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We show that it is possible to define a timelike future-directed information current within relativistic
first-order hydrodynamics. This constitutes the first step toward a covariantly stable and causal formulation
of first-order fluctuating hydrodynamics based on thermodynamic principles. We provide several explicit
examples of first-order theories with an information current, covering many physical phenomena, ranging
from electric conduction to viscosity and elasticity. We use these information currents to compute the
corresponding equal-time correlation functions, and we find that the physically relevant (equal-time)
correlators do not depend on the choice of the hydrodynamic frame as long as the frame leads to causal and
stable dynamics. In the example of chiral hydrodynamics, we find that circularly polarized shear waves
have different probabilities of being excited depending on their handedness, generating net helicity in chiral
fluids.
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I. INTRODUCTION

Understanding the subtle interplay between infrared (IR)
and ultraviolet (UV) phenomena is one of the most serious
challenges of relativistic fluid dynamics [1–3]. Recently, a
systematic investigation into this issue was pursued in [4–7]
starting from fundamental physical principles. In a nut-
shell, the problem is that even if hydrodynamics is
supposed to be applicable in the limit of very small
gradients (the IR regime) [8–10], still, a “strict IR limit”
can never be achieved in finite systems because the Fourier
transform of a compactly supported profile must contain
all wave numbers [11]. Hence, high-frequency (i.e., UV)
contamination is unavoidable in practice, which becomes
especially relevant in the nonlinear regime. In fact, UV
issues can spoil both the physical content and the math-
ematical consistency of the equations, making some
hydrodynamical theories essentially unphysical and ill-
suited for applications [12–15].
The simplest example of a UV-pathological model is the

linearized Super-Burnett diffusion equation [15–18],

∂tn ¼ D∂
2
xnþ B∂4xn; ð1Þ

where n is a conserved density, D > 0 is the Fick diffusion
coefficient, and B > 0 is the Super-Burnett coefficient.1 For

small gradients, (1) seems reasonable, as it implements the
lowest-order correction to Fick’s law. However, in the UV
limit (i.e., outside the regime of validity of the theory where
k → þ∞, with k being the wave number), the growth rate of
the Fourier modes, ΓðkÞ ¼ −Dk2 þ Bk4, is large and
positive. This results in a violent UV instability, which
causes the initial value problem of (1) to be ill-posed [15].
Indeed, there are no solutions of Eq. (1) for most initial data
(including all Gaussian profiles). To fix this kind of problem,
one needs to regularize the UV, i.e., to introduce some
additional term that acts to suppress high frequencies
while being negligible at low frequencies. For example,
in equation (1), we may add a fictitious term Λ∂6xn
(with Λ > 0) on the right side of (1), so that now
ΓðkÞ ¼ −Dk2 þ Bk4 − Λk6. This causes all the wave num-
bers above the cutoff scale kc ∼

ffiffiffiffiffiffiffiffiffi
B=Λ

p
to be automatically

suppressed, making the initial value problem solvable (while
leaving the IR unaffected).
Recently, a similar strategy has been adopted to regularize

relativistic first-order hydrodynamic theories: the so-called
Bemfica-Disconzi-Noronha-Kovtun (BDNK) approach
[4,5,10,19,20] (with the most general form including both
vector and axial-vector currents studied in [21]). This
includes additional first-order derivative corrections to the
constitutive relations, which do not appear in the standard
“Navier-Stokes formulations” of Eckart [22] and Landau
and Lifshitz [23]. As it turns out, these additional terms do
not modify the IR behavior because there is always a field
redefinition that maps BDNK into standard Navier-Stokes
plus some higher-order corrections [10]. However, with an

1While the second law of thermodynamics forces D to be
positive, the sign of B cannot be argued from such universal
arguments. However, this coefficient turns out to be positive in
kinetic theory models [18].

PHYSICAL REVIEW D 109, 085013 (2024)

2470-0010=2024=109(8)=085013(19) 085013-1 © 2024 American Physical Society

https://orcid.org/0000-0002-6603-9253
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.085013&domain=pdf&date_stamp=2024-04-17
https://doi.org/10.1103/PhysRevD.109.085013
https://doi.org/10.1103/PhysRevD.109.085013
https://doi.org/10.1103/PhysRevD.109.085013
https://doi.org/10.1103/PhysRevD.109.085013


appropriate choice of parameters, these additional pieces
can keep the UV sector under control, making BDNK
(covariantly [24]) stable, causal, and its initial value
problem well-posed [5].
Paradoxically, while this technical improvement made it

possible to rigorously solve relativistic first-order hydro-
dynamics numerically in complex situations (see, for
example, [25–27]), it also made it more difficult to
implement stochastic fluctuations within a first-order
framework [28–30]. In fact, it has been recently shown
that while the additional “non-Navier-Stokes” terms in
BDNK regularize the deterministic equations of motion,
they also add divergent UV contributions to the noise,
causing fluctuations to grow seemingly out of control [29]
(see also [30]). To understand why this happens, one
should remember that BDNK hydrodynamics achieves
well-posedness and covariant stability at the expense of not
exactly satisfying the maximum entropy principle and the
second law of thermodynamics in the UV [31,32]. In fact,
in BDNK hydrodynamics, these properties are only valid
within the regime of validity of this effective theory. Given
that the entropy determines the probability distribution of
fluctuations, it is unsurprising that there can be a sponta-
neous condensation of all those UV modes whose entropy
is higher than the equilibrium entropy in the current
description of fluctuating first-order theories.
A way out is to regularize the probability distribution of

fluctuations of first-order theories. In particular, one should
be able to add some UV regulators to the entropy, making
the latter exactly nondecreasing along solutions of the
corresponding first-order theory and exactly maximal at
equilibrium, also in the UV limit. In the linear regime, this
corresponds to finding an information current Eμ and an
entropy production rate σ, both quadratic in deviations from
global equilibrium, with the following properties [33]:

(i) For fluctuations that conserve the values of all
the integrals of motion of the system, we must have
that [6]

E ¼
Z
R3

E0d3x ¼ Seq − S; ð2Þ

at least up to first-order in gradients (S ¼ entropy of
the state, Seq ¼ entropy at equilibrium). This im-
plies that if we know the constitutive relation for the
entropy current to first order (see e.g. Appendix A
of [10]), then the UV regularized Eμ should agree to
first order with the Eμ computed from the direct
variation of the entropy.

(ii) The entropy production equation ∂μEμ þ σ ¼ 0
must hold as an exact identity along all classical
solutions of the equations of motion of the first-order
theory. Thus, one requires the second law of
thermodynamics to hold even in the UV limit, i.e.

far beyond the regime of applicability of the effec-
tive theory.

(iii) The vector Eμ should always be timelike future-
directed,2 and the scalar σ should always be non-
negative, for arbitrary perturbations, both on-shell
and off-shell. In other words, the maximum entropy
principle should also hold in the UV limit and
independently of whether the fluctuations are sol-
utions to the equations of motion.

Under these assumptions, one can not only automatically
prove stability and causality of the linearized equations of
motion [6,33] but also of Gaussian stochastic fluctuations
because the probability distribution eS is now maximized in
equilibrium. Furthermore, one is also able to set up a fully
covariant theory of fluctuations directly from the knowl-
edge of Eμ and σ [34], through a relativistic generalization
of the Fox-Uhlenbeck approach [35].
In this work, we construct a UV-regularized information

current and entropy production rate for many first-order
theories, so that requirements (i, ii, iii) are all fulfilled.
Unfortunately, the procedure often involves some trial and
error, and it is unclear at this point that a general systematic
derivation exists. However, we will provide a long list of
concrete examples pertaining to deeply different physical
systems so that the reader should have an overview of the
typical information currents that arise in this procedure. As
a first application in the direction of fluctuating hydro-
dynamics, we will compute all the equal-time correlators of
the associated theories. The development of a consistent
first-order theory of stochastic fluctuations using the
insights obtained in this work will be carried out in another
paper [36].
This paper is organized as follows. In Sec. II, we explain

why standard methods lead to an inadequate information
current in first-order theories, and we outline a regulariza-
tion procedure that can be used to fix the problem on a case-
by-case basis. In Sec. III, we use this procedure to construct
a regularized information current for the relativistic diffu-
sion equation, and we illustrate its utility by computing
equal-time correlators in the fluctuating theory. The remain-
ing sections follow more or less the same format as this,
showcasing the method with examples from different
physical contexts. In Sec. IV, we consider a diffusing charge
coupled to electric and magnetic fields. In Secs. V and VI,
we consider simple causal and stable first-order theories for
relativistic fluids with bulk viscosity (Sec. V) and shear
viscosity (Sec. VI). In Sec. VII, we depart from dissipative
models, turning our attention to the nondissipative dynamics
of Goldstone modes. We consider Goldstone modes asso-
ciated with a spontaneously broken Uð1Þ symmetry (as in a

2We note that Eμ is also allowed to be lightlike, future directed.
However, it considerably simplifies the analysis if we work with
strict inequalities and deal with limiting cases afterward, on a
case-by-case basis.
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superfluid) or translational symmetry (as in an elastic
medium). In Sec. VIII, we consider ideal chiral hydro-
dynamics, the nondissipative theory of a relativistic fluid
with an underlying chiral anomaly. We conclude in Sec. IX
with some physical remarks. Throughout the article, we
adopt the spacetime signature ð−;þ;þ;þÞ in Minkowski
spacetime with Cartesian coordinates and natural units
c ¼ kB ¼ ℏ ¼ 1. Greek indices are spacetime indices that
run from 0 to 3, while Latin indices are purely spatial
indices running from 1 to 3 (Einstein’s convention applies to
all indices). For the volume form, we adopt the conven-
tion ε0123 ¼ þ1.

II. UV-REGULARIZED INFORMATION CURRENT

Previous works argued that first-order hydrodynamics
cannot admit a proper information current [31,32]. This is
due to the fact that quadratic vector fields that are truncated
to first order in derivatives always fail to be timelike future
directed at large gradients. Here, we discuss the origin of
the problem and present our solution.

A. First-order truncation

Let φ be the collection of linearized fields describing
small infrared perturbations in a fluid. By definition, φ
vanishes in global equilibrium. Assuming that the back-
ground equilibrium state is homogeneous and isotropic and
the spacetime is flat, the information current and entropy
production rate should be expressed as local functions of
the perturbation fields and their derivatives, namely

Eμ ¼ Eμðφ; ∂νφ; ∂ν∂ρφ;…Þ;
σ ¼ σðφ; ∂νφ; ∂ν∂ρφ;…Þ: ð3Þ

Given that Eμ and σ are constructed as second varia-
tions [6], they are quadratic in the fluctuations. Hence, they
are linear combinations of terms of the form ∂

mφ∂nφ,
where m and n denote the number of derivatives. In a
hypothetical “exact theory,” (3) may contain an infinite
series of terms. However, since the hydrodynamic theory
applies only to small gradients, one can perform a trunca-
tion at some finite order in derivatives. In practice, if we
decide to truncate at order r, then we only need to include
all terms ∂mφ∂nφ with mþ n ≤ r.
If we truncate to zeroth order, there are no derivatives,

and we obtain the information current in the ideal fluid
limit. Thus, if we want to include viscous corrections, we
must keep at least the first-order terms. If we decide to
truncate only up to the first order, then we can schemati-
cally write (to lighten the notation, the linear combination
coefficients are understood)

Eμ ∼ φφþ φ∂φ: ð4Þ

Now we immediately find an issue. In fact, we would like
Eμ to be always timelike future directed. Hence, we should
require E0 − E1 to be a positive definite quadratic form.
But, in general, we have

E0 − E1 ∼ φφþ φ∂φ ∼ ðφ; ∂φÞ
�
# #

# 0

��
φ

∂φ

�
: ð5Þ

Clearly, if the φ∂φ term does not vanish, the quantity
E0 − E1 cannot be a non-negative definite quadratic form
due to the zero on the diagonal. Hence, Eμ fails to be a
timelike future-directed 4-vector at large gradients.
From a purely physical perspective, this does not contra-

dict any thermodynamic principle because only the infinite
series (3) must truly be timelike future-directed. Indeed, it
is evident that E0 − E1 becomes negative only when the
term φ∂φ becomes comparable to the term φφ, which is
precisely when the first order truncation is no longer
applicable (thus, outside of the regime of validity of
the first-order theory). However, if the truncated Eμ is not
timelike future directed in the UV, then the corresponding
probability distribution eS−Seq ¼ e−E is ill defined due to
unphysical UV divergences.3 This makes the truncated
information current useless for studying fluctuations.
Hence, our goal now is to introduce some higher-frequency
corrections, which regularize the UV sector by introducing a
cutoff, thereby suppressing all unphysical divergences.

B. UV regularization

From a physical standpoint, there is no reason to expect
that Eμ, when truncated at any given (nonzero) order,
remains timelike future directed also at large gradients.
Indeed, even if we go up to second order, by including
terms of the form ∂φ∂φ and φ∂∂φ, we have

E0 − E1 ∼ ðφ; ∂φ; ∂∂φÞ

2
64
# # #

# # 0

# 0 0

3
75
0
B@

φ

∂φ

∂∂φ

1
CA; ð6Þ

and, again, there is a 0 on the diagonal.
Luckily, there is a simple solution. Let us recall that the

entropy current of first-order theories is determined only up
to first order in derivatives [10]. Hence, the terms ∂φ∂φ and
φ∂∂φ are of the same order as the truncation error, and their
exact value is irrelevant for physical purposes. This implies

3The proof is straightforward. Suppose that some fluctuation φ̄
is such that Ē < 0. Then, the perturbations aφ̄ (with a ¼ const)
have probability ∝ e−a

2Ē, which tends to þ∞ for large a. The
result is a non-normalizable (and therefore ill-defined) probability
distribution, which favors infinitely large deviations from equi-
librium. On the other hand, if Ē is positive, then e−a

2Ē is a
Gaussian peaked at a ¼ 0.
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that we can “fix them at will” in this order. In particular, one
can set the terms φ∂∂φ to zero, so that now

E0 − E1 ∼ ðφ; ∂φÞ
�
# #

# #

��
φ

∂φ

�
: ð7Þ

Then, we just need to tune the terms ∂φ∂φ to make Eμ

timelike future directed also at large gradients. At the same
time, we can try to enforce that the equation ∂μEμ þ σ ¼ 0

be exactly consistent with the equations of motion (also
outside the formal regime of applicability of the theory).
When this is possible, we can say that a first-order theory
admits a proper (i.e. useful) information current, and it can
therefore be made stable also against stochastic fluctua-
tions [34]. Note that, in this setting, the terms ∂φ∂φ should
always be interpreted as mere UV regulator terms, sup-
pressing spurious UV cutoff phenomena in the fluctuating
system. For this reason, the detailed structure of these
second-order terms is highly sensitive to the behavior of
the theory at large gradients. This implies that the terms
∂φ∂φ cannot have simple (and universal) transformation
laws under changes of hydrodynamic frame, since the
latter abruptly redefine both the causality and the stability
properties of the UV sector.

C. Quick application: Equal-time correlators

The equilibrium probability distribution of fluctuations
of an isolated system is proportional to eS−Seq ¼ e−E.
Hence, one can use the information current to compute
any equal-time correlation function by averaging over all
possible hydrodynamic macrostates at a given time. The
result is a functional integral, e.g.

hφðxÞφTðyÞi ¼
R
φðxÞφTðyÞe−ED½φ�D½∂tφ�R

e−ED½φ�D½∂tφ�
; ð8Þ

which converges in a fully covariant manner provided that
Eμ is timelike future directed (see footnote 3). Note that the
functional integral must be performed over all the field
configurations on a three-dimensional t ¼ const hypersur-
face (not on the whole 4D spacetime). Hence, if the
equation of motion is of second order in time, the time
derivatives ∂tφ must be treated as independent degrees of
freedom since they can be chosen freely, and they con-
tribute to defining the physical state at t ¼ 0. For this
reason, we needed to include them in the measure of (8) as
additional variables.
Since the information current is quadratic in the fields,

Eq. (8) defines a Gaussian functional integral, which can be
evaluated using standard field theory techniques [37]. In
fact, if we rewrite E as a generalized quadratic form,

E¼
Z

d3x
1

2
ðφT;∂tφTÞKð∂jÞ

�
φ

∂tφ

�

¼
Z

d3xd3y
1

2
ðφTðxÞ;∂tφTðxÞÞKðx−yÞ

�
φðyÞ
∂tφðyÞ

�
; ð9Þ

where K is Hermitian, and the kernel is

Kðx − yÞ ¼
Z

d3k
ð2πÞ3 e

ik·ðx−yÞKðikjÞ; ð10Þ

then we have the following well-established formula for the
correlators [37] (K−1 is the ordinary matrix inverse of K):

"
hφðxÞφTðyÞi hφðxÞ∂tφTðyÞi
h∂tφðxÞφTðyÞi h∂tφðxÞ∂tφTðyÞi

#

¼
Z

d3k
ð2πÞ3 e

ik·ðx−yÞKðikjÞ−1: ð11Þ

It is also possible to use the information current to evaluate
correlators at nonequal times. This task requires the con-
struction of a fully dynamic theory of stochastic fluctuations
mirroring [34], which we leave for future work [36].

III. CAUSAL DIFFUSION

We begin with the simplest example possible: the
relativistic diffusion equation. Let φ be the perturbation
to the baryon chemical potential (possibly rescaled by some
background constant). Assume that, in the equilibrium
global rest frame of the medium, φ obeys the equation

τ∂2tφþ ∂tφ −D∂j∂
jφ ¼ 0: ð12Þ

The transport coefficients τ and D are positive constants,
and causality demands that τ > D. Equation (12) can be
viewed as a first-order theory,4 with a conserved baryon
four-current Jμ ¼ ðφþ τ∂tφ;−D∂

jφÞ. Note that the value
of τ defines the choice of the hydrodynamic frame since we
can always make a field redefinition φ → φþ a∂tφ [10].

A. Regularized information current

It is easy to verify that, up to a global multiplicative
constant, the most general information current and entropy
production rate for this model, involving only terms as
in (7), are

4Equation (12) can also be interpreted as an Israel-Stewart
theory [38,39], in which case we would need to introduce and
independent degree of freedom qj, satisfying the equations ∂tφþ
∂jqj ¼ 0 and τ∂tqj þ qj ¼ −D∂jφ, and the information current
would be a function of both φ and qj [7,40].
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E0 ¼ 1

2
½φ2 þ 2τφ∂tφþ λτð∂tφÞ2 þ λD∂jφ∂

jφ�;
Ej ¼ −Dðφþ λ∂tφÞ∂jφ;
σ ¼ ðλ − τÞð∂tφÞ2 þD∂jφ∂

jφ; ð13Þ

where λ is an additional free parameter (to be fixed to
ensure thermodynamic stability [33]). We note that (13)
contains all the terms allowed by symmetry, apart from the
terms φ2 and φ∂tφ in the entropy production rate, which are
forbidden by baryon conservation and the second law of
thermodynamics in the infrared limit. Furthermore, the
coefficients have been fixed in such a way that the equation
∂μEμ þ σ ¼ 0 takes the exact form

ðφþ λ∂tφÞðτ∂2tφþ ∂tφ −D∂j∂
jφÞ ¼ 0; ð14Þ

which is automatically satisfied if the equation of motion
(12) holds. Finally, thermodynamic stability holds provided
that λ > τ > D > 0. In fact, σ is positive definite if and
only if λ > τ andD > 0. Furthermore, the quantity E0 − E1

can be expressed as follows:

E0 − E1 ¼ 1

2
ðφ; ∂tφ; ∂1φÞ

2
64
1 τ D

τ λτ λD

D λD λD

3
75
0
B@

φ

∂tφ

∂1φ

1
CA

þ 1

2
λD½ð∂2φÞ2 þ ð∂3φÞ2�: ð15Þ

The positivity of the diagonal elements of the 3 × 3 matrix
implies λ > 0 and τ > 0. The determinants of the 2 × 2

blocks are τðλ − τÞ, λ2Dðτ −DÞ, and Dðλ −DÞ, and their
positivity implies λ > τ, τ > D, and λ > D. Finally, the
determinant of the 3 × 3 matrix itself is Dλðλ − τÞðτ −DÞ,
which is also positive under the above conditions.
Collecting together all the inequalities above, one obtains
λ > τ > D > 0.
It should be noted that τ > D > 0 is indeed the condition

for covariant stability of the field equation (12). On the
other hand, we note that λ does not appear in the equation of
motion. Instead, it is necessary for the system’s stability
against stochastic fluctuations (i.e., off-shell). In fact, the
probability distribution of small fluctuations is proportional
to e−E, where E ¼ R

E0d3x is given by

E ¼ 1

2

Z
½ðφþ τ∂tφÞ2 þ τðλ − τÞð∂tφÞ2 þ λD∂jφ∂

jφ�d3x:

ð16Þ

One can see that the condition λ > τ is required to
guarantee that all perturbations have a positive-definite
free energy cost and are, therefore, less probable than the
equilibrium state.

Let us now comment on the limiting case λ ¼ τ. Earlier,
this case was automatically excluded because it makes the
quadratic form (16) only non-negative definite instead of
strictly positive. However, we see from (16) that the only
fluctuation with vanishing E is the nonhydrodynamic mode
φ ¼ e−t=τ, which is a set of measure zero in the state-space.
Hence, it does not lead to any pathologies in the probability
distribution e−E. Actually, it is reasonable that this non-
hydrodynamic mode does not affect the entropy, as it is a
pure “frame relaxation,” which has no impact on the
conserved fluxes and is a mathematical artifact of the
theory. Indeed, for λ ¼ τ, Eq. (16) becomes

E ¼ 1

2

Z �
ðJ0Þ2 þ τ

D
JjJj

�
d3x; ð17Þ

which depends only on the physical flux Jμ ¼
ðφþ τ∂tφ;−D∂

jφÞ, and not on the value of φ itself.
Below, we will see that λ ¼ τ is actually the most
convenient (and physically appealing) option in a theory
of fluctuations.

B. Equal time correlators

The UV-regularized information current can be used to
define a probability distribution e−E for the stochastic
fluctuations, and we can use it to compute equal time
correlators. In fact, if we integrate the last term by parts, the
total information (16) can be expressed in the form (9), with

Kð∂jÞ ¼
�
1 − λD∂

j
∂j τ

τ λτ

�
: ð18Þ

Then, Eq. (11) becomes5

� hφðxÞφðyÞi hφðxÞ∂tφðyÞi
h∂tφðxÞφðyÞi h∂tφðxÞ∂tφðyÞi

�

¼
Z

d3k
ð2πÞ3

eik·ðx−yÞ

ð1þ λDkjkjÞλτ− τ2

�
λτ −τ
−τ 1þ λDkjkj

�
: ð19Þ

These integrals can be evaluated analytically. For example,
the field-field correlator obeys a Yukawa-type decay law:

hφðxÞφðyÞi ¼ e−ajx−yj

4πλDjx − yj ; with a ¼
ffiffiffiffiffiffiffiffiffiffi
λ − τ

λ2D

r
: ð20Þ

However, one should remember that the field φ does not
have a particularly interesting physical meaning because it
is related to a specific choice of hydrodynamic frame.
Instead, we should focus on correlators involving, e.g.,

5In Eq. (13), the information current had been rescaled for
convenience. Consequently, there should be an overall constant
multiplying the correlators (19). For simplicity, we work in some
units where such a constant is still 1.
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J0 ¼ φþ τ∂tφ, which is an unambiguously defined
conserved density. Interestingly, we find that, if we set
λ ¼ τ, then the density-density correlator reduces to
hJ0ðxÞJ0ðyÞi ¼ δ3ðx − yÞ. This is a useful result because
it does not depend on τ (i.e. on our choice of hydro-
dynamic frame). Furthermore, this formula is fully con-
sistent with its nonrelativistic analog; see Sec. 88 of [41].

IV. CAUSAL ELECTRIC CONDUCTION

Let us now consider an extension of the previous model,
where a coupling with an electromagnetic field is included.

A. Overview of the model

We consider a linear theory for three fields, fφ; Ej;Bjg,
representing respectively the perturbation to the charge
chemical potential, the electric field, and the magnetic field
(possibly rescaled by some background constants). We
assume, for simplicity, that the medium is an isotropic
conductor, with conductivity Σ, so that the electric current
takes the form Jμ ¼ ðφþ τ∂tφ;−D∂

jφþ ΣEjÞ, where the
term ΣEj is the drift flux due to Ohm’s law. Then we can
write Maxwell’s equations in a conductor (for simplicity,
we ignore polarization and magnetization corrections):

∂jEj ¼ φþ τ∂tφ;

∂jBj ¼ 0;

ð∇ × EÞj ¼ −∂tBj;

ð∇ × BÞj ¼ −D∂jφþ ΣEj þ ∂tEj: ð21Þ

The first equation can be viewed as an equation of motion
for φ, the third as an equation of motion for Bj, and the
fourth as an equation of motion for Ej. Hence, they are
enough to fully determine the evolution of the system. The
second equation, instead, represents a constraint on the
initial data. In fact, if we take the divergence of the third
equation, we obtain ∂tð∂jBjÞ ¼ 0, which automatically
implies ∂jBj ¼ 0, provided that the latter equation holds
already in the initial state. Note that if we take the
divergence of the fourth equation and use the first, we
obtain the law of charge conservation ∂μJμ ¼ 0, namely

∂tφþ τ∂2tφ −D∂j∂
jφþ Σ∂jEj ¼ 0: ð22Þ

Let us now derive the conditions that ensure stability and
causality for this system. This is easiest to do if we rewrite
the dynamical part of the system (21) in the following form:

τ∂2tφþ ð1þ τΣÞ∂tφþ Σφ −D∂j∂
jφ ¼ 0;

∂
2
tBj þ Σ∂tBj − ∂k∂

kBj ¼ 0;

∂tEj þ ΣEj ¼ ð∇ × BÞj þD∂jφ: ð23Þ

As can be seen, the fields φ and Bj obey decoupled
evolution equations. The first represents the tendency of
charge density to diffuse and neutralize, while the second is
the equation of magnetic diffusion. It is straightforward to
verify that, for the first two equations to be causal and
stable, we only need to set τ > D > 0 and Σ > 0. To prove
that also the evolution of the electric field is stable, it is
enough to notice that the third equation of (23) is a
relaxation equation (since Σ > 0) with a source. Given that
the source depends linearly on φ and Bj, which decay to
zero at late times (by diffusion), Ej must also relax to zero,
proving that the system is indeed stable. Let us finally show
that the electric field propagates subluminally. To this end,
assume that φ, Ej and Bj (and thus also ∂tφ ∝ ∂jEj − φ, and
∂tB ∝ ∇ × E) are initially supported inside a compact setR.
Then we know from (23) that φ and Bj propagate inside the
future light cone ofR. Hence, outside of such light cone, the
electric field is a solution of the equation ∂tEj þ ΣEj ¼ 0,
with initial data Ejðt ¼ 0Þ ¼ 0. The only solution is Ej ¼ 0,
proving that the system is indeed causal.

B. Information current and entropy production rate

We managed to find, with some trial and error, two
(nonequivalent) alternative formulas for the information
current and the associated entropy production rate (both
rescaled by an overall constant). Below, we present the
simpler construction, while the other construction is
reported in Appendix A.

E0 ¼ 1

2

�
ðφþ τ∂tφÞ2 þ τD∂jφ∂

jφþ Σ
D
ðEjEj þBjBjÞ

�
;

Ej ¼ −Dðφþ τ∂tφÞ∂jφþ Σ
D
ðE ×BÞj;

σ ¼D∂jφ∂
jφ−ΣEj

∂jφþΣ2

D
EjEj þΣðφþ τ∂tφÞ2: ð24Þ

To see that (24) is exactly consistent with the Maxwell
equations, we note that the condition ∂μEμ þ σ ¼ 0 takes
the explicit form

ðφþ τ∂tφÞð∂tφþ τ∂2tφ −D∂j∂
jφþ Σ∂jEjÞ

þ Σðφþ τ∂tφÞðφþ τ∂tφ − ∂jEjÞ

þ Σ
D
Ej½∂tEj −D∂jφþ ΣEj − ð∇ × BÞj�

þ Σ
D
Bj½∂tBj þ ð∇ × EÞj� ¼ 0; ð25Þ

which, indeed, vanishes identically along all exact solutions
of the equations of motion (21).
Let us comment on the expressions in (24). First, note that

the electromagnetic contributions to the information current
have the prefactor Σ=D, and the contribution to E0 is the
free energy of the electromagnetic field. This leads us to the
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Wiedemann–Franz law, which states that the quotient Σ=D
is a purely thermodynamic (i.e. nonkinetic) parameter that
can be computed directly from the equation of state [42].
Second, we note that, in the infrared limit, the formula for σ
is consistent with the Israel-Stewart dissipation equation
σ ¼ JjJj=D [42]. In fact, if we use (21) to replace one of the
factors φþ τ∂tφ with ∂jEj in the last term, we obtain

σ ¼ JjJj
D

þ ∂j½ΣJ0Ej� − ΣτEj
∂t∂jφ: ð26Þ

The first term on the right-hand side is indeed the Israel-
Stewart dissipation rate. The second term is a pure diver-
gence, whose contribution to the total entropy production
vanishes when integrated over the whole space. The last
piece is a third-order term (in conductors, Ej is considered
of order 1 in derivatives [43]), which is negligible in the
IR limit.

C. Thermodynamic stability

Let us now find the conditions under which Eμ is
timelike future directed and σ is non-negative. It is
immediately evident that we must have D > 0, τ > 0,
and Σ > 0. Furthermore, we have the following equations:

2ðE0 − E1Þ ¼ ðJ0; ∂1φÞ
�
1 D

D τD

��
J0

∂1φ

�
þ τD½ð∂2φÞ2

þ ð∂3φÞ2� þ
Σ
D
½EjEj þ BjBj − 2ðE × BÞ1�;

σ ¼ ð∂jφ; EjÞ
�

D −Σ=2
−Σ=2 Σ2=D

��
∂
jφ

Ej

�

þ Σðφþ τ∂tφÞ2: ð27Þ

The determinant condition for the 2 × 2 matrix in the first
line produces the causality condition τ > D. The electro-
magnetic contribution to E0 − E1 is positive definite due to
the well known inequality kE × Bk ≤ kEk · kBk. The 2 × 2
matrix on the second line is automatically positive definite,
provided thatD > 0. Hence, we have recovered exactly the
same causality and stability conditions of the equations of
motion (21).

D. Equal time correlators

In the functional integral, we need to sum over all the
field configurations that are physically admissible. This
implies that we cannot include in the sum any arbitrary
magnetic field configuration, but we need to guarantee that
∂jBj ¼ 0 holds on all relevant states in the integral. The
simplest way to enforce this is to add the term 1

2
Λð∂jBjÞ2 to

E0, and take the limitΛ → þ∞ at the end of the calculation.
This guarantees that all configurations with ∂jBj ≠ 0 have

zero probability of occurring. Note that ∂μEμ þ σ ¼ 0 holds
along solutions of (21) also with this new term.
There is one more subtlety. In the case of diffusion

without the electromagnetic field (Sec. III B), we had to
consider ∂tφ as an independent degree of freedom, because
the equation of motion (12) is of second order in time. On
the other hand, in the Maxwell system (21), the first
equation of motion fully determines the value of ∂tφ in
terms of φ and Ej. Hence, we cannot treat ∂tφ as an
independent degree of freedom. Instead, the free variables
that define the measure in the functional integral are
fφ; Ej;Bjg, since these are enough to fully determine the
physical state at a given time. This implies that, in the
formula for E, we need to replace ∂tφ with ð∂jEj − φÞ=τ.
All of this leads us to the following formula:

E ¼ 1

2

Z �
τD∂jφ∂

jφþ Σ
D
EjEj þ ð∂jEjÞ2

þ Σ
D
BjBj þ Λð∂jBjÞ2

�
d3x: ð28Þ

As can be seen, there is no coupling between φ, Ej, and Bj,
meaning that the cross-correlators φE, EB, and Bφ vanish.
Indeed, the vanishing of equal time EB correlators is a well-
known result of fluctuating electrodynamics [41].
Furthermore, the φφ correlator is the same as (20), with
λ ¼ τ. Hence, we can just focus on the EE and BB
correlators, whose Fourier integrals are reported below
(we have already sent Λ → þ∞):

hEjðxÞEkðyÞi ¼
D
Σ

Z
d3k
ð2πÞ3 e

ik·ðx−yÞ
�
δjk −

Dkjkk
ΣþDklkl

�
;

hBjðxÞBkðyÞi ¼
D
Σ

Z
d3k
ð2πÞ3 e

ik·ðx−yÞ
�
δjk −

kjkk
klkl

�
: ð29Þ

These correlators do not depend on our choice of hydro-
dynamic frame since τ does not appear anywhere. This
reassures us that they constitute a robust prediction of the
model. The Fourier integral of the EE correlator may be
evaluated analytically. However, it is more illuminating to
take the divergence of the electric fields inside the corre-
lator and use the Maxwell equation ∂jEj ¼ J0 to find the
density-density correlator. The result is

hJ0ðxÞJ0ðyÞi ¼ δ3ðx − yÞ − Σe−
ffiffi
Σ
D

p
jx−yj

4πDjx − yj : ð30Þ

The Dirac delta was already present in the theory of diffusion
without the electromagnetic coupling; see Sec. III B. The
negative Yukawa-type potential is an electromagnetic cor-
rection, which incorporates the Debye screening effect (with
Debye length

ffiffiffiffiffiffiffiffiffiffi
D=Σ

p
). In fact, the right-hand side of (30)

coincides with the equilibrium charge-density at x that is
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generated if we insert a static unit point charge at y (see
Appendix B for the proof).
Let us now focus on the BB correlator. If we contract it

with a constant vector mk, and we evaluate the Fourier
integral explicitly (setting y ¼ 0 for convenience), we
obtain

hBjðxÞBkð0Þmki ¼ D
4πΣ

�
3xjðx ·mÞ − jxj2mj

jxj5

þ 8π

3
mjδ

3ðxÞ
�
: ð31Þ

The right-hand side is D=Σ times the magnetic field
induced by an ideal dipole with magnetic moment mj

placed in the origin, see Eq. (5.64) of [44]. Physically, this
tells us that if there is a magnetic fluctuation at a point, this
is probably generated by a current loop in a neighborhood
of such a point, and we can therefore expect to detect a
dipole field in the surroundings.

V. BULK VISCOSITY IN THE PRESSURE FRAME

In this section, we regularize the information current of a
simple causal and stable first-order model for the bulk
viscosity of a relativistic fluid at zero chemical potential.

A. Overview of the model

Consider a fluid whose hydrodynamic fields are the
temperature T and the flow velocity uμ. Postulate the
following BDNK-type [4,45–47] constitutive relations
for the stress-energy tensor and the entropy current:

Tμν ¼ ðεþ PþAÞuμuν þ Pgμν;

Sμ ¼ ðsþA=TÞuμ; ð32Þ

where εðTÞ, sðTÞ, and PðTÞ are the equilibrium energy
density, entropy density, and pressure, respectively. They
are related by standard thermodynamic identities: dε ¼
Tds ¼ cvdT, where cvðTÞ is the specific heat, dP ¼ sdT,
and Ts ¼ εþ P. The scalar field A is a first-order bulk
viscous correction, which is given by

A ¼ guμ∂μT þ h∂μuμ; ð33Þ

where gðTÞ and hðTÞ are two transport coefficients. If we
linearize about homogeneous equilibrium, the linear
perturbation fields δT and δuj obey the following equa-
tions of motion (in the equilibrium rest frame):

cv∂tδT þ g∂2t δT þ ðεþ PÞ∂jδuj þ h∂t∂jδuj ¼ 0;

ðεþ PÞ∂tδuj þ s∂jδT ¼ 0; ð34Þ

which follow from the linearized conservation law
∂μδTμν ¼ 0. The above equations can be combined into

a single field equation for the temperature perturbation,
namely

cv∂2t δT − s∂j∂jδT þ g∂3t δT −
h
T
∂t∂j∂

jδT ¼ 0: ð35Þ

Assuming (in accordance with thermodynamics) that cv, s,
and T are positive, we can derive the conditions for
covariant stability (and therefore causality) of the model
from Eq. (35). Introducing the speed of sound squared
c2s ¼ s=cv, we have the following inequalities:

0 < c2s < 1; g >
h
T
> gc2s > 0: ð36Þ

B. Information current and entropy production rate

Constructing the regularized information current and
entropy production rate for the model (34) requires a bit of
trial and error. Here, we only provide the result:

TE0 ¼ 1

2

�
cv
T
ðδTÞ2 þ ðεþ PÞδujδuj

þ 2
δT
T

ðg∂tδT þ h∂jδujÞ þ
λ

T
ðg∂tδT þ h∂jδujÞ2

�
;

TEj ¼ sδTδuj;

Tσ ¼ λs
h
ðg∂tδT þ h∂jδujÞ2; ð37Þ

with

λ ¼ 1

ð1 − gT
h c2sÞcv

: ð38Þ

To verify that this works, it is enough to write the equation
T∂μEμ þ Tσ ¼ 0 explicitly. This gives

1

T
ðδT þ λg∂tδT þ λh∂jδujÞ½cv∂tδT þ g∂2t δT

þ ðεþ PÞ∂jδuj þ h∂t∂jδuj�
þ δuj½ðεþ PÞ∂tδuj þ s∂jδT� ¼ 0; ð39Þ

which is automatically satisfied along solutions of the
equations of motion (34).

C. Thermodynamic stability

Let us now analyze the conditions for thermodynamic
stability. Assuming that T > 0, we can require TE0 and Tσ
to be positive, and this implies (by direct inspection) that
cv, s, λ, and h are all positive (us the identity εþ P ¼ Ts),
as expected. The fact that λ > 0 implies h=T > gc2s , in
agreement with (36). Now we only need to find the
conditions under which Eμ is future directed nonspacelike.
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In particular, introducing the notation δA ¼ g∂tδT þ
h∂jδuj, in accordance with (33), we have to impose that

TðE0 −E1Þ ¼ 1

2T
ðδT;δu1;δAÞ

2
64

cv −Ts 1

−Ts T2s 0

1 0 λ

3
75
0
B@

δT

δu1
δA

1
CA

þ 1

2
ðεþPÞ½ðδu2Þ2 þ ðδu3Þ2� ≥ 0: ð40Þ

The determinants of the 2 × 2 blocks of the matrix above
lead to the inequalities λ > 1=cv and cv > s. The latter can
be rewritten in the form c2s < 1. Finally, the positivity of the
determinant of the whole 3 × 3 matrix produces the more
stringent inequality

λ >
1

ð1 − c2sÞcv
: ð41Þ

Combining (38) and (41), we finally obtain the inequality
g > h=T. Thus, we have recovered all the inequalities of
(36), meaning that hydrodynamic stability and thermody-
namic stability are equivalent in this model.

D. Equal-time correlators

Given the information current reported in Eq. (37), we
can recast the integral E ¼ R

E0d3x in the form (9), where
the operator K, acting on the ordered triplet of functions
fδT; ∂tδT; δujg, is provided below:

T2Kð∂jÞ ¼

2
64

cv g h∇T

g λg2 λgh∇T

−h∇ −λgh∇ TðεþPÞI− λh2∇∇T

3
75: ð42Þ

Using Eq. (11), we can compute all the field-field corre-
lators:

2
64

hδTðxÞδTðyÞi hδTðxÞ∂tδTðyÞi hδTðxÞδuTðyÞi
h∂tδTðxÞδTðyÞi h∂tδTðxÞ∂tδTðyÞi h∂tδTðxÞδuTðyÞi
hδuðxÞδTðyÞi hδuðxÞ∂tδTðyÞi hδuðxÞδuTðyÞi

3
75

¼ T
Z

d3k
ð2πÞ3 e

ik·ðx−yÞ

2
6664
λb −b

g 0

− b
g

bcv
g2 þ

h2kjkj
g2ðεþPÞ − ihkT

gðεþPÞ

0 ihk
gðεþPÞ

I
εþP

3
7775; ð43Þ

where we have introduced the positive parameter
b ¼ T=ðcvλ − 1Þ. Clearly, most of these correlators depend
on the hydrodynamic frame, being sensitive to both g and h.
This reflects the fact that the very definitions of δT and δuj

are related to a specific choice of frame [10]. On the other
hand, for the BDNK approach to be reliable, the fluctua-
tions of the energy density δT00 ¼ cvδT þ g∂tδT þ h∂jδuj

and of momentum density δT0j ¼ ðεþ PÞδuj should not
depend on this choice (at least in the infrared limit). Indeed,
this is precisely what happens:

hδT00ðxÞδT00ðyÞi ¼ cvT2δ3ðx − yÞ;
hδT00ðxÞδT0jðyÞi ¼ 0;

hδT0jðxÞδT0kðyÞi ¼ Tðεþ PÞδjkδ3ðx − yÞ: ð44Þ

These correlators agree with the standard equal-time
correlators of fluctuating hydrodynamics [41].

VI. CAUSAL SHEAR VISCOSITY

We consider now a simple first-order hydrodynamic
model that also includes shear viscosity.

A. Overview of the model

Let us consider a viscous fluid at zero chemical potential
in the Landau frame. The linearized equations of motion for
the temperature and flow velocity fluctuations read

cv∂tδT þ ðεþ PÞ∂jδuj ¼ 0;

ðεþ PÞ∂tδuj þ s∂jδT − 2η∂k∂ðkδujÞ ¼ 0; ð45Þ

where η is the shear viscosity coefficient. To simplify the
equations, we have also added a bulk viscous term with
viscosity coefficient ζ ¼ 2η=3. It is well known that the
system (45) defines an acausal and unstable (when boosted)
model. Hence, let us perform a change of hydrodynamic
frame of the form δuj → δuj þ τ∂tδuj, for some constant τ.
The resulting equations, truncated to second order in
derivatives, read

cv∂tδT þ ðεþPÞð∂jδuj þ τ∂t∂jδujÞ ¼ 0;

ðεþPÞð∂tδuj þ τ∂2t δujÞ þ s∂jδT − 2η∂k∂ðkδujÞ ¼ 0: ð46Þ

This is a simple example of BDNK theory for viscosity.
Below, we construct a regularized information current for
this model.

B. Duality with Israel-Stewart Theory

First of all, let us find the conditions under which the
system (46) is causal and stable, assuming that s, cv, and T
are positive. To this end, we can employ a surprising trick.
Let us define the fields

δvj ¼ δuj þ τ∂tδuj;

δΠkj ¼ −2η∂ðkδujÞ: ð47Þ

Then, by changing variables in system (46), we obtain an
exact Israel-Stewart model (in agreement with [32]):
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cv∂tδT þ ðεþ PÞ∂jδvj ¼ 0;

ðεþ PÞ∂tδvj þ s∂jδT þ ∂
kδΠkj ¼ 0;

τ∂tδΠkj þ δΠkj ¼ −2η∂ðkδvjÞ: ð48Þ

This establishes a mathematical equivalence between the
BDNK model (46) and the Israel-Stewart model (48) since
all solutions of the former can be converted into (exact)
solutions of the latter through the change of variables (47).6

But the conditions for causality and stability of (48) are
well known (recall that c2s ¼ s=cv):

τ; η > 0; 0 < c2s < 1; c2s þ
2η

ðεþ PÞτ < 1; ð49Þ

and it is straightforward to show that if (48) is causal and
stable, then also (46) must be causal and stable.

C. Information current and entropy production rate

We can use the duality with Israel-Stewart theory as a
guiding principle for constructing the information current
and entropy production rate of system (46). In particular,
we can first write out the information current and entropy
production rate of (48), which are well known [7], and then
use the change of variables (47) to express the result in
terms of the BDNK fields. The result is

TE0 ¼ 1

2

�
cv
T
ðδTÞ2 þ ðεþ PÞðδuj þ τ∂tδujÞðδuj þ τ∂tδujÞ

þ 2ητ∂ðjδukÞ∂ðjδukÞ
�
;

TEj ¼ sδTðδuj þ τ∂tδujÞ − 2ηðδuk þ τ∂tδukÞ∂ðkδujÞ;
Tσ ¼ 2η∂ðjδukÞ∂ðjδukÞ: ð50Þ

This is indeed the “correct” information current, since the
equation T∂μEμ þ Tσ ¼ 0 explicitly reads

δT
T
½cv∂tδT þ ðεþPÞð∂jδuj þ τ∂t∂jδujÞ� þ ðδuj þ τ∂tδujÞ
× ½ðεþPÞð∂tδuj þ τ∂2t δujÞ þ s∂jδT − 2η∂k∂ðkδujÞ� ¼ 0;

ð51Þ

which is automatically satisfied along exact solutions of the
equations of motion (46).
Finally, we can import well-known results of Israel-

Stewart theory, and conclude that the conditions (49), under
which (48) is causal and stable, are also the conditions that
make Eμ timelike future-directed, and σ non-negative.

D. Equal-time correlators

Since, in the formula for E0, the temperature decouples
from the velocity, all temperature-velocity correlators
vanish, while the temperature-temperature correlator is just
hδTðxÞδTðyÞi ¼ T2δ3ðx − yÞ=cv, see [41]. Let us focus on
the velocity correlators. For the ordered list of variables
fδuj; ∂tδujg, the integral of E0 takes the form (9), with

TKð∂jÞ¼
�ðεþP−ητ∂j∂

jÞI−ητ∇∇T ðεþPÞτI
ðεþPÞτI ðεþPÞτ2I

�
: ð52Þ

Hence, from Eq. (11), we obtain

� hδuðxÞδuTðyÞi hδuðxÞ∂tδuTðyÞi
h∂tδuðxÞδuTðyÞi h∂tδuðxÞ∂tδuTðyÞi

�

¼ T
Z

d3k
ð2πÞ3

eik·ðx−yÞ

ητk2

×

2
664 I − kkT

2k2 − 1
τ

�
I − kkT

2k2

�
− 1

τ

�
I − kkT

2k2

�
1
τ2

�
εþPþητk2

εþP I − kkT

2k2

�
3
775: ð53Þ

It is evident that these correlators are not invariant under a
change of hydrodynamic frame since the UV-cutoff param-
eter τ appears explicitly. This is not a surprise because δuj is
not a physically relevant quantity, being “hydrodynamic
frame-dependent.” To check whether the physical predic-
tions of the model are sensitive to the hydrodynamic frame,
we need to compute the correlator of the momentum density
δT0j ¼ ðεþ PÞðδuj þ τ∂tδujÞ, which is a “hydrodynamic
frame-invariant” observable. Interestingly, we find that

hδT0jðxÞδT0kðyÞi ¼ Tðεþ PÞδjkδ3ðx − yÞ; ð54Þ

which does not depend on τ and is the natural relativistic
generalization of Eq. (88.5) of [41].

VII. GOLDSTONE MODES

Up to this point, we have constructed information
currents for first-order dissipative models. However, there
are also first-order theories that describe nondissipative
systems (i.e. systems with σ ¼ 0). This is the case, for
example, when the field φ is a Goldstone mode arising from
spontaneous symmetry breaking. In this setting, the dynam-
ics must be invariant under global shifts φ → φþ a (with
a ¼ const), meaning that Eμ can depend only on ∂φ, and
not on φ itself. We shall discuss below a couple of
examples.

A. U(1) symmetry breaking

Let φ be the perturbation to the phase field arising from a
Uð1Þ spontaneous symmetry breaking. Since Goldstone

6Note that the reversal is not true: there are solutions of (48)
which do not have a correspondent in (46). This is because (48)
possesses 10 mathematical degrees of freedom (namely δT, δuj,
δΠkj), while (46) possesses only 7 (namely δT, δuj, ∂tδuj).
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modes are massless, in the linear regime, the equation of
motion for φ is a wave-type equation:

∂
2
tφ − c2s∂j∂jφ ¼ 0; ð55Þ

where cs is the speed of the associated phonon-type
excitation. This model can be viewed as a first-order
theory because the equation of motion can be rewritten
in the form of a conservation law, ∂μJμ ¼ 0, with
Jμ ¼ ð−∂tφ; c2s∂jφÞ, in accordance with zero-temperature
superfluid dynamics [48–50]. Causality and stability
demand 0 < c2s < 1. The information current of this
system (possibly rescaled by some overall constant) is

E0 ¼ 1

2
½ð∂tφÞ2 þ c2s∂jφ∂jφ�;

Ej ¼ −c2s∂tφ∂jφ: ð56Þ

In fact, the equation ∂μEμ ¼ 0 explicitly reads

∂tφð∂2tφ − c2s∂j∂jφÞ ¼ 0; ð57Þ

which is automatically satisfied along solutions of the
equations of motion (55). Not surprisingly, Eμ is timelike
future directed if and only if 0 < c2s < 1.
Now we can compute equal time correlators. From

Eq. (56), we obtain

Kð∂jÞ ¼
�
−c2s∂j∂j 0

0 1

�
; ð58Þ

so that we have

� hφðxÞφðyÞi hφðxÞ∂tφðyÞi
h∂tφðxÞφðyÞi h∂tφðxÞ∂tφðyÞi

�

¼
Z

d3k
ð2πÞ3 e

ik·ðx−yÞ
� ðc2skjkjÞ−1 0

0 1

�
: ð59Þ

Let us note that, by the Josephson-Anderson relation, we
have ∂tφ ∝ δμ, where μ is chemical potential. Hence, by
integrating the Fourier integral above, we find that
hδμðxÞδμðyÞi ∝ δ3ðx − yÞ, which again is consistent with
the analysis of section §88 of [41]. Interestingly enough,
the correlator of the phase field with itself is long-range,
since the integral of (59) gives (in agreement with [41],
Sec. 87, Problem 2)

hφðxÞφðyÞi ∝ 1

jx − yj : ð60Þ

This is due to the fact that long-wavelength fluctuations are
very likely to occur in this system. In fact, the free energy
cost of a perturbation to φ scales like ∂

2, meaning that

e−E → 1 in the IR limit, inducing correlations over large
distances.

B. Elastic media

Let ξj be the linear displacement vector field of an elastic
isotropic material. This quantifies the departure of the
material elements from the unstrained (i.e. equilibrium)
configuration. Clearly, a global shift ξj → ξj þ aj (with
aj ¼ const) cannot result in a change of entropy, since we
are translating the whole system rigidly. Hence, one can
treat ξj as a Goldstone-type effective field. The equation of
motion, as predicted by the theory of elasticity in the linear
regime [51], reads

∂
2
t ξj − μ∂k∂kξj − ðμþ λÞ∂j∂kξk ¼ 0; ð61Þ

where μ and λ are, respectively, the shear modulus and
Lamé’s first parameter, both rescaled by the enthalpy
density. The conditions for causality and stability of this
model are 0 < μ < 1 (causality and stability of shear
waves) and 0 < 2μþ λ < 1 (causality and stability of
sound waves). The information current, rescaled by some
background constant, is

E0 ¼ 1

2
½∂tξj∂tξj þ 2μ∂ðjξkÞ∂ðjξkÞ þ λð∂jξjÞ2�;

Ej ¼ −2μ∂tξk∂ðkξjÞ − λ∂kξ
k
∂tξ

j: ð62Þ

In fact, the equation ∂μEμ ¼ 0 explicitly reads

∂tξ
j½∂2t ξj − μ∂k∂kξj − ðμþ λÞ∂j∂kξk� ¼ 0; ð63Þ

which is automatically satisfied along all solutions of the
equation of motion (61). The necessary and sufficient
conditions for Eμ to be timelike future directed are reported
below:

0 < μ < 1; 0 < 2μþ λ < 1; λþ 2

3
μ > 0: ð64Þ

The first two bounds are just the same causality and
stability conditions that we derived from the equation
of motion (61). The third condition is the thermody-
namic requirement that the bulk modulus should be non-
negative [51].
The computation of the equal-time correlators

is, again, straightforward. The velocity-velocity corre
lator is h∂tξjðxÞ∂tξkðyÞi ¼ δjkδ3ðx − yÞ, the velocity-
displacement correlator vanishes, and the displacement-
displacement correlator reads

hξjðxÞξkðyÞi¼
Z

d3k
ð2πÞ3

eik·ðx−yÞ

k2

�
δjk

μ
þ
�

1

2μþλ
−
1

μ

�
kjkk

klkl

�
:

ð65Þ
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This Fourier integral simplifies considerably if we con-
tract it with δjk. The result is

hξjðxÞξjðyÞi ¼
�
2

μ
þ 1

2μþ λ

�
1

4πjx − yj : ð66Þ

One can see that the field-field correlator scales with the
inverse of the distance. This is a common property of all
Goldstone modes (in 3þ 1 dimensions), as testified also
by Eq. (60). This universal 1=r behavior is a direct
consequence of Goldstone’s theorem [52,53].

VIII. CHIRAL HYDRODYNAMICS

Another example of a nondissipative first-order hydro-
dynamic theory is ideal chiral hydrodynamics [13,54–60].
Let us construct its regularized information current using
our new method.

A. Overview of the model

The fields of ideal chiral hydrodynamics are the same as
those of ideal hydrodynamics at finite chemical potential: T
(temperature), μ (chemical potential), and uμ (flow veloc-
ity). However, in contrast to ideal hydrodynamics, the
chemical potential μ is associated with a pseudoscalar
charge, i.e. the charge density J0 is odd under spatial
inversion and the current density Ji is a pseudovector. This
difference allows for additional dissipationless terms in
the constitutive relations for the stress-energy tensor, the
particle current, and the entropy current:

Tμν ¼ ðεþ PÞuμuν þ Pgμν þ ξTðuμων þ uνωμÞ;
Jμ ¼ nuμ þ ξJω

μ;

Sμ ¼ suμ þ ξSω
μ; ð67Þ

where ωμ ¼ 1
2
εμνρσuν∂ρuσ is the kinematic vorticity vector.

As usual, ε, P, n, and s are the energy density, pressure,
particle density, and entropy density, respectively. Standard
thermodynamic relations hold: dε ¼ Tdsþ μdn, dP ¼
sdT þ ndμ, and εþ P ¼ Tsþ μn. The parameters ξT ,
ξJ, and ξS are transport coefficients encoding the presence
of the chiral anomaly that depend on the choice of
hydrodynamic frame (namely, on the definition of uμ)
[13,56,60–63].
Considering linearized dynamics around a homogeneous

(nonrotating) equilibrium, the conservation laws ∂μTμν ¼ 0
and ∂μJμ ¼ 0 can be written as follows:

∂tδsþ s∂jδuj ¼ 0;

∂tδnþ n∂jδuj ¼ 0;

ðεþ PÞ∂tδuj þ ∂jδP −
1

2
ξT∂tð∇ × δuÞj ¼ 0: ð68Þ

It is straightforward to verify that if ξT ≠ 0 the system is
unstable. In fact, it admits solutions of the form

δT ¼ δμ ¼ 0;

δuj ¼ fðtÞðcosðazÞ;− sinðazÞ; 0Þ;

with a ¼ 2ðεþ PÞ
ξT

; ð69Þ

for arbitrary fðtÞ. Since we can set fðtÞ ¼ et, we see that
there are growing Fourier modes, manifesting an instability.
This implies that there cannot be an information current
with the properties listed in [33], as these would imply
stability. We note that the linearized system is actually
“infinitely unstable”, since the growth of fðtÞ can be
arbitrarily fast, and there is no Lyapunov exponent con-
trolling the explosion. This is a signature of Hadamard’s ill-
posedness, as infinitely small initial conditions at t ¼ 0 can
give rise to infinite large solutions at t ¼ 0þ [64]. Indeed,
the ill-posedness could directly be argued from the non-
uniqueness of fðtÞ, which tells us that the initial value
problem is nondeterministic. The same conclusion about
the ill-posedness was also found in [13]. Physically, the
solution (69) represents a circularly polarized shear wave,
which can grow in size while conserving the momentum
density δT0j ¼ ðεþ PÞδuj − 1

2
ξTð∇ × δuÞj through a care-

ful cancellation. This is completely analogous to the
instability of the Eckart theory, where the fluid uses
the first-order correction to the momentum (the heat flux,
in the case of Eckart) as “rocket fuel” to accelerate at
constant momentum density [31].
For the reasons above, in the following, we set ξT ¼ 0

through the field redefinition δu → δuþ a−1∇ × δu. In the
resulting hydrodynamic frame, the system (68) becomes
indistinguishable from an ideal nonchiral fluid.7 Still, the
entropy and particle currents (67) have chiral first-order
corrections. Hence, even if the linearized equations of
motion do not present any chiral features, the information
current will exhibit some.

B. First-order information current

If one starts from the constitutive relations (67) with
ξT ¼ 0, and computes the information current using con-
ventional techniques [6,65], they obtain the following
result, which contains some explicit first-order gradient
corrections:

TE0 ¼ 1

2
½δTδsþ δμδnþðεþPÞδujδujþ 2ξ̄δujð∇× δuÞj�;

TEj ¼ δPδujþ 2ξ̄

εþP
δPð∇× δuÞjþ ξ̄ðδu× ∂tδuÞj; ð70Þ

7Note that this is true only for nonrotating backgrounds.
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with

ξ̄ ¼ 1

2
ðTξS þ μξJÞ: ð71Þ

The full derivation is provided in appendix C. The
reversibility equation ∂μEμ ¼ 0 takes the explicit form

δTð∂tδsþ s∂jδujÞ þ δμð∂tδnþ n∂jδujÞ

þ
�
δuj þ 2ξ̄

εþP
ð∇× δuÞj

�
½ðεþPÞ∂tδuj þ ∂jδP� ¼ 0;

ð72Þ

which is automatically obeyed along all solutions of the
equations of motion (68) (recall that we have set ξT ¼ 0).

C. UV-regularized information current

Clearly, (70) does not define a timelike future-directed
vector. In fact, there are two problems. First of all, in the
formula for E0, there is the product δujð∇ × δuÞj, but the
term j∇ × δuj2 is missing. Second, in the formula for Ej,
there is a term containing ∂tδu, but there is no term j∂tδuj2
in E0. Luckily, both problems can be fixed.
Let us note that, since ξT ¼ 0, the third equation of (68)

implies that ∂tð∇ × δuÞ ¼ 0. It follows that if we add
a second-order term ∝ j∇ × δuj2 in E0, the equation
∂μEμ ¼ 0 is unchanged, meaning that the resulting
second-order information current is still consistent with
the equations of motion.
To solve the problem with ∂tδu inside the formula of Ej,

we can again use the third equation of (68) with ξT ¼ 0 to
derive the following chain of identities:

δu× ∂tδu¼ −δu×
∇δP
εþP

¼∇×

�
δPδu
εþP

�
−

δP
εþP

∇× δu:

ð73Þ

We note that, on the rightmost side, the pure curl is a term
with vanishing divergence. Hence, if we remove it, the
equation ∂μEμ ¼ 0 will still hold exactly. Furthermore,
removing such a term does not affect the value of the total
first-order information at t ¼ const, namely E ¼ R

E0d3x,
because it only enters the formula for the flux Ej.8

Hence, with the two modifications above, we obtain the
following UV-regularized information current:

TE0 ¼ 1

2
½δTδsþ δμδnþ ðεþ PÞδujδuj þ 2ξ̄δujð∇ × δuÞj

þ λð∇ × δuÞjð∇ × δuÞj�;

TEj ¼ δPδuj þ ξ̄

εþ P
δPð∇ × δuÞj: ð74Þ

As expected, the equation ∂μEμ ¼ 0 is exactly consistent
with the equations of motion, since it explicitly reads

δTð∂tδsþ s∂jδujÞ þ δμð∂tδnþ n∂jδujÞ

þ
�
δuj þ ξ̄

εþ P
ð∇ × δuÞj

�
½ðεþ PÞ∂tδuj þ ∂jδP�

þ ½ξ̄δuj þ λð∇ × δuÞj�∂tð∇ × δuÞj ¼ 0: ð75Þ

D. Thermodynamic stability

We only need to find the conditions under which E0 − E1

is always non-negative. Introducing the notation

δω̄j ¼ ξ̄

εþ P
ð∇ × δuÞj; ð76Þ

we have the following formula

2TðE0 −E1Þ ¼ nT
cp

δs2 þ ðδP;δu1;δω̄1Þ

×

2
6664

1
c2sðεþPÞ −1 −1

−1 εþP εþP

−1 εþP λðεþPÞ2
ξ̄2

3
7775
0
B@

δP

δu1
δω̄1

1
CA

þ
X
j¼2;3

ðδuj;δω̄jÞ
� εþP εþP

εþP λðεþPÞ2
ξ̄2

��
δuj
δω̄j

�
;

ð77Þ

where cp is the specific heat at constant pressure, and s is
the specific entropy. We can then derive the following list of
inequalities (assuming that T and n are positive):

cp > 0;

εþ P > 0;

0 < c2s < 1;

λ >
ξ̄2

εþ P
: ð78Þ

The first three are needed to guarantee that the ideal fluid
equations are causal and stable and enforce textbook
thermodynamic inequalities [67,68]. The last inequality is
needed to guarantee that the chiral sector is stable against

8Indeed, this pure curl term does not affect E in any reference
frame. In fact, expressed in a covariant language, this term is
∝ ∂μZ½μν�, with Z½μν� ¼ εμνρσuρδuσδP, and thus becomes a boun-
dary term on any Cauchy surface, by Gauss’ theorem [66].

FIRST-ORDER RELATIVISTIC HYDRODYNAMICS WITH AN … PHYS. REV. D 109, 085013 (2024)

085013-13



stochastic fluctuations at large gradients (i.e. in the UV
regime).

E. Physical difference with ideal hydrodynamics

In Sec. VIII A, we showed that the linearized equations of
motion of ideal chiral hydrodynamics (with ξT ¼ 0) are
indistinguishable from those of an ideal fluid if the back-
ground state is nonrotating. On the other hand, the infor-
mation current has a chiral correction, which is absent in
nonchiral fluids. This implies that, even though the dynam-
ics is the same, the probability distribution of fluctuations
e−E is different between the chiral and the nonchiral case
(i.e., the off-shell behavior is sensitive to the presence of the
chiral anomaly, even though the on-shell physics is not). Let
us analyze such differences in more detail.
We consider the following stationary solutions of the

linearized equations of motion:

δT ¼ δμ ¼ 0;

δuj ¼ δvðcosðkzÞ;� sinðkzÞ; 0Þ: ð79Þ

These constitute circularly polarized shear waves of ampli-
tude δv. The � sign defines the handedness of the polari-
zation. Plugging these solutions into (74), we obtain the
following formula for the information density:

TE0 ¼ 1

2
ðεþ PÞðδvÞ2

�
1 ∓ 2ξ̄k

εþ P
þ λk2

εþ P

�
: ð80Þ

This tells us that the free energy of a circularly polarized
shear wave has a chiral correction (the second term in the
square bracket), whose sign depends on the handedness of
the wave. Hence, the stochastic fluctuations of a chiral fluid
violate parity because right-handed waves have a different
probability of being excited with respect to left-handed
waves.9 Note that Eq. (80) is reliable only up to the first
order in k because the term proportional to k2 is a mere UV
regulator, which was introduced in (74) to prevent E0 from
becoming negative.
As a next step, one could expand the theory discussed in

this section by including the chiral magnetic effect, namely
the contribution to the current along the magnetic field [69].
However, it is important to note that the state with constant
μ ≠ 0, which implies ξ̄ ≠ 0, is not a true equilibrium state
when the magnetic field is treated dynamically, as it is
unstable to the formation of electromagnetic waves [70–74].
The extension of the information current for first-order

chiral magnetohydrodynamics will be studied in
future work.

F. Equal time correlators

Here we compute only the velocity-velocity correlator of
chiral hydrodynamics. In fact, we note that the probability
distribution of δT and δμ decouples from that of δuj [see
Eq. (74)]. Therefore, we can focus on the velocity, ignoring
the other variables (whose fluctuations are standard [67]).
With a bit of algebra, one can show that for the ordered
triplet of variables ðδu1; δu2; δu3Þ, the relevant differential
operator is given by

TKð∂jÞ ¼ ðεþ P − λ∂j∂
jÞI þ 2ξ̄

2
64

0 −∂3 ∂2

∂3 0 −∂1
−∂2 ∂1 0

3
75

þ λ∇∇T; ð81Þ

where I is the 3 × 3 identity matrix. We note that, since
there are no time derivatives of the velocity in the
information current (74), we did not need to include
∂tδuj among the degrees of freedom. Indeed, this is
consistent with the fact that the equations of motion (68)
are of first order in time. The equal-time correlator of the
velocity then reads

hδujðxÞδukðyÞi ¼ T
Z

d3k
ð2πÞ3 e

ik·ðx−yÞGjkðkÞ;

with GðkÞ ¼ εþPþ λk2

ðεþPþ λk2Þ2 − 4ξ̄2k2

�
I−

kkT

k2

�

þ 2iξ̄
ðεþPþ λk2Þ2 − 4ξ̄2k2

×

2
64

0 k3 −k2
−k3 0 k1
k2 −k1 0

3
75þ ðεþPÞ−1kk

T

k2
:

ð82Þ

This expression is quite complicated. However, we can
make some interesting observations. First of all, let us note
that if we set ξ̄ ¼ λ ¼ 0, then we recover the ideal fluid
formula hδujðxÞδukðyÞi ¼ Tðεþ PÞ−1δjkδ3ðx − yÞ, which
is the relativistic generalization of the equal time velocity-
velocity correlator provided in Sec. 88 of [41]. This
corresponds to the zeroth order result of the chiral gradient
expansion. If now we turn on first-order corrections and
take for clarity k ¼ ðk; 0; 0Þ, we find

9Note that, for this effect to exist, we need to have ξ̄ ≠ 0, which
means that the background state needs to violate parity in the first
place (by possessing a net axial charge). Therefore, the existence
of parity-breaking fluctuations is not unexpected. The real
surprise is that, while stochastic fluctuations have chiral correc-
tions, these do not survive the deterministic limit (in the linear
regime).
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GðkÞ ¼ ðεþ PÞ−1

2
664
1 0 0

0 1 2iξ̄k
εþP

0 − 2iξ̄k
εþP 1

3
75þOðk2Þ: ð83Þ

Therefore, the deviations from the ideal nonchiral fluid are
transversal to the wave vector. This is in agreement with our
result in Sec. VIII E where it was found that chiral
corrections affect the probability distribution of circularly
polarized waves in a way that depends on their handedness.
This suggests that it may be interesting to look at the equal
time correlation between the velocity and its curl, whose
formula is reported below:

hδujðxÞð∇× δuÞjðyÞi ¼ −T
Z

d3k
ð2πÞ3 e

ik·ðx−yÞ

×
4ξ̄k2

ðεþPþ λk2Þ2 − 4ξ̄2k2
: ð84Þ

One can see that the probability imbalance between left-
handed waves and right-handed waves causes the fluid to
have a net “helicity,” which is roughly proportional to the
first-order transport coefficient ξ̄. Unfortunately, the final
formula depends explicitly on the UV-regulator λ. Not
surprisingly, this happens at large k, namely outside the
regime of applicability of the theory. Hence, if we Fourier-
transform both sides, we can derive a useful “Kubo-like”
formula:

TξSþμξJ¼−lim
k→0

ðεþPÞ2
2Tk2

Z
hδujð0Þð∇×δuÞjðyÞieik·yd3y:

ð85Þ

IX. CONCLUSIONS

The information current has a handful of notable appli-
cations within relativistic hydrodynamics. It is the most
direct means by which we can rigorously establish stability
[6], causality [33], and symmetric hyperbolicity [7,40] of
the linearized equations of motion of a relativistic fluid
model. It can also be used to determine whether two
hydrodynamic theories can be mapped into one another
[65] and to group large numbers of theories into universality
classes [7]. Additionally, the information current has been
employed to derive Onsager-Casimir relations [45] and to
study hydrodynamic fluctuations both within the Fox-
Uhlenbeck [34,75] and the Martin-Siggia-Rose [29,76]
approaches. Given all these exciting new perspectives, it
was quite disappointing to discover that the standard
information current of first-order viscous hydrodynamics
(as computed from the Gibbs criterion [6]) is always ill-
behaved [31]. However, after a closer inspection, one
realizes that the existence of pathologies is inherent to
the derivative expansion, and one always needs to make
some adjustments afterward. For example, the second-order

in gradients BRSSS theory [8] is unstable without a proper
resummation which converts it into an Israel-Stewart-like
theory. Furthermore, we note that DNMR [77] is also
unstable if one does not neglect the Knudsen “K terms”
(or reabsorbs them through the IReD procedure [78]). In
BDNK theory one needs to tune the hydrodynamic frame to
recover causality and stability [4]. In a sense, these strategies
are always introduced a posteriori to keep the UV sector
under control, leaving the IR limit well behaved.
In this work, we have shown that a similar regularization

strategy can also be applied to fix the properties of the
information current in first-order theories. Unfortunately, so
far we could not find a fully general regularization pro-
cedure applicable to all theories, but we considered 7
selected models spanning a large spectrum of physical
phenomena, for which we always managed to find a
successful UV regularization. In some cases, we found that
such regularization is not unique, either because it depends
on an additional free parameter (see, e.g., Sec. III), or
because there are two structurally different regularization
schemes (see Sec. IV).10 In other cases, we could find one
and only one regularized information current. For example,
in the BDNK model for bulk viscosity discussed in Sec. V,
we believe that (37) might be the only possible UV-
regularized information current, although we cannot present
a proof yet. The problem of determining the information
current is so highly constrained because we require equation
∂μEμ þ σ ¼ 0 to hold exactly along all solutions of the
equations of motion. One may decide to relax this
assumption, and demand that ∂μEμ þ σ ¼ 0 hold only in
the IR regime. However, this would destroy the mathemati-
cal connection between the information current and cau-
sality [33], possibly introducing observer-dependent
pathologies in the stochastic theory [3].
We would like to remark that the uniqueness of the

information current does not imply that there is no
freedom in choosing a cutoff scale for our theory.
Rather, it implies that the cutoff scale of stochastic
fluctuations must match the cutoff scale of deterministic
fluctuations. For example, take the BDNK model for shear
viscosity discussed in Sec. VI. There, the equations of
motion break down on scales comparable to relaxation
time τ, see (46). The same relaxation time appears also in
the regularized information current (50). Therefore, the

10Strictly speaking, the latter case can always be reduced to the
former. In fact, consider two alternative choices of information
currents and entropy production rates, fEμ

1; σ1g and fEμ
2; σ2g.

Then, any convex combination fð1 − qÞEμ
1 þ qEμ

2; ð1 − qÞσ1 þ
qσ2g, with q∈ ½0; 1�, is an equally acceptable choice of informa-
tion current and entropy production rate. In fact, the properties
(i, ii, iii) outlined in the introduction are conserved under convex
combinations. More in general, if there are n linearly independent
choices of information currents, then there is an (n − 1)-parameter
family of convex combinations, all which are equally good
choices.
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probability distribution e−E for stochastic fluctuations
breaks down on the same scale τ as the equations of
motion. Interestingly, in those (rare) cases where the
information current depends on a new free parameter,
causality and stability always demand that the new cutoff
scale associated with this parameter be always greater or
equal to the cutoff scale of the equations of motion. Hence,
the stochastic theory cannot be applicable in regimes
where the deterministic theory is not applicable.
We employed our newly discovered information cur-

rents to compute equal-time two-point correlators, and the
results are very encouraging. In fact, in our 7 examples, we
recovered all the expected physics, including Debye
screening, the Wiedemann–Franz law, dipolar magnetic
fluctuations, long-range correlations of Goldstone degrees
of freedom, and spontaneous helicity generation in parity-
violating fluids. In the case of BDNK theories, we noticed
an interesting pattern: the equal-time correlators of quan-
tities that depend on the choice of hydrodynamic frame
(e.g., temperature, chemical potential, and flow velocity)
are very different from their nonrelativistic counterparts,
and depend explicitly on the cutoff scales. However, when
the cutoff scale of the stochastic theory coincides with that
of the deterministic theory, the equal-time correlators of
the conserved densities become identical to those of the
“standard” nonrelativistic theory [41] (replacing the rest
mass density with the relativistic enthalpy density), and do
not show any dependence on the overall cutoff parameter.
This is due to a spontaneous cancellation mechanism that
we do not fully understand yet, and which seems to be
specific to equal-time correlators (it will surely break
down in correlators computed at nonequal times). In an
upcoming article, we will use the regularized information
current to develop a full-fledged first-order theory for
hydrodynamics fluctuations, and we will compute the
two-point correlators at nonequal times. Finally, it would
be interesting to investigate how the modified KMS
symmetry discussed in [29] affects the determination of
the regularized information current investigated here. This
would also be crucial in order to generalize the consid-
erations made here to the case of nonlinear fluctuating
systems.
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APPENDIX A: ALTERNATIVE EXPRESSIONS
FOR THE INFORMATION CURRENT OF

ELECTRIC CONDUCTION

Let us recall that J0 ¼ φþ τ∂tφ and Jj ¼
−D∂

jφþ ΣEj. Then, our alternative information current
and entropy production rate for an electrically conducting
Ohmic medium can be expressed as follows

E0 ¼ 1

2

�
ðJ0Þ2 þ τ

D
JjJj þ

Σ
D
EjEj þ

Σ
D
ð1þ τΣÞBjBj

�
;

Ej ¼ J0Jj þ Σ
D
½ðE þ τJÞ × B�j;

σ ¼ 1þ τΣ
D

JjJj: ðA1Þ

In fact, using the above constitutive relations for Jμ, the
equation ∂μEμ þ σ ¼ 0 can be recast in the following form:

J0∂μJμ þ
Σ
D
ðEj þ τJjÞ½∂tEj − ð∇ × BÞj þ Jj�

þ Σ
D
ð1þ τΣÞBj½∂tBj þ ð∇ × EÞj� ¼ 0; ðA2Þ

which is automatically respected along all solutions of the
equations of motion (21). With a bit of algebra, one can also
derive the conditions for timelike future directedness,
which (not surprisingly) coincide with the conditions for
causality and stability of the equations of motion.

APPENDIX B: QUICK DERIVATION
OF DEBYE SCREENING

If we place a unit point charge at rest in a conducting
medium, and we assume that such charge interacts with the
medium only through electromagnetic interactions, then
the Maxwell equations (21) are unchanged, except for the
first one, which becomes ∂jEj ¼ φþ τ∂tφþ δ3ðx − yÞ,
where y is the location of the point charge. Then, taking
the divergence of the last equation of (21), we obtain the
following equation of motion for φ:

τ∂2tφþ ð1þ τΣÞ∂tφþΣφ−D∂j∂
jφ¼ −Σδ3ðx− yÞ: ðB1Þ

This dynamical equation admits a stationary solution of the
form

φðxÞ ¼ −
Z

d3k
ð2πÞ3

Σeik·ðx−yÞ

ΣþDkjkj
: ðB2Þ

Considering that, in the stationary limit, the total charge
density is J0 ¼ φþ δ3ðx − yÞ, we can evaluate the Fourier
integral in Eq. (B2) analytically, and we finally obtain an
expression for J0:
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J0ðxÞ ¼ δ3ðx − yÞ − Σe−
ffiffi
Σ
D

p
jx−yj

4πDjx − yj ; ðB3Þ

which coincides with the right-hand side of Eq. (30). This
equation tells us that the point charge surrounds itself with a
shell of opposite charge, which completely screens its
electric field over the length scale

ffiffiffiffiffiffiffiffiffiffi
D=Σ

p
—this is the

physics of Debye screening in plasmas.

APPENDIX C: COMPUTATION OF THE
INFORMATION CURRENT FOR CHIRAL

HYDRODYNAMICS

Following conventional methods [6,65] for evaluating
the information current, we take the chiral fluid to be in
weak thermal contact with a heat bath H. Here “weak
contact” means that the value of every extensive quantity
Qtot of the fluidþ bath system is equal to the valueQ in the
fluid plus the value QH in the heat bath. The interactions
between the fluid and the bath conserve total energy-
momentum Pν þ Pν

H and particle number N þ NH. The
relevant thermodynamic potential is

Φ ¼ Sþ α⋆N þ β⋆ν Pν; ðC1Þ

where S is the fluid’s entropy [79]. The coefficients α⋆ ¼
− ∂SH

∂NH
and β⋆ν ¼ − ∂SH

∂Pν
H
are assumed to be constant proper-

ties of the bath, i.e., the bath is thermodynamically large.
As a consequence of the second law of thermodynamics
and charge conservation for the fluidþ bath system, Φ
is a nondecreasing function of time that attains its
maximum when the system reaches global thermodynamic
equilibrium.
To identify this global equilibrium state, we consider a

one-parameter family of fluid states fTðhÞ; μðhÞ; uμðhÞg
parameterized by h that reduces to global equilibrium when
h ¼ 0. Here T, μ, and uμ are the temperature, chemical
potential, and velocity fields, respectively. The spacetime
dependence of all fields is suppressed in this appendix.
Adopting the notation ḟ ¼ df=dh, the maximality of Φ in
equilibrium implies that every observer sees Φ̇ðh ¼ 0Þ ¼ 0
for any choice of one-parameter family.
We now proceed to evaluate Φ̇. On a three-dimensional

spacelike hypersurface Σ with future-directed area element
dΣμ, the fluid’s entropy, energy-momentum and particle
number are given by S ¼ R

dΣμSμ, Pν ¼ R
dΣμTμν, and

N ¼ R
dΣμJμ, so we can write

Φ ¼
Z

dΣμϕ
μ; ϕμ ¼ Sμ þ α⋆Jμ þ β⋆ν Tμν: ðC2Þ

Inserting Sμ, Jμ and Tμν from (67) gives

ϕμ ¼ ½sþα⋆nþ β⋆ν uνðεþPÞ�uμþPβ⋆μþðξSþα⋆ξJÞωμ;

ðC3Þ

ϕ̇μ ¼ ½ṡþ α⋆ṅþ β⋆ν uνðε̇þ ṖÞ þ β⋆ν u̇νðεþ PÞ�uμ
þ ½sþ α⋆nþ β⋆ν uνðεþ PÞ�u̇μ þ Ṗβ⋆μ

þ ðξS þ α⋆ξJÞω̇μ þ ðξ̇S þ α⋆ξ̇JÞωμ: ðC4Þ

Note that α⋆ and β⋆ν , being properties of the bath, do not
depend on h. Non-rotating equilibria, to which we spe-
cialize immediately,11 have T, μ, and uμ constant over all
spacetime, so the last term in (C4) vanishes at h ¼ 0.
Furthermore, the second-to-last term vanishes at h ¼ 0
when integrated over any spacelike hypersurface Σ. To see
this, note that when h ¼ 0 we have

Z
dΣμω̇

μ ¼ 1

2

Z
dΣμϵ

μαβγuα∂βu̇γ: ðC5Þ

This evidently vanishes on hypersurfaces Σð0Þ that satisfy
dΣμ ∝ uμ. For any other spacelike hypersurface Σ, note that
the union Σþ Σð0Þ forms the boundary of some four-
dimensional hypervolume Ω with infinite spatial extent.
Then

Z
Σ
dΣμ

�
1

2
ϵμαβγuα∂βu̇γ

�
¼

Z
ΣþΣð0Þ

dΣμ∂β

�
1

2
ϵμαβγuαu̇γ

�

¼
Z

dΩ ∂μ∂β

�
1

2
ϵμαβγuαu̇γ

�
¼ 0; ðC6Þ

as claimed. To obtain the second equality, we used Gauss’
law under the assumption that u̇μ vanishes sufficiently fast
at spatial infinity. It is easily verified that the remaining
terms in ϕ̇μðh ¼ 0Þ vanish if and only if the equilibrium
state satisfies

μ=T ¼ α⋆ uν=T ¼ β⋆ν : ðC7Þ

The (conventional, unregulated) information current is
defined by

Eμ ¼ ϕμð0Þ − ϕμðhÞ: ðC8Þ

To obtain its quadratic approximation, we expand ϕμðhÞ ¼
ϕμð0Þ þ 1

2
ϕ̈μð0Þ þOðh3Þ. By differentiating (C4) once

more and then inserting (C7), we find

11In fact, we have effectively specialized already by neglecting
to include angular momentum as a conserved quantity in the
thermodynamic potential (C1). Including it would not modify our
conclusions.
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Tϕ̈μð0Þ ¼ −½Ṫ ṡþμ̇ ṅþ u̇νu̇νðεþ PÞ�uμ − 2Ṗu̇μ

þ ðTξS þ μξJÞω̈μ þ 2ðTξ̇S þ μξ̇JÞω̇μ: ðC9Þ

Here we have used uμu̇μ ¼ u̇μu̇μ þ uμüμ ¼ 0, which fol-
lows from differentiating the normalization uμuμ, as well
as the first law of thermodynamics ε̇ ¼ Tṡþ μṅ and the
Euler relation Tsþ μn ¼ εþ P. Equation (C9) can be
simplified further by inserting the definition of ξ̄ in (71)

and applying the constraint Tξ̇S þ μξ̇J ¼ 4ξ̄
εþP Ṗ, which

follows from a first-order entropy-current analysis
[56,62]. We also note that the term ξ̄ϵμαβγuα∂βüγ contained
within the second-to-last term of (C9) vanishes when
integrated over any spacelike hypersurface for the same

reason as in (C6). Finally, adopting the conventional
notation δf ¼ fðhÞ − fð0Þ, we have

TEμ ¼ −
1

2
h2Tϕ̈μð0Þ

¼ 1

2
½δTδsþ δμδnþ δuνδuνðεþ PÞ�uμ þ δPδuμ

−
2ξ̄

εþ P
δPϵμαβγuα∂βδuγ − ξ̄ϵμαβγδuα∂βδuγ: ðC10Þ

When evaluated in the local rest frame, where uμ ¼ ð1; 0⃗Þ
and δuμ ¼ ð0; δ⃗uÞ, this reduces to (70).
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