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Canonical quantization of the photon—a free massless vector field—is considered in cosmological
spacetimes in a two-parameter family of linear gauges that treat all the vector potential components on
equal footing. The goal is setting up a framework for computing photon two-point functions appropriate for
loop computations in realistic inflationary spacetimes. The quantization is implemented without relying on
spacetime symmetries, but rather it is based on the classical canonical structure. Special attention is paid to
the quantization of the canonical first-class constraint structure that is implemented as the condition on the
physical states. This condition gives rise to subsidiary conditions that the photon two-point functions must
satisfy. Some of the de Sitter space photon propagators from the literature are found not to satisfy these
subsidiary conditions, bringing into question their consistency.
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I. INTRODUCTION

The massless vector field—the photon—couples con-
formally to gravity in four spacetime dimensions, and
effectively does not see the cosmological expansion. That is
why its linear dynamics is not as interesting compared to
nonconformally coupled fields that experience gravitational
particle production [1–3] at the linear level. Nevertheless,
coupling of photons to other fields might break confor-
mality. Particularly interesting cases occur in inflation
where the conformal coupling of the photon is broken
by quantum loops generated from its interactions with light
spectator scalars [4–29] or gravitons [30–36]. Scalars and
gravitons are nonconformally coupled to gravity and
experience a huge enhancement of their infrared sector
due to the rapid expansion during inflation, the effects of
which are communicated to the photon via loops. Most of
the loop computations involving photons thus far have been
worked out in a rigid de Sitter background, for which the
two-point functions (propagators) comprising the loop
expansion are known. It would be interesting to understand
how the results, in particular the secular corrections to
photons, are modulated in realistic slow-roll inflationary
spacetimes. This work aims to advance this understanding
by considering the photon and its two-point functions in a
two-parameter family of linear gauges in general expanding
cosmological spaces.

The specific goals of this article are threefold:
(i) To understand the photon quantization without

relying on background symmetries or on covariant
gauge fixing;

(ii) To set up a framework that will facilitate the
computations of photon two-point functions in
D-dimensional cosmological spaces, and to derive
all the subsidiary conditions the two-point functions
must satisfy, with the goal of performing dimen-
sionally regulated loop computations in realistic
inflationary spacetimes;

(iii) To demonstrate that cosmological evolution is not in
conflict with gauge invariance, as suggested in [37],
and that there is no contribution to the photon
energy-momentum tensor coming from the gauge-
fixing terms in any cosmological spacetime.

Given the aims listed above, in this work we consider the
photon (electromagnetism) is spatially flat cosmological
spacetimes in a two-parameter family of linear gauges
preserving cosmological symmetries,

Sgf ½Aμ� ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
−

1

2ξ
ð∇μAμ − 2ζnμAμÞ2

�
; ð1Þ

where ξ and ζ are arbitrary gauge-fixing parameters, and
where nμ ¼ δ0μH is a nondynamical timelike vector, invari-
ant under spatial rotations and translations. In the limit ζ¼0
this gauge-fixing functional reduces to the general covariant
gauge, which one might be tempted to consider as a natural
choice. However, experience in de Sitter space suggests
that noncovariant gauge choices can lead to simpler two-
point functions [38] that can considerably simplify often
quite involved computations. To this end we set up the
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framework that will facilitate identifying simple gauges in
D-dimensional inflationary spacetimes, and streamline
their computation.
In de Sitter space both the photon and the massive vector

two-point functions have been worked out: in general
covariant gauge [39–42], and in the simple gauge [38],
while for more general spacetimes only a few results exist—
the unitary gauge massive vector propagator [43] in
power-law inflation, and photon propagator in arbitrary
four-dimensional Friedmann-Lemaître-Robertson-Walker
(FLRW) spacetime in a conformal gauge [44] that takes
the same form as in flat space on the account of conformal
coupling. Exact gauges, such as the Coulomb one in which
the two-point function takes the same form as in flat space in
four-dimensional spacetime [45], are also legitimate choices.
However, for practical applications the D-dimensional
multiplier gauges such as (1) are usually preferable.
Because of the noncovariant gauge fixing (1), and

because of the reduced symmetry of cosmological spaces
compared to maximally symmetric ones, we have to under-
stand how to compute photon two-point functions without
relying on a large number of symmetries that usually
simplify problems. To this end we consider the canonical
quantization of the photon field similar to the Gupta-Bleuler
quantization [46,47]. The approach taken here mainly
differs by not relying on the on symmetries of the system.
Rather it is based on the classical canonical structure in the
multiplier gauge defined by the gauge-fixing functional (1).
In that sense the quantization outlined here can be consid-
ered as the derivation of the Gupta-Bleuler quantization.
This includes the derivation of the somewhat ad hoc Gupta-
Bleuler subsidiary condition on the physical space of states
that here arises as a natural consequence of the cano-
nical first-class constraint structure and the correspondence
principle.
Several works in recent years have considered the

quantization of the photon field in cosmological spaces
[37,42,48,49], choosing to preserve general covariance as
much as possible. While there is nothing wrong with
maintaining covariance, for practical purposes this is not
always the most convenient choice, and covariant
approaches offer little help when abandoning manifest
covariance by gauge choices. This is why we opt to
consider the canonical quantization formalism from the
ground up, divorced from spacetime symmetries. We only
consider spatially flat FLRW spacetimes, and not spatially
closed ones where the issue of linearization instability
arises [50–59].
Proper understanding of photon quantization has prac-

tical consequences. Computations of quantum loop correc-
tions in inflation are notoriously difficult, and the choice of
gauge can make a world of difference. It is sufficient to
compare the computations of the one-graviton-loop vacuum
polarization in de Sitter in noncovariant gauges [30] and
covariant gauges [33] to realize that de Sitter symmetries do

not play the same convenient organizational role as do
Poincaré symmetries in flat space. Therefore, it is advanta-
geous to consider different gauges in cosmological space-
times. We ultimately express the photon two-point functions
in terms of a few scalar mode functions that cosmologists
are accustomed to working with. Identifying gauges admit-
ting simple solutions for these scalar mode functions is left
for future work.
The two-point functions of the linear theory serve to

compute loop corrections to physical observables. It is in no
way obvious for gauge theories in multiplier gauges, such
as (1), how to properly define quantum observables. It was
suggested in [37] that the expectation value of the photon
energy-momentum tensor depends on whether the contri-
bution from the gauge-fixing term (1) is included or not.
For covariant gauges (with ζ ¼ 0) in de Sitter, the gauge-
fixing term is supposed to contribute as a cosmological
constant to the energy-momentum tensor. This is in conflict
with the correspondence principle, and would essentially
allow for quantum measurements of first-class constraints.
However, when ordering of products of field operators
comprising the energy-momentum tensor is considered
carefully, as in Sec. VIII, the issue is fully resolved. The
gauge-fixing functional (1) cannot contribute to the energy-
momentum tensor for any admissible state, in any cosmo-
logical spacetime.
The results of this work also include the unexpected

observation that the subsidiary conditions for the photon
two-point functions derived here are not satisfied for some
of the de Sitter space photon propagators reported in the
literature. More details on this issue are given by the end of
the concluding Sec. IX, while further investigations into the
issue are left for future work [60,61].
The paper is organized in nine sections, with the current

one laying out the background and the motivation. Section II
gives some of the properties of scalar field modes and two-
point functions that we make use of in subsequent sections.
Section III presents the details of implementing multiplier/
average gauges in the canonical formulation of the classical
photon. This structure lends itself to canonical quantization
that is discussed in Sec. IV. In Sec. V the dynamics of the
field operators is translated into equations of motion for the
mode functions, while Sec. VI discusses the construction of
the space of states and the conditions the physical states must
respect, as well as the role that spacetime symmetries play in
this construction. Section VII concerns the main goal of this
paper of constructing photon two-point functions from the
photon mode functions, and demonstrates how such con-
struction satisfies all the subsidiary conditions. Section VIII
discusses two simple observables and the issue of proper
operator ordering of observables. Section IX contains the
discussion of the construction presented in the paper, and
provides the check of the photon propagators in the literature
versus the conditions presented here, not all of which are
found to be satisfied.
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II. PRELIMINARIES

The mode functions of linear higher spin fields in
cosmological spaces can often be expressed in terms of
the scalar mode functions. Consequently, the same is often
true for two-point functions as well. This indeed is the case
for the photon mode functions and two-point functions that
we consider in this work. This section serves to introduce
the background cosmological space, to define the notation,
and to summarize some of the basic results for scalar fields
that will be used in subsequent sections.

A. FLRW spacetime

The geometry of homogeneous, isotropic, and spatially
flat expanding spacetimes is described by the FLRW
invariant line element,

ds2 ¼ −dt2 þ a2ðtÞdx⃗2 ¼ a2ðηÞð−dη2 þ dx⃗2Þ: ð2Þ

The flat spatial sections are covered by (D − 1) Cartesian
coordinates, xi ∈ ð−∞;∞Þ, while the evolution is expressed
in terms of either the physical time t or the conformal time η.
The dynamics of the expansion is encoded in the scale factor
a that also provides the connection between the two time
coordinates, dt ¼ adη. For our purposes the conformal
time coordinate is preferable, since then the FLRW
metric, gμν ¼ a2ðηÞημν, is conformally flat, where ημν ¼
diagð−1; 1;…; 1Þ is the D-dimensional Minkowski metric.
The relevant information about the dynamics of the

expansion is usually captured by the first few derivatives of
the scale factor. The conformal Hubble rate H and the
principal slow-roll parameter ϵ capture the first two
derivatives of the scale factor,

HðηÞ ¼ 1

a
da
dη

; ϵðηÞ ¼ 1 −
1

H2

dH
dη

: ð3Þ

The more commonly used physical Hubble rateH is related
to the conformal Hubble rate as H ¼ H=a, while the
principal slow-roll parameter is related to the often used
deceleration parameter, q ¼ ϵ − 1. Accelerating FLRW
spacetimes, such as primordial inflation, are characterized
by 0 < ϵðηÞ ≪ 1. Even though the results of this work
apply to arbitrary accelerating FLRW spacetimes, it is
nonetheless helpful at times to have a concrete spacetime in
mind. One such tractable example is that of power-law
inflation [62,63] for which the Hubble rate and the scale
factor depend on time as

ϵ ¼ const ⇒ HðηÞ ¼ H0

1 − ð1 − ϵÞH0ðη − η0Þ
;

aðηÞ ¼
�
H
H0

� 1
1−ϵ
; ð4Þ

where η0 is the initial time at which aðη0Þ ¼ 1 and
Hðη0Þ ¼ H0.

B. Scalar mode functions

The equation of motion for the conformally rescaled
scalar field modes of comoving momentum k⃗ in FLRW
generically takes the form

�
∂
2
0þ k2−

�
λ2 −

1

4

�
ð1− ϵÞ2H2

�
U λðη; k⃗Þ ¼ 0; k¼ kk⃗k;

ð5Þ

where λ descends from the mass term and the nonminimal
coupling term. Both ϵ and λ are time-dependent in general,
though there are notable cases where they are constant:
in power-law inflation ϵ is constant, while a massless,
nonminimally coupled scalar has a constant λ. The
equation of motion (5) admits two linearly independent
solutions, which we take to be complex conjugates of each
other,

U λðη; k⃗Þ ¼ αðk⃗ÞUλðη; kÞ þ βðk⃗ÞU�
λðη; kÞ; ð6Þ

where αðk⃗Þ and βðk⃗Þ are arbitrary constants of integration.
In practice it is convenient to choose the independent
solutions, Uλ and U�

λ , that are some appropriate generali-
zation of positive- and negative-frequency modes
(Chernikov-Tagirov-Bunch-Davies modes [64,65]), at
least in the ultraviolet. As a concrete example one can
keep in mind power-law inflation (4) where 0 < ϵ ¼
const < 1, for which the positive-frequency mode
function is1

ϵ ¼ const ⇒ Uλðη; kÞ

¼ e
iπ
4
ð2λþ1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

4ð1 − ϵÞH
r

Hð1Þ
λ

�
k

ð1 − ϵÞH
�
; ð7Þ

where Hð1Þ
λ is the Hankel function of the first kind. Note,

however, that no assumptions on ϵ are made throughout the
paper. Equation (5) also implies a nonvanishingWronskian
for the two independent solutions,

Uλðη; kÞ∂0U�
λðη; kÞ − U�

λðη; kÞ∂0Uλðη; kÞ ¼ i; ð8Þ

where the normalization is chosen for convenience, as
appropriate for mode functions of scalar field operators.

1The phase factor in the definition (7) ensures that the
Wronskian in (8) is correct for both real and imaginary values
of λ.
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The free coefficients in (6) then have an interpretation of
Bogolyubov coefficients that have to satisfy

jαðk⃗Þj2 − jβðk⃗Þj2 ¼ 1: ð9Þ

When solving for the photon field mode functions in
Sec. V C we will encounter scalar mode equations (5) with
only special combinations of parameters for which

∂0

��
λþ 1

2

�
ð1 − ϵÞ

�
¼ 0: ð10Þ

That allows us to introduce convenient recurrence relations
for contiguous mode functions without solving equations
of motion explicitly,

�
∂0 þ

�
λþ 1

2

�
ð1 − ϵÞH

�
Uλ ¼ −ikUλþ1;

�
∂0 −

�
λþ 1

2

�
ð1 − ϵÞH

�
Uλþ1 ¼ −ikUλ; ð11Þ

where Uλþ1 satisfies equation (5) with λ → λþ 1,
and where the proportionality constant was chosen for
convenience. The Wronskian (8) can consequently be
expressed as,

Re½Uλðη; kÞU�
λþ1ðη; kÞ� ¼

1

2k
: ð12Þ

Confirming the recurrence relations (11) is accomplished
by plugging them into the equation of motion (5) and
applying condition (10) when commuting time derivatives.
In more special cases, such as power-law inflation (4), the
recurrence relations (11) can be inferred from the proper-
ties of the solutions for the mode functions, such as
recurrence relations for Hankel functions that appear as
solutions for the mode functions (7) (cf. Sec. 2.2.1 from
[60]). Recurrence relations (11) help keep the expressions
compact, reducing the clutter of the computation. They
will be valid only for time-independent ζ form the gauge-
fixing term (1), but generalization to time-dependent
values should be straightforward.

C. Scalar two-point functions

Nonequilibrium loop computations in quantum field
theory require the use of several different two-point
functions [66–73]. The positive-frequency Wightman func-
tion can perhaps be considered the fundamental one, as the
remaining ones can all be expressed in terms of it. The
Wightman function for scalar fields in FLRW can be
expressed in terms of conformally rescaled scalar mode

functions introduced in the preceding subsection as a sum-
over-modes,2

i½−Δþ�λðx; x0Þ ¼ ðaa0Þ−D−2
2

×
Z

dD−1k
ð2πÞD−1 e

ik⃗·ðx⃗−x⃗0ÞU λðη; k⃗ÞU �
λðη0; k⃗Þ:

ð13Þ

It satisfies the equation of motion inherited from the mode
equation (5),

½□ − ðλ20 − λ2Þð1 − ϵÞ2H2�i½−Δþ�λðx; x0Þ ¼ 0; ð14Þ

where □ ¼ gμν∇μ∇ν is the d’Alembertian, ∇μ is the
D-dimensional covariant derivative, and

λ0 ¼
D − 1 − ϵ

2ð1 − ϵÞ : ð15Þ

The negative-frequency Wightman function is a complex
conjugate of the positive-frequency one, i½þΔ−�λðx; x0Þ ¼
fi½−Δþ�λðx; x0Þg�. The two Wightman functions can serve
to define the Feynman propagator,

i½þΔþ�λðx; x0Þ ¼ θðη − η0Þi½−Δþ�λðx; x0Þ
þ θðη0 − ηÞi½þΔ−�λðx; x0Þ; ð16Þ

which satisfies a sourced equation of motion,

½□−ðλ20−λ2Þð1−ϵÞ2H2�i½þΔþ�λðx;x0Þ¼
iδDðx−x0Þffiffiffiffiffiffi−gp ; ð17Þ

because of the step function θ in its definition. Finally, the
Dyson propagator is the complex conjugate of (16),
i½−Δ−�λðx; x0Þ ¼ fi½þΔþ�λðx; x0Þg�, and it satisfies the
equation of motion that is a conjugate of (17). The sum-
over-modes representations for different two-point func-
tions are inferred from the one for the Wightman function
(13) and their respective definitions.

III. CLASSICAL PHOTON IN FLRW

The massless vector field—the photon—in general
D-dimensional curved spacetimes is given by the cova-
riantized action for electromagnetism,

2The sum-over-modes representation needs to be regulated for
it to be valid on the entire range of coordinates. This is
accomplished by appending an infinitesimal imaginary part to
time coordinates: η → η − iδ=2, η0 → η0 − iδ=2. Note that this
substitution is first performed on the argument of the mode
functions, and only then is the complex conjugation in (13) taken.
In this sense, the two-point function is defined as the distribu-
tional δ → 0þ limit of an analytic function.
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S½Aμ� ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
−
1

4
gμρgνσFμνFρσ

�
; ð18Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field strength tensor for the
vector potential Aμ. This action is invariant under Uð1Þ
gauge transformations, Aμ → Aμ þ ∂μΛ, where ΛðxÞ is an
arbitrary scalar function. Consequently the covariant
Maxwell’s equations inherit this property, meaning their
solutions are not fully determined by specifying initial
conditions for the vector potential components. This
implies that the number of physical propagating degrees
of freedom is smaller than the number of dynamical fields.
Just as in flat space, the propagating degrees of freedom of
the free photon are the (D − 2) transverse polarizations.
Their dynamics is well understood, since in D ¼ 4 they
couple conformally to gravity and effectively do not see the
expansion. However, formulating interacting gauge theo-
ries in terms of physical propagating degrees of freedom
only is rather impractical at best. It is often advantageous to
consider the questions of the dynamics and of observables
separately. One first fixes the gauge to remove the ambi-
guities in the dynamical equations, and solves for the
gauge-fixed dynamics. Then one obtains observables by
projecting out the physical information from the gauge-
fixed solutions.
Particularly convenient gauges for loop computations in

quantum field theory are the so-called average gauges,
known as multiplier gauges in classical theory [74]. These
are not imposed by following the Dirac-Bergmann algo-
rithm [75] and imposing gauge conditions that eliminate
some of the vector potential components. Instead, multi-
plier gauges treat all the components of the vector potential
on equal footing, and fix the ambiguities in the dynamics
by fixing directly the Lagrange multipliers. This procedure
is ultimately equivalent to adding a gauge-fixing term to
the gauge-invariant action (18). A specific choice for the
multiplier will lead to the gauge-fixing term in (1) we
consider here. This sort of gauge fixing is not often
encountered in classical theories, perhaps giving the
impression that there is something innately quantum about
gauge-fixing terms added to gauge-invariant actions. This
is far from true, as the rationale behind gauge-fixing terms
is essentially the classical canonical structure in multiplier
gauges. That is why this section is devoted to presenting
the details of implementing multiplier gauges, in particular
for the photon in (18). Canonical formulation in multiplier
gauges subsequently lends itself readily to canonical
quantization that is considered in Sec. IV.

A. Gauge-invariant canonical formulation

Our starting point of implementing a multiplier gauge is
the canonical formulation of the action (18) that we derive
in this subsection. We start by decomposing the indices in
(18) into spatial and temporal ones,

S½Aμ� ¼
Z

dDxaD−4
�
1

2
F0iF0i −

1

4
FijFij

�
; ð19Þ

where henceforth all such decomposed indices are written
as lowered and the convention that repeated spatial indices
are summed over is implied. We follow [76] in reformu-
lating (19) as a first order canonical action. This requires
first promoting all the time derivatives to independent
velocity fields,

∂0A0 → V0; F0i ¼ ∂0Ai − ∂iA0 → Vi; ð20Þ

and introducing accompanying Lagrange multipliers Π0

and Πi that ensure on-shell equivalence of the intermediate
extended action,

S½A0;V0;Π0;Ai;Vi;Πi�¼
Z

dDx

�
aD−4

�
1

2
ViVi−

1

4
FijFij

�

þΠ0ð∂0A0−V0Þ

þΠið∂0Ai−∂iA0−ViÞ
�
; ð21Þ

to the original action (18). Solving for the velocity fields
on-shell, which here is possible only for Vi,

δS
δVi

≈ 0; ⇒ Vi ≈ V̄i ¼ a4−DΠi; ð22Þ

and plugging this into the extended action above produces
the canonical action

S ½A0;Π0; Ai;Πi;l�≡ S½A0; V0 → l;Π0; Ai; V̄i;Πi�

¼
Z

dDx½Π0∂0A0 þ Πi∂0Ai

−H − lΨ1�; ð23Þ

where

H ¼ a4−D

2
ΠiΠi þ Πi∂iA0 þ

aD−4

4
FijFij ð24Þ

is the canonical Hamiltonian density and Ψ1 ¼ Π0 is the
primary constraint generated by the Lagrange multiplier l
(which is just a relabeled field V0). Variation of (23) with
respect to the canonical variables produces canonical
equations of motion

∂0A0 ≈ l; ∂0Π0 ≈ ∂iΠi; ∂0Ai ≈ a4−DΠi þ ∂iA0;

∂0Πi ≈ aD−4
∂jFji; ð25Þ

while variation with respect to the Lagrange multiplier l
gives the primary constraint
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Ψ1 ≈ 0: ð26Þ

Note that in this section we employ Dirac’s notation where
¼ stands for an off-shell (strong) equality, while ≈ stands
for an on-shell (weak) equality. The equations above are
equivalent to Hamilton’s equations descending from the
total Hamiltonian H tot ¼ H þ lΨ1, where the Poisson
brackets are determined by the symplectic part of the
canonical action (23), with the nonvanishing ones being

fA0ðη; x⃗Þ;Π0ðη; x⃗0Þg ¼ δD−1ðx⃗ − x⃗0Þ;
fAiðη; x⃗Þ;Πjðη; x⃗0Þg ¼ δijδ

D−1ðx⃗ − x⃗0Þ; ð27Þ

and the Lagrange multiplier l has vanishing brackets with
all the canonical variables. Note that the constraint equa-
tion (26) does not follow from the total Hamiltonian, but
needs to be considered in addition to Hamilton’s equations.
The consistency of the primary constraint (26) requires it

to be conserved, which in turn generates a secondary
constraint,

0 ≈ ∂0Ψ1 ≈ ∂iΠi ≡ Ψ2; ð28Þ

the conservation of which generates no further constraints,

∂0Ψ2 ≈ 0: ð29Þ

The primary and secondary constraints form a complete set
of first-class constraints,

fΨ1ðη; x⃗Þ;Ψ2ðη; x⃗0Þg ¼ 0; ð30Þ

implying that the Lagrange multiplier l is left undeter-
mined by the equations of motion, which is how gauge
symmetries manifest themselves in the canonical formu-
lation. Fixing this ambiguity is what the next section is
devoted to.
While any solution to the dynamical equations (25) and

the accompanying constraint equations (26) and (29)
describes the same physical system, observables in gauge
theories cannot depend on the arbitrary Lagrange multi-
pliers such as l. This is guaranteed by requiring observables
to have on-shell vanishing brackets with all the first-class
constraints. For the case at hand, this means that for some
Oðη; x⃗Þ to be an observable it has to satisfy

fΨ1ðη; x⃗Þ;Oðη; x⃗0Þg≈ 0; fΨ2ðη; x⃗Þ;Oðη; x⃗0Þg≈ 0; ð31Þ

which guarantees that it does not depend on the arbitrary
Lagrange multiplier l.

B. Gauge-fixed canonical formulation

There are multiple ways of fixing the ambiguity of the
dynamical equations (25) of the preceding section. The
Dirac-Bergman algorithm requires the specification of

gauge conditions in the form of off-shell equalities that
eliminate part of the dynamical canonical fields. Such
gauge choices are known as exact gauges, and the Coulomb
gauge is one classic example. However, exact gauges are
often impractical to use in quantized theories. Preferred
choices are the so-called multiplier gauges (also called
average gauges) that do not eliminate any of the dynamical
fields, but rather treat all of them on an equal footing.
Implementing a multiplier gauge for the problem at hand is
accomplished by fixing by hand the multiplier l to be a
function of canonical pairs, without explicitly specifying
any gauge conditions,

l → lðA0;Π0; Ai;ΠiÞ: ð32Þ

Employing this choice at the level of equations of motion
(25) produces a set of gauge-fixed equations of motion,

∂0A0 ≈ lðA0;Π0; Ai;ΠiÞ; ð33Þ

∂0Π0 ≈ ∂iΠi; ð34Þ

∂0Ai ≈ a4−DΠi þ ∂iA0; ð35Þ

∂0Πi ≈ aD−4
∂jFji; ð36Þ

in addition to the two first-class constraints that remain
unchanged,

Ψ1 ¼ Π0 ≈ 0; Ψ2 ¼ ∂iΠi ≈ 0: ð37Þ

This system of equations now forms a well-defined initial
value problem (provided that l is not chosen in some
pathological manner). A useful way of viewing these
equations is to consider the two first-class constraints as
conditions on the initial value surface. The evolution will
ensure they are preserved for all times. This way we split
the problem into four dynamical equations (33)–(36)
describing evolution and two kinematic equations (37)
constraining the initial conditions. The latter cut defines a
subspace of the space of solutions of the former. This shows
that choosing l → l at the level of the equations of motion
leads to a well-defined dynamical problem and in that sense
it fixes the gauge. However, it is more convenient to
implement this gauge at the level of the action.
Instead of fixing the multiplier at the level of equations of

motion, we can fix it in the canonical action (23) directly.
This defines the gauge-fixed canonical action,

S ⋆½A0;Π0; Ai;Πi�≡S ½A0;Π0; Ai;Πi;l → l�

¼
Z

dDx½Π0∂0A0 þ Πi∂0Ai −H ⋆�;

ð38Þ
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where the gauge-fixed Hamiltonian density is

H ⋆ ¼ H þ lΨ1: ð39Þ

Note that this gauge-fixed action is not equivalent to
canonical action (23) as it no longer encodes a variational
principle with respect to the multiplier l. The equations of
motion generated by the gauge-fixed canonical action are3

∂0A0 ≈ lþ ∂l
∂Π0

Π0; ð40Þ

∂0Π0 ≈ ∂iΠi −
∂l
∂A0

Π0; ð41Þ

∂0Ai ≈ a4−DΠi þ ∂iA0 þ
∂l
∂Πi

Π0; ð42Þ

∂0Πi ≈ aD−4
∂jFji −

∂l
∂Ai

Π0: ð43Þ

This is now a fully determined set of coupled partial
differential equations in the sense that specifying initial
conditions fully fixes the evolution. However, note that
these are not immediately equivalent to Eqs. (33)–(37).
First, the four dynamical equations are all modified by
additional terms, and more importantly the constraint
equations are absent. The remedy is to consider the
gauge-fixed action to encode the dynamics only, and to
require the first-class constraints (37) to be satisfied in
addition to the dynamical equations by considering them to
be subsidiary conditions on the initial value surface,

Ψ1ðη0; x⃗Þ ¼ Π0ðη0; x⃗Þ≈ 0; Ψ2ðη0; x⃗Þ ¼ ∂iΠiðη0; x⃗Þ≈ 0:

ð44Þ

Equations of motion (40)–(43) guarantee that imposing
constraints (44) on the initial value surface is sufficient to
guarantee their conservation. The system of Eqs. (40)–(44) is
now obviously equivalent to the original system (33)–(37).
The choice for the multiplier in (32) is not dictated by

physical principles, but is rather a matter of convenience, as
in fact any gauge choice is. In this work we consider only
linear gauges natural for free theories. We require them
(i) to respect homogeneity and isotropy of the FLRW
spacetime, (ii) not to introduce additional dimensionful
scales, (iii) to be composed of commensurate terms, and
(iv) to respect Lorentz invariance in the Minkowski limit.
This essentially restricts the choice of the multiplier to a
two-parameter family,

l ¼ −
ξ

2
a4−DΠ0 þ ∂iAi − ðD − 2 − 2ζÞHA0; ð45Þ

where ξ and ζ are two arbitrary dimensionless gauge-fixing
parameters.4 This particular gauge choice then produces the
equations of motion

∂0A0 ≈ −ξa4−DΠ0 þ ∂iAi − ðD − 2 − 2ζÞHA0; ð46Þ

∂0Π0 ≈ ∂iΠi þ ðD − 2 − 2ζÞHΠ0; ð47Þ

∂0Ai ≈ a4−DΠi þ ∂iA0; ð48Þ

∂0Πi ≈ ∂iΠ0 þ aD−4
∂jFji ð49Þ

that are generated by the gauge-fixed Hamiltonian

H ⋆ ¼ a4−D

2
ðΠiΠi − ξΠ0Π0Þ þ Πi∂iA0 þ Π0∂iAi

− ðD − 2 − 2ζÞHΠ0A0 þ
aD−4

4
FijFij: ð50Þ

The two first-class constraints (44) satisfy closed equations
of motion,

∂0Ψ1 ≈Ψ2 þ ðD − 2 − 2ζÞHΨ1; ∂0Ψ2 ≈∇2Ψ1; ð51Þ

where ∇2 ≡ ∂i∂i is the Laplace operator, exemplifying the
fact that the dynamics preserves (44) if imposed on the
initial value surface.
We have defined the gauge-fixed system in terms of the

gauge-fixed canonical action (38) with the choice for the
multiplier in (45) describing the dynamics, and the two
subsidiary conditions (44) accounting for first-class con-
straints. Despite being the superior formulation for analyzing
the structure of gauge theories, the canonical formulation is
often less intuitive than the configurations space formu-
lation. There is an associated gauge-fixed configuration
space action associated with the canonical one. By solving
for the canonical momenta on-shell,

δS ⋆

δΠ0

≈ 0 ⇒ Π0 ≈ Π̄0

¼ −
aD−4

ξ
ð∂0A0 þ ðD − 2 − 2ζÞHA0 − ∂iAiÞ; ð52Þ

δS ⋆

δΠi
≈ 0 ⇒ Πi ≈ Π̄i ¼ aD−4ð∂0Ai − ∂iA0Þ; ð53Þ

3Partial derivatives of l are generalized to functional deriv-
atives in an obvious way whenever necessary. This detail is
omitted for notational simplicity.

4Having ξ and ζ be time-dependent functions would be just as
easy, but we do not consider it for simplicity; the generalization is
straightforward.
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and inserting the solutions into the gauge-fixed canonical
action produces precisely the associated gauge-fixed con-
figuration space action

S⋆½Aμ� ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
−
1

4
gμρgνσFμνFρσ

−
1

2ξ
ð∇μAμ − 2ζnμAμÞ2

�
ð54Þ

with the gauge-fixing term (1). Thus we have derived how
the gauge-fixing terms arise in classical gauge theories. The
subsidiary conditions (44) in the configuration space for-
mulation take the form

ξa2−DΨ1≈ ð∇μ−2ζnμÞAμ≈0; a4−DΨ2≈∂iF0i≈0: ð55Þ

IV. QUANTIZED PHOTON IN FLRW

The classical theory in the multiplier gauge is formulated
so that the dynamics is represented by a gauge-fixed action
without constraints, and the first-class constraints are
imposed as subsidiary conditions on the initial value
surface. The canonical quantization of such a gauge-fixed
theory is most naturally implemented in the Heisenberg
picture, where field operators account for the dynamics,
and the state vector accounts for the initial conditions.

A. Dynamics

The usual rules of canonical quantization are sufficient to
quantize the gauge-fixed dynamics of the classical theory.
Canonical fields are promoted to Hermitian field operators,

A0ðxÞ → Â0ðxÞ; Π0ðxÞ → Π̂0ðxÞ;
AiðxÞ → ÂiðxÞ; ΠiðxÞ → Π̂iðxÞ; ð56Þ

and their Poisson brackets (27) to commutators,

½Â0ðη; x⃗Þ; Π̂0ðη; x⃗0Þ� ¼ iδD−1ðx⃗ − x⃗0Þ;
½Âiðη; x⃗Þ; Π̂jðη; x⃗0Þ� ¼ δijiδD−1ðx⃗ − x⃗0Þ: ð57Þ

The gauge-fixed equations of motion (46)–(49) remain
unchanged,

∂0Â0 ¼ −ξa4−DΠ̂0 þ ∂iÂi − ðD − 2 − 2ζÞHÂ0; ð58Þ

∂0Π̂0 ¼ ∂iΠ̂i þ ðD − 2 − 2ζÞHΠ̂0; ð59Þ

∂0Âi ¼ a4−DΠ̂i þ ∂iÂ0; ð60Þ

∂0Π̂i ¼ ∂iΠ̂0 þ aD−4
∂jF̂ji; ð61Þ

and are generated by the Hamiltonian (50) with fields
promoted to field operators.

B. Subsidiary condition

Implementing the first-class constraints in the quantized
theory is less straightforward. It definitely must involve
Hermitian constraint operators,

Ψ̂1ðxÞ ¼ Π̂0ðxÞ; Ψ̂2ðxÞ ¼ ∂iΠ̂iðxÞ: ð62Þ

However, the constraints cannot be imposed as operator
equalities as that would contradict canonical commutation
relations (57). To understand how to quantize the first-
class constraints we better first consider the correspondence
principle, which tells us that matrix elements of Hermitian
first-class constraints have to vanish at initial time,

hΩ1jΨ̂1ðη0; x⃗ÞjΩ2i ¼ 0; hΩ1jΨ̂2ðη0; x⃗ÞjΩ2i ¼ 0: ð63Þ

This cannot be satisfied by requiring that the Hermitian
constraints themselves annihilate the state vector (as
required in [77,78]), as that would again contradict the
canonical commutation relations (57). However, it is con-
sistent to require that the state ket-vector is annihilated by an
invertible non-Hermitian linear combination of the two
constraints (62),

K̂ðx⃗Þ ¼
Z

dD−1x0½f1ðη0; x⃗ − x⃗0ÞΨ̂1ðη0; x⃗0Þ

þ f2ðη0; x⃗ − x⃗0ÞΨ̂2ðη0; x⃗0Þ�; ð64Þ

that we refer to as a subsidiary non-Hermitian constraint
operator, and that its conjugate annihilates the state bra-
vector,

K̂ðx⃗ÞjΩi ¼ 0; hΩjK̂†ðx⃗Þ ¼ 0; ∀ x⃗: ð65Þ

This condition is a generalization of the Gupta-Bleuler
subsidiary condition for covariant photon gauges in flat
space. It is divorced from spacetime symmetries and
symmetries of the gauge-fixing term, and is rather based
solely on the canonical structure.
The conditions in (63) are preserved in time,

hΩ1jΨ̂1ðη; x⃗ÞjΩ2i ¼ 0; hΩ1jΨ̂2ðη; x⃗ÞjΩ2i ¼ 0; ð66Þ

due to the equations of motion the Hermitian constraints
satisfy,

∂0Ψ̂1 ¼ Ψ̂2 þ ðD− 2− 2ζÞHΨ̂1; ∂0Ψ̂2 ¼∇2Ψ̂1: ð67Þ

This implies that the time-independent non-Hermitian
constraint can be expressed in terms of Hermitian ones
at any point in time, since there are f1 and f2 at any time η
such that
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K̂ðx⃗Þ ¼
Z

dD−1x0½f1ðη; x⃗ − x⃗0ÞΨ̂1ðη; x⃗0Þ

þ f2ðη; x⃗ − x⃗0ÞΨ̂2ðη; x⃗0Þ�: ð68Þ

Given the equations of motion (67), the coefficient func-
tions have to satisfy

∂0f1 ¼ −∇2f2 − ðD− 2− 2ζÞHf1; ∂0f2 ¼ −f1: ð69Þ

The subsidiary constraint operator (64) commutes with
its conjugate

½K̂ðx⃗Þ; K̂†ðx⃗0Þ� ¼ 0; ð70Þ

and consequently a matrix element of any polynomial
functional of Hermitian constraints vanishes,

hΩ1jP½Ψ̂1ðη; x⃗Þ; Ψ̂2ðη; x⃗Þ�jΩ2i ¼ 0; ð71Þ

as required by the correspondence principle. In particular,
the two-point functions of Hermitian constraints must
vanish,

hΩjΨ̂1ðη; x⃗ÞΨ̂1ðη0; x⃗0ÞjΩi ¼ 0; ð72aÞ

hΩjΨ̂1ðη; x⃗ÞΨ̂2ðη0; x⃗0ÞjΩi ¼ 0; ð72bÞ

hΩjΨ̂2ðη; x⃗ÞΨ̂2ðη0; x⃗0ÞjΩi ¼ 0: ð72cÞ

For later sections it is useful to define some shorthand
notation. Namely, we can invert relation (68) and express
the Hermitian constraints in terms of the non-Hermitian
ones,

Ψ̂1ðxÞ ¼ K̂†
1ðxÞþ K̂1ðxÞ; Ψ̂2ðxÞ ¼ K̂†

2ðxÞþ K̂2ðxÞ; ð73Þ

where pieces K̂1 and K̂2 contain just K̂, and their
conjugates contain just K̂†, such that for any physical state
we have

K̂1ðxÞjΩi ¼ K̂2ðxÞjΩi ¼ 0; hΩjK̂†
1ðxÞ ¼ hΩjK̂†

2ðxÞ ¼ 0:

ð74Þ

C. Quantum observables

A classical observable O is a quantity composed out of
canonical fields that has vanishing Poisson brackets with all
the first-class constraints (31). When promoting such a
classical observable to a quantum observable we have to
promote O to an operator Ô, by promoting the canonical
fields it is composed of to canonical field operators. This
process requires that we address the question of operator
ordering in Ô.

In quantum gauge theories there is an additional operator
ordering issue compared to quantum theories without
constraints. To understand this ordering issue consider a
trivial classical “observable”,5

Oðη; x⃗; x⃗0Þ ¼ A0ðη; x⃗ÞΨ2ðη; x⃗0Þ ≈ 0; ð75Þ

that vanishes on account of being proportional to one of the
first-class constraints (31). When promoting this quantity to
an operator we may first consider Weyl ordering (denoted
by subscript W henceforth). In this particular case there is
no need for explicit Weyl ordering as the involved field
operators commute,

½Ôðη; x⃗; x⃗0Þ�W ≡ 1

2
ðÂ0ðη; x⃗ÞΨ̂2ðη; x⃗0Þ þ Ψ̂2ðη; x⃗0ÞÂ0ðη; x⃗ÞÞ

¼ Â0ðη; x⃗ÞΨ̂2ðη; x⃗0Þ: ð76Þ

However, taking the expectation value produces a non-
vanishing result,

hΩj½Ôðη; x⃗; x⃗0Þ�WjΩi ¼ Reð½K̂2ðη; x⃗0Þ; Â0ðη; x⃗Þ�Þ; ð77Þ

where we use the shorthand notation of the decomposition
in (73). This is independent of any physical state satisfying
(65), as it is only the commutator that appears on the right-
hand side of (77). This nonvanishing expectation value
violates the correspondence principle; even though the
right-hand side does not depend on the quantum state,
the choice of K̂ is still largely arbitrary, and consequently so
is K̂2. The proper way to order the operators (henceforth
denoted by subscript g for “gauge”) in observable (75) is to
(i) decompose the Hermitian constraint operator Ψ̂2 into the
non-Hermitian subsidiary constraint operator K̂ and its
conjugate K̂†, and (ii) put all K̂ operators on the right of
the product and all K̂† operators on the left of the product,

½Ôðη; x⃗; x⃗0Þ�g ¼ K̂†
2ðη; x⃗0ÞÂ0ðη; x⃗Þþ Â0ðη; x⃗ÞK̂2ðη; x⃗0Þ: ð78Þ

Such ordering guarantees that the expectation value van-
ishes due to (74) for any physical state,

hΩj½Ôðη; x⃗; x⃗0Þ�gjΩi ¼ 0: ð79Þ

It is useful to note that the properly ordered observable can
be written in terms of the Weyl-ordered observable plus the
commutator accounting for the difference,

5We consider for simplicity a product of two fields evaluated at
different spatial points, to avoid having to multiply distributions
in the quantized theory.
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½Ôðη; x⃗; x⃗0Þ�g ¼ ½Ôðη; x⃗; x⃗0Þ�W − Reð½K̂2ðη; x⃗0Þ; Â0ðη; x⃗Þ�Þ:
ð80Þ

We comment more on the significance of this in Sec. VIII B.
The difference between two orderings is ultimately the
Faddeev-Popov ghost contribution.
Having addressed the operator ordering in (78), we need

to consider further quantum properties of this trivial
observable, which are usually encoded by correlators
(n-point functions). Since it contains a Hermitian constraint
and vanishes trivially classically, its n-point functions
ought to vanish as well. However, while the operator
ordering in (79) guarantees this is satisfied for the expect-
ation values (one-point function), the two-point function of
this operator does not vanish,

hΩj½Ôðη; x⃗; x⃗0Þ�g½Ôðη; y⃗; y⃗0Þ�gjΩi
¼ ½Â0ðη; x⃗Þ; K̂†

2ðη; y⃗0Þ�½K̂2ðη; x⃗0Þ; Â0ðη; y⃗Þ� ≠ 0; ð81Þ

which is problematic. It would not be reasonable to
conclude that quantum mechanics prevents this object
from being a trivial observable, on account of its correlators
not vanishing. That would imply a significant reduction in
the number of observables in the quantized theory, with
respect to the classical theory, and would provide a way to
measure a quantum violation of classical first-class con-
straints. The resolution is to require that the product of
operators associated with the observable has to first be
properly ordered in the gauge sense,

½Ôðη; x⃗; x⃗0ÞÔðη; y⃗; y⃗0Þ�g
¼ K̂†

2ðη; x⃗0ÞK̂†
2ðη; y⃗0ÞÂ0ðη; x⃗ÞÂ0ðη; y⃗Þ

þ K̂†
2ðη; x⃗0ÞÂ0ðη; x⃗ÞÂ0ðη; y⃗ÞK̂2ðη; y⃗0Þ

þ K̂†
2ðη; y⃗0ÞÂ0ðη; x⃗ÞÂ0ðη; y⃗ÞK̂2ðη; x⃗0Þ

þ Â0ðη; x⃗ÞÂ0ðη; y⃗ÞK̂2ðη; x⃗0ÞK̂2ðη; y⃗0Þ; ð82Þ

and only then should the expectation value be taken. This
way the two-point function also vanishes,

hΩj½Ôðη; x⃗; x⃗0ÞÔðη; y⃗; y⃗0Þ�gjΩi ¼ 0: ð83Þ

The operator in (82) can also be expressed in terms of the
Weyl-ordered products and compensating commutators,
analogous to (80). The extension of this prescription to
higher n-point functions should be straightforward.

V. FIELD OPERATOR DYNAMICS

The dynamics of the linear quantized theory is com-
pletely accounted for by the field operators. In this section
we consider the dynamics of photon field operators in
comoving momentum space, and we express the solutions

in terms of a few scalar mode functions introduced in
Sec. II B. Canonical commutation relations fix the nor-
malization of these scalar mode functions and imply the
commutation relations for time-independent momentum
space operators. The section concludes by computing the
non-Hermitian subsidiary constraint operator and discus-
sing the freedom in how it is chosen.

A. Field operators in momentum space

The FLRW spacetime is homogeneous and isotropic, and
the analysis of dynamics considerably simplifies by work-
ing in comoving momentum space. It is first advantageous
to decompose the spatial components of the vector potential,

Âi ¼ ÂT
i þ ÂL

i ; Π̂i ¼ Π̂T
i þ Π̂L

i ; ð84Þ

into its transverse and longitudinal parts,

ÂT
i ¼ PT

ijÂj; Π̂T
i ¼ PT

ijΠ̂j;

ÂL
i ¼ PL

ijÂj; Π̂L
i ¼ PL

ijΠ̂j; ð85Þ

defined in terms of the transverse and longitudinal projec-
tion operators,

PT
ij ¼ δij −

∂i∂j

∇2
; PL

ij ¼
∂i∂j

∇2
; ð86Þ

that are orthogonal, PT
ijP

L
jk ¼ PL

ijP
T
jk ¼ 0, and idempotent,

PT
ijP

T
jk ¼ PT

ik, PL
ijP

L
jk ¼ PL

ik. The conveniently rescaled
spatial Fourier transforms of such decomposed field oper-
ators are

Â0ðη; x⃗Þ ¼ a−
D−2−2ζ

2

Z
dD−1k

ð2πÞD−1
2

eik⃗·x⃗Â0ðη; k⃗Þ; ð87aÞ

Π̂0ðη; x⃗Þ ¼ a
D−2−2ζ

2

Z
dD−1k

ð2πÞD−1
2

eik⃗·x⃗π̂0ðη; k⃗Þ; ð87bÞ

ÂL
i ðη; x⃗Þ ¼ a−

D−2−2ζ
2

Z
dD−1k

ð2πÞD−1
2

eik⃗·x⃗
ð−iÞki

k
ÂLðη; k⃗Þ; ð87cÞ

Π̂L
i ðη; x⃗Þ ¼ a

D−2−2ζ
2

Z
dD−1k

ð2πÞD−1
2

eik⃗·x⃗
ð−iÞki

k
π̂Lðη; k⃗Þ; ð87dÞ

ÂT
i ðη; x⃗Þ ¼ a−

D−4
2

Z
dD−1k

ð2πÞD−1
2

eik⃗·x⃗
XD−2

σ¼1

εiðσ; k⃗ÞÂT;σðη; k⃗Þ;

ð87eÞ

Π̂T
i ðη; x⃗Þ ¼ a

D−4
2

Z
dD−1k

ð2πÞD−1
2

eik⃗·x⃗
XD−2

σ¼1

εiðσ; k⃗Þπ̂T;σðη; k⃗Þ; ð87fÞ
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where the momentum space Hermitian operators behave
under conjugation as Ô†ðk⃗Þ ¼ Ôð−k⃗Þ. Here we introduced
transverse polarization tensors with the following properties:

kiεiðσ; k⃗Þ ¼ 0; ε�i ðσ; k⃗Þ ¼ εiðσ;−k⃗Þ;ε�i ðσ; k⃗Þεiðσ0; k⃗Þ ¼ δσσ0 ;

XD−2

σ¼1

ε�i ðσ; k⃗Þεjðσ; k⃗Þ ¼ δij−
kikj
k2

: ð88Þ

The canonical commutators of the momentum space field
operators are now

½Â0ðη; k⃗Þ; π̂0ðη; k⃗0Þ� ¼ ½ÂLðη; k⃗Þ; π̂Lðη; k⃗0Þ� ¼ iδD−1ðk⃗þ k⃗0Þ;
ð89aÞ

½ÂT;σðη; k⃗Þ; π̂T;σ0 ðη; k⃗0Þ� ¼ δσσ0i δD−1ðk⃗þ k⃗0Þ; ð89bÞ

while the momentum space equations of motion for the
transverse sector are

∂0ÂT;σ ¼ π̂T;σ þ
1

2
ðD − 4ÞHÂT;σ; ð90Þ

∂0π̂T;σ ¼ −k2ÂT;σ −
1

2
ðD − 4ÞHπ̂T;σ; ð91Þ

and the ones for the scalar sector read

∂0Â0 ¼ −ξa2−2ζπ̂0 þ kÂL −
1

2
ðD − 2 − 2ζÞHÂ0; ð92Þ

∂0π̂0 ¼ kπ̂L þ 1

2
ðD − 2 − 2ζÞHπ̂0; ð93Þ

∂0ÂL ¼ a2−2ζπ̂L − kÂ0 þ
1

2
ðD − 2 − 2ζÞHÂL; ð94Þ

∂0π̂L ¼ −kπ̂0 −
1

2
ðD − 2 − 2ζÞHπ̂L: ð95Þ

Note that the Fourier transforms in (87) represent a time-
dependent canonical transformation, so that the momentum
space Hamiltonian generating the dynamics is

Ĥ⋆ðηÞ ¼
Z

dD−1k
XD−2

σ¼1

�
1

2
π̂†T;σπ̂T;σ þ

k2

2
Â†

T;σÂT;σ þ
ðD − 4Þ

4
Hðπ̂†T;σÂT;σ þ Â†

T;σπ̂T;σÞ
�

þ
Z

dD−1k

�
a2−2ζ

2
π̂†Lπ̂L −

ξa2−2ζ

2
π̂†0π̂0 þ

k
2
ðπ̂†0ÂL þ Â†

Lπ̂0 − π̂†LÂ0 − Â†
0π̂LÞ

þ ðD − 2 − 2ζÞ
4

Hðπ̂†LÂL þ Â†
Lπ̂L − π̂†0Â0 − Â†

0π̂0Þ
�
; ð96Þ

where the arguments of all the fields are ðη; k⃗Þ. Note that
because the system is linear, the operator ordering of the
Hamiltonian does not matter when generating the field
operator equations of motion. It does matter, however,
when observables are concerned, as discussed in Sec. IV C.

B. Subsidiary conditions in momentum space

The subsidiary condition introduced in Sec. IV B also
takes a considerably simpler form in comoving momentum
space. For the Hermitian constraints we define Fourier
transforms

Ψ̂1ðη; x⃗Þ ¼ a
D−2−2ζ

2

Z
dD−1k

ð2πÞD−1
2

eik⃗·x⃗ψ̂1ðη; k⃗Þ; ð97aÞ

Ψ̂2ðη; x⃗Þ ¼ a
D−2−2ζ

2

Z
dD−1k

ð2πÞD−1
2

eik⃗·x⃗kψ̂2ðη; k⃗Þ; ð97bÞ

such that the momentum space Hermitian constraints have
the same dimensions,

ψ̂1ðη; k⃗Þ ¼ π̂0ðη; k⃗Þ; ψ̂2ðη; k⃗Þ ¼ π̂Lðη; k⃗Þ; ð98Þ

and satisfy closed momentum space equations of motion,

∂0ψ̂1 ¼ kψ̂2 þ
1

2
ðD − 2 − 2ζÞHψ̂1;

∂0ψ̂2 ¼ −kψ̂1 −
1

2
ðD − 2 − 2ζÞHψ̂2: ð99Þ

The momentum space non-Hermitian constraint operator is
introduced in the same manner,

K̂ðx⃗Þ ¼ a
D−2−2ζ

2

Z
dD−1k

ð2πÞD−1
2

eik⃗·x⃗K̂ðk⃗Þ; ð100Þ

which translates into a simple linear combination of the two
momentum space Hermitian constraint operators,

K̂ðk⃗Þ ¼ c1ðη; k⃗Þψ̂1ðη; k⃗Þ þ c2ðη; k⃗Þψ̂2ðη; k⃗Þ: ð101Þ

The momentum space equivalent of the position space
subsidiary condition (65) on the space of states now reads
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K̂ðk⃗ÞjΩi ¼ 0; hΩjK̂†ðk⃗Þ ¼ 0; ∀k⃗: ð102Þ

The condition of non-Hermiticity of the subsidiary con-
straint operator, necessary for consistency with canonical
commutation relations, in momentum space translates into

K̂†ðk⃗Þ ≠ eiγðk⃗ÞK̂ð−k⃗Þ; ð103Þ

where γðk⃗Þ is an arbitrary real function reflecting the fact
that subsidiary conditions (102) are defined up to an
arbitrary phase.
The conservation of (101), together with the equations of

motion (99) for the Hermitian constraints, implies equa-
tions of motion for the coefficient functions,

∂0c1 ¼ kc2 −
1

2
ðD − 2 − 2ζÞHc1; ð104aÞ

∂0c2 ¼ −kc1 þ
1

2
ðD − 2 − 2ζÞHc2: ð104bÞ

The decomposition of the Hermitian constraints in terms of
the non-Hermitian ones (73) in momentum space now reads

ψ̂1ðη; k⃗Þ ¼ K̂†
1ðη;−k⃗Þ þ K̂1ðη; k⃗Þ; ð105aÞ

ψ̂2ðη; k⃗Þ ¼ K̂†
2ðη;−k⃗Þ þ K̂2ðη; k⃗Þ; ð105bÞ

where

K̂1ðη; x⃗Þ ¼ a
D−2−2ζ

2

Z
dD−1k

ð2πÞD−1
2

eik⃗·x⃗K̂1ðη; k⃗Þ; ð106aÞ

K̂2ðη; x⃗Þ ¼ a
D−2−2ζ

2

Z
dD−1k

ð2πÞD−1
2

eik⃗·x⃗kK̂2ðη; k⃗Þ: ð106bÞ

C. Solving for dynamics

Solving for dynamics means expressing the time-
dependent field operators in the Heisenberg picture in
terms of initial conditions given at some η0. This is what the
usual solving for operators in terms of creation/annihilation
operators is, which can also be seen as expressing field
operators in the Heisenberg picture in terms of ones in the
Schrödinger picture. In this section we express the sol-
utions of the field operators in terms of the scalar mode
functions satisfying mode equations, with solutions depen-
dent on the specific FLRW background.

1. Transverse sector

The two transverse sector equations of motion (90) and
(91) combine into a single second order one,

�
∂
2
0 þ k2 −

�
λ2T −

1

4

�
ð1 − ϵÞ2H2

�
π̂T;σ ¼ 0; ð107Þ

ÂT;σ ¼ −
1

k2

�
∂0 þ

�
λT þ 1

2

�
ð1 − ϵÞH

�
π̂T;σ; ð108Þ

where we introduce

λT ¼ D − 5þ ϵ

2ð1 − ϵÞ : ð109Þ

The second order equation (107) is just the scalar mode
equation (5) with λ→ λT . Furthermore, we have that ðλTþ 1

2
Þ

ð1−ϵÞ¼ðD−4Þ=2 is time-independent, so that recurrence
relations (11) are applicable. Therefore, we can write the
solutions as

π̂T;σðη; k⃗Þ ¼ −ikUλT ðη; kÞb̂Tðσ; k⃗Þ þ ikU�
λT
ðη; kÞb̂†Tðσ;−k⃗Þ;

ð110Þ

ÂT;σðη; k⃗Þ ¼ UλTþ1ðη; kÞb̂Tðσ; k⃗Þ þ U�
λTþ1ðη; kÞb̂†Tðσ;−k⃗Þ:

ð111Þ

It follows now from the canonical commutation
relations (89b) and the Wronskian (12) that the initial
condition operators satisfy creation/annihilation commu-
tation relations,

½b̂Tðσ; k⃗Þ; b̂†Tðσ0; k⃗0Þ� ¼ δσσ0δ
D−1ðk⃗ − k⃗0Þ: ð112Þ

Explicit solutions for the transverse sector mode functions
depend on the particular FLRW background only, and not
on the gauge-fixing parameters. This reflects the fact that
the transverse polarizations are the physical propagating
degrees of freedom of the photon in spatially flat cosmo-
logical spaces.

2. Scalar sector

In the scalar sector the two equations for canonical
momenta (93) and (95) decouple from the rest. They
combine into a second order equation,

�
∂
2
0 þ k2 −

�
λ2 −

1

4

�
ð1 − ϵÞ2H2

�
π̂L ¼ 0; ð113Þ

π̂0 ¼ −
1

k

�
∂0 þ

�
λþ 1

2

�
ð1 − ϵÞH

�
π̂L; ð114Þ

taking the form of the scalar mode equation, where the
parameter

λ ¼ D − 3þ ϵ − 2ζ

2ð1 − ϵÞ ð115Þ

satisfies the relation (10). Therefore, according to (5), (6),
and (11), the solutions are given in terms of scalar mode
functions
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π̂Lðη; k⃗Þ ¼ kUλðη; kÞb̂Pðk⃗Þ þ kU�
λðη; kÞb̂†Pð−k⃗Þ; ð116Þ

π̂0ðη; k⃗Þ¼ ikUλþ1ðη;kÞb̂Pðk⃗Þ− ikU�
λþ1ðη;kÞb̂†Pð−k⃗Þ: ð117Þ

These solutions now source the two remaining scalar sector
equations (92) and (94), which again combine into a single
second order one,

�
∂
2
0 þ k2 −

�
λ2 −

1

4

�
ð1 − ϵÞ2H2

�
Â0

¼ a2−2ζ½−2ξð1 − ζÞHπ̂0 þ ð1 − ξÞkπ̂L�; ð118Þ

ÂL ¼ 1

k

�
∂0 þ

�
λþ 1

2

�
ð1 − ϵÞH

�
Â0 þ

ξa2−2ζ

k
π̂0: ð119Þ

The source for the second order equation above already
suggests what is likely the simplest choice of gauge-fixing
parameters—ξ ¼ 1 and ζ ¼ 1—which turns it into a
homogeneous one. In the de Sitter space limit ϵ ¼ 0, this
corresponds to the simple noncovariant gauge due to
Woodard [38]. Equations (118) and (119) are solved by

Â0ðη; k⃗Þ ¼ Uλðη; kÞb̂Hðk⃗Þ þ U�
λðη; kÞb̂†Hð−k⃗Þ

þ v0ðη; kÞb̂Pðk⃗Þ þ v�0ðη; kÞb̂†Pð−k⃗Þ; ð120Þ

ÂLðη; k⃗Þ ¼ −iUλþ1ðη; kÞb̂Hðk⃗Þ þ iU�
λþ1ðη; kÞb̂†Hð−k⃗Þ

− ivLðη; kÞb̂Pðk⃗Þ þ iv�Lðη; kÞb̂†Pð−k⃗Þ; ð121Þ

where the homogeneous parts solve the scalar mode
equation (5), while the particular mode functions v0 and
vL satisfy sourced mode equations,

�
∂
2
0 þ k2 −

�
λ2 −

1

4

�
ð1 − ϵÞ2H2

�
v0

¼ a2−2ζ½−2iξð1 − ζÞkHUλþ1 þ ð1 − ξÞk2Uλ�; ð122Þ

vL ¼ i
k

�
∂0 þ

�
λþ 1

2

�
ð1 − ϵÞH

�
v0 − ξa2−2ζUλþ1; ð123Þ

and we conveniently normalize them to

Re½v0ðη; kÞU�
λþ1ðη; kÞ þ vLðη; kÞU�

λðη; kÞ� ¼ 0: ð124Þ

This fixes the commutation relations between the time-
independent operators, the only nonvanishing ones being

½b̂Pðk⃗Þ; b̂†Hðk⃗0Þ� ¼ ½b̂Hðk⃗Þ; b̂†Pðk⃗0Þ� ¼ −δD−1ðk⃗ − k⃗0Þ: ð125Þ

These are not the canonical commutation relations for the
creation and annihilation operators that one is accustomed
to working with. Nonetheless, they are perfectly valid
solutions. In fact, a simple non-Bogolyubov transformation,

b̂1ðk⃗Þ ¼
1ffiffiffi
2

p ðb̂†Hð−k⃗Þ þ b̂†Pð−k⃗ÞÞ; ð126aÞ

b̂2ðk⃗Þ ¼
1ffiffiffi
2

p ðb̂Hðk⃗Þ − b̂Pðk⃗ÞÞ; ð126bÞ

leads to more familiar creation/annihilation operators with
nonvanishing commutators,

½b̂1ðk⃗Þ;b̂†1ðk⃗0Þ�¼½b̂2ðk⃗Þ;b̂†2ðk⃗0Þ�¼δD−1ðk⃗− k⃗0Þ: ð127Þ

However, for our purposes it is far more convenient to work
with b̂P and b̂H directly, as they readily translate to the
subsidiary condition on physical states.

3. Non-Hermitian subsidiary constraint

The conservation of the non-Hermitian subsidiary con-
straint operator (101) implies two Eqs. (104) that combine
into a single second order one,

�
∂
2
0 þ k2 −

�
λ2 −

1

4

�
ð1 − ϵÞ2H2

�
c1 ¼ 0; ð128Þ

c2 ¼
1

k

�
∂0 þ

�
λþ 1

2

�
ð1 − ϵÞH

�
c1; ð129Þ

with λ defined in (115). Again we recognize the scalar
mode equation (5) and apply the recurrence relation (11) to
write the general solutions in a convenient form:

c1ðη; k⃗Þ ¼ iβð−k⃗ÞUλðη; kÞ − iαðk⃗ÞU�
λðη; kÞ; ð130Þ

c2ðη; k⃗Þ ¼ βð−k⃗ÞUλþ1ðη; kÞ þ αðk⃗ÞU�
λþ1ðη; kÞ; ð131Þ

where αðk⃗Þ and βðk⃗Þ are free coefficients. Upon using the
Wronskian (12) the non-Hermitian constraint evaluates to

K̂ðk⃗Þ ¼ αðk⃗Þb̂Pðk⃗Þ þ βð−k⃗Þb̂†Pð−k⃗Þ; ð132Þ

and the condition of non-Hermiticity (103) now translates
into the condition on the coefficients,

				 αðk⃗Þ
βðk⃗Þ

				 ≠ 1: ð133Þ

The way that the free coefficients appear in (132) is
reminiscent of Bogolyubov coefficients, and ultimately they
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have such an interpretation. Since the overall normalization
of K̂ is immaterial we may parametrize it conveniently as6

K̂ðk⃗Þ ¼ N ðk⃗Þeiθðk⃗Þðe−iφðk⃗Þch½ρðk⃗Þ�b̂Pðk⃗Þ
þ eiφð−k⃗Þsh½ρð−k⃗Þ�b̂†Pð−k⃗ÞÞ; ð134Þ

where we introduced a normalization coefficient,

N ðk⃗Þ ¼ ðch½ρðk⃗Þ�ch½ρð−k⃗Þ� − sh½ρðk⃗Þ�sh½ρð−k⃗Þ�Þ−1
2

¼ ðch½ρðk⃗Þ − ρð−k⃗Þ�Þ−1
2; ð135Þ

and where θðk⃗Þ, φðk⃗Þ, and ρðk⃗Þ are arbitrary real functions.
Fixing these functions is a matter of convenience, whether it
is respecting some symmetry or some other requirement.
Since K̂ðk⃗Þ will annihilate the ket state, it is convenient to
employ it in computations, instead of using b̂Pðk⃗Þ. It is
likewise advantageous to introduce another non-Hermitian
operator associated with b̂Hðk⃗Þ,

B̂ðk⃗Þ ¼ N ðk⃗Þeiθðk⃗Þðe−iφðk⃗Þch½ρð−k⃗Þ�b̂Hðk⃗Þ
þ eiφð−k⃗Þsh½ρðk⃗Þ�b̂†Hð−k⃗ÞÞ; ð136Þ

that preserves the form of nonvanishing commutators (125),

½K̂ðk⃗Þ; B̂†ðk⃗0Þ� ¼ ½B̂ðk⃗Þ; K̂†ðk⃗0Þ� ¼ −δD−1ðk⃗ − k⃗0Þ: ð137Þ

In this sense (134)–(136) can be seen as a Bogolyubov
transformation preserving the noncanonical commutation
relations (125).
We can now also evaluate the parts of the non-Hermitian

decomposition (105) in terms of the scalar mode functions
that will prove useful later,

K̂1ðη; k⃗Þ ¼ ikN ðk⃗Þe−iθðk⃗Þ½eiφðk⃗Þch½ρð−k⃗Þ�Uλþ1ðη; kÞ
þ e−iφð−k⃗Þsh½ρðk⃗Þ�U�

λþ1ðη; kÞ�K̂ðk⃗Þ; ð138aÞ

K̂2ðη; k⃗Þ ¼ kN ðk⃗Þe−iθðk⃗Þ½eiφðk⃗Þch½ρð−k⃗Þ�Uλðη; kÞ
− e−iφð−k⃗Þsh½ρðk⃗Þ�U�

λðη; kÞ�K̂ðk⃗Þ: ð138bÞ

VI. CONSTRUCTING THE SPACE OF STATES

The preceding section considered the quantization of
the dynamics of field operators and of the subsidiary

non-Hermitian constraint operator. To complete the quan-
tization we need to construct a space of states on which the
field operators act. This cannot be the usual Fock space due
to the subsidiary condition (102) that forces upon us an
indefinite inner product space. The construction of the space
of states in quantized theories is typically intricately
connected to the symmetries of the system. Here we discuss
two concepts of symmetries arising in multiplier gauges:
physical symmetries that are symmetries of the gauge-
invariant action (18), and gauge-fixed symmetries that are
symmetries of the gauge-fixed action (54). The former are
actual symmetries of the system and characterize physical
properties of the state, while the latter are symmetries of the
gauge-fixed dynamics and are a matter of choice. Even
though in the case at hand the gauge-fixed symmetries
coincide with the physical symmetries, as both actions (18)
and (54) are invariant under spatial Euclidean transforma-
tions, in general this need not be the case. For example, in
the de Sitter space limit (ϵ ¼ 0) the gauge-invariant action
would be invariant under the maximal number of isometries,
while the gauge-fixed action for ζ ≠ 0 would be invariant
under Euclidean spatial transformations only. Thus we
would be able to define a state respecting physical de
Sitter symmetries, but the gauge-fixed dynamics could not
be made de Sitter invariant. For such a state correlators of
gauge-independent operators would exhibit physical sym-
metries, despite the fact that the correlators of gauge-
dependent quantities would not. This is why understanding
the distinction between the two is important. The physical
symmetries will influence the construction of the transverse
sector of the space of states, while the gauge-fixed sym-
metries will dictate the construction of the scalar sector.

A. FLRW symmetries

Flat FLRW spacetimes have 1
2
DðD − 1Þ isometries of the

(D − 1)-dimensional Euclidean spaces that make the equal-
time spatial slices. They consist of (D − 1) spatial trans-
lations,

η → η; xi → xi þ αi; ð139Þ

and of 1
2
ðD − 1ÞðD − 2Þ spatial rotations, whose infinitesi-

mal form is

η → η; xi → xi þ 2ωijxj; ðωij ¼ −ωjiÞ: ð140Þ

Both the gauge-invariant and the gauge-fixed photon
actions, (18) and (54), are invariant under infinitesimal
active transformations of the vector potential, associated
with spatial translations,

AμðxÞ → AμðxÞ − αi∂iAμðxÞ; ð141Þ

6This parametrization technically covers just half of the
parameter space. The other half is covered by interchanging
the roles of b̂Pðk⃗Þ and b̂†Pð−k⃗Þ. Even though there should be no
obstructions to this choice, it turns out to be inconsistent with
manifest Poincaré symmetries in flat space, and we do not
consider it.
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and with spatial rotations,

AμðxÞ → AμðxÞ þ 2ωijxi∂jAμðxÞ þ 2δiμωijAjðxÞ: ð142Þ

B. Physical symmetries

Even though the active transformations (141) and (142)
are symmetry transformations of the gauge-invariant
action (18), they are ambiguous on the account of gauge
transformations that carry no physical meaning. This means
we can combine (141) and (142) with a gauge trans-
formation and change their form without affecting the
physical content. The most convenient choice fixing the
ambiguity is requiring that the generators of these trans-
formations take a gauge-invariant form themselves. This is
accomplished by modifying (141) and (142) by a gauge
transformation to read, respectively,

AμðxÞ → AμðxÞ − αiFiμðxÞ;
AμðxÞ → AμðxÞ þ 2ωijxiFjμðxÞ: ð143Þ

Thus, the conserved Noether charges associated with the
two symmetry transformations of the gauge-invariant
action (18) are, respectively, the total linear momentum
and total angular momentum,

Pi ¼
Z

dD−1xð−FijΠjÞ; Mij ¼
Z

dD−1xð2x½iFj�kΠkÞ:

ð144Þ

They satisfy EðD − 1Þ algebra on-shell,

fPi; Pjg ≈ 0; fMij; Pkg ≈ 2P½iδj�k;

fMij;Mklg ≈ 4δi�½kMl�½j; ð145Þ

and serve as generators of corresponding symmetry trans-
formations. Their structure is more transparent if we write
them out in terms of longitudinal and transverse compo-
nents of the canonical variables (84)–(86), and recognize
the constraints (55),

Pi ¼
Z

dD−1xð−ΠT
j ∂iA

T
j − AT

i Ψ2Þ; ð146Þ

Mij ¼
Z

dD−1xð2x½iFT
j�kΠ

T
k þ 2x½iAT

j�Ψ2Þ: ð147Þ

Quantizing these symmetry generators implies promoting
fields to field operators, which necessitates proper operator
ordering in order for them to be observables. First, the parts
of (146) and (147) containing constraints should be ordered
according to the prescription outlined in Sec. IV C,

P̂i ¼ P̂T
i −

Z
dD−1xðK̂†

2Â
T
i þ ÂT

i K̂2Þ; ð148Þ

M̂ij ¼ M̂T
ij þ

Z
dD−1xð2K̂†

2x½iÂ
T
j� þ 2x½iÂ

T
j�K̂2Þ: ð149Þ

Second, the purely transverse parts should be normal-
ordered according to the standard prescription that is best
implemented in momentum spacewhere all the annihilation
operators of the transverse sector are put to the right of all
the creation operators. Using Fourier transforms of field
operators (87), the solutions of the transverse field oper-
ators (111) and (110), and the Wronskian (12) of the mode
function, the normal-ordered purely transverse parts of the
operators evaluate to

P̂T
i ¼

Z
dD−1kkiÊ

†
jðk⃗ÞÊjðk⃗Þ; ð150Þ

M̂T
ij ¼

Z
dD−1k

�
Ê†
kðk⃗Þ

�
iki

∂

∂kj
− ikj

∂

∂ki

�
Êkðk⃗Þ

þ 2Ê†
½iðk⃗ÞÊj�ðk⃗Þ

�
; ð151Þ

with the expressions written compactly using a shorthand
notation,

Êiðk⃗Þ ¼
XD−2

σ¼1

εiðσ; k⃗Þb̂Tðσ; k⃗Þ: ð152Þ

These generators of physical symmetries commute with the
non-Hermitian constraint,

½K̂ðk⃗Þ; P̂i� ¼ 0; ½K̂ðk⃗Þ; M̂ij� ¼ 0; ð153Þ

and preserve the algebra (145) at the level of matrix
elements,

hψ j½P̂i; P̂j�jψ 0i ¼ 0; hψ j½M̂ij; P̂k�jψ 0i ¼ ihψ j2P̂½iδj�kjψ 0i;
hψ j½M̂ij; M̂kl�jψ 0i ¼ ihψ j4δi�½kMl�½jjψ 0i: ð154Þ

In fact, it is only the purely transverse parts of (148) and
(151) that contribute to the matrix elements of the algebra.
The dynamics of field operators is given by the gauge-

fixed action. As a consequence the physical symmetry
generators (148) and (149) are not time-independent. That is
why it is meaningless to require there exists a state that is an
eigenstate of these generators in the usual sense. However,
the matrix elements of physical symmetry generators are
conserved in time, since only the purely transverse part
provides a nonvanishing contribution to them. The fact that
this part is time-independent can be seen from the solutions
given in (150) and (151). This implies that we can still
define a notion of an eigenstate jΩi of generators by the
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property that an expectation value of any polynomial of
generators equals the polynomial of expectation values,

hΩjPðP̂i; M̂ijÞjΩi ¼ PðP̄i; M̄ijÞ; hΩjP̂ijΩi ¼ P̄i;

hΩjM̂ijjΩi ¼ M̄ij: ð155Þ

This condition, together with the algebra (154), implies
there is only one such state that is a simultaneous eigenstate
of both, and that it has to have vanishing expectation values,

P̄i ¼ 0; M̄ij ¼ 0: ð156Þ

Another thing becomes evident upon closer examination
of (155)—it is only the transverse sector that is affected
by these conditions, and the full state will be the tensor
product between the transverse sector and the scalar sector,
jΩi ¼ jΩTi ⊗ jΩ0i. The only scalar sector operators
appearing in the generators are constraints, which are
ordered such that terms containing them drop out from
any expectation values:

hΩjPðP̂i; M̂ijÞjΩi ¼ hΩT jPðP̂T
i ; M̂

T
ijÞjΩTi: ð157Þ

Since the transverse sector is unconstrained, its space of
states can be constructed as the usual Fock space. There
must be some annihilation operator ĉTðσ; k⃗Þ that annihilates
the vacuum,

ĉTðσ; k⃗ÞjΩTi ¼ 0; ∀ σ; k⃗; ð158Þ

so that the rest of the Fock space is generated by acting with
the associated creation operators ĉ†Tðσ; k⃗Þ on that vacuum.
The most general choice respecting isotropy and homo-
geneity is given by the Bogolyubov transformation,

ĉTðσ; k⃗Þ ¼ e−iφT ðkÞch½ρTðkÞ�b̂Tðσ; k⃗Þ
þ eiφT ðkÞsh½ρTðkÞ�b̂†Tðσ;−k⃗Þ; ð159Þ

where φTðkÞ and ρTðkÞ are arbitrary real functions. The
vacuum defined in (158) is now an eigenstate of the purely
transverse parts of generators (150) and (151),

P̂T
i jΩTi ¼ 0; M̂T

ijjΩTi ¼ 0; ð160Þ

with vanishing eigenvalues, and thus corresponds to the
state respecting physical cosmological symmetries. Note
that the procedure of this section has fixed only the
transverse sector of the state, while leaving the scalar sector
unfixed. The scalar sector has to be fixed from different
considerations that the following section is devoted to.

C. Gauge-fixed symmetries

The conserved Noether charges associated with spatial
translations and spatial rotations that follow from the
gauge-fixed action (54) are, respectively,

P⋆
i ¼

Z
dD−1x



−Π0∂iA0 − Πj∂iAj

�
; ð161Þ

M⋆
ij ¼

Z
dD−1x



2Π0x½i∂j�A0 þ 2Πkx½i∂j�Ak þ 2Π½iAj�

�
:

ð162Þ

They are generators of the corresponding symmetry trans-
formations of the gauge-fixed dynamics, and they satisfy
the EðD − 1Þ algebra off-shell,

fP⋆
i ; P

⋆
j g ¼ 0; fM⋆

ij; P
⋆
k g ¼ 2P⋆

½iδj�k;

fM⋆
ij;M

⋆
klg ¼ 4δi�½kM⋆

l�½j: ð163Þ

The structure of these charges and their quantization is
more transparent when written in terms of transverse and
longitudinal components of the canonical fields,

P⋆
i ¼

Z
dD−1x

h
−ΠT

j ∂iA
T
j þ ðΨ2AL

i − Ψ1∂iA0Þ
i
; ð164Þ

M⋆
ij ¼

Z
dD−1x

h
2x½iFT

j�kΠ
T
k þ 2ðΨ1x½i∂j�A0 −Ψ2x½iAL

j�Þ
i
:

ð165Þ

Classically these symmetry generators are observables,
differing from the gauge-invariant ones (146) and (147)
only off-shell. Quantizing the gauge-fixed generators and
requiring they remain observables produces the following
operator ordering, according to Sec. IV C:

P̂⋆
i ¼ P̂T

i þ
Z

dD−1xðK̂†
2Â

L
i þ ÂL

i K̂2 − K̂†
1∂iÂ0 − ∂iÂ0K̂1Þ;

ð166Þ

M̂⋆
ij ¼ M̂T

ij þ
Z

dD−1xð2K̂†
1x½i∂j�Â0 þ 2x½i∂j�Â0K̂1

− 2K̂†
2x½iÂ

L
j� − 2x½iÂL

j�K̂2Þ; ð167Þ

where the normal-ordered purely transverse parts were
already given in (150) and (151). These quantum gener-
ators respect the EðD − 1Þ algebra at the operator level,

½P̂⋆
i ; P̂

⋆
j � ¼ 0; ½M̂⋆

ij; P̂
⋆
k � ¼ 2iP̂⋆

½iδj�k;

½M̂⋆
ij; M̂

⋆
kl� ¼ 4iδi�½kM̂⋆

l�½j: ð168Þ
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In order for the translationally and rotationally invariant
physical state to exist, it must be annihilated by
both symmetry generators (166) and (167), and by the
non-Hermitian constraint (134). This implies that the non-
Hermitian constraint Kðk⃗Þ must commute with the gauge-
fixed generators, modulo K̂ itself. That is already satisfied
for translations,

½K̂ðk⃗Þ; P̂⋆
i � ¼ kiK̂ðk⃗Þ; ð169Þ

but only after requiring

ρðk⃗Þ ¼ ρðkÞ; φðk⃗Þ ¼ φðkÞ ð170Þ

is it satisfied for rotations,

½K̂ðk⃗Þ; M̂⋆
ij� ¼ ieiθðk⃗Þ

�
ki

∂

∂kj
− kj

∂

∂ki

�
ðe−iθðk⃗ÞK̂ðk⃗ÞÞ: ð171Þ

With the restrictions (170) implemented in (166) and (167),
the gauge-fixed generators take the form

P̂⋆
i ¼ P̂T

i þ
Z

dD−1kki
h
K̂†ðk⃗ÞB̂ðk⃗Þ þ B̂†ðk⃗ÞK̂ðk⃗Þ

i
; ð172Þ

M̂⋆
ij ¼ M̂T

ij þ
Z

dD−1kð−iÞ

×

�
ðeiθðk⃗ÞB̂†ðk⃗ÞÞ

�
ki

∂

∂kj
− kj

∂

∂ki

�
ðe−iθðk⃗ÞK̂ðk⃗ÞÞ

þ ðeiθðk⃗ÞK̂†ðk⃗ÞÞ
�
ki

∂

∂kj
− kj

∂

∂ki

�
ðe−iθðk⃗ÞB̂ðk⃗ÞÞ

�
:

ð173Þ

Next we turn to finding an eigenstate of gauge-fixed
generators (172) and (173) with vanishing eigenvalues.
This is now a condition on the scalar sector, since the
transverse sector has already been fixed in Sec. VI B. Given
that the subsidiary condition (102) acts on the scalar sector
only, K̂ðk⃗ÞjΩ0i ¼ 0, by simple inspection of generators
(172) and (173) it is clear that the sought-for state vector
has to be annihilated by B̂ðk⃗Þ,

B̂ðk⃗ÞjΩ0i ¼ 0; ð174Þ

in addition to being annihilated by K̂ðk⃗Þ. This guarantees
that the state is annihilated by the gauge-fixed symmetry
generators,

P̂⋆
i jΩi ¼ 0; M̂⋆

ijjΩi ¼ 0: ð175Þ

Having defined the homogeneous and isotropic state,
next we construct the scalar sector space of states. Since the
operators acting on this vector space are K̂ðk⃗Þ and B̂ðk⃗Þ, the
rest of the basis vectors are generated by acting with
operators K̂†ðk⃗Þ and B̂†ðk⃗Þ. However, this will not be a
Fock space, since these operators are not the standard
creation/annihilation operators due to their algebra. There
are several features to notice.

1. Indefinite metric (inner product) space

In the scalar sector the space of states is spanned by
K̂†ðk⃗Þ and B̂†ðk⃗Þ acting on jΩ0i. In such a space there are
states of vanishing and negative norm (in addition to
positive norm). It is not difficult to construct examples.
The two state vectors,

jψ1i ¼
Z

dD−1kfðk⃗ÞK̂†ðk⃗ÞjΩ0i;

jψ2i ¼
Z

dD−1kfðk⃗ÞB̂†ðk⃗ÞjΩ0i; ð176Þ

are not orthogonal to each other, hψ jψi ≠ 0, but also both
have a vanishing norm,

hψ1jψ1i ¼ 0; hψ2jψ2i ¼ 0: ð177Þ

This is a consequence of commutation relations (137). It is
also straightforward to demonstrate the existence of neg-
ative norm states, e.g.

jψ3i ¼ jψ1i þ jψ2i⇒ hψ3jψ3i ¼ −2
Z

dD−1kjfðk⃗Þj2 < 0:

ð178Þ

Even though this might seem disconcerting at first, it is not
really an issue, as it does not affect the physical states
defined by (102).

2. Physical subspace is positive-definite

The physical subspace of the entire space of states is
defined by a subsidiary condition on the scalar sector space
of states, K̂ðk⃗ÞjΩphys

0 i ¼ 0. If the “vacuum” state of that
subspace is defined by condition (174) consistent with
manifest homogeneity and isotropy, then it can be shown
that the remaining members of the physical subspace take
the form

jΩphys
0 i ¼ jΩ0i þ

X∞
n¼1

Z
dD−1k1 � � � dD−1knfnðk⃗1;…; k⃗nÞK̂†ðk⃗1Þ � � � K̂†ðk⃗nÞjΩ0i ð179Þ
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that all have a unit norm,

hΩphys
0 jΩphys

0 i ¼ hΩ0jΩ0i ¼ 1: ð180Þ

This form is dictated by the conditions (102) and (174), and
the algebra of operators (137) spanning the scalar sector
space of states. Physically there is no difference whatsoever
which of the representatives in (179) we choose to represent
the state. Therefore, the choice is delegated to a matter of
convenience, which is obviously the physical and homo-
geneous state.

VII. TWO-POINT FUNCTIONS

The two-point functions fully characterize Gaussian
quantum states in free theories. Moreover, they are basic
ingredients for nonequilibrium perturbative computations
in field theory. In this section we first discuss state-
independent properties of the two-point functions—the
equations of motion they satisfy and the various subsidiary
conditions they have to respect. By the end of the section
we express the photon two-point functions in terms of a
few scalar mode functions introduced in Sec. V. Thus, we
reduce the future tasks of computing photon two-point
functions in FLRW spaces to computing several scalar
mode functions and the corresponding sum-over-modes.

A. General properties

The positive-frequency Wightman function for the pho-
ton is defined as an expectation value of a product of two
vector potential field operators,

i½−μΔþ
ν �ðx; x0Þ ¼ hΩjÂμðxÞÂνðx0ÞjΩi; ð181Þ

while the negative-frequency Wightman function,
i½þμ Δ−

ν �ðx; x0Þ ¼ fi½−μΔþ
ν �ðx; x0Þg�, is a complex conjugate

that reverses the order of operators in the product in (181).
These two can be used to define the Feynman propagator,

i½þμ Δþ
ν �ðx; x0Þ ¼ hΩjT ðÂμðxÞÂνðx0ÞÞjΩi

¼ θðη − η0Þi½−μΔþ
ν �ðx; x0Þ

þ θðη0 − ηÞi½þμ Δ−
ν �ðx; x0Þ; ð182Þ

and its conjugate, i½−μΔ−
ν �ðx; x0Þ ¼ fi½þμ Δþ

ν �ðx; x0Þg�, called
the Dyson propagator. The four two-point functions are
completely determined by specifying the quantum state.
Nonetheless, there are general properties that they have to
satisfy for any allowed states. These properties are useful as
checks of the consistency of two-point functions. We derive
and discuss them here.
First, the field operator equations of motion (58)–(61)

can be written in a more familiar covariant form,

Dμ
νÂν ¼ 0;

Dμν ¼ gμν□ −∇μ∇ν

þ 1

ξ
ð∇μ þ 2ζnμÞð∇ν − 2ζnνÞ − Rμν: ð183Þ

As a consequence, the Wightman function satisfies the
same homogeneous equation of motion on both external
points,

Dμ
ρi½−ρΔþ

ν �ðx; x0Þ ¼ 0; D0σ
ν i½−μΔþ

σ �ðx; x0Þ ¼ 0; ð184Þ

and the canonical commutation relations (57) guarantee
that the Feynman propagator satisfies inhomogeneous
equations,

Dμ
ρi½þρ Δþ

ν �ðx; x0Þ ¼ gμν
iδDðx − x0Þffiffiffiffiffiffi−gp ; ð185aÞ

D0
ν
σi½þμ Δþ

σ �ðx; x0Þ ¼ gμν
iδDðx − x0Þffiffiffiffiffiffi−gp : ð185bÞ

These are not the only state-independent equations that the
photon two-point functions satisfy. The quantization in
Sec. IV required the two-point functions of Hermitian
constraints (72) to vanish according to the correspondence
principle. By expressing the Hermitian constraints in terms
of the derivatives of vector potential field operators,

ð∇μ − 2ζnμÞÂμ ¼ ξa2−DΠ̂0 ¼ ξa2−DΨ̂1; ð186aÞ

ð2gijδμ½i∂0�∂jÞÂμ ¼ a2−D∂iΠ̂i ¼ a2−DΨ̂2; ð186bÞ

we can translate this quantization requirement into sub-
sidiary conditions for the Wightman function,

ð∇μ − 2ζnμÞð∇0ν − 2ζn0νÞi½−μΔþ
ν �ðx; x0Þ ¼ 0; ð187aÞ

ð∇μ − 2ζnμÞð2g0klδν½k∂00�∂0lÞi½−μΔþ
ν �ðx; x0Þ ¼ 0; ð187bÞ

ð2gijδμ½i∂0�∂jÞð∇0ν − 2ζn0νÞi½−μΔþ
ν �ðx; x0Þ ¼ 0; ð187cÞ

ð2gijδμ½i∂0�∂jÞð2g0klδν½k∂00�∂0lÞi½−μΔþ
ν �ðx; x0Þ ¼ 0; ð187dÞ

and for the Feynman propagator,

ð∇μ − 2ζnμÞð∇0ν − 2ζn0νÞi½þμ Δþ
ν �ðx; x0Þ ¼ −ξ

iδDðx − x0Þffiffiffiffiffiffi−gp ;

ð188aÞ

ð∇μ − 2ζnμÞð2g0klδν½k∂00�∂0lÞi½þμ Δþ
ν �ðx; x0Þ ¼ 0; ð188bÞ

ð2gijδμ½i∂0�∂jÞð∇0ν − 2ζn0νÞi½þμ Δþ
ν �ðx; x0Þ ¼ 0; ð188cÞ
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ð2gijδμ½i∂0�∂jÞð2g0klδν½k∂00�∂0lÞi½þμ Δþ
ν �ðx;x0Þ ¼ ∂i∂

0
i
iδDðx− x0Þffiffiffiffiffiffi−gp :

ð188dÞ

These are useful as consistency checks of two-point
functions. Failure to satisfy them signals inconsistencies
of photon two-point functions.
The two-derivative subsidiary conditions (187) and (188)

are independent of the choice of state, and in particular of
the choice of the pure gauge sector. There is a different way
of expressing (187) and (188), in terms of single-derivative
subsidiary conditions. These derive from considering
correlators between Hermitian constraints and vector field
operators,

ð∇μ − 2ζnμÞi½−μΔþ
ν �ðx; x0Þ ¼ ξa2−DhΩjΨ̂1ðxÞÂνðx0ÞjΩi;

ð189Þ

ð2gijδμ½i∂0�∂jÞi½−μΔþ
ν �ðx; x0Þ ¼ a2−DhΩjΨ̂2ðxÞÂνðx0ÞjΩi:

ð190Þ

Given the decomposition (73) of Hermitian constraints into
non-Hermitian ones, and the subsidiary condition in the
state (65), the right-hand sides above reduce to

ð∇μ − 2ζnμÞi½−μΔþ
ν �ðx; x0Þ ¼ ξa2−DhΩj½K̂1ðxÞ; Âνðx0Þ�jΩi;

ð191Þ

ð2gijδμ½i∂0�∂jÞi½−μΔþ
ν �ðx; x0Þ ¼ a2−DhΩj½K̂2ðxÞ; Âνðx0Þ�jΩi:

ð192Þ
Evaluating the position space commutators on the right-hand
side above is simpler if we first compute the momentum
space commutators,

½K̂ðk⃗Þ; Â0ðη; k⃗0Þ� ¼ −eiθðk⃗ÞU �
λðη; kÞδD−1ðk⃗þ k⃗0Þ; ð193Þ

½K̂ðk⃗Þ;ÂLðη; k⃗0Þ�¼−ieiθðk⃗ÞU �
λþ1ðη;kÞδD−1ðk⃗þ k⃗0Þ; ð194Þ

where we defined the two scalar mode functions,

U λðη;kÞ¼ eiφðkÞch½ρðkÞ�Uλðη;kÞ−e−iφðkÞsh½ρðkÞ�U�
λðη;kÞ;
ð195Þ

U λþ1ðη; kÞ ¼ eiφðkÞch½ρðkÞ�Uλþ1ðη; kÞ
þ e−iφðkÞsh½ρðkÞ�U�

λþ1ðη; kÞ; ð196Þ

that also satisfy the recurrence relations (11),

�
∂0 þ

�
λþ 1

2

�
ð1 − ϵÞH

�
U λ ¼ −ikU λþ1; ð197aÞ

�
∂0 −

�
λþ 1

2

�
ð1 − ϵÞH

�
U λþ1 ¼ −ikU λ: ð197bÞ

Using these recurrence relations, the commutators (193) and
(194), Fourier transforms (87) and (106), and the operators
(138), it is straightforward to show that the right-hand sides
of (191) and (192) are

ð∇μ−2ζnμÞi½−μΔþ
ν �ðx;x0Þ¼−ξ∂0ν

��
a0

a

�
ζ

i½−Δþ�λþ1ðx;x0Þ
�
;

ð198Þ

ð2gijδμ½i∂0�∂jÞi½−μΔþ
ν �ðx; x0Þ

¼ −ð∂0 þ 2ζHÞ∂0ν
��

a0

a

�
ζ

i½−Δþ�λþ1ðx; x0Þ
�
; ð199Þ

where we recognized the scalar two-point function (13),

i½−Δþ�λþ1ðx; x0Þ ¼ ðaa0Þ−D−2
2

Z
dD−1k
ð2πÞD−1 e

ik⃗·ðx⃗−x⃗0Þ

×U λþ1ðη; kÞU �
λþ1ðη0; kÞ: ð200Þ

It satisfies the scalar two-point function equation of motion
(14), which in turn guarantees that conditions (187) are
satisfied. Analogous results for the Feynman propagator are
derived in the same manner,

ð∇μ−2ζnμÞi½þμ Δþ
ν �ðx;x0Þ¼−ξ∂0ν

��
a0

a

�
ζ

i½þΔþ�λþ1ðx;x0Þ
�
;

ð201Þ

ð2gijδμ½i∂0�∂jÞi½þμ Δþ
ν �ðx; x0Þ

¼ −ð∂0 þ 2ζHÞ∂0ν
��

a0

a

�
ζ

i½þΔþ�λþ1ðx; x0Þ
�

þ δ0ν
iδDðx − x0Þ

aD−2 ; ð202Þ

and the scalar Feynman propagator satisfies (17), which
guarantees conditions (188) hold. Expressions (198) and
(199) for the Wightman function and (201) and (202) for the
Feynman propagator are the promised single-derivative
subsidiary conditions.
This is the point where the formalism outlined in this

work makes connection with the Becchi-Rouet-Stora-
Tyutin (BRST) quantization and Faddeev-Popov (FP)
ghosts. On the right-hand sides of the expressions for
the single derivative conditions above we can recognize the
FP ghost two-point function
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hc̄ðxÞcðx0Þi ¼
�
a0

a

�
ζ

i½−Δþ�λþ1ðx; x0Þ ð203Þ

that satisfies the equation of motion

ð∇0μ − 2ζn0μÞ∇0
μhc̄ðxÞcðx0Þi ¼ 0; ð204Þ

such that the single derivative subsidiary condition (198)
takes the form of the Ward-Takahashi identity,

ð∇μ − 2ζnμÞi½−μΔþ
ν �ðx; x0Þ ¼ −ξ∂0νhc̄ðxÞcðx0Þi: ð205Þ

This is precisely the condition that descends from the
BRST quantization. In addition to the gauge-fixing action
functional (1), there one introduces the accompanying FP
ghost action for Grassmanian fields c and c̄,

Sgh½c̄; c� ¼
Z

dDx
ffiffiffiffiffiffi
−g

p ð∇μc̄þ 2ζnμc̄Þð∇μcÞ; ð206Þ

such that the total action is invariant under global BRST
transformations,

Aμ → Aμ þ θξ∂μc; c̄ → c̄ − θð∇μ − 2ζnμÞAμ;

c → c; ð207Þ

parametrized by an infinitesimal Grassmanian parameter θ.
This implies a conserved BRST charge generating the
transformation. The physical states in BRST quantization
are required to be invariant under the action of this charge,
which yields the Ward-Takahashi identity (205) as a
consequence. It is Eq. (204) that guarantees the single-
derivative subsidiary conditions (198) and (199) are
consistent with the vanishing of the double-derivative
subsidiary conditions (187a)–(187d). Thus the correlators
of Hermitian constraints vanish, and the correspondence
principle is respected.

B. Mode sum representation

The components of the photon two-point functions can
be expressed as integrals over modes of products of mode
functions. This is accomplished by using conditions
imposed on the state both in the physical sector (158)
and in the gauge sector in (102) and (174), and the
momentum space representation of the field operators (87),

i½−0Δþ
0 �ðx; x0Þ ¼ ðaa0Þ−D−2−2ζ

2

Z
dD−1k
ð2πÞD−1 e

ik⃗·ðx⃗−x⃗0Þ½−U λðη; kÞV�
0ðη0; kÞ −V0ðη; kÞU �

λðη0; kÞ�; ð208Þ

i½−0Δþ
i �ðx; x0Þ ¼ ðaa0Þ−D−2−2ζ

2

Z
dD−1k
ð2πÞD−1 e

ik⃗·ðx⃗−x⃗0Þ ki
k
½U λðη; kÞV�

Lðη0; kÞ þV0ðη; kÞU �
λþ1ðη0; kÞ�; ð209Þ

i½−i Δþ
j �ðx; x0Þ ¼ ðaa0Þ−D−4

2

Z
dD−1k
ð2πÞD−1 e

ik⃗·ðx⃗−x⃗0Þ
�
δij −

kikj
k2

�
U

λTþ1
ðη; kÞU �

λTþ1
ðη0; kÞ

− ðaa0Þ−D−2−2ζ
2

Z
dD−1k
ð2πÞD−1 e

ik⃗·ðx⃗−x⃗0Þ kikj
k2

½U λþ1ðη; kÞV�
Lðη0; kÞ þVLðη; kÞU �

λþ1ðη0; kÞ�; ð210Þ

where we introduced the following shorthand notation for scalar mode functions,

U
λTþ1

ðη; kÞ ¼ eiφTðkÞch½ρTðkÞ�U λTþ1
ðη; kÞ − e−iφTðkÞsh½ρTðkÞ�U�

λTþ1
ðη; kÞ; ð211Þ

V0ðη; kÞ ¼ eiφðkÞch½ρðkÞ�v0ðη; kÞ − e−iφðkÞsh½ρðkÞ�v�0ðη; kÞ; ð212Þ

VLðη; kÞ ¼ eiφðkÞch½ρðkÞ�vLðη; kÞ þ e−iφðkÞsh½ρðkÞ�v�Lðη; kÞ; ð213Þ

in addition to the ones already defined in (195) and (196).
The Wightman function constructed this way is guaranteed
to satisfy both the equations of motion (184) and the
appropriate subsidiary conditions (187). The Feynman
propagator follows from the Wightman function simply
from the definition (182) and satisfies the equations of
motion (185) and subsidiary conditions (188). This guar-
antees that the perturbation theory based on these two-point
functions will yield correct results.

VIII. SIMPLE OBSERVABLES

The two-point functions computed according to the
preceding section can be used to compute quantum loop
corrections to various observables in spatially flat cosmo-
logical spaces. However, in addition to working out the
two-point functions, we also have to address the question of
ordering products of field operators comprising the observ-
ables. This is very much related to the fact that observables
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have to be independent of the gauge-fixing parameter ξ. To
elucidate this point, in this section we consider two simple
observables: the tree-level field strength correlator and the
one-loop energy-momentum tensor.

A. Field strength correlators

The simplest observable one can think of is the tree-level
off-coincident field strength correlator,

hΩjF̂μνðxÞF̂ρσðx0ÞjΩi ¼ 4ðδα½μ∂ν�Þðδβ½ρ∂0σ�Þi½−αΔþ
β �ðx; x0Þ;

ð214Þ

expressed in terms of derivatives acting on the vector
potential two-point function. The field strength tensor is an
observable, as it fully commutes with the Hermitian
constraints, and thus also with the non-Hermitian con-
straint. This is obvious if we write it in terms of canonical
variables of the transverse and scalar sectors,

F̂0i ¼ a4−DΠ̂T
i þ a4−DΠ̂L

i ; F̂ij ¼ 2∂½iÂT
j�: ð215Þ

This also makes it clear that the correlator (214) receives
contributions from the transverse sector only, and that any
gauge-dependence drops out,

hΩjF̂0iðxÞF̂0jðx0ÞjΩi ¼ ∂0∂
0
0hΩjÂT

i ðxÞÂT
j ðx0ÞjΩi; ð216Þ

hΩjF̂0iðxÞF̂klðx0ÞjΩi ¼ 2∂0ðδn½l∂0k�ÞhΩjÂT
i ðxÞÂT

nðx0ÞjΩi;
ð217Þ

hΩjF̂ijðxÞF̂klðx0ÞjΩi¼ 4ðδm½j∂i�Þðδn½l∂0k�ÞhΩjÂT
mðxÞÂT

nðx0ÞjΩi:
ð218Þ

The specific forms that these correlators take depend on the
particular FLRW spacetime, and on the state of the trans-
verse modes that is chosen, i.e. on the free coefficients
chosen in (159). In the four-dimensional limit the trans-
verse photons are conformally coupled, and there exists a
conformal vacuum state that has to reproduce the flat space
correlators,

hΩjF̂μνðxÞF̂ρσðx0ÞjΩi !D→4 2

π2ðΔx2Þ2

×

�
ημ½ρησ�ν − 4ηα½μην�½σηρ�β

ΔxαΔxβ

Δx2

�
: ð219Þ

This is a simple check that any photon two-point function
of a physically conformal vacuum state in FLRW space
must satisfy.

B. Energy-momentum tensor

The energy-momentum tensor is perhaps the simplest
one-loop observable, composed of a single photon two-
point function. There is an ambiguity, even at the classical
level, in how we define even the observable, which
consequently appears in the quantized theory as well.
This ambiguity, however, vanishes on-shell both in the
classical and in the quantum cases. Most of this subsection
is devoted to the discussion of how to properly define the
quantum energy-momentum tensor.

1. Classical energy-momentum tensor

Two sensible definitions for the energy-momentum
tensor of the photon field are possible. It can be defined
either as a variation of the gauge-invariant action (18),

Tμν ¼
−2ffiffiffiffiffiffi−gp δS

δgμν
¼

�
δρμδσν −

1

4
gμνgρσ

�
gαβFραFσβ; ð220Þ

or as a variation of the gauge-fixed action (54),

T⋆
μν ¼

−2ffiffiffiffiffiffi−gp δS⋆
δgμν

¼ Tμν þ Tgf
μν; ð221Þ

which, in addition to the gauge-invariant part, contains an
extra contribution from the gauge-fixing term (1),

Tgf
μν ¼ −2ffiffiffiffiffiffi−gp δSgf

δgμν

¼ −
2

ξ
ðAðμ∇νÞ þ 2ζnðμAνÞÞð∇ρAρ − 2ζnρAρÞ

þ gμν
ξ

�
ðAρ∇ρ þ 2ζnρAρÞð∇σAσ − 2ζnσAσÞ

þ 1

2
ð∇ρAρ − 2ζnρAρÞ2

�
: ð222Þ

Both definitions give energy-momentum tensors conserved
on-shell, but for the first definition (220) we have to use the
constraint equations (44), while the conservation for the
second definition (222) relies on the gauge-fixed dynamical
equations (46)–(49) only. At the classical level the two
definitions give the same answer on-shell. This is best seen
by expressing the gauge-fixing contribution in terms of
canonical variables,

Tgf
00 ¼ −a2−D

�
A0Ψ2 þ Ak∂kΨ1 þ

ξ

2
a4−DΨ2

1

�
; ð223aÞ

Tgf
0i ¼ −a2−D½A0∂iΨ1 þ AiΨ2�; ð223bÞ
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Tgf
ij ¼ −a2−D

�
2Aði∂jÞΨ1 þ δij

�
A0Ψ2 − Ak∂kΨ1

−
ξ

2
a4−DΨ2

1

��
; ð223cÞ

and noting that every term contains at least one of the first-
class constraints (37). In fact, it is only the transverse modes
that contribute to the energy-momentum tensor on-shell.
This is clear since the only contributing part is the gauge-
invariant one (220) that is composed out of field strength
tensors only, which contain only transverse fields and
constraints, as discussed in Sec. VIII A. The same properties
of the energy-momentum tensor are maintained in the
quantized theory if attention is paid to operator ordering.

2. Quantum energy-momentum tensor

When defining operators associated with quantum
observables attention needs to be paid to the ordering of
products of field operators. Usually Weyl ordering of field
operators is employed. However, this is not fully satisfac-
tory in gauge theories as, in general, it does not respect the
correspondence principle. For the energy-momentum tensor
this is the question of the contribution of the gauge-fixing
part (222). In the classical theory this contribution vanishes,
and it is sensible to demand the same property in the
quantized theory. This is accomplished by correct operator
ordering. Here we discuss the quantization of the two parts
of the definition (220) and (222) separately.
Gauge-invariant part. For the gauge-invariant part (220)

defining an operator is straightforward, since when
expressed in terms of the canonical fields all the terms
are composed either solely of transverse fields or solely of
constraints. Therefore, we may define the operator to be
Weyl-ordered, and the expectation value essentially reduces
to the coincident limit of the field strength correlator,

hΩjT̂μνðxÞjΩi ¼
�
δρμδσν −

1

4
gμνgρσ

�
gαβ

×
1

2
hΩjfF̂ραðxÞ; F̂σβðxÞgjΩi: ð224Þ

If the off-coincident field strength correlator (214) is
computed in D dimensions we can take a dimensionally
regulated coincidence limit required above. The precise
value of (224) depends on the transverse photon state and
the particular FLRW background.
Gauge-fixing part. The gauge-fixing contribution (222)

to the energy-momentum tensor contains constraints, as
evident from (223). Therefore, the operator associated with
the gauge-fixing part of the energy-momentum tensor has
to be ordered properly, as explained in Sec. IV C. The
Hermitian constraints have to be split into parts containing
the non-Hermitian subsidiary constraint K̂ and parts con-
taining its conjugate K̂†, and the former has to be put to the

right of the product and the latter to the left. This is
accomplished by making use of decompositions in (73),

T̂gf
00 ≡ ½T̂gf

00�g ¼ −a2−D
�
ðK̂†

2Â0 þ ∂kK̂
†
1ÂkÞ

þ ðÂ0K̂2 þ Âk∂kK̂1Þ þ
ξ

2
a4−DΨ̂2

1

�
; ð225aÞ

T̂gf
0i ≡ ½T̂gf

0i �g ¼ −a2−D
h
ð∂iK̂†

1Â0 þ K̂†
2ÂiÞ

þ ðÂ0∂iK̂1 þ ÂiK̂2Þ
i
; ð225bÞ

T̂gf
ij ≡ ½T̂gf

ij �g ¼ −a2−D
�
2∂ðiK̂

†
1ÂjÞ þ δijðK̂†

2Â0 − ∂kK̂
†
1ÂkÞ

þ 2Âði∂jÞK̂1 þ δijðÂ0K̂2 − Âk∂kK̂1Þ−
ξ

2
δija4−DΨ̂2

1

�
:

ð225cÞ

Note that for terms composed solely of constraints this
ordering is immaterial since the non-Hermitian subsidiary
constraint and its conjugate commute. Defined this way it is
manifest that the expectation value always vanishes,

hΩjT̂gf
μνðxÞjΩi ¼ 0; ð226Þ

as it should, without any additional arguments.
Even though the operator ordering in (225) leads to

correct and consistent results, it is rather unwieldy to use it
in practice. In general Weyl-ordered products are far more
convenient to use. We can indeed commute the operators in
products of (222) to the Weyl-ordered form, but this leaves
nonvanishing commutators accounting for the difference
between two ordering prescriptions,

½T̂gf
00�g ¼ ½T̂gf

00�W þ a2−D Reð½K̂2; Â0� þ ½∂kK̂1; Âk�Þ; ð227aÞ

½T̂gf
0i �g ¼ ½T̂gf

0i �W þ a2−D Reð½∂iK̂1; Â0� þ ½K̂2; Âi�Þ; ð227bÞ

½T̂gf
ij �g ¼ ½T̂gf

ij �W þ a2−D Reð2½∂ðiK̂1; ÂjÞ�
þ δij½K̂2; Â0� − δij½∂kK̂1; Âk�Þ: ð227cÞ

The Weyl-ordered parts above can easily be defined from
the covariant expression (222) directly, by simply sym-
metrizing the products of Hermitian operators,

½Tgf
μν�W ¼ −

1

ξ
fÂðμ; ð∇νÞ þ 2ζnνÞÞð∇ρÂρ − 2ζnρÂρÞg

þ gμν
2ξ

�
fÂρ; ð∇ρ þ 2ζnρÞð∇σÂσ − 2ζnσÂσÞg

þ ð∇ρÂρ − 2ζnρÂρÞ2
�
: ð228Þ
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The nonvanishing commutators in (227) that are just
c-numbers can be evaluated as coincidence limits of
position space commutators using (191)–(199). This leads
to the following relation between the properly gauge-
ordered gauge-fixing contribution to the energy-momentum
tensor and the Weyl-ordered contribution,

½T̂gf
μν�g ¼ ½T̂gf

μν�W − Re

�h
2ð∇ðμ∇0

νÞ þ 2ζnðμ∇0
νÞÞ

− gμνð∇ρ∇0
ρ þ 2ζnρ∇0

ρÞ
i

×

��
a0

a

�
ζ

i½−Δþ�ðx; x0Þ
�
x0→x

�
: ð229Þ

The result in (226) is guaranteed only if we take the left-
hand side of the expression above as the definition, or if we
take the full right-hand side. This shows how the Weyl-
ordered product is incomplete when defining the observ-
able, as it needs to be supplemented by the contribution in
the second line of (229). This c-number contribution can,
in fact, be recognized as the FP ghost contribution to the
energy-momentum tensor that descends from the FP ghost
action (206). Thus, we see that even in the linear Abelian
gauge theory, and even without being explicitly intro-
duced, the FP ghosts naturally arise as commutators
accounting for the difference between proper operator
ordering of operators and Weyl ordering of operators.
Either form of the definition we adopt, (225) or (229),
leads to the vanishing expectation value (226). Therefore,
one has two options: either gauge-order operators con-
taining constraints or Weyl-order all the products and add
the FP ghost contributions.
Had we ignored the question of operator ordering and

defined (228) as the observable, its expectation value would
no longer vanish identically. This is what is behind the
conclusion in [37,79,80] that the gauge-fixing contribution
to the energy-momentum tensor of the photon engenders a
nonvanishing cosmological constant contribution. This
conclusion, however, does not hold up. Reference [49]
attempted to address the question of the vanishing gauge-
fixing contribution to the energy-momentum tensor in de
Sitter space by considering Weyl ordering of operators, but
without introducing FP ghosts and instead employing
adiabatic subtraction to obtain (226). That approach cannot
be correct, as it suggests that gauge-independence has
something to do with the divergent UV structure of the
theory, and it leaves the option for the gauge-fixing part of
the energy-momentum tensor to produce a physical con-
tribution in some spacetime other than de Sitter. Moreover,
their conclusion that FP ghosts are not necessary when
operators are Weyl ordered contradicts the results of this
section, as well as contradicting consistent analogs for
Stueckelberg vector fields [81,82].

IX. DISCUSSION

In this work we considered the canonical quantization of
the photon (massless vector field) in spatially flat FLRW
spacetimes in the two-parameter family of linear gauges
(1). We used this framework to demonstrate that observ-
ables with appropriate operator ordering respect expect-
ations set by the correspondence principle. In particular, we
had demonstrated how the gauge-fixing term (1) does not
contribute to the energy-momentum tensor expectation
value for any physical state.
Along the way we had elucidated how the canonical

formulation is the appropriate framework for the Gupta-
Bleuler quantization, and we had derived the subsidiary
condition on the physical state from the first-class con-
straint structure of the classical theory. This subsidiary
condition translates into subsidiary conditions on two-point
functions derived in Sec. VII A. The form of these sub-
sidiary conditions depends on the two gauge-fixing param-
eters ξ and ζ from (1), as in fact does the two-point function
itself. Two-point functions with free gauge-fixing param-
eters are particularly useful for computations, as they allow
for explicit checks of gauge independence of observables
that should not depend on the gauge-fixing parameters. The
construction of inflationary gauge-independent quantum
observables is still in its early stages [83].
Different two-point functions considered in Sec. VII are

basic building blocks of nonequilibrium loop computations
in the Schwinger-Keldysh formalism appropriate for early
universe cosmology. We believe that the framework set up
in this paper will facilitate the construction of photon
propagators in realistic inflationary spacetimes that will in
turn allow the investigation of slow-roll corrections to large
infrared effects found when photons interact with spectator
scalars and gravitons in de Sitter [13–35]. We had
expressed the photon two-point function in Sec. VII B in
terms of several scalar mode functions. The equations of
motion that these scalar mode functions satisfy are col-
lected in Sec. V C. In that form it should be considerably
easier to identify convenient choices for gauge-fixing
parameters that lead to simpler propagators for given
inflationary backgrounds. Constructing such two-point
functions will be the subject of future work [84].
Furthermore, collecting subsidiary conditions for two-point
functions in Sec. VII A, in both the double derivative and
the single derivative forms, will facilitate consistency
checks of photon two-point functions constructed in future
studies.
Before embarking to compute the photon propagators in

power-law and slow-roll inflation it is instructive to check
the existing two-point functions in de Sitter space (ϵ ¼ 0)
from the literature versus subsidiary conditions for the
Wightman function (187) and for the Feynman propagator
(188). The checks are summarized in Table I. Unexpectedly,
they reveal that the general covariant gauge two-point
functions satisfy all the required subsidiary conditions only
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in the exact transverse gauge limit ξ → 0. For nonvanishing
ξ the double divergence of the covariant gauge two-point
functions fails to vanish off-coincidence,

∇μ∇0νi½−μΔþ
ν �ðx; x0Þ ¼ −

ξHDΓðDÞ
ð4πÞD2ΓðD

2
Þ ¼ ∇μ∇0νi½þμ Δþ

ν �ðx; x0Þ;

x ≠ x0; ð230Þ

violating subsidiary conditions (187) and (188). This points
to inconsistencies of known results even for the relatively

simple case of the maximally symmetric de Sitter space.
These inconsistencies will be examined in more detail and
addressed elsewhere [60,61].
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