Z

t

0

dt1Φðt1Þ sin
�X

ωiÞðt − t1Þ
�
−
λ2

2
hϕ2i2ΦðtÞ… ¼ 0; ðC1Þ

with
P

ω ¼ ωp þ ωq þ ωpþq. Here, the one-point function is evaluated over the nonsqueezed coherent state (7). Since the
deviation of the field normalization Z from unity is order ℏ2, we introduce it only in front of “classical” terms. All divergent
quantum corrections of the first line correspond to the one-loop mass and coupling renormalization. Divergences of the
second line correspond to the two-loop divergences.
In particular, the divergences of the first term of the second line are the analog of the sunset divergences, obtained in the

standard vacuum analysis. To extract the divergent contributions of this integral, we integrate it by part three times. With the
first integration by part, we obtain

λ2

3

Z
d3pd3q

ð2πÞ6ð8ωpωqωpþqÞ
Z

t

0

dt1Φðt1Þ sin
�X

ωiðt − t1Þ
�

¼ λ2

3

Z
d3pd3q

ð2πÞ6ð8ωpωqωpþqÞ
1P
ωi

�
ΦðtÞ −Φð0Þ cos

�X
ωit

�
−
Z

t

0

dt1Φ̇ðt1Þ cos
��X

ωi

�
ðt − t1Þ

��
: ðC2Þ

The first term of the second line is the mass divergence generated by the sunset diagram. We can see this by evaluating the
integral in dimensional regularization and checking that its divergences match the analogous ones one would get from the
analysis of the effective action. The second boundary term is the initial time singularity associated to the mass divergence.
This term is finite as long as t > 0 and it is divergent at the initial time, as we can see by directly evaluating it.
The leftover time integral is still divergent and we integrate by part a second time

−
λ2

3

Z
d3pd3q

ð2πÞ6ð8ωpωqωpþqÞ
Z

t

0

dt1Φ̇ðt1Þ cos
�X

ωiðt − t1Þ
�

¼ λ2

3

Z
d3pd3q

ð2πÞ6ð8ωpωqωpþqÞ
1

ðPωiÞ2
�
−Φ̇ð0Þ sin

�X
ωit

�
−
Z

t

0

dt1Φ̈ðt1Þ sin
��X

ωi

�
ðt − t1Þ

��
: ðC3Þ

The term that is proportional to Φ̇ converges for t > 0 and it is null at initial time. Again, the residual time integral is still
divergent and we perform the last integration by part

−
λ2

3

Z
d3pd3q

ð2πÞ6ð8ωpωqωpþqÞ
1

ðPωiÞ2
Z

t

0

dt1Φ̈ðt1Þ sin
��X

ωi

�
ðt − t1Þ

�

¼ −
λ2

3

Z
d3pd3q

ð2πÞ6ð8ωpωqωpþqÞ
1

ðPωiÞ3
�
Φ̈ðtÞ − Φ̈ð0Þ cos

�X
ωit

�
−
Z

t

0

dt1 ⃛Φðt1Þ cos
��X

ωi

�
ðt − t1Þ

��
: ðC4Þ

Finally, the leftover time integral is convergent. This occurs because performing an additional integration by parts would
introduce boundary terms with sufficient powers of momenta in the denominator to ensure convergence. In this case, only
the first term is divergent, while the second term is convergent for t > 0.
If we regulate the divergent integral in dimensional regularization, we find

−
λ2Φ̈ðtÞ

3

Z
d3pd3q

ð2πÞ6ð8ωpωqωpþqÞ
1

ðPωiÞ3
¼ −

λ2

12ϵð4πÞ4 Φ̈ðtÞ þ � � � : ðC5Þ

We see now that this divergence is the analog of the standard wave function divergence that occurs in the vacuum analysis. If
we impose the prescription (39), this specific divergence disappears. Finally, the second boundary term of (C3) is divergent
if t ¼ 0. This corresponds to the initial time singularity resulting from the field renormalization.
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