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In this paper, we investigate new integrable extensions of two-center Coulomb systems. We study the
most general n-dimensional deformation of the two-center problem by adding arbitrary functions
supporting second-order commuting conserved quantities. The system is superintegrable for n > 4

and, for certain choices of the arbitrary functions, reduces to known models previously discovered. Then,
based on this extended system, we introduce an additional integrable generalization involving Calogero
interactions for n ¼ 3. In all examples, including the two-center problem, we explicitly present the
complete list of Liouville integrals in terms of second-order integrals of motion.
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I. INTRODUCTION

The study of the hydrogen atom system, often referred
to as the Coulomb problem, is a focal point in quantum
mechanics because of its widespread presence in nature and
applications, as well as its valuable historical background.
The Coulomb problem also exhibits quantum integrability
and maximal superintegrability, reasons behind its
“accidental” degeneracy [1,2]. The latter arises from the
presence of a nontrivial integral of motion, the Laplace-
Runge-Lenz vector operator, see [1,3,4] and references
therein. Extending this investigation to n dimensions,
classical and quantum maximally superintegrable proper-
ties have been established [5,6].
One of the first explorations of multiparticle systems in

quantum mechanics was the analysis of the ionized hydro-
gen molecule, which is the simplest form of a diatomic
molecule and a fundamental case of the two-center
Coulomb problem [7,8]. This system is the quantum
version of the Euler’s three-body problem studied in
1760 [4,9]. In the first half of the 20th century, the
separability of the Schrödinger equation in elliptic coor-
dinates for the two-center problem was already known.
Erikson and Hill [10] presented the quantum mechanical
version of an extra integral of motion inspired from the
Laplace-Runge-Lenz vector for the case n ¼ 3, showing its
intrinsic connection to the separability of the system in

prolate spheroidal coordinates. Coulson and Joseph [11]
extended this work to arbitrary dimensions, showing that
the form of the nontrivial integral of motion remains
consistent in Euclidean space. However, in the presence
of more than two centers the system ceases to be integrable,
since the symmetries which allow the existence of a
nontrivial conserved quantity derived from the Laplace-
Runge-Lenz vector operator disappear [11]. The integrable
properties of the two-center Coulomb problem have been
studied from various approaches, including for instance
exact and quasiexact solvability or supersymmetric quan-
tum mechanics [12–17].
In a series of papers,Helfrich,Hartmann, andKehl [18–20],

worked on generalized diatomic orbitals, introducing inter-
actions dependent on the inverse of the product of the radii
in three dimensions. Unlike other interactions, this exten-
sion preserved the rotational symmetry of the two-center
problem, maintaining integrability and revealing a set of
conserved quantities. The separability and the existence of
more general integrable three-dimensional extensions
depending on arbitrary functions were studied by Miller
Jr. and Turbiner [21]. The separability of the two-center
problem in higher dimensions has been studied extensively
in [22], using hyperspheroidal coordinates for n > 3.
Recent extensions of the two-center problem, such as those
explored in [23,24], have considered a Calogero-type of
interaction, leading to partial separability in hyperspher-
oidal coordinates and the construction of the corresponding
nontrivial integral of motion using Dunkl operators [25].
Considering the previous integrable deformations of the

two-center problem, we can ask how general an interaction
depending on both radii can be such that it is possible to
construct a deformation of the quadratic integral of motion
discovered by Erikson and Hill [10] and thus separability of
the Schrödinger equation. In the present work we find two
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families of interactions which allow the existence of a
nontrivial conserved quantity, including the most general
radii-only interaction in n dimensions which allows
separability in hyperspheroidal coordinates. We also
explicitly show the n − 2 quadratic conserved quantities
under involution in terms of the angular momenta, filling a
gap in the literature on the integrability in the higher-
dimensional two-center Coulomb problem.
The paper is organized as follows. In Sec. II we review

the main integrable algebraic properties of the central
problem in n dimensions and the special case of the
Coulomb potential. This basis will prove useful for the
comparison with the different models that will be studied
next. Section III is devoted to the summary of the algebraic
structure of the n-dimensional two-center Coulomb prob-
lem, including the explicit form of the complete set of
conserved quantities. In Sec. IV we introduce a generic
extension of the n-dimensional two-center Coulomb prob-
lem and study the integrable features and the separability of
the corresponding Schrödinger equation. As an application
of this scheme, in Sec. V we construct a further extension
involving Calogero type of interactions for three dimen-
sions (or three particles) with second-order charges. In
Sec. VI we discuss open problems and final remarks.

II. SUPERINTEGRABILITY
OF THE n-DIMENSIONAL CENTRAL

AND COULOMB PROBLEMS

Let us consider a n-dimensional particle with coordi-
nates x⃗ ¼ ðx1; x2;…; xnÞ and momentum operators p⃗ ¼
ðp1; p2;…; pnÞ. Setting the natural units of ℏ ¼ m ¼ 1, we
have pl ¼ −i∂l and ½xi; pj� ¼ iδij, where δij is the
Kronecker delta. As a starting point, we choose a generic
central potential VðrÞ, which depends only on the radial
coordinate r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ � � � þ x2n

p
. The spherically

symmetric Hamiltonian operator,

H ¼ 1

2
p⃗2 þ VðrÞ; ð1Þ

remains invariant under SOðnÞ rotations about the origin.
Their associated conserved quantities, ½H;Lij� ¼ 0, are the
components of the angular momentum tensor defined by

Lij ¼ xipj − xjpi; i; j ¼ 1; 2;…; n; ð2Þ

that satisfy the commutation relations of the standard
SOðnÞ generators,

½Lij; Lkl� ¼ iðδjlLik þ δikLjl − δjkLil − δilLjkÞ: ð3Þ

Following the notion of quantum integrability [1], we look
for n commuting conserved quantities. From the commu-
tation relations (3), it is clear that we can choose, for
example, the set of operators (2) such that i ≠ j ≠ k ≠ l.

However, it is possible to find a more convenient set by
constructing the quadratic Casimir elements of the corre-
sponding groups SOð2Þ ⊂ � � � SOðkÞ ⊂ � � � ⊂ SOðnÞ [23],

Ck ¼
Xk
i<j

L2
ij; 2 ≤ k ≤ n; ð4Þ

where Cn ¼ L⃗2. By construction, these operators are
in involution, i.e., they satisfy ½Ci; Cj� ¼ 0, for any
2 ≤ i < j ≤ n. In this way, the quantum analog of
Liouville integrablity is given in terms of the following
conserved charges:

Liouville integrals∶ fH;C2; C3;…; Cng: ð5Þ

As one of the standard examples of superintegrable
systems, the n-dimensional central problem (1) at classical
and quantum level contains, in addition of the Liouville
integrals, extra conserved quantities. However, among the
nðn − 1Þ=2 components of the angular momentum tensor
(2), there are only 2n − 3 independent ones as a conse-
quence of the identity

LijLkl þ LilLjk þ LikLlj ¼ 0; i ≠ j ≠ k ≠ l: ð6Þ

This can be seen, for instance, choosing i ¼ 1, j ¼ 2 in
the above relation, L12Lkl þ L1lL2k − L1kL2l ¼ 0, where
3 ≤ l < k ≤ n such that every component Lkl can be
expressed only in terms of the 2n − 3 components
fL12;…; L1n; L23;…; L2ng. In this way, together with
the Hamiltonian, the system possesses a total of 2n − 2
independent integrals of motion, which establishes the
superintegrability of the central problem. Further details
and different ways to establish the independence of the
angular momenta components in the classical case can be
found in [26].

A. Coulomb case

As one of the standard problems in quantum mechanics,
the hydrogen atom or Coulomb potential,

VðrÞ ¼ −
γ

r
; ð7Þ

has been studied extensively over the last century,
finding many applications from group theory to black hole
physics [3,4,27,28]. Here we will briefly review some
details of the algebraic structure of its integrability in n
dimensions. Besides the charges given by the angular
momentum operators discussed in the previous case for
generic central potentials, the not-so-accidental degeneracy
of the spectrum is explained by the Laplace-Runge-
Lenz vector. Using this conserved operator, Pauli first
solved the spectrum for the 3D case in 1926 [2], before
the Schrödinger equation was known. The choice of the
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potential (7) endows the system with n additional con-
served quantities, which are the components of the quan-
tum Laplace-Runge-Lenz vector [5],

Ai ¼
1

2

XN
j¼1

ðLijpj þ pjLijÞ − γ
xi
r
;

½Ai;H� ¼ 0; i ¼ 1;…; n: ð8Þ

The algebra between this operator and the angular momen-
tum (2) takes the following form:

½Ai; Aj� ¼ −2iHLij; ½Ai; Ljk� ¼ iðδikAj − δijAkÞ; ð9Þ

where we recognize its nonlinear nature. The discussion
of how this algebra (9) can be linearized for fixed
energy levels explaining the spectrum degeneracy, is
studied in standard quantum mechanics textbooks, see for
example [28]. From the second commutation relations
in (9), we can check that some of the components of the
Ai vector will not be completely independent when the Lij

operators are taken into account. In the three-dimensional
case, this fact is expressed as the constraint A⃗ · L⃗ ¼ 0. In
addition, from the nonlinear relationship,

A⃗2 ¼ Hð2L⃗2 þ ðn − 1Þ2Þ þ γ2; ð10Þ

it can be seen that in the end the n-dimensional Laplace-
Runge-Lenz vector adds only one independent integral
of motion, so that the Hamiltonian (1) with Coulomb
potential (7) becomes maximally superintegrable.

III. INTEGRABILITY OF THE n-DIMENSIONAL
TWO-CENTER COULOMB PROBLEM

The next case we consider is a n-dimensional charged
particle under the influence of two charged centers [7,8,10,11]
described by the Hamiltonian,

H2c ¼
1

2
p⃗2 −

γþ
rþ

−
γ−
r−

; ð11Þ

where r� are the distances from the charged moving
particle to two fixed centers. These centers are chosen to
be located at the positions a⃗ ¼ aû and −a⃗, along a line
defined by the direction,1

û ¼ 1ffiffiffi
n

p ð1; 1;…; 1Þ; ð12Þ

such that the distances r� are written as

r� ¼ jx⃗� a⃗j ¼
"Xn

i¼1

�
xi �

affiffiffi
n

p
�

2
#
1=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 � 2ða⃗ · x⃗Þ

q
: ð13Þ

The Hamiltonian (11) is no longer invariant under SOðnÞ
rotations around the origin, but invariant under SOðn − 1Þ
rotations around the line connecting the two charges (12).
One can then write the new conserved quantities, let us call
them L⊥

ij, in terms of the previous angular momentum
operators Lij from Eq. (2), which are no longer conserved.
The new integrals, ½H2c; L⊥

ij� ¼ 0, are orthogonal to the
n-dimensional vector ûwith componentsuk reading [23,24],

L⊥
ij ¼ Lij þ

Xn
k¼1

ðuiukLjk − ujukLikÞ

¼ Lij þ
1

n

Xn
k¼1

ðLjk − LikÞ; 1 ≤ i < j ≤ n: ð14Þ

Their symmetry algebra is analogous to (3), but slightly
different,

½L⊥
ij; L

⊥
kl� ¼ iðδ̃jlL⊥

ik þ δ̃ikL⊥
jl − δ̃jkL⊥

il − δ̃ilL⊥
jkÞ;

δ̃ij ¼ δij −
1

n
: ð15Þ

Following the same previous discussion in the central
problem, since the symmetry corresponds to the SOðn − 1Þ
group, it is possible towrite down n − 2 quantities quadratic
in L⊥

ij in involution analogous to (4),

C⊥
α ¼

Xα
i<j

L⊥2

ij þ 1

α

Xα
i;j;k

L⊥
ijL

⊥
jk; α ¼ 3;…; n: ð16Þ

Although the existence of these n − 2 quantities quadratic in
L⊥
ij was mentioned in [24], to our knowledge they have not

been constructed explicitly in the literature before. The
independence of the integrals (16) can be understood easily
from the fact that they can be written as C⊥

α ¼Pα
i<j L

2
ij þ

1
α

P
α
i;j;k LijLjk with α ¼ 3;…; n. To this extent, the rota-

tional symmetry from the charges (16) and the Hamiltonian
form a set of n − 1 integrals ofmotion in involution, but they
are not enough to trigger integrability.
Remarkably, this system also inherits a nontrivial con-

served quantity from the Laplace-Runge-Lenz vector of the
hydrogen atom/Coulomb problem, first constructed in [10]
for the three-dimensional case. This nontrivial integral
was then obtained in the n-dimensional case by an elegant
trick [11], translating the projection of the Laplace-Runge-
Lenz vector onto û, leading to the second-order operator,

1The problem can also be defined in such a way that the centers
of charges lie on one of the n basis axes [10,11,22]. The definition
(12) is useful because it ensures the permutation invariance in the
position coordinates of the Hamiltonian H2c. This fact will be
used in Sec. V when we introduce Calogero type of interactions.
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A2c ¼ L⃗2 þ ða⃗ · p⃗Þ2 − 2ða⃗ · x⃗Þ
�
γ−
r−

−
γþ
rþ

�
: ð17Þ

Besides commutingwith theHamiltonian (11), ½A2c;H2c�¼0,
it does also for the angular operators (14), ½A2c; L⊥

ij� ¼ 0,
and thus, with the n − 2 mutually commuting integrals of
motion (16). In this way, we have a set of n conserved
quantities in involution and the system described by the
Hamiltonian (11) is integrable,

Liouville integrals∶ fH2c; A2c; C⊥
3 ;…; C⊥

n g: ð18Þ
Since the integrability of the two-center problem is given
by conserved quantities of second order, its Schrödinger
equation is separable in hyperspheroidal coordinates. This
fact has been studied in [22], together with the solutions for
the n-dimensional case, expressed in terms of confluent
Heun functions. We will study the separability of extended
two-center systems in Sec. IV, which includes this case as a
special limit.
In order to establish the superintegrable nature of the

two-center problem, we need to find out the independence
of the charges L⊥

ij and C⊥
α , similar to what was done in

Sec. II. In this case, instead of the relation (6), the operators
L⊥
ij satisfy the following identity,

L⊥
ijL

⊥
kl þ L⊥

il L
⊥
jk þ L⊥

ikL
⊥
lj ¼

i
n
ðL⊥

jk þ L⊥
kl þ L⊥

ljÞ;
i ≠ j ≠ k ≠ l: ð19Þ

Once we fix two indexes i, j, any other element L⊥
kl can be

determined in terms of other components containing either
i or j in their entries. For example, we can choose i ¼ 1 and
j ¼ 2, and the elements from the sets fL⊥

1k; k ¼ 2;…; ng
and fL⊥

2j; j ¼ 3;…; ng can be used to write any other
element L⊥

jk with j, k ≠ 1, 2. In principle, we can regard
these elements as part of a set of independent angular
momentum components, but the existence of the additional
constraint,

Xn
j¼1

L⊥
ij ¼ 0; ð20Þ

reduces the set of independent orthogonal angular momenta
to the set of 2n − 5 components fL⊥

13;…; L⊥
1ng and

fL⊥
24;…L⊥

2ng. Together with the Hamiltonian and the
nontrivial integral (17), we have a set of 2n − 3 indepen-
dent integrals of motion and the superintegrability of the
two-center problem is thus obtained for n > 3.

IV. INTEGRABILITY OF TWO-CENTER
PROBLEM WITH AN ARBITRARY EXTENSION

Several deformations of the two-center problem have
been studied in the literature, such as the harmonic

oscillator deformation [11] or the extra term introduced
by Helfrich and Hartmann [18,19]. In this sense, one may
wonder what kind of interaction terms could be added to
the two-center problem in order to preserve a conserved
quantity of the type A2c and integrability. Although the
three-dimensional case was considered in [21], the answer
to this question in n dimensions can be given by consid-
ering the following Hamiltonian with only radiilike inter-
actions,

HF ¼ 1

2
p⃗2 −

γ−
r−

−
γþ
rþ

−
1

r−rþ
ðFμ þ FνÞ; ð21Þ

where the functions Fμ and Fν depend only on the
difference and sum of r�,

Fμ ¼ Fμðrþ þ r−Þ; Fν ¼ Fνðrþ − r−Þ: ð22Þ

The extended potential in (21) turns out to be the most
general form for which the system inherits a nontrivial
conserved quantity derived from the Laplace-Runge-Lenz
vector method [10,11]. This modification of the potential
transforms the integral (17) into a new conserved charge,

AF ¼ L⃗2 þ ða⃗ · p⃗Þ2 − 2ða⃗ · x⃗Þ
�
γ−
r−

−
γþ
rþ

�

−
1

2r−rþ
½ðrþ − r−Þ2Fμ þ ðrþ þ r−Þ2Fν�: ð23Þ

Note that any function of the radii fðrþ; r−Þ commutes with
the components L⊥

ij, which means that the orthogonal
angular momentum operators are still conserved quantities
and the previous discussion about the independence of
quadratic ones (16) remains the same. We have then
constructed the following set of mutually commuting
operators,

Liouville integrals∶ fHF; AF; C⊥
3 ;…; C⊥

n g: ð24Þ

In the Table I we summarize some known cases for which the
generic interactions Fμ and Fν in (21) reduce to the Helfrich
and Hartmann case, harmonic oscillator and an extra combi-
nation, and the corresponding form of the integral (23). As
the extensions introduced in (21) keep the orthogonal
symmetries provided by L⊥

ij, the superintegrability remains
unaltered as in the previous section. Since the order of the
commuting charges is also two, we can also expect the
Schrödinger equation to be separable. We will now focus on
this using hyperspheroidal coordinates.
Let us introduce the Jacobi coordinates [29], which

describe a system with n degrees of freedom by separating
the center of mass coordinates y0 from the relative
coordinates y⃗ ¼ ðy1; y2…; yn−1Þ, while keeping the kinetic
terms unchanged,
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y0 ¼
1ffiffiffi
n

p
Xn
i¼1

xi; yk ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðkþ 1Þp
 Xk

j¼1

xj − kxkþ1

!
;

k ¼ 1;…; n − 1: ð25Þ

In these coordinates y20 þ y⃗2 ¼ r2 and the charged
centers lie in the center of mass axis y0 where
r� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ ðy0 � aÞ2

p
. Next, we introduce the hyper-

spheroidal coordinates in terms of μ and ν and the n − 2

angles φl that parametrize the Sn−2 sphere [22],

μ ¼ rþ þ r−
2a

; ν ¼ r− − rþ
2a

; φl; l ¼ 1;…; n − 2:

ð26Þ

The relation with the Jacobi coordinates contains the
unitary vector n̂ðφlÞ pointing radially out of the Sn−2

sphere,

y0 ¼ −aμν; y⃗ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ2 − 1Þð1 − ν2Þ

q
n̂ðφlÞ: ð27Þ

The Hamiltonian in terms of ðμ; ν;φlÞ takes the following
form:

HF ¼ −
1

2a2ðμ2 − ν2Þ
�

1

ðμ2 − 1Þn−32 ∂μðμ2 − 1Þn−12 ∂μ

þ 1

ð1 − ν2Þn−32 ∂νð1 − ν2Þn−12 ∂ν
�

−
1

2a2ðμ2 − 1Þð1 − ν2Þ∇
2
n−2 −

γþ
aðμþ νÞ

−
γ−

aðμ − νÞ −
Fμ þ Fν

a2ðμ2 − ν2Þ : ð28Þ

Finally, we can separate the Schrödinger equation HFψ ¼
Eψ with the wave function ansatz depending on μ, ν and the
angles φl in the following way:

ψðμ; ν;φlÞ ¼ χþðμÞχ−ðνÞΞðφlÞ: ð29Þ

The corresponding separable equations for μ and ν take a
similar form,

�
1

ðμ2 − 1Þn−32 ∂μðμ2 − 1Þn−12 ∂μ þ 2aðγþ þ γ−Þμ

þ 2a2ðμ2 − 1ÞE − λþ 2Fμ −
qðqþ n − 3Þ

μ2 − 1

�
χþðμÞ ¼ 0;

ð30Þ
�

1

ð1 − ν2Þn−32 ∂νð1 − ν2Þn−12 ∂ν − 2aðγþ − γ−Þν

− 2a2ð1 − ν2ÞEþ λþ 2Fν −
qðqþ n − 3Þ

1 − ν2

�
χ−ðνÞ ¼ 0;

ð31Þ

depending on the separation constants λ and qðqþ n − 3Þ.
The first separation constant λ is closely related to the
eigenvalues of the integral of motion AF (23), as has
already been observed for some special cases [20,21]. The
second one is related with the remaining angular equation
that can be written in terms of the (n − 2)-dimensional
spherical Laplacian ∇2

n−2,

∇2
n−2ΞðφlÞ ¼ −qðqþ n − 3ÞΞðφlÞ: ð32Þ

Writing the angular dependence as ΞðφlÞ ¼ Πn−2
k¼1ΞkðφkÞ,

the equations completely separate into the following set of
equations:

�
1

sink−1φk

∂

∂φk
sink−1φk

∂

∂φk
−
mk−1ðmk−1 þ k − 2Þ

sin2φk

þmkðmk þ k − 1Þ
�
ΞkðφkÞ ¼ 0; ð33Þ

�
∂
2

∂φ2
1

þm2
1

�
Ξ1ðφ1Þ ¼ 0; ð34Þ

where k ¼ 2;…; n − 2, and the quantities m1; m2;…;
mn−2 ¼ q are the separation constants. We conclude that
the potential considered in (21) is the most general that
achieves complete separability of the n-dimensional
Schrödinger equation via a conserved quantity of the form
AF. In the next section wewill use this scheme to consider a
further extension via Calogero interactions.

TABLE I. Reduction of the system HF and integral AF to the Helfrich-Hartmann and Harmonic oscillator
interactions.

Fμ Fν Potential Contributions to AF

Helfrich-Hartmann (H-H) C=constant Q − C Q
rþr−

−Q r2þa2
rþr−

Harmonic oscillator − k
2
ðrþ þ r−Þ4 k

2
ðrþ − r−Þ4 − k

2
ðr2þ þ r2−Þ k

8
ðr2þ − r2−Þ2 ¼ 2kða⃗ · x⃗Þ2

H-Hþ Harmonicmixup − 1
4
ðrþ þ r−Þ2 − 1

4
ðrþ − r−Þ2 − r2þa2

rþr−
4ða⃗·x⃗Þ2
rþr−
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V. INTEGRABILITY OF TWO-CENTER
AND CALOGERO EXTENSIONS IN 3D

For the last example, we consider n ¼ 3 dimensions,
which can also be thought of as three identical particles of
equal mass m ¼ 1. Starting from the Hamiltonian HF (21),
we add the pairwise inverse square interactions given by the
rational Calogero model [30–32] depending on a coupling
parameter g,

Hg ¼ HF þ
X3
l<m

gðg − 1Þ
ðxl − xmÞ2

: ð35Þ

The Calogero model (also known as Calogero-Moser-
Sutherland) is an excellent, if not the best, example of
many particle integrable systems, both at the classical
and quantum level. Most of the properties of integrable
models can be tested and studied in the many variants and
deformations of the Calogero models. In fact, in the
quantum regime, the Dunkl operators [25] appear as quite
useful objects to understand the integrable properties
of the integrals of motion, the intertwining operators and
the algebraic integrability [33–36]. In the present case, the
Hamiltonian (35) can be obtained in terms of the Dunkl
operators, which have the following form:

Dl ¼ ∂l − g
X3
l<m

1

xl − xm
slm; Pl ¼ −iDl; l¼ 1;2;3:

ð36Þ

The symbols slm represent the permutation operators,
slmxm ¼ xlslm, slmpm ¼ plslm, and satisfy s2lm ¼ 1 for
l; m ¼ 1, 2, 3. Replacing the derivatives by the Dunkl
operators pl → Pl in the Hamiltonian HF gives a new
nonlocal operator which explicitly depends on the permu-
tation operators slm. Shifting the permutations to the right
and then restricting the resulting operator to act on
completely symmetric functions eliminates all nonlocal
terms and reduces the Hamiltonian to the form (35).
For example, in the absence of the two-center extension,
the Calogero Hamiltonian is obtained simply in terms

of Dunkl operators via resð1
2
P⃗2Þ ¼ 1

2
p⃗2 þP3

l<m
gðg−1Þ

ðxl−xmÞ2,
where resð·Þ is the restriction to acting on symmetric
functions. In the two-center Coulomb problem, which
corresponds to Fμ ¼ Fν ¼ 0 in Hg, this idea has indeed
been used by Hakobyan and Nersessian [23,24]. They
introduce the unit vector û and the deformed momentum
operators L⊥

ij with the advantage that the symmetric
choice of û makes the Hamiltonian invariant under the
permutation transformations given by slm, ½Hg; slm� ¼ 0

for l; m ¼ 1, 2, 3.
Under this symmetric scheme, it is easy to apply the

same idea of replacing derivatives by Dunkl operators and
subsequent reduction to the case of the permutation
invariant integrals C⊥

3 and AF in (16) and (23), respectively.
In this way we obtain the new integrals of motion of the
Hamiltonian Hg,

Ag ¼ AF þ 2gðg − 1Þ
�
x23 þ 2x1x2
ðx1 − x2Þ2

þ x21 þ 2x2x3
ðx2 − x3Þ2

þ x22 þ 2x3x1
ðx3 − x1Þ2

�
; ð37Þ

Cg ¼ C⊥
3 þ gðg − 1Þ

3

ðx1 þ x2 − 2x3Þ2ðx2 þ x3 − 2x1Þ2ðx3 þ x1 − 2x2Þ2
ðx1 − x2Þ2ðx2 − x3Þ2ðx3 − x1Þ2

: ð38Þ

By construction, the two new integrals are also symmetric
under permutations ½Ag; slm� ¼ ½Cg; slm� ¼ 0 and, together
with the Hamiltonian, are the n ¼ 3 Liouville integrals of
the extended two-center Calogero system,

Liouville integrals∶ fHg; Ag; Cgg: ð39Þ

Since the resulting integrals are second order in the
momenta, it is natural to expect separability of the
Schrödinger equation. Obviously, when g ¼ 0 the system
reduces to the most general two-center Coulomb extension,
depending only in r�, which was studied in Sec. IV. The
case Fμ ¼ Fν ¼ 0, g ≠ 0 was studied in [23,24], where it
was also shown that the Calogero interaction prevents the
complete separability due to angular coupling and the

Schrödinger equation is partially separated in elliptic
coordinates for n > 3. In our extended case with n ¼ 3
and the Calogero interaction, we can separate the equa-
tion with the same ansatz as in Eq. (29) ψðμ; ν;φÞ ¼
χþðμÞχ−ðνÞΞðφÞ. The equations for χþðμÞ and χ−ðνÞ are
exactly the same as before, plugging n ¼ 3 in (30) and (31).
The angular equation (32) is given in terms of the well-
known Pösch-Teller potential,

∇2
1ΞðφÞ ¼ −q2ΞðφÞ; ∇2

1 ¼
1

2
∂
2
φ þ

9

2
cos−2ð3φÞ:

This equation and its relation to angular Calogero
models had also been studied before, see for instance [37,38].
Thus the extended system Hg is endowed with an
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integrable structure underlying the separability of the
Schrödinger equation, but has no further charges to induce
superintegrability.

VI. DISCUSSION

The two-center Coulomb provides an interesting
landscape to study integrable properties and different
deformations. First, it is interesting to comment about
the emergence of superintegrability in the two-center case
and its extensions (21). For a fixed dimension, the number
of independent conserved projected angular momentum
components L⊥

ij is lower than in comparison with the
central problem. If the number of additional symmetries,
such as the Laplace-Runge-Lenz vector or AF, does not
increase there should be a dimension where the conserved
angular momentum L⊥

ij provides enough independent
integrals. In fact, it is known that both the scalar AF and
the Laplace-Runge-Lenz vector provide only one indepen-
dent charge. In the extended two-center Coulomb case
this critical dimension is n ¼ 4, making the case n ¼ 3
integrable but not superintegrable.
In this paper we focus on the case of completely

separable models with second-order Liouville integrals.
A natural question is what happens beyond separability
and hence beyond quadratic charges. The Calogero models
are indeed a perfect scenario to study this problem.
Considering our present three dimensions results and
also [23,24], the case n > 3 should have higher-order
charges in terms of the operators L⊥

ij obeying symmetry
rules under the corresponding Weyl reflections associated
with the root system. This is fully consistent with the
fact that the angular reduction of the Calogero models is
no longer separable for n ≥ 4 [38]. If we move away
from separability and quadratic charges, there are many

possibilities to construct further integrable models based on
Calogero interactions, studying different root systems, but
also for trigonometric, hyperbolic or even elliptic inter-
actions. These cases will be considered elsewhere.
The two-center Coulomb problem has also been

studied from the approach of supersymmetric quantum
mechanics [14,15]. The separable extended cases studied
here with the Hamiltonian (21) and (35) are also interesting
to study with this method. In the latter case one could also
expect the existence of intertwining operators, which are
provided for the algebraic structure in the form of Dunkl
operators [33–36]. In the standard Calogero interaction,
while the conserved charges appear as Weyl invariant
polynomials in terms of Dunkl operators, the intertwining
ones appear as Weyl anti-invariant polynomials, see for
example [36]. It is not clear whether it would be possible to
find such antilinear operators for the extended two-center
Coulomb problem.
It might also be interesting to study the defor-

med Dunkl algebra for the two-center model in the same
spirit as it has been studied for the Calogero model with
Coulomb interaction or the connection with symplectic
algebras [39,40]. Another possible compatible extension
could be the integrable models embedded in different
geometries, where Calogero and related problems have
already been studied [41,42].
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