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We study a toy model of continuous infinite expansion of space-time with the flat start. We use as the
gravitational background a conformally flat metric with an exponentially growing factor in conformal time.
We aim to clarify some properties of quantum fields in such a gravitational background. In particular, we
calculate one-loop corrections to the Keldysh propagator to verify the fact of secular growth of the
occupation number and anomalous quantum average in the massless scalar field theory with self-
interactions. We perform the calculation in arbitrary dimensions with the use of the Schwinger-Keldysh
technique. We get a secular growth that is not of a kinetic type. We provide some results for the case of
generic interaction λ

b!ϕ
b.
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I. INTRODUCTION

One of the most intriguing questions in modern cosmol-
ogy is a set of properties of the very early Universe. Among
those properties we have in mind the geometry of the initial
Cauchy surface, basis of modes of the fields, initial Fock
space state of quantum fields and etc. To address this
question now, when there is no any possible experimental
test of the very early expansion, it is necessary to consider
as many and as generic initial conditions as possible and
see their consequences during and after the initial rapid
expansion of the Universe.
The common wisdom since the original works [1–7] is

that at the GUT scale of inflation all other fields, except the
classical gravitational background, although being quantum
should be taken at the tree level. Quantum loop effects are
supposed to be contributing only the renormalization of
coupling constants, masses, and other parameters of the
theory. In any case, it is usually assumed that loop
corrections do not drastically modify the tree-level (calcu-
lated with the uses of tree-level correlation functions)
expectation value of the stress-energy tensor of matter fields.
However, there is a substantial evidence that quantum

loop corrections in nonstationary situations can play a

crucial role (see Ref. [8] for a short recent review
and [9–20] for an incomplete list of related works).
Inflationary expansion is of course represented usually
by the de Sitter space-time. Meanwhile it is obvious that,
for our Universe, even if it was initially represented by de
Sitter space-time with high curvature, this representation
was only approximate. In fact, de Sitter isometry was
violated from the very beginning either by the background
itself or by the initial state of the matter fields. These
observations partially clarify our statement formulated at
the end of the first paragraph.
To clarify these observations in the earlier paper of our

group [21] we have considered a text book example of the
short expansion between flat past and future infinities [22].
In that paper we have shown that even in such a simple
situation quantum loop corrections can substantially modify
the tree-level expectation value of the stress-energy tensor,
which is calculated in text books. Namely, we have shown
that loop corrections to the stress-energy tensor are growing
with time and sooner or latter (depending on the theory and
initial conditions) overcome the tree-level flux. However,
the question remains on whether the same situation will
appear for the eternal expansion, which seems to be capable
to dilute essentially any initial density of particles. In this
paper we show that loop corrections to the stress-energy
tensor even in the case of eternal Friedmann–Lemaître–
Robertson–Walker (FLRW) type expansion with the flat
start grow with time and can cause strong backreaction on
the gravitational background. That happens even for the
initial Fock space ground state.
The paper is organized as follows. In Sec. II we set up the

problem—define the theory and the background. In Sec. III
we specify the mode functions and the initial state of the
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theory. In Sec. IV we single out leading secularly growing
(with time) loop corrections to the two-point propagator
that is sensitive to the state of theory. In Sec. V we compare
tree-level contribution and loop corrections to the stress-
energy tensor. We show that while tree-level expression of
the tensor vanishes at the future infinity, the loop correc-
tions grow with time. We conclude in Sec. VI.

II. THE BACKGROUND GEOMETRY AND SETUP
OF THE PROBLEM

We consider the real scalar field theory with the action

Sfree½ϕ�≡
Z þ∞

−∞
dDxL ½ϕ; g�

¼
Z þ∞

−∞
dDx

ffiffiffiffiffi
jgj

p �
gμν∂μϕ∂νϕ

2
−
m2ϕ2

2
−

λ

b!
ϕb

�
;

ð2:1Þ
with an integer b in the background metric as follows:

ds2 ¼ CðtÞðdt2 − dx⃗2Þ; where CðtÞ ¼ Aþ Beρt;

fA; Bg∈Rþ; ρ > 0; ð2:2Þ
which describes a model of eternal expansion. To simplify
equations below we make a suitable transformation of

coordinates t → tffiffiffi
A

p þ lnðABÞ
ρ , x⃗ → x⃗ffiffiffi

A
p , ρ → ρ

ffiffiffiffi
A

p
to express

the metric in the following form:

ds2 ¼ CðtÞðdt2 − dx⃗2Þ; where CðtÞ ¼ 1þ eρt: ð2:3Þ

At past infinity r → −∞, the metric is flat. At the same time
as t → þ∞:

ds2 ≈ eρtðdt2 − dx⃗2Þ: ð2:4Þ

Then, introducing the proper time τ ¼ 2
ρ e

ρt
2 , we obtain the

asymptotic metric as follows:

ds2 ≈ dτ2 −
ρ2τ2

4
dx⃗2; as τ → þ∞; ð2:5Þ

which is a metric of Friedman-Lemaitre-Robinson-
Walker type.
We want to calculate the flux of the produced particles at

the tree and loop levels in such a background. We assume
that the curvature of this space-time initially is large,
although it decays with time.
Mainly we perform the calculations for the λφ3 theory.

That is done to simplify the equations. Meanwhile essen-
tial physics is contained in this unstable theory. We assume
that there is an additional small interaction gφ4, g ≪ λ, to
stabilize the theory. But we assume that quantum correc-
tions due to quartic term start to play a role at much later
times than the corrections from λφ3 term.

III. MODE EXPANSION

To begin with, let us find the free modes of the theory
(2.1) in the background (2.2). Solving the free equations of
motion

∂μðgμν∂νϕ
ffiffiffi
g

p Þ þ ffiffiffi
g

p
m2ϕ ¼ 0; ð3:1Þ

in the form

ϕk⃗ðt; x⃗Þ ¼ fkðtÞeik⃗ x⃗; ð3:2Þ

one obtains the equation as follows:

ð1þ eρtÞf00ðtÞ þ ρ

�
D
2
− 1

�
eρtf0ðtÞ þ ð1þ eρtÞk2fðtÞ

þm2ðAþ Be−ρtÞ2fðtÞ ¼ 0: ð3:3Þ

We hide the index k of fkðtÞ for simplicity.
We cannot express solutions of (3.3) via known special

functions when m ≠ 0 and continue with the case of
massless fieldm ¼ 0. Making the change of the parameters
of the form:

K2 ¼ k2

ρ2
; d≡D − 2

4
; ð3:4Þ

we obtain the temporal part of the modes:

fkðtÞ ¼ C1e−ikt2F1

�
d − iK − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − d2

p
;d − iK þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − d2

p
; 1 − 2iK;−eρt

�
þ C2eikt2F1

�
dþ iK − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − d2

p
; dþ iK þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − d2

p
; 1þ 2iK;−eρt

�
; when K > d; ð3:5Þ

and

fkðtÞ ¼ C1e−ikt2F1

�
d − iK −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 − K2

p
;d − iK þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 − K2

p
; 1 − 2iK;−eρt

�
þ C2eikt2F1

�
dþ iK −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 − K2

p
; dþ iK þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 − K2

p
; 1þ 2iK;−eρt

�
; when K < d; ð3:6Þ

where 2F1ða; b; c; zÞ is the hypergeometric function.
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Now we will derive asymptotics of (3.5) and (3.6) to find
the in modes. In the limit t → −∞ the modes under
consideration behave as

ϕk⃗ðt → −∞; x⃗Þ ≈ C1e−iktþik⃗ x⃗ þ C2eiktþik⃗ x⃗: ð3:7Þ

For the in modes (single waves at past infinity) we should
set C2 ¼ 0.
The coefficient C1 for the in modes is fixed from the

canonical commutation relations. The field operator is

ϕðt; x⃗Þ≡
Z

dD−1k⃗
ð2πÞD−1 ða†k⃗ϕ

in
k⃗
�ðt; x⃗Þþak⃗ϕ

in
k⃗
ðt; x⃗ÞÞÞ

¼
Z

dD−1k⃗
ð2πÞD−1 ða†k⃗f

in
k
�ðtÞe−ik⃗ x⃗þak⃗f

in
k ðtÞeik⃗ x⃗Þ; ð3:8Þ

and its conjugate momentum, as follows from the
Lagrangian (2.1), is

πðt; x⃗Þ≡ ∂L

∂∂0ϕðt; x⃗Þ
¼ ð1þ eρtÞ2d∂tϕðt; x⃗Þ: ð3:9Þ

Here

fink ðtÞ ¼ C1e−ikt2F1

�
d − iK − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − d2

p
; d − iK þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − d2

p
; 1 − 2iK;−eρt

�
;

fink
�ðtÞ ¼ C�

1e
ikt

2F1

�
dþ iK − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − d2

p
; dþ iK þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − d2

p
; 1þ 2iK;−eρt

�
: ð3:10Þ

The canonical commutation relations are

½ϕðt; x⃗Þ;πðt; y⃗Þ� ¼ iδðx⃗− y⃗Þ; ½ak⃗; a†p⃗� ¼ ð2πÞD−1δðk⃗− p⃗Þ:
ð3:11Þ

From these relations, we find the normalization condition
for C1:

½∂tfink ðtÞfink �ðtÞ− ∂tfink
�ðtÞfink ðtÞ� ð1þ eρtÞ2d ¼−i: ð3:12Þ

This equality must be true for any moment of time because
of the equations of motion (3.3). So, setting t → −∞, we
obtain

C1 ¼
1ffiffiffiffiffi
2k

p : ð3:13Þ
Moreover, one can explicitly check that the normalization
condition (3.12) is satisfied when t → þ∞ and C1 is given
by (3.13). To see that one has to use asymptotics of the in
modes at t → þ∞.
The behavior of the in modes in the limit t → þ∞

can be found using the asymptotic form of the

2F1-hypergeometric function:

2F1ða; b; c; x → −∞Þ ≈ ð−xÞ−a ΓðcÞΓðb − aÞ
Γðc − aÞΓðbÞ

þ ð−xÞ−b ΓðcÞΓða − bÞ
Γðc − bÞΓðaÞ : ð3:14Þ

Thus, as t → �∞ for the in modes we obtain the following:

fink ðt → −∞Þ ≈ 1ffiffiffiffiffi
2k

p e−ikt;

fink ðt → þ∞Þ ≈ 1ffiffiffiffiffi
2k

p e−ρdtðD1ðkÞeiωðkÞt þD2ðkÞe−iωðkÞtÞ;

when k > ρd;

fink ðt → þ∞Þ ≈ 1ffiffiffiffiffi
2k

p e−ρdtðE1ðkÞeγðkÞt þ E2ðkÞe−γðkÞtÞ;

when k < ρd: ð3:15Þ

Here, we use the following notations:

D1ðkÞ ¼
Γð2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − d2

p
ÞΓð1 − 2iKÞ

Γð1 − d − iK þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − d2

p
ÞΓðd − iK þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − d2

p
Þ
;

D2ðkÞ ¼
Γð−2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − d2

p
ÞΓð1 − 2iKÞ

Γð1 − d − iK − i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − d2

p
ÞΓðd − iK − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − d2

p
Þ
;

E1ðkÞ ¼
Γð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 − K2

p
ÞΓð1 − 2iKÞ

Γð1 − d − iK þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 − K2

p
ÞΓðd − iK þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 − K2

p
Þ
;

E2ðkÞ ¼
Γð−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 − K2

p
ÞΓð1 − 2iKÞ

Γð1 − d − iK −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 − K2

p
ÞΓðd − iK −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 − K2

p
Þ
;

ωðkÞ ¼ ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − d2

p
; γðkÞ ¼ ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 − K2

p
: ð3:16Þ

Where d and K are defined in (3.4).
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IV. QUANTUM LOOP CORRECTIONS
IN λ

3!ϕ
3 THEORY

In this section, we calculate loop corrections to the
propagators. As the situation that we consider is nonsta-
tionary, we have to use the Schwinger-Keldysh technique,
where each field is described by three propagators:

GKðt; x⃗; t0; x⃗0Þ≡ 1

2
hfϕðt; x⃗Þ;ϕðt0; x⃗0Þgi;

GRðt; x⃗; t0; x⃗0Þ≡ θðt − t0Þh½ϕðt; x⃗Þ;ϕðt0; x⃗0Þ�i;
GAðt; x⃗; t0; x⃗0Þ≡ −θðt0 − tÞh½ϕðt; x⃗Þ;ϕðt0; x⃗0Þ�i: ð4:1Þ

In principle one can consider any reasonable initial state for
the problem. In high energy physics one usually considers
the Poincare invariant vacuum state, which is reasonable
since then one considers scattering cross sections of
particles in the vacuum inside accelerators. Of course
one does not yet know the initial state of the very early
Universe just before the stage of rapid expansion. But
obviously it is not natural to assume that the state was
Poincare invariant or even was a vacuum of any sort. In this
note we consider a model example of the expanding
universe and our main goal is to show that quantum loop
corrections are relevant for the backreaction problem.
Because of that we propose to consider a simple and
generic enough initial state. Namely, we consider a spa-
tially homogeneous initial state, in which

(
ha†

k⃗
ap⃗i ¼ nk⃗δðk⃗ − p⃗Þ; hak⃗ap⃗i ¼ κk⃗δðk⃗þ p⃗Þ; ha†

k⃗
a†p⃗i ¼ κ�

k⃗
δðk⃗þ p⃗Þ

nk⃗ ¼ n−k⃗; κk⃗ ¼ κ−k⃗
: ð4:2Þ

Then, spatial Fourier transformations of the propagators
from Eq. (4.1) are

GK
0 ðt; t0; k⃗Þ ¼ κ�

k⃗
fink ðtÞfink ðt0Þ þ κk⃗f

in
k
�ðtÞfink �ðt0Þ

þ
�
nk⃗ þ

1

2

�
½fink �ðtÞfink ðt0Þ þ fink ðtÞfink �ðt0Þ�; ð4:3Þ

and

GR
0 ðt; t0; k⃗Þ ¼ −θðt − t0Þ½fink �ðtÞfink ðt0Þ − fink ðtÞfink �ðt0Þ�;

ð4:4Þ

GA
0 ðt; t0; k⃗Þ ¼ θðt0− tÞ½fink �ðtÞfink ðt0Þ−fink ðtÞfink �ðt0Þ�: ð4:5Þ

As can be seen from these expressions, GKðt; x⃗; t0; x⃗0Þ
contains information about the state of the theory. At the
same time, the tree-level retarded and advanced propagators
GR;Aðt; x⃗; t0; x⃗0Þ are state independent but dependent on the
spectrum of the theory. We are mostly interested in the
corrections to the Keldysh propagator, GK

0 , because we
would like to trace the destiny of the state of the theory.

The diagrams that we will calculate in this section are
shown in Figs. 1 and 2. Diagrams from Fig. 1 we will call
“diagrams of the first type” or tadpole diagrams. Diagrams
from Fig. 2 we will call “diagrams of the second type.”
Below, we will prove that for the initial conditions that we
consider below the tadpole diagrams will result only in the
mass and mode functions renormalization. Meanwhile, the
occupation numbers and anomalous averages are affected
only by the diagrams of the second type. They are of the
main interest for us because they show the change in the
state of the theory. We will calculate them in Sec. IV B.

FIG. 1. Diagrams of the first type. FIG. 2. Diagrams of the second type.
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A. Tadpole diagrams

We start with the concise discussion of the first type or tadpole diagrams. The contribution of the tadpole diagrams from
Fig. 1 to the Keldysh, GK

0 , retarded, G
R
0 , and advanced, GA

0 , propagators in the coordinate representation are as follows:

GK
1;tadpolesðx; x0Þ ¼ −

λ2

2

Z þ∞

t0

dy0dz0
Z

dD−1y⃗dD−1 ⃗z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðyÞgðzÞ

p
×
h
GR

0 ðx; yÞGR
0 ðy; zÞGK

0 ðz; zÞGK
0 ðy; z0Þ þ GK

0 ðx; yÞGA
0 ðz; yÞGK

0 ðz; zÞGA
0 ðy; x0Þ

i
;

GR=A
1;tadpolesðx; x0Þ ¼ −

λ2

2

Z þ∞

t0

dy0dz0
Z

dD−1y⃗dD−1 ⃗z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðyÞgðzÞ

p h
GR=A

0 ðx; yÞGR
0 ðy; zÞGK

0 ðz; zÞGR=A
0 ðy; z0Þ

i
: ð4:6Þ

These equations can be generalized to the Dyson-Schwinger equations for the resumed propagators containing only
diagrams of the tadpole type:

GK
tadpolesðx; x0Þ ¼ GK

0 ðx; x0Þ −
λ2

2

Z þ∞

t0

dy0dz0
Z

dD−1y⃗dD−1 ⃗z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðyÞgðzÞ

p h
GR

0 ðx; yÞGR
0 ðy; zÞGK

0 ðz; zÞGK
tadpolesðy; x0Þ

þ GK
0 ðx; yÞGR

0 ðy; zÞGK
0 ðz; zÞGA

tadpolesðy; x0Þ
i
;

GR=A
tadpolesðx; x0Þ ¼ GR=A

0 ðx; x0Þ − λ2

2

Z þ∞

t0

dy0dz0
Z

dD−1y⃗dD−1 ⃗z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðyÞgðzÞ

p h
GR=A

0 ðx; yÞGR
0 ðy; zÞGK

0 ðz; zÞGR=A
tadpolesðy; x0Þ

i
;

ð4:7Þ

where GK;R;A
1;tadpoles are the one-loop corrections, while GK;R;A

tadpoles are the resummed expressions. If one applies the operator

L̂ ¼ ∂μgμν∂ν
ffiffiffi
g

p
to both sides of each equation in (4.7), one finds the following relations:

�
L̂þ iλ2

2

ffiffiffiffiffiffiffiffiffi
gðxÞ

p Z þ∞

t0

dz0
Z

dD−1 ⃗z
ffiffiffiffiffiffiffiffiffi
gðzÞ

p
GR

0 ðx; zÞGK
0 ðz; zÞ

�
GK

tadpolesðx; x0Þ ¼ 0;

�
L̂þ iλ2

2

ffiffiffiffiffiffiffiffiffi
gðxÞ

p Z þ∞

t0

dz0
Z

dD−1 ⃗z
ffiffiffiffiffiffiffiffiffi
gðzÞ

p
GR

0 ðx; zÞGK
0 ðz; zÞ

�
GR=A

tadpolesðx; x0Þ ¼ iδðt − t0Þδðx⃗ − x⃗0Þ: ð4:8Þ

From these expressions one can see that besides the leading
UV singularity, which are independent of the background
field and the state of the theory, these expressions also
contain subleading singularities which may depend on the
background field and the state. Such singularities lead to a
change of the modes beyond the mass renormalization (see
Ref. [21]). Nevertheless, we will not discuss in detail such
changes and assume that the physical (renormalized) mass
is vanishing and all other physical quantities are taking their
such values as are given in (2.1). Namely, we do not
discuss, e.g., the interaction constant renormalization,
which emerges already in the fourth order of λ and has
the form λð1Þ ∼ λ3. Such vertex renormalization diagrams
appear in powers of λ strictly greater than 2, and they can be
added into diagrams of the first and second types with bold
vertices. We just assume that we work with the physical

(UV renormalized) mass and the interaction constant and
study only infrared effects. On general physical grounds we
assume that UV effects do not affect the dynamics of the
background state of the theory. Meanwhile we will see
below that IR effects do strongly affect the state of the
theory.

B. Diagrams of the second type

Now we continue with contributions of the diagrams of
the second type, but only up to the second order in λ. We are
not yet ready to perform the resummation of the leading
contributions coming from such diagrams. The reason for
that we explain below.
The GK

0 , GR
0 , and GA

0 corrections in the coordinate
representation, following from Fig. 2, are
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GK
1;2−typeðx; x0Þ ¼ −

λ2

2

Z þ∞

t0

dy0dz0
Z

dD−1y⃗dD−1 ⃗z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðyÞgðzÞ

p h
GR

0 ðx; yÞðGK
0 ðy; zÞÞ2GA

0 ðz; x0Þ

þ 1

4
GR

0 ðx; yÞðGR
0 ðy; zÞÞ2GA

0 ðz; x0Þ þ
1

4
GR

0 ðx; yÞðGA
0 ðy; zÞÞ2GA

0 ðz; x0Þ
þ 2GR

0 ðx; yÞGK
0 ðy; zÞGR

0 ðy; zÞGK
0 ðz; x0Þ þ 2GK

0 ðx; yÞGK
0 ðy; zÞGA

0 ðy; zÞGA
0 ðz; x0Þ�;

GR=A
1;2−typeðx; x0Þ ¼ −λ2

Z þ∞

t0

dy0dz0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðy0Þgðz0Þ

q Z
dD−1y⃗dD−1 ⃗z½GR=A

0 ðx; yÞGK
0 ðy; zÞGR=A

0 ðy; zÞGR=A
0 ðz; x0Þ

i
: ð4:9Þ

We are interested in the form of these corrections in the following time limit:

�
tþ t0 → þ∞
t − t0 ¼ const

; ð4:10Þ

where both points of the propagators are taken to the future infinity. This limit allows one to trace the destiny of the state of
the theory in the future. To simplify expressions below we introduce the notation:

t ≈ t0 ≡ T0 → þ∞: ð4:11Þ

It can be seen that in the limit (4.10) and (4.11) corrections to GR=A
1;2−type from (4.9) are negligible:

GR=A
1;2−typeðx; x0jt ≈ t0 ≡ T0Þ ≈ −λ2

Z
T0

t0

dy0dz0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðy0Þgðz0Þ

q Z
dD−1y⃗dD−1 ⃗z

× θðT0 − y0Þθðy0 − z0Þθðz0 − T0Þ × ½GC
0 ðx; yÞGK

0 ðy; zÞGC
0 ðy; zÞGC

0 ðz; x0Þ� ¼ 0: ð4:12Þ

This happens due to the presence of the theta functions—the essential element of the retarded and advanced propagators at
any loop order [23,24]. Moreover, this result can be generalized to any perturbative order due to the causality.
Thus, the most interesting contribution from our point of view is the correction to GK

0 from the diagrams of the second
type from Eq. (4.9). In terms of the spatially Fourier transformed propagators this contribution can be written as

GK
1;2−typeðt; t0; k⃗Þ ¼−

λ2

2

Z þ∞

t0

dy0dz0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðy0Þgðz0Þ

q Z
dD−1p⃗
ð2πÞD−1

dD−1s⃗
ð2πÞD−1 δðk⃗− p⃗− s⃗Þ

×
h
GR

0 ðt;y0; k⃗ÞGK
0 ðy0; z0; p⃗ÞGK

0 ðy0; z0; s⃗ÞGA
0 ðz0; t0; k⃗Þþ

1

4
GR

0 ðt;y0; k⃗ÞGR
0 ðy0; z0; p⃗ÞGR

0 ðy0; z0; s⃗ÞGA
0 ðz0; t0; k⃗Þ

þ 1

4
GR

0 ðt;y0; k⃗ÞGA
0 ðy0; z0; p⃗ÞGA

0 ðy0; z0; s⃗ÞGA
0 ðz0; t0; k⃗Þþ 2GR

0 ðt;y0; k⃗ÞGK
0 ðy0; z0; p⃗ÞGR

0 ðy0; z0; s⃗ÞGK
0 ðz0; t0; k⃗Þ

þ 2GK
0 ðt; y0; k⃗ÞGK

0 ðy0; z0; p⃗ÞGA
0 ðy0; z0; s⃗ÞGA

0 ðz0; t0; k⃗Þ
i
: ð4:13Þ

From this expression, one can find corrections to the occupation number (ON) and the anomalous quantum average (AA).
To do that, one should use in (4.13) expressions (4.3), (4.4), (4.5) for both tree-level, GR;A;K

0 , and the corrected, GK
1;2-type,

propagators in the limit (4.10), (4.11) (with the initial and corrected ON and AA, correspondingly). Then the leading
corrections to the ON (the element of the corrected propagator) is contained in

nð2Þk ðT0Þ ≈
λ2

2

Z
T0

t0

dy0dz0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðy0Þgðz0Þ

q Z
dD−1p⃗
ð2πÞD−1

dD−1 ⃗s
ð2πÞD−1 δðk⃗ − p⃗ − ⃗sÞfink �ðy0Þfink ðz0Þ

×
n
finp �ðy0Þfinp ðz0Þfins �ðy0Þfins ðz0Þ ×

h
ð1þ nkÞð1þ npÞð1þ nsÞ − nknpns

i
þ 2finp �ðy0Þfinp ðz0Þfins ðy0Þfins �ðz0Þ ×

h
ð1þ nkÞð1þ npÞns − nknpð1þ nsÞ

i
þ finp ðy0Þfinp �ðz0Þfins ðy0Þfins �ðz0Þ ×

h
ð1þ nkÞnpns − nkð1þ npÞð1þ nsÞ

io
þ H:c:; ð4:14Þ
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while for the AA is in

κð2Þk ðT0Þ ≈
λ2

2

Z
T0

t0

dy0dz0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðy0Þgðz0Þ

q Z
dD−1p⃗
ð2πÞD−1

dD−1 ⃗s
ð2πÞD−1 δðk⃗ − p⃗ − ⃗sÞfink ðy0Þfink ðz0Þ

×ffinp ðy0Þfinp �ðz0Þfins ðy0Þfins �ðz0Þ
×½ðð1þ npÞð1þ nsÞ þ npnsÞ þ signðy0 − z0Þð1þ 2nkÞðð1þ npÞð1þ nsÞ − npnsÞ�

þ2finp ðy0Þfinp �ðz0Þfins �ðy0Þfins ðz0Þ
×½ðð1þ npÞns þ npð1þ nsÞÞ þ signðy0 − z0Þð1þ 2nkÞðð1þ npÞns − npð1þ nsÞÞ�g; ð4:15Þ

where nk is the initial value of the occupation number. Meanwhile initial κk is assumed to be zero.

We are interested in the leading secular corrections from
the last expressions to ON and AA, which means the largest
correction as a function of T0 ¼ t1þt2

2
, when it is taken to the

future infinity. To single out such contributions we perform
the change of variables:

τ ¼ z0 − y0; T ¼ y0 þ z0
2

: ð4:16Þ

Let us now divide the regions of the integration in (4.14)
and (4.15) in to three intervals ðt0; t̄Þ, ðt̄; t̃Þ, ðt̃; T0Þ, where
t̄ ≈ − 1

ρ and t̃ ≈ 1
ρ. The first interval is the flat start of the

expansion, where the modes behave as single oscillating
exponents. The second interval is the transition between flat
space and the eternal expansion. We can neglect contribu-
tion from this interval, because it provides subleading
contribution in the limit in question: the duration of the
interval is finite. The third interval is the expansion region,
which becomes very large in the limit that we consider. On
general grounds it can be expected that the largest con-
tribution to AA and ON will come from the region of
integration in (4.14) and (4.15) when both z0 and y0 lie in
the third interval.
In fact, when either y0 (or z0) lies in the first interval

while z0 (or y0) lies in the third interval we will obtain
subleading oscillating correction to the propagator, because
as t → −∞ the modes behave as single exponents with the
frequency k (3.15), while in the third region (as t → þ∞)
they behave as the superposition of exponents, oscillating
for high momenta with frequency

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ρ2d2

p
(or real for

low momenta). Hence, in such a situation it is impossible to
obtain nonoscillating contributions under the integrals on
the rhs of (4.14) and (4.15). As a result there are no growing
with time contributions, which come from these regions.
Another unimportant situation is when both y0 and z0 lie

in the first interval. Here, the modes are almost free single
plane waves. Also volume factor is approximately equal to
unity. Hence, on the rhs of (4.14) and (4.15) we obtain the
same expressions as in the flat space. The resulting largest
contribution from grows linearly with time and has the form

of the rhs of the Boltzmann’s kinetic equation. Such a
contribution is known to be equal to zero for the thermal
(Planckian) value ON. Moreover, such a secular growth has
a simple physical meaning—it describes the thermalization
process: for any initial state (close to the equilibrium) we
can take the initial Cauchy surface to the past infinity,
t0 → −∞, and assume that by the start of the expansion the
AA are equal to zero and ON are equal to the thermal
distribution [25].
Now, from (3.15) it can be seen that in the infinite future

the behavior of the modes strongly differs for low and high
momenta. Hence, we have to consider separately several
situations depending on whether external or internal (loop)
momenta are low or high.

1. Diagrams of the second type with high
external momenta

First, let us concentrate on the situation when the
momentum of the external legs is large, i.e., obeys the
condition k > ρd. Naively it can be expected that leading
loop corrections will come from the internal loop momenta
also greater than ρd, because processes of tunneling through
the potential gap are suppressed. However, such naive
arguments are not valid. For the integrity we will estimate
and compare contributions from all values of momenta in
the loop. We will show that small measure of integration in
the interval (0, ρd) is not only compensated by the growth
in the time of observation but also contribution from this
region of momentum space leads to much greater correc-
tions to ON and AA. In the remainder of this subsection we
will explicitly show the result only for ON, due to the
similarity of the integrals in (4.14) and (4.15).
Consider the situation when both momenta in (4.14) are

high (s; p > ρd). To obtain the leading contribution to
(4.14) in the limit (4.11), we always can neglect every term
from the product of the modes which gives oscillating
functions of T under the integral over dT [see the definition
of the notations in (4.16)]. At the same time, after the
integration over τ one will obtain a sum of δ functions in
each contribution in (4.14). Each δ function we can interpret
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as a kind of the energy conservation law.1 Combing these “energy conservation laws” with the momentum conservation, one
obtains three possible conditions for the presence of the secular contributions in (4.14):

(
k⃗ ¼ p⃗þ ⃗sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ρ2d2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − ρ2d2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − ρ2d2

p ;

(
k⃗ ¼ p⃗þ ⃗sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ρ2d2

p
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − ρ2d2

p ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − ρ2d2

p : ð4:17Þ

Here, effectively masses are imaginary and the processes under considerations are possible, unlike the situation with the real
mass. This is in accordance with the fact that there is no energy conservation in proper sense in time dependent backgrounds.
After some simplifications and symmetrization one obtains that the leading correction to nk in the limit (4.10), (4.11) for the
large external momenta k > ρd is of the form:

nð2;1Þk≫ρdðT0Þ ≈ πλ2

16
e−

D−6
2
ρT0

R
p≥ρd

dD−1p⃗
ð2πÞD−1

R
p≥ρd

dD−1 ⃗s
ð2πÞD−1 δðk⃗ − p⃗ − ⃗sÞ 1

kps

×
n
N 1ðk; p; sÞ ×

h
ð1þ nkÞð1þ npÞð1þ nsÞ − nknpns

i
þ 2N 2ðk; p; sÞ ×

h
ð1þ nkÞð1þ npÞns − nknpð1þ nsÞ

i
þN 3ðk; p; sÞ ×

h
ð1þ nkÞnpns − nkð1þ npÞð1þ nsÞ�

o
:

ð4:18Þ

Here, we use the following notations:

N 1ðk; p; sÞ ¼ δðωðkÞ − ωðpÞ − ωðsÞÞ ×
			D1ðkÞD2ðpÞD2ðsÞ þD2ðkÞD1ðpÞD1ðsÞ

			2
þ 2δðωðkÞ þ ωðpÞ − ωðsÞÞ ×

			D1ðkÞD1ðpÞD2ðsÞ þD2ðkÞD2ðpÞD1ðsÞ
			2;

N 2ðk; p; sÞ ¼ δðωðkÞ − ωðpÞ − ωðsÞÞ ×
			D1ðkÞD2ðpÞD�

1ðsÞ þD2ðkÞD1ðpÞD�
2ðsÞ

			2
þ δðωðkÞ þ ωðpÞ − ωðsÞÞ ×

			D1ðkÞD1ðpÞD�
1ðsÞ þD2ðkÞD2ðpÞD�

2ðsÞ
			2

þ δðωðkÞ − ωðpÞ þ ωðsÞÞ ×
			D1ðkÞD2ðpÞD�

2ðsÞ þD2ðkÞD1ðpÞD�
1ðsÞ

			2;
N 3ðk; p; sÞ ¼ δðωðkÞ − ωðpÞ − ωðsÞÞ ×

			D1ðkÞD�
1ðpÞD�

1ðsÞ þD2ðkÞD�
2ðpÞD2ðsÞ

			2
þ 2δðωðkÞ þ ωðpÞ − ωðsÞÞ ×

			D1ðkÞD�
2ðpÞD�

1ðsÞ þD2ðkÞD�
1ðpÞD�

2ðsÞ
			2; ð4:19Þ

where coefficients D1 and D2 are defined in (3.16).
Before continuing our analysis, let us clarify a few things about the time dependence (on T0) that we have obtained

in (4.18). It is straightforward to see that the exponential growth of (4.18) comes only from two sources: volume factor in
every vertex and damping exponents from each mode. In such a situation it is easy to find the corresponding power of the
exponent for arbitrary dimension and degree of interaction (when all momenta in the loop are higher than ρd). The result for
λφb theory in D dimensions is the following:

nð2Þk≫ρdðT0Þ ∼ λ2eρð
2D−bðD−2Þ

2
ÞT0Φ

�
k
Λ

�
; ð4:20Þ

κð2Þk≫ρdðT0Þ ∼ λ2eρð
2D−bðD−2Þ

2
ÞT0Φ

�
k
Λ

�
; ð4:21Þ

1Note, however, that in such a background as (2.2) there is no exact energy conservation, because the modes are not simple exponents.
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where b is the degree of the interaction. For example,
2D − bðD − 2Þ ¼ 0, when D ¼ 4, b ¼ 4. Then we get the
linear growth in time, as the integrand of dT in the
generalization of (4.14) and (4.15) for λφb theory in D
dimensions is independent of T. From this point of view it
becomes clear that this factor in the exponent is connected
to the renormalizability conditions of the λφb theory in D
dimensions.
Now let us look at the contribution to (4.14) and (4.15)

coming from the region when only one of the momenta in
the loop is higher than ρd, for example p > ρd, and the
other is smaller than ρd. While the integration over small
momenta in the loop integrals has small measure, the
behavior of the modes with small momenta radically differs

from the modes with high momenta as can be seen from
(3.15), (3.16).
As the modes with momenta s < ρd do not oscillate,

from the integrals over τ one will approximately obtain
terms with δ functions of the form δðωk − ωpÞ and
δðωk þ ωpÞ, instead of terms with δ functions with three
frequencies as in (4.19). Terms with δðωk þ ωpÞ are
always vanishing, while the other δ function imposes
the equality k ¼ p. Furthermore, one can neglect every
term which contains exponent from the modes of momenta
s with negative power. Combining all these observations
together one can write down the leading correction to ON
from the integration region under consideration in the
following form:

nð2Þk>ρd;p>ρd;s≤ρdðT0Þ ≈ λ2eρT0
2k
ωk

Z
dΩp⃗

ð2πÞ3
Z

s¼ρd

0

d3 ⃗s
ð2πÞ3 δðk⃗ − p⃗ − ⃗sÞ 1

s
jE1ðsÞj2e2

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2−s2

p
T0

ρþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2 − s2

p
×
n
4jD1ðkÞj2jD2ðkÞj2ð1þ 2nkÞð1þ 2nsÞ − ðjD1ðkÞj2 þ jD2ðkÞj2Þ2nkð1þ nkÞ

o
; ð4:22Þ

where dΩp⃗ is the measure of integration over the angles of
p⃗. The obtained integral can be estimated by the steepest
descent method, and one can see that such a contribution
grows with time as e2ρT0ffiffiffiffi

T0

p . Such a time dependence is valid

only for the in-vacuum state, namely when nk is equal to
zero.
However the situation becomes more complicated for the

thermal initial distribution. As we work with the massless
scalar field, the thermal distribution behaves as nk ≈ 1

k when
k → 0. Hence, the remaining integral in the expression
under consideration, multiplying the factor e2ρT0ffiffiffiffi

T0

p , contains

the IR divergence. The origin of this divergence is very
similar to the one in the kinetic equation for the massless
fields in flat space. The question of how to deal with such a
divergence becomes critical, when one is going to perform
the resummation of leading contributions from all loops. In
such a situation the mode function renormalization from
tadpole diagrams can play an important role. In any case
this question demands a separate careful study.
The analysis for the situation when both ⃗s and p⃗ lie in the

interval ð0; ρdÞ is much more simple. Every term from the
product fink

�ðy0Þfink ðz0Þ gives only an oscillating contribu-
tion. And these oscillations cannot be compensated by the
modes of momenta p⃗ or ⃗s, as the latter are real. Thus, the
contribution from the region (s; p ≤ ρd) does not lead to a
secular growth.
In all, the contribution to ONwith k > ρd from the region

(p; s > ρd) contains the growth of the form eρT0 (4.18),
while the contribution from the region (s ≤ ρd; p > ρd)
contains the growth of the form e2ρT0ffiffiffiffi

T0

p (4.22). Thus, the largest

contribution to the ON comes from the region where only

one of the momenta in the loop is higher than ρd. The
situation with AA is similar. Such a result differs from
the well-studied cases, where the largest contribution for the
high external momenta is coming from also high momenta
in the loops [12,14].

2. Diagrams of the second type with
low external momenta

Let us concentrate now on the case when the momentum
in the external leg in (4.14) and (4.15) obeys k ≤ ρd. First,
let us consider contribution to ON from the high momenta
in the loop, s; p > ρd. To obtain the leading contribution
to (4.14) in the limit (4.11) from such a region of integration
we can neglect every term from the product of modes which
contains oscillating functions of T [see (4.16) for the
definition] under the dT integral. Then, in the leading
terms there will be present δðωs − ωpÞ, appearing after the
integration over τ. In the resulting expression the time
dependence is contained only in the volume factors and
external leg modes. So the corresponding correction grows
with time in the following way:

nð2Þk≤ρd;p;s>ρdðT0Þ ∝ eρT0e2
ffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2−k2

p
T0 : ð4:23Þ

Second, consider the contribution from the region of
integration when only one of the loop momenta, for
example p⃗, is greater than ρd. But this situation is similar
to the situation when k > ρd; s; p ≤ ρd. There will be
only oscillating contributions under the integral in (4.14)
and (4.15). As a result, this region of integration does not
bring any growing with T0 corrections.
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Finally, the largest contribution to (4.14) and (4.15) comes from the region of integration where all momenta, k, p, s, are
lower than the ρd bound. For such a case we will also show the largest contribution to AA (apart from the one to ON) as this
is the main result. In the situation under consideration the integration over y0 and z0 is especially simple, as there are no any
oscillations, because all the modes in the integral are real exponential functions. As a result, after the integration over dT one
obtains that

nð2Þk≤ρd;p;s≤ρdðT0Þ ≈ λ2eρT0e2
ffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2−k2

p
T0
jE1ðkÞj2

2k

Z
d3p⃗
ð2πÞ3

d3 ⃗s
ð2πÞ3 δðk⃗ − p⃗ − ⃗sÞe2

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2−s2

p
T0e2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2−p2

p
T0Hðk; p; sÞ; ð4:24Þ

where Hðk; p; sÞ is a function depending only on k, p, s. We will specify this function in the final expression below. The

only important fact at this point is that the function e2
ffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2−s2

p
T0e2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2−p2

p
T0 is very fast in the limit (4.11). So the

corresponding integral can be estimated by the steepest descent. To do that let us make the change of variables:

⃗l ¼ p⃗ − ⃗s
2

; L⃗ ¼ p⃗þ ⃗s: ð4:25Þ

Then after the integration over L⃗ we obtain the following:

nð2Þk≤ρd;p;s≤ρdðT0Þ ≈ λ2eρT0e2
ffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2−k2

p
T0
jE1ðkÞj2

2k

Z
d3 ⃗l
ð2πÞ3 e

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2−ðk⃗

2
þ⃗lÞ2

p
T0e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2−ðk⃗

2
−⃗lÞ2

p
T0Hðk; lÞ

¼ λ2
eρT0e2

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2−k2

p
T0e4

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2−k2

4

p
T0

T
3
2

0

jE1ðkÞj2jE1ðk2Þj4ð1þ 2nk
2
Þ2

2k3ðρ
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2 − k2

p
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2 − k2

4

q
Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ2d2 − k2

4
Þ92

8ðρ2d2 þ k2
2
Þ

vuut : ð4:26Þ

Similarly for AA one can obtain the expression as follows:

κð2Þk≤ρd;p;s≤ρdðT0Þ ≈ λ2
eρT0e2

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2−k2

p
T0e4

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2−k2

4

p
T0

T
3
2

0

E2
1ðkÞjE1ðk2Þj4½ð1þ 2nk

2
Þ2 þ 2ð1þ nk

2
Þnk

2
�

4k3ðρ
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2 − k2

p
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2 − k2

4

q
Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ2d2 − k2

4
Þ92

8ðρ2d2 þ k2
2
Þ

vuut : ð4:27Þ

It is not hard to see that these contributions are the largest in (4.14) and (4.15) in the limit that we consider.

Let us close this section by summing up our observa-
tions: we have calculated and analyzed time dependence of
the corrections to the ON [nkðT0Þ from (4.14)] and the AA
[κkðT0Þ from (4.15)] in the λ

3!
ϕ3 theory in D dimensions.

Here T0 is the average time of the corrected Keldysh
propagator. Corrections to ON and AA for large external
momenta k > ρd coming from the large internal loop
momenta p; s > ρd are of the form (4.18). They are both
exponentially suppressed forD > 6 and grow forD < 6. In
any case this is a subleading correction. Namely, we have
shown that the largest contribution for high external
momenta comes from the low internal momenta (4.22),
and grows as e2ρT0ffiffiffiffi

T0

p . The same analysis was made for the

corrections to the nkðT0Þ and κkðT0Þ for low external
momenta k ≤ ρd. We have shown that the largest contri-
bution in this case comes from the low internal momenta
p; s ≤ ρd and is given by the expressions (4.26) and (4.27).
In other words, the largest growing with T0 contribution to
ON and AA goes to k < ρd and it comes also from low

momenta in the loop p; s < ρd. This observation will
drastically simplify the resummation of the leading cor-
rections from all loops.

V. THE EXPECTATION VALUE OF THE
STRESS-ENERGY TENSOR

In this section we analyze how loop corrections to ON
and AA affect the expectation value of the stress-energy
tensor (SET). We compare tree-level value of this quantity
with loop corrections to it. For simplicity in this section the
initial state is taken to be the in vacuum. The SET operator
is defined as follows:

Tμνðt; x⃗Þ≡ 2δL ½ϕ; g�ffiffiffiffiffijgjp
δgμν

¼ ∂μϕðt; x⃗Þ∂νϕðt; x⃗Þ
−
gμν
2

½gαβ∂αϕðt; x⃗Þ∂βϕðt; x⃗Þ�: ð5:1Þ
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The interaction term provides a subleading contribution due
to the presence of λ, which is assumed to be small. Then the
expectation value of the SET can be found as follows:

hTμνðt; x⃗Þi¼ lim
x⃗1→x⃗2



∂

∂xμ1

∂

∂xν2
−
ημν
2
ηαβ

∂

∂xα1

∂

∂xβ2

�
GKðt; x⃗1; t; x⃗2Þ:

ð5:2Þ

We use spacelike point splitting to obtain the real result.
Loop corrected ON and AA are changing in time as fast

as the mode functions. Hence, we can not neglect time
derivatives of nk and κk in the expression for the SET. This
is a quite unusual situation in comparison with the standard
one in kinetic processes.
To calculate the SET let us rewrite the expression for the

tree-level Keldysh propagator in the following form:

GK
0 ðt; x⃗1; t; x⃗2Þ ¼

Z
d3k⃗
ð2πÞ3 ½f

in
k
�ðtÞfink ðtÞ�eik⃗ðx⃗1−x⃗2Þ

≈
Z
k<ρd

d3k⃗
ð2πÞ3

h
A1ðkÞe−ρte2

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2−k2

p
t þ A2ðkÞe−ρt þ A3ðkÞe−ρte−2

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2−k2

p
t
i
eik⃗ðx⃗1−x⃗2Þ

þ
Z
k>ρd

d3k⃗
ð2πÞ3

h
B1ðkÞe−ρte2i

ffiffiffiffiffiffiffiffiffiffiffiffi
k2−ρ2d2

p
t þ B2ðkÞe−ρt þ B3ðkÞe−ρte−2i

ffiffiffiffiffiffiffiffiffiffiffiffi
k2−ρ2d2

p
t
i
eik⃗ðx⃗1−x⃗2Þ; ð5:3Þ

where the coefficients AnðkÞ and BnðkÞ, n ¼ 1, 2, 3 are independent of t and x⃗ and have the following form:

A1ðkÞ ¼
1

2k
jE1ðkÞj2; A2ðkÞ ¼

1

2k
½E1ðkÞE�

2ðkÞ þ E�
1ðkÞE2ðkÞ�; A3ðkÞ ¼

1

2k
jE2ðkÞj2;

B1ðkÞ ¼
1

2k
D1ðkÞD�

2ðkÞ; B2ðkÞ ¼
1

2k
½jD1ðkÞj2 þ jD2ðkÞj2�; B3ðkÞ ¼

1

2k
D�

1ðkÞD2ðkÞ: ð5:4Þ

Where E1;2ðkÞ and D1;2ðkÞ are defined in (3.16).

As exponents are eigenfunctions of the derivative oper-
ator, the time dependence of the Fourier image of the SET is
essentially the same as of the propagator (5.3). Hence, we
can straightforwardly see that the tree-level expectation
value of the SET is decaying to zero in the future. This can
be expected on general grounds due to the expansion of the
space-time background.
However, in Secs. IV B 1 and IV B 2 we have shown that

loop corrections to ON and AA grow with time exponen-
tially. These quantities are elements of the Keldysh propa-
gator in (5.2) and they grow with the average time of this
propagator. Furthermore, the time dependence of each term
in the Fourier image of the SET coincides with time

dependence of the corresponding term from the Fourier
image of the Keldysh propagator GK. We have found the
largest correction to ON and AA and, hence, to GK in the
previous section. Then we can single out the leading loop
contribution to the SET (it comes from the low momenta
modes):

hTμνðtÞ1-loopi ≈
Z
k<ρd

d3k⃗
ð2πÞ3

× C1ðkÞ
e4

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2−k2

p
te4

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2−k2

4

p
t

t
3
2

Kμν; ð5:5Þ

where we have neglected derivatives of the function 1

t
3
2

, while the tensor Kμν has the following form:

Kμν ¼ diag

"
8

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2 − k2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2 −

k2

4

r !
2

þ k2

2
; k2x − 8

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2 − k2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2 −

k2

4

r !
2

þ k2

2
;

k2y − 8

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2 − k2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2 −

k2

4

r !
2

þ k2

2
; k2z − 8

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2 − k2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2 −

k2

4

r !
2

þ k2

2

#
; ð5:6Þ

and C1 is
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C1ðkÞ ¼ λ2
jE1ðkÞj4jE1ðk2Þj4ð1þ 2nk

2
Þ2

2k3ðρ
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2 − k2

p
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2 − k2

4

q
Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ2d2 − k2

4
Þ92

8ðρ2d2 þ k2
2
Þ

vuut

þ λ2
jE1ðk2Þj4½ð1þ 2nk

2
Þ2 þ 2ð1þ nk

2
Þnk

2
�

4k3ðρ
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2 − k2

p
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2d2 − k2

4

q
Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ2d2 − k2

4
Þ92

8ðρ2d2 þ k2
2
Þ

vuut ½E4
1ðkÞ þ E4

1ðkÞ��: ð5:7Þ

Now we can compare the time dependence of the tree-level
expectation value of the SET with the loop corrected
expectation value. The loop corrected expectation value
(5.6) grows with time, while the tree-level expectation
value is decaying towards future infinity. Hence, loop
corrections in such a situation are extremely significant:
they do not just go into coupling constants renormalizations
but also modify the energy fluxes. To get the complete
understanding of the physics in such a situation one has to
resum the largest growing contributions from all perturba-
tive orders. The obtained result, as was mentioned, has a
different character from the kinetic one. Hence, the resum-
mation of all perturbative orders in this situation is more
complicated than in the standard case. Problem of this kind
we will try to solve in the following papers.

VI. CONCLUSION

We have considered quantum loop corrections to the
occupation number and anomalous quantum average in λφ3

theory in D dimensions. (We assume that stabilizing ϕ4

terms are also present in the potential but with much
smaller coupling constants and correct our observations at
much larger timescales.) The theory was considered in a
FLRW space-time with flat start at past infinity and the
initial state was taken as the in-Fock space ground state.
We have show that the contribution of tadpole diagrams

can be absorbed into a change of the mode functions and
mass renormalization. At the same time diagrams of the
second type (shown in Fig. 2) lead to a change of the state
of the theory: to a change in time of the occupation number
and of the anomalous quantum average according to (4.14)
and (4.15). We look for the largest contributions to these
expressions in the limit (4.10), (4.11), when both points of
the propagator are taken to the future infinity. The growth
of these quantities with the average time T0 of the Keldysh
propagator comes from the region of the expansion of the
space-time, if the initial state is stationary: the flat start and
transition regions in the FLRW space-time contribute
subleading corrections. The change of the occupation
number and of the anomalous quantum average in time

shows the change of the state of the theory during the
course of its evolution.
We have shown that the largest contribution to the

occupation number and anomalous quantum average with
(external) momenta k > ρd comes from the region where
only one of the (internal) momenta in the loops is higher
than the ρd bound. Such a result is quite counterintuitive:
on general grounds it can be expected that the largest
contribution for high external momenta should come also
from high momenta in the loops. At least that is the case in
de Sitter space-time [12,14]. Such an unusual phenomenon
we attribute to the specific behavior of the modes for low
momenta.
Finally, we have shown that the fastest possible growth

appears in occupation number and anomalous quantum
average for low (external) momenta, k ≤ ρd, and comes
also from the low (internal) momenta in the loops,
p; s ≤ ρd. In this case for future references we find the
expressions with all explicit coefficients in (4.26) and
(4.27). The dependence on time is not of a kinetic type,
which complicates the situation with the resummation of
loops for generic initial conditions.
We show that the change of the state of the theory that we

observe cannot be neglected as the loop corrected stress-
energy tensor (5.5) is much larger the tree-level one in the
future infinity. This result signals that for complete analysis
of the theory in such a background we need to perform a
resummation of the leading growing corrections from all
perturbative orders. Our observations show that one can
take care of only about the modes with low momenta. To
perform the resummation we need to check the growth of
the multiple point correlation functions and solve the
(system) of Dyson-Schwinger equations.
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