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Covariant actions and propagators for all spins, masses, and dimensions
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The explicit covariant actions and propagators are given for fields describing particles of all spins and
masses, in any spacetime dimension. Massive particles are realized as “dimensionally reduced” massless
particles. To obtain compact expressions for the propagators, it was useful to introduce an auxiliary vector
coordinate s* and consider “hyperfields” that are functions of space X* and s*. The actions and propagators
serve as a basic starting point for concrete high spin computations amenable to dimensional regularization,
provided that gauge invariant interactions are introduced.
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I. INTRODUCTION

The modeling of particles with spin higher than 3/2 has a
long history, dating back to at least the work of Dirac in
1936 [1]. Equations of motion for free massive particles of
arbitrary spins were written down in [2], and it was noted
then that introducing interactions in this framework will
generically not preserve the physical degrees of freedom of
the high spin particle. It was suggested that a way to fix this
was to formulate an action principle for the higher spin
field. Subsequently, the first actions for free massive
particles of arbitrary spins were written down in [3.4],
and then their massless counterparts in [5,6].

The problem of introducing interactions persisted. For
massless higher spin particles, general arguments [7-9]
were made which essentially invalidate the existence of
spins higher than 2 in asymptotically flat space, assuming
they interact with gravity in a way which obeys the
equivalence principle." We know on the other hand that
massive higher spins exist in nature [11], and so we expect
there to be a way to model them and their interactions.

In spite of this, the task of finding consistent interactions
for massive higher spins remains a challenging one.
Along with the aforementioned change in degrees of
freedom issue, it was realized that minimally coupling
spins higher than 3/2 to an electromagnetic background
will generically allow superluminal propagation [12].
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"There is of course, a notable theory [10] of massless higher
spins in anti-de Sitter space.
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Coupling massive higher spins to gravity has also been
shown to violate causality [13,14]. For spin 3/2, both of
these problems can be solved when it is realized within the
framework of supergravity [15]. For higher spins, the only
known solution to both is to realize them within string
theory [16]. It is clear based on the explicit construction
in [16] that a consistent set of interactions with electro-
magnetism is by no means unique. A construction of the
space of consistent interactions from first principles is still
warranted.

To facilitate this, one must formulate massive
higher spins in a way which makes the introduction of
interactions straightforward. The actions [3,4] are not
suited for this task for at least two reasons. First, these
actions are only consistent in four spacetime dimensions,
and based on experience with string theory, the consistency
of interactions appears to depend sensitively on the space-
time dimension. Thus we should find a way to formulate
massive higher spins in arbitrary spacetime dimensions d.
Finally, these actions do not have an organizing principle
such as gauge invariance which helps decide what kinds of
interactions will preserve the particle’s degrees of freedom.
In this paper, we will write down covariant actions for all
massive spins which addresses both of these points.

Another important aspect of massive higher spins is the
complexity of their propagators. Explicit propagators for
the physical spin s field resulting from the actions [3,4]
were written in [17]. A different set of propagators was
written in [18,19], without any reference to an action. They
both find spin s propagators which grow like ~p~=2*2¢ in
momentum space. Although these works find propagators
for the physical spin s field, they do not find propagators for
the various auxiliary fields needed in any action formu-
lation of massive particles with spin s > 3/2. These must
be included in one’s Feynman rules, and are therefore
important for doing any concrete computation of Feynman
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diagrams. Propagators for spins 1 and higher are not
unique, and we demonstrate this nonuniqueness as a
manifestation of gauge invariance within this formalism.
In this paper, we instead find propagators for all fields
needed in the description which grow like ~p~2 and ~p~!
for all integer and half integer spins, respectively. This
discrepancy is understood as a natural extension of the
well-known fact that massive spin 1 propagators can have
different high energy behavior depending on the gauge one
picks, e.g. unitarity or R; gauges. The improved high
energy behavior is achieved at the cost of introducing
unphysical polarizations into the propagator, but as in
Yang-Mills theory, as long as gauge invariant interactions
are present, these unphysical polarizations should not
contribute to observables. Furthermore, because the propa-
gators are valid in any spacetime dimension d, dimensional
regularization can be used readily.

The expressions for the propagators are compactly written
in terms of Gegenbauer polynomials. This is made possible
by introducing an auxiliary vector coordinate s*, and
writing propagators for the fields %d)ﬂlmm (X) st - ghn,
In particular, this allows us to write the propagators so that
the spin s =n,n+ 1/2 is a freely tunable parameter,
enabling analytic control over the large spin asymptotic
limit n — co. Indeed, using known properties of
Gegenbauer polynomials [20], we find simple asymptotic
n — oo expressions for the propagators. This may be
particularly helpful in the current research program of using
effective field theory techniques to model black hole binary
dynamics with classical values of spin [21-32]. Indeed, a
main motivation for this work is to develop a formalism
which allows one to take an n — oo limit without computing
a few low spin examples and having to extrapolate.

Finally, by virtue of the gauge symmetry inherent in this
formulation, finding interactions which preserve the higher
spin particle’s degrees of freedom from first principles is
equivalent to maintaining some form of gauge invariance.
Formulating massive higher spins in a way that can be used
as a starting point for straightforwardly introducing
interactions is a main motivation for the current work.
The formulation we arrive at is similar to previous work
[33-37]. All such formulations, including ours, are pre-
sumably related via field redefinition, yet vary in their
complexity.

Previous attempts at introducing consistent interactions
to these actions have restricted to constrained background
fields, e.g. [33,34,38-40]. The difficulty in constructing
interactions with general dynamical fields is in part due to
the inherent complexity of high spin actions. One virtue of
the current work which alleviates this difficulty is the
elucidation of natural objects F, ., » Fun s Fupop, oo
F -, Tor the integer spin case, and S .., , S,
S,,,, for the half integer spin case, which are gauge
invariant and satisfy Bianchi-like identities, described in
Secs. V and VI. This is possible because we formulate d

dimensional massive particles as “dimensionally reduced”
d + 1 dimensional massless particles, which themselves
have gauge invariant field strengths satisfying Bianchi-like
identities. Dimensional reduction of massless particles was
first discussed in detail for integer spins in [41], elaborated
in [42,43], and further studied in [33,34,44,45]. We differ-
entiate our work from theirs by organizing the explicit
actions in terms of the natural objects 7 ,,..,, -and S, .., .,
and also finding the explicit propagators, including that of
the auxiliary fields. Furthermore, the manifest gauge
invariance of the massive higher spin actions we arrive
at is guaranteed by the properties of ¥, .., ~and S, ., .
discussed above, whereas in previous formulations it is less
obvious. This allows a simpler and more organized
formulation for constructing gauge invariant interactions.
We delay a detailed discussion of interactions within this
formalism for future work.

A. Conventions

Throughout this paper, we use the metric signature
n = diag(—1,+1,...,+1). Subsequently, the standard
massless and massive Feynman propagators for spins 0
and 1/2 are respectively,

ddp —i .

d .
(2rm)4 p* +m?* —ie

dp
AO(X - Y) = / (277?‘1 p2 —1516

(1.1)

ip-(X=Y)

s

dlp  —p—i
Am(X_Y)_/ pd 215 2lm.e
(27)* p* +m” —ie

These will be basic building blocks for their higher spin
generalizations. We will define all correlation functions via
analytic continuation of their Euclidean space versions.
Because of this, when writing correlation functions such as
(01(Xy)---O0,(X,)), we leave the time ordered product T
as implicit.

Frequently used in this paper is the notation O, .., ),
which denotes the total symmetrization of the indices
enclosed by the parentheses. The normalization we use
for instance for the symmetrization of two indices is

ip-(X=Y)

. (12)

Oy, + O

1
) = 5( M1k ﬂzﬂl)'

0 (1.3)

B. Outline

In Sec. II, we introduce the “hyperfield” formalism,
which will enable compact expressions for the covariant
actions, propagators, and interactions in subsequent
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sections. Then in Secs. III and IV, we review the formu-
lation of free massless higher spins [5,6], and we compute
their propagators in a special gauge, as well as characterize
their gauge ambiguities. This review importantly sets the
stage for Secs. V and VI, where we do the same for massive
higher spins, defining them via “dimensional reduction” of
their massless counterparts as in [41]. Finally in Sec. VII,
we discuss our results and present some directions for
future research.

II. HYPERFIELDS

In this section, we introduce the notion of a hyperfield,
which greatly simplifies the analysis of fields with arbitrary
spin. Similar techniques have been used in the high spin
literature, including but not limited to [46—49]. We will find
in later sections that covariant actions and propagators
admit particularly simple closed form expressions within
this formalism.

Particles with spin are covariantly described by totally
symmetric tensors ¢, .., (X) or spinor tensors v, .., (X).
Totally symmetric tensors have (d+,'l"1) independent com-
ponents, and 214/2/(4*=1) if there is an additional Dirac
index, where | x| is the floor function.” This is far in excess of
the physical degrees of freedom needed to describe a particle
with spin n or n 4+ 1/2. To maintain covariance, one must
impose additional constraints on the fields ¢, ., (x),
Wy, (X), outlined in later sections, which remove
unnecessary degrees of freedom. This procedure is quite
unwieldy for arbitrary spins, as evidenced by their covariant
actions [3-6], so much so that many physicists opt to
study the effects of high spin particles using alternative
methods [14,26,28,50-54]. To study the effects of high spin
particles in a fully covariant and off-shell manner, a new
formalism which simplifies calculations is warranted.

In this paper the approach will be to introduce an
auxiliary vector coordinate s#, and consider “hyperfields”
Q,(X,s)=Li"?p, ., (X)s - s', where the factor
i™/? is added for later convenience. If ®,(X,s) has no
external Lorentz indices, the component field will be a
totally symmetric rank n tensor, which will describe an
integer spin n particle after appropriate constraints are
imposed. If the hyperfield has an external Dirac index,
which we will henceforth denote W, (X, s), the component
field will similarly describe a half integer spin n + 1/2
particle. More generally, one can consider a hyperfield
®(X, s) which is a general function of s#, with its formal
Taylor expansion generating all totally symmetric tensors

0o 1 .
O(X,s) = Zﬁl_n/quﬂl”'ﬂn (X)str st (2.1)

n=0

*In this paper we consider for simplicity only parity invariant
representations.

Such hyperfields are sufficient to describe the leading
Regge trajectory of string theory. One can further consider
introducing N auxiliary vectors s¥, and if N > d, the
corresponding hyperfield ®(X, {s;}) would contain all
representations present in string theory. This is of course
precisely how string field theory packages all of its particle
states into a single object [55]. For the purposes of the
present paper, we make no attempt at making contact with
string theory, or its generalizations [56-58]. The author
hopes to return to this possibility in future work.

A. Hyperfield basics

In this section we quickly review how to perform basic
operations on ¢, .., (X) relevant for the covariant formu-
lation of spinning particles, at the level of a hyperfield
®,(X,s). For instance, one often has to take traces of the
fields ¢*;,,., (X). This can be achieved at the level of
®,(X,s) by taking the Laplacian with respect to s*

i2®,(X,s) = i~(=2)/2 0

Aty -ty (X)sﬂl oo gHn-2

(n—2)!
(2.2)

The divergence d*¢,, ., (X) may also be written in terms
of ®,(X,s),

1
(n—1)!
X PPy (X)sH1 - st

i—(n=1)/2

20, - 0y ®,(X,s) =

(2.3)

The symmetric derivative 9, @,,...,, ,)(X) is written in
terms of @, (X, s) via

_ L.
l ]/zs.aXQH(X’S):Hl (nJr])/za(ﬂl¢ﬂ2“'ﬂn+l)<X)S”1“.S#VHI'

(2.4)

One can also contract indices between two equal rank n
hyperfields A,(X,s) and B,(X,s),

dlsdls’ . 1
/7(3”'3 A,(X,s)B,(X,s") :Hamwnb”"“"”'

L (2.5)

These four operations are sufficient for the formulation of
integer spin fields, as we will see in Secs. III and V. For
half integer spin fields, contraction with gamma matrices y#
will also be necessary. For a Dirac hyperfield ¥, (X, s), we
have

085010-3



LUKAS W. LINDWASSER

PHYS. REV. D 109, 085010 (2024)

i'2g®, (X, s) = D2y (X s s,

1
(n—1)!
(2.6)

The formula (2.5) is particularly interesting, as it
suggests introducing a (pseudo) inner product on the space
of hyperfields,

dsdis’ -
(A,.B,) = / d'x T o A (X, 5)B, (X, 5)
(27)
1
= / AN ], b (2.7)
~ 1
where A, (X, s) = ﬁi_”/za}’jl_,,ﬂn(){)s’” st (2.8)

and we may consider the (pseudo) Hilbert space
of hyperfields ®(X,s) with finite (pseudo) norm’
(®,®) < oo [59]. Note that (i~'/2s#A, B) = (A, i'/?d{B),
and so for instance, the divergence and symmetric derivative
are anti-Hermitian adjoints of each other (i'/?0, - dy)" =
—i~'/25 . 9y in this space.

Crucial operators for the analysis in subsequent sections
are the projection operators P4, (s, 1), P4 (s,t) on to the
subspace of 7 traceless rank n hyperfields i0?>®, (X, s) = 0
and y traceless rank n hyperfields i'/?g,%,(X,s) =0,
respectively. We define operators to act on the hyperfields
via

(P®,)(X,s) = /d(zt:)dtl "' P(s, 1)®,(X,1).

(2.9)

The projection operators can be straightforwardly found
from the equations 0P, (s, 1) = 0;P,,(s. ) = 0,

d,P,,(s.t) =P, (s.t)dy =0, and they have simple
expansions in terms of classical Gegenbauer polynomials
C%(x) [20]; they read

PY (s.1) —L<-i #)"cﬂ(“—'t) (2.10)
nn ’ (% ., 2 n \/W b} .

1 i noaf st
Pl (s,1) = —— <—— 2 G < )
v §n \ 2 21

where (x), =I'(x + n)/T'(x) is the Pochhammer symbol.

3(A, B) is only positive definite in Euclidean signature.

III. MASSLESS INTEGER SPINS

In this section, we will use the hyperfield formalism of
Sec. II to review massless integer spin fields. We will find
compact, closed form expressions for their covariant
actions and propagators. First, we review the standard
description of massless integer spin fields ¢, .., (X).

The covariant formulation of massless integer spin
fields ¢, .., (X) was first worked out in [5]. In this
description, Fronsdal found that it was possible to write
down a covariant action for ¢, .., which is quadratic in
derivatives, provided that ¢, ..., is a real, symmetric tensor
that satisfies the unusual double traceless condition

j{ 10} o . .
2 ops--u, = 0. The equations of motion are

F ety = O Py, = ”a(ﬂlaﬂ@ﬂz--w”)

1
+ En(n - 1)(3(,416#247’1,1,43.‘.””) =0 (31)

where we will call F, .., the Fronsdal field strength,
which may be thought of as the spin n generalization of the
linearized Ricci curvature tensor R, = 0*h,, — 0,0'h;, —
0,0'h u + 0,0,h obtained from the metric g,, = 1,, — 2h,,.
F .y, satisfies the spin n generalization of the second
contracted Bianchi identity

1
aﬂf,wl... - z(n - ])a(m./’:ﬂ,wz...””il) =0. (32)

Hn-1

As with Maxwell theory and linearized gravity, the
equations of motion (3.1) have a gauge redundancy.
Under the gauge transformation

Do, (X) = Py, (X) + 104y, €4,.0,) (X) - (3.3)
the Fronsdal field strength is invariant provided thate,, ..., |

is a symmetric and traceless, but otherwise arbitrary
function, i.e.

L(n = 1)(n - 2)a,,0

A
oF O3 € dpsepy)

et = =0. (34)
This gauge redundancy allows us to impose a gauge

fixing condition. The natural choice is the spin n gener-

alization of the Lorenz and de Donder gauge conditions

1
aﬂ¢j’ﬂl"'”n—l 5 <n - 1)a<l‘l¢l/lﬂ2"'l4n—l) =0.

. (3.5)

In this gauge, the equations of motion (3.1) reduce to

Frjow, =0 =0 (3.6)
and so the particles described by ¢, .., are indeed
massless. In this gauge there remains a residual gauge

symmetry under a gauge parameter €, ..,  satisfying
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626,,1.%_] = 0. In total then, the number of degrees of

freedom removed from ¢, ..., is twice that of ¢, ..., . The

final degrees of freedom Ny(d,n) of this field in d
dimensions is then

Nold,m) = (d+:-1> B (d:ff)

2((527)-(55)
rdos (4 n=)

— (3.7)

n
which reduces to the two helicities of a massless spin n
particle when d = 4.

The Bianchi identity (3.2) implies that some components
of (3.1) offer constraints on ¢, ..., . Indeed, the following
components of the gauge 1nvanant field strength

f()j]...jn7]7 FO()jl...jn72 _Flijl”'jnfz’ (3.8)
where the 7, j indices run over spatial components, are first
order in time. These constraints do not affect the counting
of Ny(d, n), because in the gauge (3.5), these components
turn into dynamical equations. In other gauges the counting
of these constraints may become relevant.

In the aim of constructing a gauge invariant, quadratic
in derivatives action for ¢, .., , one must introduce an
object G, ..., thatis linear in F whose divergence is a

“Hn HiHp
pure trace. The appropriate object is G,..,, = F ., —
tn(n— D)1, F * 35, - This object may be thought of as
the spin n generahzatlon of the linearized Einstein tensor

G, The divergence of G, .., is

PGy = —in(n —1)(n- FFO . (3.9)

) Moy Wty )
This is a direct consequence of (3.2). Using this, one can
construct a gauge invariant action that generates the
equations of motion (3.1), which we will write in terms
Of Fﬂl"'ﬂn’

1 1
Sn:i/ddxd’m o <‘7:ﬂ1-~-ﬂn_zn(n_ n /41/42‘7: s m))'
(3.10)

And hence the equations of motion derived from this is the
spin n generalization of the linearized Einstein field
equations,

1
Gty = F oo, = g = D1y F iy =0, (3.11)

which is equivalent to (3.1). From (3.10) it is in principle
possible to calculate the propagator (¢, ..., (X)é,,..., (Y)).

However, the many indices and symmetrizations involved
makes such a computation prohibitive for general n.

A. Transition to hyperfields

The transition to hyperfields is straightforward, and we
simply list some of the various formulas above in terms of
D,(X,s):

¢ﬂﬂm(uu5-~yn =0— (6%)2q)n(xv S) =0, (312)
5¢/41 (/41 Hae M)
— 5@, (X ,s) =i25 . 0ye,_1(X,s), (3.13)
oy, =0 —03¢,_1(X,5) =0,  (3.14)
Furopy = 02¢ﬂ1-~-un - na(ﬂ1y¢ﬂll2"'ﬂn)
1
+ 5”(” - l)a(maﬂzwwsmﬂ,,) =0,
)
Fa(X,s) = 05D,(X,s) — s 0x0, - 0xD,(X,s)
1
5 (5 0x)2020, (X, 5) = 0. (3.15)

The action for @, (X, s) then takes the form

1 dd dis . 1
- e’ P (X.5)[1==s2R
=" / (27)? at ’S)< 4° )

F (X, 5). (3.16)

The messy algebraic combinations of ¢, .., needed to
describe massless particles are now recast as differential
operators in the 2d dimensional space (X*, s*).

Gauge invariance of (3.16) is guaranteed by the identity
(3.2),

1
0, OxFy =55 0x0iF, =0. (3.17)

B. All propagators

We now compute the propagator (®,(X,s)®,(Y,1))
from (3.16), which will give the expressions for all
massless integer spin propagators (¢, .., (X)¢,, ..., (¥)).

This action 1is gauge invariant under &®, =
i~'/2s - dye,_;, and so there will be an ambiguity in how
we define the propagator. To see this, consider adding an
external hyperfield source J,(X,s) to the equations of

motion
1,5
I—Zs 05|\ F,=-T, (3.18)
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The left-hand side is double traceless, and satisfies (3.9).
Consistent external sources [, must be such that these
constraints are maintained. This imposes constraints on 7,

(a?)2jn =0, 0y - axjn = —il/zsan_3 (319)
for some traceless hyperfield XC,_;. Solving (3.18) for

D, (X,s), we expect a formula of the sort

d 4 jd 4
®,(X,s) =i / ddY%e""”g(X— Y, 5,07, (Y. 7).
T

(3.20)

The transformation &G(X —Y,s,t) = i~'/%s - oy T1(X~
Y,s,t), where TI(X —Y,s,t) is a rank n—1 traceless
hyperfield in s and a rank n double traceless hyperfield
in ¢, amounts to a gauge transformation on ®,(X, s), so
G(X —Y,s,r) itself has a gauge redundancy. For the same
reason, G(X — Y, s, t) cannot be interpreted as a Green’s
function for (3.18). Because of the underlying gauge
invariance, the kinetic operator has a zero mode, so it is
not possible to solve the equation

1

(1 — ZS205> ((3%( — S GXOS . OX
1

+ E(s 20x)?2)G(X =Y, s,1)

1
_ __ isd _ d
= i (X = Y)P L (s.1) (3.21)

where mez(s,t) is the projection operator onto rank n
double traceless hyperfields, which is

1 i nf aaf s-t
Pd 1) = _ - 2l2 an
o0 = (37 (¢ (J5)
d-2 a2 (5.t

Instead, it is possible to find a G(X — Y, s, ¢) that satisfies

1 1
<1 —152%) (0% —5-0x0, -0y —I—E(S-GX)zd%) G(X-Y,s,1)

1
=i (X =Y)P] . (s.1) +i712t-0,Q(X-Y,s,1) (3.23)
n! n,

for some function Q(X — Y, s, ) which is a rank n double
traceless hyperfield in s and a rank n — 1 traceless hyper-
field in 7. The G(X — Y, s, r) which solves (3.23) provides a
consistent solution to (3.18) of the form (3.20) because

ddit .,
/ddY(z)d e”.t i_l/zt . ayQ(X — Y, S, t)j,l(Y, t/) =0
T

(3.24)

for a source [, which satisfies (3.19). In total then,
G(X —Y,s,1) is ambiguous up to transformations

SG(X =Y, s,t) =i 25 0xII(X = Y,s5,1)

+i7V2t0yQ(X - Y,5,1).  (3.25)

The discussion above holds equally true for the propa-
gator (®, (X, s)®,(Y, 1)), i.e. it must satisfy Eq. (3.23) and
is ambiguous up to transformations (3.25). The particular
form of Q(X — Y, s, ¢) in (3.23) amounts to a partial gauge
choice.

In practice, we can gauge fix ®@,(X,s) so that the
propagator is unambiguous. For integer spins there is a
Lorentz covariant gauge choice which makes the calcu-
lation of the propagator simple. The gauge choice we make
is (3.5)

(ax Oy — % (s ax)az) ®,(X.5)=0. (3.26)

In this gauge, we have F,(X,s) = 0%®,(X,s), and the
action becomes

1 disdls' . |
S, :_n!/ddx (ZS )ds s @, (X, s)(l —Zsaaf,)a%(
T

(3.27)

To find the propagator, we must find the inverse of
(1 —15%02)0% in the subspace of double traceless hyper-
fields (02)?®, = 0. To make this simpler, we decompose
®, into its traceless components @, (X,s) = A,(X,s) +
s’B,_»(X,s), with 0?A, = 0’B,,_, = 0. In this gauge, A,
and B,_, decouple,

1 disadls’ .
_ d is-s
S, = En!/d X ) e (A, (X, 5)0%A,(X, s)

+ B, (X,s)(d+2(n-2))

x (d+2(n—3))0%B,»(X.5)). (3.28)

The propagators for A, and B,_, satisfy the equations

(A, (X, $)A, (Y, 1)) = %i&d(x _Y)Pd(s.0). (3.29)

(d+2(n=2))(d+2(n-3))03(Bya(X.5)B,(Y.1))

1
= —i6U(X = Y) Py, (5.1), (3.30)
n.
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where the insertion of Pﬁ,, from (2.10) on the right-hand sides
are necessary to maintain tracelessness. These two equations
can be solved, and when combined back into ®,, gives

(@, (X, 5,7, 1) = Go(X = ¥) L Pi2(s. 1) (331)

!

11 i n
:(%CY—Y%“Gt%<—2 ‘@ﬂ>
1(59),

where G (X — Y) is the standard massless spin O propagator.
This formula follows directly from the recursive relation
(n+ a)C? = a(C&+! — C*1)). This propagator agrees with
previous work [47,60].

For d = 4, the Gegenbauer polynomials showing up in
the propagator reduce to Chebyshev polynomials of the
first kind T, (x)

N 1 n=0
d1_>4(%)n i (%) = 2T,(x) n>0

(3.33)

The massless spin n propagators (¢, ..., (X)¢,,.., (¥))
from (3.10) can be obtained from (®,(X, s)®,(Y,7)) by
applying derivatives,

o 0" 0"
<¢ﬂ|"'ﬂ,, (X)¢ul---u,,(y)> =1 a‘j‘ "'a‘;” a?l . alt/n

x (D, (X, s)®,(Y,1)). (3.34)
Since the (s,¢) dependence of the propagator is nicely
factored out of the spacetime dependence, we list the index
dependence of the first few propagators:

n=0:1, (3.35)

n=1:n,,., (3.36)

2

—is-pt-p 1 1 /1 n=l goam
EPY) 35— 5 _<_ Vs-A-st-A-t)  C2

p p (T>n—1 n!

1 1
n=2:.—

2 (’7/4[”] ’7”2#2 +’7H|U2’7U|#2) _ﬁnﬂlﬂz”lﬂyz’ (337)

1
n=3: 6 (nﬂll/lrlvzllzrlﬂzbz + ”ﬂl”lnbzﬂznllzl/3 + ’1#2”1]/[’/2,“3’7141”3

+ nﬂl”z””lﬂz”ﬂB’/B + ’7;411/2771/1;437];42y3 + ’1#21/2’7”1!43771411/3)
1
- @ (;7/4]/427]!‘3”1 ’1”21/3 + 7]!41#2’7/431/277031/1 + ’7#1/42’7/43”377011/2

+ ’7#2#3']/411/1771/2113 + '7/42/43 ’1!!11/2']”31/1 + 7]#2#3’7!411/3 711/11/2
+ ’7/43!41’7/421/1771/2”3 + 77/43/41 ’1#2'/2’7”31/1 + ’7ﬂ3ﬂ1’7ﬂ2v3 711/11/2)‘
(3.38)

The number of terms in the propagator with exposed
indices grows factorially with n, making it impractical to
do calculations with them. Instead, calculations can be
done strictly in terms of the propagator (3.31), using the
operations (2.2), (2.3), (2.4), and (2.5).

Possibly the most one gains from the expression (3.31) is
the ability to have full control of the large spin limit.
Classical Gegenbauer polynomials have well studied large
n asymptotic limits [20], allowing (®,(X,s)®,(Y,1))
to be written in terms of simple trigonometric functions
at large n,

as n — oo, where cosf = s - t/Vs*t?, for 0 < 6 < z.

C. Other gauges

Often it is useful to compute observables using propa-
gators in different gauges as a consistency check.
Furthermore, there may be gauges other than (3.31) which
make computations simpler. For instance, using the gauge
transformation (3.25) one may always in momentum space
add a term to the propagator like

A
s—t) (3.40)
Vs-A-st-A-t

where £(p?) is an arbitrary function, and A, (p) is a projection matrix of rank d — a. Some covariant choices of A,,(p)
include e.g. 1, or n,, — p,p,/ p?. One special modification of the propagator is

——
p-n! s

(3

s-pt-p 1 1 n=1 42 [ g.t
— 5 i3 <5\/ 2t2> C . (341)

R /s2t2

P ( 2 )n—l

Indeed, this choice may be thought of as the spin n generalization of the spin 1 Landau gauge, because
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(p-0.= 5502 ) @u(p. 500, (-p.0) 0. (.42)

Though because this propagator satisfies the Bianchi
identity (3.26), we refer to this as the Bianchi gauge.

IV. MASSLESS HALF INTEGER SPINS

In this section, we will use the hyperfield formalism of
Sec. II to review massless half integer spin fields. In order
to display uniform results for any dimension, the discussion
will be restricted to Dirac spinors; similar results can be
found for other spinor representations. We will again find
compact, closed form expressions for their covariant
actions and propagators. First, we review the standard
description of massless half integer spin fields y,, .., (X).

The covariant formulation of massless half integer spin
fields .., (X) was first worked out in [6]. In this
description, Fang and Fronsdal found that it was possible
to write down a covariant action for y,, .., which is linear
in derivatives, provided that y, .., is a symmetric tensor
that satisfies the unusual triple y traceless condition
Y, = 7" jepn, = 0. The equations  of
motion are
(4.1)

Sureetty = Wy = 100V Wityeop) = O

where we will call S, .., the Fang field strength. S, ...,

satisfies a fermionic analog of the Bianchi identity (3.2)

71&81#1---/4,,71 —(n- 1)6(/41

As with Rarita-Schwinger theory, these equations of
motion (4.1) have a gauge redundancy. Under the gauge
transformation

Sﬁﬂ”z"'ﬂn—l ) = 0' (4'2)

Wy, (X) + 10y, X) (4.3)

Yo, (X)/ = Cuyeepy )(

the Fang field strength is invariant provided thate, ..,  isa
|

No(d’n+]/2) — 2ld/2] <d—|—n—1) _ a2 (d—l—n_
n

n—73
_ 9ldf2) d+n—-4
n

which reduces to 4, corresponding to the 2 helicities of a
massless spin n 4 1/2 particle and antiparticle when d = 4.

Again, in order to construct a gauge invariant, linear
in derivatives action for y, .., , one needs an object
T that is linear in S,,,.., whose divergence is a pure

HiHn
y trace. The approprlate obJect is ’]'l =S
and its diver-

2
3Ny (uV Sﬁﬂzwun) gn(n— D s s
gence is

Hlﬂz

symmetric and y traceless,
function i.e.

but otherwise arbitrary,

88 =—n(n-

vt (4.4)

A _
D)0, 9,7 €ty = O-
This gauge redundancy allows us to impose a gauge

fixing condition. The natural choice is the fermionic analog
of (3.9),

yjawj-ﬂl"'ﬂn—l —(n— l)a(ﬂlwiiﬂz'””/lfl) =0. (45)
In this gauge, the y trace of the equations of motion (4.1)

reduces to
ﬁ(yAW)Lﬂ]"'ﬂn,]) =0. (46)

Applying don to S in this gauge then implies

MMy
39S, =Wy, =0 (4.7)
and so the particles described by y, ., are indeed

massless. Just as in the bosonic case, in this gauge there
remains a residual gauge symmetry under a gauge param-
eter €,,.., , satisfying 026”]...”’171 = 0. Finally, one should
consider the constraints on v, .., which are a result of the
Bianchi identity (4.2). The following components of the

gauge invariant field strength

yOSOjl”'jn—l - }’iS-

TR (4.8)
contain only spatial derivatives. In contrast to the bosonic
case, these remain as constraints in the gauge (4.5) we
picked. In total then, the number of degrees of freedom
removed from vy, .., is thrice that of €, .., . The final

degrees of freedom Ny(d,n+ 1/2) of this field in d

dimensions is then
_3( ol d+n-2 _5ldp] d+n-3
n-—1 n—2

(4.9)

1
M 4y = —3n n(n—1)y(,r"0"S

WAz )

1
—Zn(n—l)(n—2) ”Zmd’lS”’,,,M,__”n). (4.10)

This is a direct consequence of (4.2). Using this, one can
construct a gauge invariant action that generates the equa-
tions of motion (4.1), which we will write in terms of S, ...,,
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e 1
Suy12 = —/dXm;/”l Ho <Sm---/4n —Eny(my’lS,{m...M)

1
- Zn(n - l)n(ﬂlﬂzszﬂﬂsmﬂn)) ’ (4.11)

where #1#n = (y##)Tiy0 The equations of motion
derived from this action are therefore

1

T e = Sprom, = 5”7(;417//18/1/42~m)
1
=20 = OG0y S ) =0 (412)

which is equivalent to (4.1).

A. Transition to hyperfields

We now transition to hyperfields, listing some of the
various formulas above in terms of ¥, (X, s):

VY oy, = 0 — (3 ¥u(X,5) =0, (4.13)
Wty = MO, €piyop,)
— W, (X,s) = i"V2s - oye,_1(X,s), (4.14)
7’16/1/42--‘;1,,_1 =0— die,_1(X,s) =0, (4.15)
Spvpty = Wy, = na(ﬂl},ﬂy/ﬂﬂz'”ﬂn) =0,
2
Sn(X’S) :XmPn(XJ)_S'aX(Zv‘Pn(X’S) =0. (416)

and Q(X — Y, s, 1) is some function which is a rank n triple
y traceless hyperfield in s and a rank n —1 y traceless

hyperfield in t (d,)°Q, Q}t = 0. Because of this, the
propagator is ambiguous up to transformations

(P, (X, )P, (Y, 1)) =i s oxII(X = Y, 5,1)
+i72- 0, QX - Y, 5,1). (4.21)
To find the propagator, one might proceed as in the
integer spin case by gauge fixing ¥, (X, s). A natural gauge
to pick is (4.5)

(dsﬁX -5 aXa?)an(X’ S) =0. (422)

The action for ¥,(X, s) then takes the form

dd dd !
Snt1/2 = —n!/ddX (S

(1——f¢

is-s’ li;n (X, S)

27)¢
1 ! !/
S 2a2>$n(x,s) (4.17)

where W, (X,s) =Li"g, s s#n. Gauge invari-
ance of (4.17) is guaranteed by the 1dentity

(dst - S aXa%)Sn(X7 S) =0. (418)

B. All propagators

We now compute the propagator (¥,(X,s)®,(Y.t))
from (4.17). The discussion in Sec. III B on the gauge
ambiguity of the propagator equally applies in this case.
The propagator (¥, (X, s)¥, (Y, t)) will solve the equation

(1590 = 3700 ) (=5 0 (0, (X, ), (1.1
= —%iéd(X = Y)PY (s.1) + 71 0yQ(X — ¥, 5.1)

(4.19)

where PZ 2 (s,1) is the projection operator onto rank n
triple y traceless hyperfields, which is

. d st
— |+ |z+n-2)|C
=)+ (5r-2)ea(0m))

(4.20)

In the case of half integer spins however, this choice does
not simplify the analysis, and there does not appear to be a
gauge choice which simplifies the analysis in an analo-
gous manner to the gauge choice for integer spins (3.26),
so we instead proceed directly by finding the simplest
solution to (4.19). Working in momentum space, one can
classify all possible structures which have a simple pole at
p? = 0, have a numerator linear in momentum, and are not
of the form (4.21), which are triple y traceless in both s
and ¢, and make an ansatz that (¥,(X,s)¥,(Y,7)) is a
linear combination of these in momentum space.
These structures can be obtained from the three basic
structures
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ﬁz (s-1)", i;l/(s S, sztzﬁ2 (s-1)" (4.23)
p p

B

and applying various combinations of P¢ 7 Pe .

that this ansatz is sufficient and the propagator can be taken to be

(P, (X,5)P,(Y.1)) = Ay(X — Y)id—;Z)” (_L@YC?(s—t)

and Pff ;s on either side. A tedious but straightforward calculation reveals

n! (452 2 521
i 1 1 i n=laa 5t
AKX = V) (=22 o L 424
21! Wn!(—df)n( 2 ”) C< t) 29

where Ay(X — Y) is the standard massless spin 1/2 propagator. This propagator agrees with previous work [60]. As in the
integer spin case, the massless spin n + 1/2 propagators (w, ., (X)¥,, .., (Y)) from (4.11) can be obtained from

(¥,(X,s)?,(Y,t)) straightforwardly by applying derivatives

] L
<l//”l"'ﬂn (X)WDIDH<Y)> =1 a‘;l e 0‘;" a?l oo alt/”

(P, (X,5)P,(Y,1)). (4.25)

We list here the numerator of the first few propagators in momentum space:

n+1/2=1/2: p, (4.26)
. yﬂllﬁyl’l
n+1/2=3/2: Py, += - (4.27)
1
n+ 1/2 = 5/2 ﬁ (’7#11/1’7”2/42 + nﬂll’ZnylﬂZ) Enﬂlﬂznl’lbz
1
+t55 (Muy1n Vs Y0y F Mg Vs BY vy M0, Via PV 0y MYty BY 1, ) (4.28)

n+ 1/2 7/2 ﬁ( (”ﬂll/lﬂbzﬂznﬂsvz +’7ﬂ11/1’7”2ﬂ3”llzl’3 +’7M2”|’7V2ﬂ3’7ﬂ11/3 +’7ﬂll/2771/1/42’7ﬂ3”3 +’7ﬂ1”7’701143’7ﬂzl/3 +”ﬂ2”2””1ﬂ3’7ﬂ11/3)

1
_W (77141!42’7/43111 Moy T Mg Mg Moy, Mg Mo Moy Mg Mo Mo, Mg My oMoy, Mg My My

1 1 1
Mg My Mosvs F Mgy Mswn Mgy My Mtz Moy )> +m < <§ (’7#2”211#303 + nﬂz%”ﬂz’/z) - 2”#2#3"”2”3) Yuy 16]/”1

1 1 1 1
+ 5(’7/42”1771431/3 +’7/43V|’7M21/3) _Enﬂzlhnyll@ Y, 15]/,,2 2 nﬂl‘QrIﬂSV'ﬂ +7/Il4%1/2’7ﬂ]”1) 6_1’1”]#3?7”2”3 yﬂzpyvl

1 1

+ ’7142”1’7/431/2 +’7ﬂ31/1’7ﬂw2 ’7#2#3 ’11/1”2 yﬂl 167/1/3 <2 (nﬂll'zﬂﬂzl/s +’7ﬂ21’7r]ﬂ]’-’3 ’7#1#2’7”21/3 }/143 p}/l’l

+ ’114111117/421/3 +’7ﬂ2V1’7ﬂ|Uz ”ﬂllhﬂl/lbz 7/,43ﬁ7/y2

1
2( v ’1#31/2 +7Il431/1’7ﬂ11’2 nﬂllhnl’]llz }/ ﬁyvx
z )

g )
1
+ 5 rlﬂl’-’lnﬂSDS +’7/43V17]M11/2 nﬂl/‘}’/lvll/? Y 2157/1/2
1
2

1
(’7,”[”[’1,”2”2 +’7ﬂzl/ll1llll/2 ’7#1#2’71/1112 }’,4;[%’11;) 4 29)
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As before, this propagator has a well-defined large n asymptotic limit,

(P57, ) ~ (80X = 1) + 572 980(X = 1))

272 2
st —=(s-t
- ( )

as n — oo, where cos@ = s - t/Vs*t?, for 0 < 6 < z.

VI ag(x - vy

1 <—i /—sztz)nZCOS((l’l —1—%)9—%%

2" (n!)? (25in )%
1 \/ﬂ nZSin((n—l—%)Q—%%)
—iV/ s 430
2"(n!)2<’ : > (25in 0)% (430)

C. Other gauges

Just as for the integer spin propagator, it may be useful to perform computations in different gauges as a consistency
check. Using the gauge transformation (4.21), possible terms one may add to the propagator (4.24) in momentum space

include

p* (5%, n!

1~ - ~ /1 n=2 4q
—Ey’(s-pz/—l—t-p;’)t(E\/&A~st-A-t) C:f_2<

where &(p?) is an arbitrary function, A, (p) is a projection
matrix of rank d—a, and y for instance stands for
contracting s* with A, y".

The propagator (4.24) is already in what may be thought
of as the fermionic Bianchi gauge, in the sense that in
momentum space

(dslﬁ -8 p0§><\Pn(p’ S>\Pn(_p’ t)> =0. (432)

V. MASSIVE INTEGER SPINS

In this section, we will use the hyperfield formalism of
Sec. II to study massive integer spin fields. We will find
compact, closed form expressions for their covariant
actions and propagators.
|

N,o(d.n) = (‘””—1) . <d+n_3

n n—2
_2n+d—3<d+n—4>

d-73 n

which reduces to 2n + 1 when d = 4. Attempts to construct
a covariant action whose equations of motion imposes
(5.1)—(5.3) was met with considerable difficulty for over
three decades. It was noted in [2] that it is impossible to
construct an action principle which produces a Fierz-Pauli
system out of just a symmetric and traceless field ¢, ..., .
Additional auxiliary fields are in general necessary to
impose the transverse constraint (5.2). How these auxiliary
fields are introduced is not unique, but there is a “minimal”
set of auxiliary fields necessary in this construction.

) 11 (e (3 amsant) e (

s At )
Vs-A-st-A-t

A -
s—t>> (4.31)
Vs-A-st-A-t

[

Historically it was realized that the following system of
equations is sufficient for describing a freely propagating
spin n massive particle with positive definite energy [2,61],

(0* =m*) ¢, = O, (5.1)
by =0, (5.2)
b sy, = 0, (5.3)

for a symmetric rank n tensor. We will refer to the system of
equations (5.1)—(5.3) as a Fierz-Pauli system. The trans-
verse and traceless conditions ensure that the correct
number N,,(d,n) of degrees of freedom for a spin n
particle in d spacetime dimensions propagate with mass m

)-((520)-(500)

(5.4)

A minimal covariant Lagrangian formulation of massive
integer spin fields ¢, .., in four spacetime dimensions
was first worked out in [3]. In it, Singh and Hagen needed
to introduce, apart from the symmetric and traceless
rank n tensor, symmetric and traceless tensors of rank
0,1,2,...,n — 2 which intricately couple so that all fields
of rank lower than n vanish on shell, and the rank n tensor
made up a Fierz-Pauli system. Note that this field content is
equivalent to using symmetric rank n and n — 3 tensors,
with no tracelessness conditions.
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Because this formulation only works in four spacetime
dimensions, we will not present the action, and will opt in
the following subsection instead to construct a formulation
which works in any dimension. What will continue to be
the same is the minimal number of auxiliary fields needed
in the action. Interestingly, the massless limit of [3]
decouples all fields of rank O, ...,n — 3, enabling one to
consider only the rank n and n — 2 fields. These two fields
can be combined into a single, double traceless rank » field
@y, resulting in precisely Fronsdal’s formulation [5],
which is valid for any dimension.

A. Massive particles from dimensional reduction

Instead of constructing a covariant action for a massive
spin n from the ground up, we note as in [41] that one
reliable way of getting a massive particle of mass m in d
dimensions is by starting with a massless particle in d + 1
dimensions, and compactifying one of the spatial directions
to be a circle of radius 27/m. Compactifying in this way
will generate an infinite tower of massive particles,
corresponding to different windings around the circle. If
the d + 1 dimensional theory is free as in our case, the
particles with varying masses do not interact, and we may
freely throw away all particles except for the one with mass
m without any problems. This procedure is different from
compactification, and so instead we refer to it as “dimen-
sional reduction.”

As a simple check that dimensional reduction of a
massless spin n particle in d 4+ 1 dimensions yields a
massive spin n particle in d dimensions, we note that this
procedure is equivalent to fixing the magnitude of one
component of the massless particle’s momentum, and that
No(d+1,n) = N,,(d,n). The degrees of freedom of a
dimensionally reduced d 4 1 dimensional massless spin n
particle is therefore the same as that of two d dimensional
massive spin n particles, one for each sign of the fixed
momentum component.

The benefit of this starting point is that it is valid for any
spacetime dimension d, making it possible to easily write
down results as a function of d. Furthermore, the apparent
nonuniqueness of the massive description is manifestly
understood to arise from the d + 1 dimensional massless
gauge symmetry that is inherited. At the level of the d
dimensional massive theory, the gauge symmetry presents
itself as a Stiickelberg gauge symmetry, and different
gauges amount to a different choice of auxiliary fields.

We therefore start with the massless hyperfield action
(3.16) in d+ 1 dimensions, with coordinates (X*,X,)
and an auxiliary d + 1 dimensional vector (s*,s,) for
u=0,...,d—1, and enforce that the real hyperfield
®,(X, Xy, s,s4) has the following dependence on the X,
coordinate:

®,(X, Xy, 5,54) = e"Xad, (X, s,5,) + e "Xad, (X, s, 5,)

(5.5)

where ®,,(X, s, s;) will generate the fields necessary to
covariantly describe a massive spin n particle in d dimen-
sions. The additional auxiliary component s, has the effect
of generating n + 1 d dimensional hyperfields

n 1 '
®,(X.5.50) = Y2 (50)' @y (X.5). (5.6)
k=0 """

At the level of an individual d + 1 dimensional massless
rank n field ¢, ..., , this is the same as decomposing ¢,,, ...,
into its d dimensional tensors @y, ... s Pau,p,_,> > Pad-a-
The d dimensional hyperfields ®,_,(X,s) are not
all independent of each other, because they descend
from a d-+ 1 dimensional massless hyperfield which
satisfies the d 4+ 1 dimensional double traceless condition
(0 + 0%)?®, = 0, where 9, is a derivative with respect to
sq. All @,_; with kK > 3 can be written in terms of ®,,
cI)n—l? (Dn—Z’ and (I)n—S

Ln/2j 1 k (k1
@, (X.s.5,) Z (1 = koo, + ikt No,_,)
=0 !
) L(n=1)/2] (=) 2emt)
—1/2 UHL((1 _ )2k ; -

+i ; T (50)* (1 = k)02, _y + ika; @, _5) (5.7)
where ®@,,, ..., ®, 5 are unconstrained d dimensional hyperfields. The gauge symmetry of the massless theory acts on
D, (X,s,5,) via

6®,, = i"%s - dye, (X, s.54) + iV s me,, (X, s, 54) (5.8)

for some d + 1 dimensional traceless hyperfield gauge parameter ¢,,(X, s, s;), which may be written in terms of its
independent, unconstrained, d dimensional hyperfield components ¢,_; (X, s) and €,_,(X, s)
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[(n— l)/2 k ) [(n=2)/2] 1)k
2k62k 4 l'—l 2
-1
— ! — 2k—|— 1)'

en(X,s,59) (sq)*H10%ke, . (5.9)

The Stiickelberg gauge symmetry may then be expressed in terms of the gauge parameters ¢,_; and ¢,_,, acting on
q)n’ Ceey (Dn_g,Z

6D, = i~'2s-dye,_;. 6D, = i"'%s - dye,_o + ime,_,,
6D, , = —i'%s - 0yd%€,_, + 2ime,_,, 6D, 5 = —i'%s - 0yd?e,_, + 3mdle,_,;. (5.10)

The d dimensional massive action is written in terms of ®,,, ..., ®,_3, and the independent components F ,, ..., F,_3 of
the d + 1 dimensional double traceless Fronsdal field strength F,(X, X, s, 54):

1 dlsdits 1
— d+1 is-s 232
Sn—in!/d-‘- X (2ﬂ)d+1 e q)n(X,S)<1—ZS/ as/>~Fn(X7S/),

disdls’ (W& (1) 3k k
S =n! dix is-s' 1 - aqu) a2k _anq) a( 1)
= [ X {kZ an ((1-3)#orr,ige T

k »
+l§a A 1 n Zaij: __a pk 1> n Za( >fn—2>

l(n-1)/2] k 5k 3k
+ kz 2k+ ((1 >a2kc1>,, VO F,_ + it od, 0V F,

2 2
+ l% Ve, 0% F, +gaz(k_l)d’n—3a§/(k_l)fn—3)} (5-11)
where
Fn= <a§g —m? —5-0y0, - Oy +%(S . ax)z()%) @, _é(s “0x)* @, —i'Pms - 0xD,_y, (5.12)

{ .
Fo= <a§ —5-0y0, - Oy + 3 (s- ax)2a§> d, | — % (5-0x)?®,_5 + i ’mo, - 0y®, — i"’ms - 0y ®,,  (5.13)

1 .
:Fn—2 = <a§( -8 aXas ’ aX - E (S : aX)za%) q>n—2 - % (S : aX)zafvtq)n - lmza%Q)n

+2i72moy - 0y ®,_; — 27" *ms - 0y D,_; + i'>ms - 0y D,_5. (5.14)

, .
Fnoz= (ag( —m?—s- Oxds - 0x — (S ’ aX)zag) D, 53— % (S ’ aX)za?q)zz—l - 3i’nza?(l)n—l
+2i'2ms - 0y 0t ®, + 3i7"2mo; - 0y P, + i~ 2ms - 040 D,_,. (5.15)

That (5.11) is invariant under the gauge transformation (5.10) is guaranteed by the fact that F,,, ..., F,_3 are themselves
gauge invariant, and that they satisfy the identities

| .
0, 0xFy =55 xR F, + %s Oy F,p + iV 2mF, | =0, (5.16)

1 Lo pn o 172
as‘axfn_l 25 0X0fn1+2s 0ang+51 0.7: +2 m.7:n2: s (517)

which is a direct consequence of (3.17).
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The Stiickelberg gauge symmetry (5.10) can be used to
set for instance ®,_; and ®,_, to zero, leaving @, and
®,_; unconstrained. This is precisely the minimal field
content of [3]. Massive spin 0, 1, and 2 particles then do not
require additional fields to describe them off-shell. It is only
for spins higher than 2 that additional fields are necessary.

The action (5.11) is for complex massive integer spin
particles. For real massive integer spin particles, it is
sufficient to impose the reality conditions ®, = @,
P, 1 =-D,,P,, =D, and P, 3 = -D,_;.

B. Equations of motion

By virtue of the fact that the d + 1 dimensional field
strength F, (X, X4, s, s4) is set to zero by the equations of
motion, the d dimensional massive equations of motion are

F,=0, F,_,=0, F,,=0, F,3=0. (518)

That these equations describe massive integer spin particles
amounts to showing that they imply that ®,_;, ®,_,, and
®,_; can always be set to zero, and that @, is a Fierz-Pauli
system in hyperspace,

(% —m2)®, =0,
9, - oy ®, = 0,

2D, = 0. (5.19)

The gauge symmetry (5.10) may be used to set ®,,_; = 0
and ®@,_, = 0 before imposing the equations of motion, so
(5.18) becomes

1
F,=(0%—m?>—5-0x0, -0y + E(s - 0x)?2)®, =0,
(5.20)

fn—l = _é(s : aX)ZcI)n—S + i_1/2max : an)n

— i 2ms - 0y2®, = 0, (5.21)

F= —é(s -0 )2 D, — im2RD, +i'2ms - 0y ®, =0,
(5.22)

1
Fuz= <6§( -m*—s- 0x 0y - Ox — 5(5 : ax)203>

X ®,_5 + 2i'"?ms - 0yo*®, = 0. (5.23)
A quick inspection of these gauge fixed equations of
motion shows that if ®,_3; = 0, then @, satisfies (5.19).
What remains is to show that ®@,_; may always be set to
zero via the residual gauge symmetry of this system,

1
5(Dn - (S ' a)()2€n—27
nm

5D, _5 = 2i'20, - dye,_p +2i'2(s - 0xe,_n).  (5.24)
These transformations keep ®,_; = ®,_, =0 provided
that €,_» satisfies”
s - 0x02(s - Ox€,_n) — 2m2€,_, = 0. (5.25)
This is indeed the case, as guaranteed by dimensional
reduction. To demonstrate this, we decompose ®@,, into its
transverse and traceless part @), and a part which is not
transverse or not traceless AD,,

O, =0, +AD,, (5.26)
and note that in order for (5.21) to be consistent, A®,
cannot have a term like A, or s - dyB,_; for A, and B,_;
transverse d, - dyA, = d, - 0xyB,_; = 0. Hence we may
write A®, suggestively as

1
A(I)n = (S : aX)zen—Z (527)
m
for some hyperfield ¢,,_,. Solving for ®@,_5 in terms of ¢,,_,
using (5.21) yields
®,_5 = 2i'%0, - Oye,_ + 2i'/%0%(s - Ox€e,_y).  (5.28)
Plugging these forms into (5.20), we find (0% — m?)®}, = 0
and an €,_, satisfying (5.25). A®, and ®,_5 can therefore

be gauged away, leaving a massive integer spin field @/,
satisfying (5.19).

C. All propagators

We now compute the correlation functions
(®@,_i(X,s)®,_;(Y,1)), which will give expressions for
all correlation functions (¢,,..,,,_,(X)#}, .., (Y)) with
i,j=20,...,3. These 16 correlation functions are needed
to fully specify the physical integer spin n propagator.

First, we detail the ambiguity in the correlation functions
arising from the Stiickelberg gauge symmetry (5.10).
Coupling ®,, ®,_;, ®,_,, and ®,_5 to external sources
T s Tnts Tn—, and J,_3, respectively, will lead to
inconsistencies unless it is done in a gauge invariant
way. The gauge invariant coupling of ®,_; to J,_; is

d?sd?s’'
(27)?
+ (i)n—zjn_z + Ci)n_3jn_3 + C.C.)

AS = n! / d'x e (D,T, + @, T

(5.29)

“Note that this residual gauge symmetry does not exist when
n<2.
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provided that the sources satisfy
0, - Ox T, + 0520, - OxT o + i'?*mT ,_y = 3" ?ms*T,_5 =0, (5.30)
0y - Ox T p_t + 1520, - Ox T p_z +2i'°mT ,_, = 0. (5.31)
We expect the solution to the equations of motion for ®@,_; when coupled to this source to be of the form

dtadr
(2’

q)n—i(Xv S) = l/ddY eit'l/gij(X - Y, S, t)jn_j(Y, l/) (532)

where the sum over j is implied. The transformation &G, j(X -Y,s,1)=N; j(X —Y,s,t), where

N()j = i_l/ZS'aanj, Nlj = i_1/2s-6XH2j+imH1j,
Noyj = —=i'%s - 0x 11y ; + 2imIly;, Ny = =il%s - 0x2TLy; + 3maly;, (5.33)

and I, (X = Y, 5,1), I1,;(X — Y, 5,) are arbitrary rank n — 1 and n — 2 hyperfields in s, and rank n — j hyperfields in ¢,
respectively, amounts to a Stiickelberg gauge transformation on ®,_;(X,s), and so G;;(X —Y,s,1) itself has a gauge

redundancy. Qij(X —Y,s,t) is further ambiguous up to transformations &G, 7 (X-Y,s,t) = M,;, where
Mg = i7" 0yQy, My =721 0yQp — imQ;y,
My = =it 0y2Q;; — 2imQy, Mz = =it 0y?2Qp — 3mad?Q;, (5.34)
for similarly arbitrary hyperfields Q; (X — Y, s,t) and Q;»(X — Y, s, t), precisely because
d*tdit .,
l./ddY—delt.tMij(X—Y,S, t)jn—j(yv t/) =0. (535)
(27)
In total then, G;;(X — Y, s.t) is ambiguous up to transformations
5g,j(X - Y, s, t) = NU(X - Y,S, t) + Ml]<X - Y,S, t) (536)

This ambiguity equally applies to the correlation functions (®,_;(X,s)®,_ j(Y.,1)), ie. if we change them by
5(®,_i (X, s)&)n_j(Y, 1)) = N;j + M,;, they represent the same massive particle.

Instead of pursuing the exact form of the massive propagators directly from (5.11), we recognize that the massive
propagator can be straightforwardly obtained from the massless propagator (3.31) in d + 1 dimensions. In the gauge (3.26),
the dimensionally reduced action may be written as

dlsddtls’ L 1
Sn =n! / ddXWe’” CDm(X, S, Sd) <1 - Z (S/Z + 5212)(65 + a§/>> (ag( - m2>q)m(X, S/, Sii) (537)

The propagator for ®,,(X, s, s,) in this gauge can be obtained in the same way it was in Sec. Il B; it is

(@,,(X,5,5)D,,(Y,1,1,)) = G,y (X = Y) (d_lg) (—; @)c < jgﬁ) (5.38)

where G,,(X — Y) is the standard massive spin O propagator, and 5§ = (s, s;) and 7 = (¢, t,) are d + 1 dimensional auxiliary
vectors. All that remains is to decompose this propagator into its independent d dimensional components

(@,_;(X,s)®,_;(Y,t)) using (5.6)

(@, (X, ), (Y, 1)) = Gm@%)n% (-% s2ﬂ>"c‘,’f < \;#) (5.39)
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1 i n=2 4 .
b, (X, Y, t — 52 ——-= 242 C?2,|—|, 5.40
@008, 200.0) = 16,5 o (5 Ve ) T (S (5.40)
2 i n=2 1 d—=6 a1 (st 31 LESEA R
®, (X, Y.t A i — C = Coiil—/——=)).
< n— 2( s) n— 2( )> n!( D) s ) ((%)n—l( D) +n> n—2< s2t2) +2(%)n_2 n—4( s2t2>)
(5.41)
o 1 1 i n=l a1 st
<(I)n_1 (X, S)(I)n_l(Y, l)> = Gm(d%lﬁﬁ <—§ SZZZ) Cn—l <—\/W>’ (542)
. 3 1 1 i n=3 an [ 5.t
®,_(X,5)D,_ iG —— /5% Co. | —). 5.43
(@)1 (X, 5)®,5(Y.1)) =i my (d+1)n 2”'( Ve ) ”—3< s2t2> (543)

<q)n S(X S) n— 3(Y t)) I’l!

S C0)

T)n—Z

\/_> +§< e (J—Z))
(5.44)

d—38 dari
(—2 + n> Cl;

=
£
7N

and all other correlation functions are either zero or related via Hermitian conjugation. One can straightforwardly consider
the n — oo asymptotic limit of these expressions, as we did for the massless propagators. We omit the explicit asymptotic

limits for the sake of brevity.

Recall that the hyperfields ®,_;(X, s) correspond to fields ¢, .., fori=0,...

spin n action in terms of these fields is

n/2 3k o)
e [ ) (0-2)e0 7

[(n=1)/2] n 5k o)
N (T

where (’)Sk) denotes the k-fold trace of O,,,..., ., and the dot
product (-) contracts the remaining indices. The massive
spin n correlation functions (¢, ..,  (X)#}, ..., (Y)) from

(5.45) can be obtained from (@, ;(X,s)®,_;(Y,r)) by
applying derivatives

Dy XV, (V)
an—i
ai. ()””'d”‘ ..

—*¢0

0"/ -
zz,, - <ch—i(X’s)(Dn—j(Y’ t)>

(5.46)

_ ln—(i+j)/2

VI. MASSIVE HALF INTEGER SPINS

In this section, we will use the hyperfield formalism of
Sec. II to study massive half integer spin fields. We will find
compact, closed form expressions for their covariant
actions and propagators.

0 3k ek k=1
!

, 3. In a simplified notation, the massive

*452

3k k-
O

The half integer spin case was also considered in [2,61],
but an alternative formulation was given in [62]. In it,
Rarita and Schwinger noted that the following system of
equations is sufficient for describing a freely propagating
spin n + 1/2 massive particle,

(d+myy, ., =0, (6.1)

Wiy, = 0 (6.2)
for a symmetric rank n tensor v, .., , with an additional
implicit Dirac index. We will refer to the system of Egs. (6.1)
and (6.2) as a Rarita-Schwinger system. Any Rarita-
Schwinger system is also a Fierz-Pauli system. The trans-
verse and y traceless conditions ensure that the correct
number N,,(d,n + 1/2) of degrees of freedom for a spin
n + 1/2 particle in d spacetime dimensions propagate with
mass m
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n

n—1

:2W2J<d+n—3)

n

which reduces to 2(2n + 2) when d = 4.

A minimal covariant Lagrangian formulation of massive
half integer spin fields y,, ..., in four spacetime dimensions
that imposes (6.1)—(6.2) was first worked out in [4]. In it,
Singh and Hagen needed to introduce, apart from the
symmetric and y traceless rank n Dirac tensor, a symmetric
and y traceless rank n — 1 Dirac tensor, and two of each
symmetric and y traceless Dirac tensors of rank
0,1,2,...,n —2 which couple so that all fields of lower
rank than 7 vanish on-shell, and the rank 7 field made up a
Rarita-Schwinger system. Note that this field content is
equivalent to using symmetric rank n and n —2 Dirac
tensors, with no tracelessness conditions.

A. Massive particles from dimensional reduction

In this section, we will construct an action for massive
half integer spins which work in any spacetime dimension
d using dimensional reduction. The dimensional reduction
procedure will be similar to the integer spin case, but will
differ in some basic ways.

An immediate difference is that No(d + 1,n+ 1/2) =
N,,(d,n+ 1/2) only when d is even, and so dimensional
reduction appears not to work for odd d. The origin of this
mismatch is that the spinor representation being used in
the d dimensional theory will always have a y,; with
y3=1land{ys7,} =0foru =0,...,d — 1. For the Dirac
representation, this is only possible when d is even. When
d is odd then, the d dimensional fields are not in the Dirac
representation, but in some larger one. The mismatch is
therefore a difference in choice of spinor representation,
which does not affect the spin of the particle. Shortly, we
will write down a suitable field redefinition which
|

_ (5142 d+n-2 _oldf2) d+n-3
n—1 n—2

(6.3)

l

removes all instances of y,; in the formulation, so that
even for odd d, we may choose fields in the Dirac
representation. As we will see, the result of performing
this field redefinition is a formulation of massive half
integer spin fields whose equations of motion are inde-
pendent of d, and is conveniently well defined for the
Dirac representation in d spacetime dimensions, whether
even or odd. For odd d then, we may replace the larger
representation obtained from dimensional reduction with
the irreducible Dirac representation. A straightforward
analysis of the equations of motion in Sec. VIB will
reveal that this formulation has the correct degrees of
freedom for a massive spin n + 1/2 Dirac particle in any
dimension d.

We therefore start with the massless hyperfield action
(4.17) in d + 1 dimensions, and enforce that the hyperfield
¥, (X, X4, s,s4) has the following dependence on the X,
coordinate:

Y, (X, Xy, 5,50) = €™, (X, 5,54). (6.4)
The additional auxiliary component s; generates n + 1 d
dimensional hyperfields

n 1 )
(X, 5.50) = Zﬁl_kﬂ(sd)kq‘n—k(}(’ 5)-
=0

(6.5)

The hyperfields ¥,_; (X, s) are not all independent of each
other, because they descend from a d + 1 dimensional
massless hyperfield satisfying the d + 1 dimensional triple
y traceless condition (d, +y,0,)*¥, = 0. All ¥,_, with
k > 2 can be written in terms of ¥,, ¥,_;, and ¥,,_»

le(X7 S, Sd) - (2]{)' (sd>2k((1 - k)a?klyn + ikd%(k_l)lpn—Z)
k=0 :
[(n=1)/2] (1)
+ m(sd)%“(k?dﬂfkﬂ‘yn + i PR, — ik N, ) (6.6)
= (2k+ 1)

where ¥, ¥,,_;, ¥,_, are unconstrained d dimensional hyperfields. We would like to get rid of the y,’s in this expression.
This is achieved by making the field redefinitions ¥,_; — e~ "#a/*¥, ..
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[n/2] k
-1) 2l
¥, (X.s.54) = e7mralt kgo 701 (s)*((1 = k)R, + ikgh )
L(n=1)/2] k
+ e~imral4 (_1)
k=0

(2k+ 1)' (sd 2k+1 (lka%kJrlLPn + i_l/zﬁkan—l + kaz'k_lan 2) (67)

unconstrained, d dimensional hyperfield component e,_; (X, s)

The d + 1 dimensional y traceless hyperfield gauge parameter ¢,,(X,s,s;) may also be written in terms of an

en(X,s,54) _’”“/4<

k=0

The Stiickelberg gauge symmetry may then be expressed in terms of the gauge parameter ¢,_; actingon ¥,,¥,_;, ¥, _»,

S,

(n— l)/ZJ

[(n—=1)/2]
(sd Ve, — i Z

£ 2k+ 2k +1)!

k

<>a2) (63)

=i 125 0y€,_,.

oW, = —is - Oxdie,1 + ime,_y,

S, , = —i'/%s - 0y0%e,_, + 2" *mde,_,.

The d dimensional massive action is written in terms of ¥,,, ¥,_;, ¥,,_,, and the independent components S,,, S,,_;, S,_»
of the d + 1 dimensional Fang field strength S, (X, Xy, s, 54)

dd+lsdd+lsl ]
_ d+1
Sn+1/2_n!/d " XW

disdls'
S =-n! [ d‘X
n+1/2 n / (Zﬂ)d

k 201 k o
—dy
+12

02k8 ds
n 2 += B

—I/Zka n 2¢s

Mn_l)m%(q(;

+
k=0
_ kg

+

N — N =

l—l/2a%k\ijn<¢_‘a%k8n 1
+ il/zkd%(k_l

where

[n/2]

P
elSS{

> G

ko
n 2¢A¢Sas S +1 2

o . T 2 (k—
n—2 ds a?’k‘s‘n—l - ll/zka?klyn—las’

(6.9)

= 1 ]
oiss LPn (X’ S) <1 — Efﬂsl — ZSQ()?/)SH (X, S/)a

1)k 3K\ e k e 2kt
1—20) 249,028, + i~ 0% ®,02 " s
2k)! << 2) S0 O 15 00T O

2 (k= )\P _202,(](_1)8 -

(6.10)

_1/2k0 (k= 1 n lds

g+ ik()?(k_wan-lZdy’af/(k_l)sn—l>

n -2

3k
) aqu}n as as aZkS aqu} ds as Sn—2

(k l) n 2¢3¢3 ik l)Sn 2

g R, kS,

(6.11)

1 -
1)811—2 + (E - k) agk\Pn—laf’k‘S‘n—l) }

Sn = (d)( +m—s- aXﬂs)‘Pn + i1/2S : aX‘Pn 1»

Sn—l = (ﬂX -8 aXdS)an—l =+ il/zs : aXan—Z =+ i_l/zmds n»

)an—Z +is- aXa?an + i_l/zs : aX()%Lpll—l + Zi_l/zmas 1

(6.12)
(6.13)

(6.14)
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That (6.11) is invariant under the gauge transformation
(6.9) is guaranteed by the fact that S,,S,_;,S,_, are
themselves gauge invariant and satisfy the identity

as(ﬁX - I’H)Sn -8 aXag‘sn - il/z(dX - m)Sn—l

+ iS . axsn_Q = 0 (615)
which is a direct consequence of (4.18). As promised (6.11)
has no instance of y 4, making this action valid for the Dirac
representation in any spacetime dimension.

The Stiickelberg gauge symmetry (6.9) can be used to set
WV, _; to zero, leaving the fields ¥, and ¥,,_, consistent with
the minimal field content of [4].

B. Equations of motion

The massive equations of motion are equivalent to setting
the d+ 1 dimensional field strength S,(X,X,,s,sy)
to zero,

S, =0, S,-1 =0, S,.o=0. (6.16)
That these equations describe massive half integer spin
particles amounts to showing that they imply that ¥,,_; and
W¥,_, can always be set to zero, and that ¥, is a Rarita-
Schwinger system in hyperspace

(ﬂx + m)an =0,

4.¥, =0. (6.17)

The gauge symmetry (6.9) may be used to set ¥,,_; = 0
before imposing the equations of motion, so (6.16)
becomes

S, = i~'%s5 - 0ye,_y,

oW, _, = —i'%s - 0yd%,_ +2i'’mdie,_,.  (6.21)
These transformations keep ¥,_; = 0 provided that €,_;
satisfies’
s - Oxd€,_1 —me,_; = 0. (6.22)
To show that this is the case, we decompose ¥, into a
transverse and y traceless part ¥, and a part A¥, which is
not transverse or not y traceless,
¥, =Y, +AY,. (6.23)
We may always write AW, suggestively as
AY, =i '25.0ye,_;, for some hyperfield
Plugging this into (6.18), we find (dy + m)¥, =0, and
an ¢,_; satisfying (6.22). Finally, we solve for ¥,_, using
(6.19) and (6.22),

€,-1-

W, , =—i'%s - 0yd%e,_ +2i'"*mge,_;. (6.24)
Hence, AY, and ¥,_, can be gauged away, leaving a
massive half integer spin field ¥, satisfying (6.17).

C. All propagators

We now compute the correlation functions
(W,—i(X, s)‘i’n_j(Y ,1)), which will give expressions for
all correlation functions (.., ,(X)¥,, .., (Y)) with
i,j=0,1,2. These 9 correlation functions are needed to
fully specify the physical half integer spin n+ 1/2
propagator.

The discussion in Sec. V C on the gauge ambiguity of the

Sy = (Ix +m—s-0xd,)¥,, (6.18) correlation functions equally applies here. Coupling P,
Sy =i 00, ,+ i g (6.19) Y, _,,and ¥,_, to external sources Q,,, 9,_;, and Q,_, via
disd’s' .
Spa = (§x —m)¥,_» +is - OxP¥,.  (6.20) AS = n! / ddXﬁe’“
7
In this gauge, if ¥,_, = 0, then W, satisfies (6.17). What x (P,9, +¥,_1 Qi +¥,..9,,)  (6.25)
remains is to show that ¥,,_, may always be set to zero via
the residual gauge symmetry of this system, is gauge invariant provided that the sources satisfy
|
0,-0xQ, —i'/%40,-0xQ,_ +i'*mQ,_, +is*0,-0xQ,_» —2im§Q,_, =0. (6.26)
Because of this, the correlation functions (¥,_;(X,s)¥,_;(Y.)) are ambiguous up to the transformations
(W, _i(X. )Y, (Y. 1)) = Nyj(X =Y. 5,1) + M;;(X=Y,5,1) (6.27)

where

*Note that this residual gauge symmetry does not exist when n < 1.
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Noj = i1/2

S'aXHIj’ Mi() -

i1 0y 0y,
Nlj = —iS N axdsnlj + imHlj,

- < -
M = —it - 0yQy1 dy — im&y,
Ny = —i'2s - 0x1y; + 2i'2mg 11, . My = —i'?t-0,07Q;) — 2i1/2m§2i1}3_t (6.28)
for arbitrary hyperfields IT;(X — Y, s,7) and Q;; (X = Y, s, 1)

The massive correlation functions in a specific gauge are obtained straightforwardly from the d + 1 dimensional massless
propagator (4.24). After dimensionally reducing, the ¥,,(X, s, s;) propagator is

-1y (5V57) < ()

<le(Xv S, Sd)qjm(Y L, td)>

V522

_ . _ 1 / n—1 g4 .7
gl () e ()

where A,,(X —Y) is the massive spin 1/2 propagator, whose mass is proportional to y,

(6.29)

A (X—Y):_/ d'p _p+my
" (27)4 p* + m* — ie

P X=Y) (6.30)
and 5= (s,s,4) and 7= (1,1;) are d + 1 dimensional auxiliary vectors. We now decompose this propagator into its
independent d dimensional components (¥,_;(X,s)¥,_;(Y,?)), remembering also to perform the field redefinition
WY, — e iy,

(P, (X, 9)¥,(Y,1)) = A, 1 1, <‘§ ”2>nCZT<\/F>

_;.;/A_mi/(%)nnl‘< ;F) 1c"E‘( 2>, (6.31)

T (S 6.32
&, \ 72 ~\ves) o

WX (V.0) = biea, L (D ap) T (S

(W,(X,5)¥,_»(Y, 1)) ==is (%) 1; ~3 st =2\ /272

1, I WA =3 e (5ot
— YA — 5 V) CLi == ).
(2] ()

52t
- B 1 1 i /5o \" st
(¥ (X )Y, (Y1) = A, %E (—5 57t ) Gl Vp

1 1 1 i n=l a1 [ g.¢
——A_ N 2t2 C? o
z '"<d;>n'(2 w) e ()

5212

J ol iy — )n_ln ;\/—) ors <S2tt2> (6.34)

(6.33)

N

<‘Pn—1

(6.35)
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. 11 i 55\ st
<‘Pn—2(Xa S)an—Z(Y’ t)> = _2A—m T_ —5 Vst Cn—Z o

) 2 )
1

S2

x( 1 <d—4+n>cd+l(s-t>+3 Cdf(s-t))
(%)n—l 2 "2 Vs2t? 2(%)n—2 e st

J/A—m?/ i n=3
- (_E, /s2t2>

" ((d—1> (T et (Jmm) +3 e (7)) (630)

where now A, (X — Y) is the standard massive spin 1/2 propagator, obtained by replacing my, with im in (6.30). All other
correlation functions are related via Hermitian conjugation. Again, we omit their asymptotic n — oo limits for the sake of
brevity.

Recall that the hyperfields ¥,_;(X, s) correspond to fields .., . for i =0, 1, 2. In a simplified notation, the massive
spin n + 1/2 action in terms of these fields is

g 24X o n 3k\ o0 | gb _K - gek-2)
nt+1/2 =~ Z 2k 1—7 Yo 90 _EWO "9y

(24-2) | g2k) _ k (2k 2) | gk-2)

0 2 2

_ iklf/%zk_l) .S(Zk 2, il (2k 2) S§2k—1) _ kll7<12k_1) 'S(2k—1)>

WS

I\)IPT‘

1

[(n—1)/2]
n L3k _akvn) okt K (2k+l) (2k-1)
(= S X .S
N k; <2k+1>< <2+2)"’ 0o ¥ 2

k 2k—1 2k+1 k 2k—1 2k—1 2k+1 2k 2k+1
E( ). S _ 21//( ). S 5<+>8<]> 520 g2k
+ ik S ik SPEY 4 <§—k) >} (6.37)

where now O,(.k) denotes the k-fold y trace of O, .., . applied from the left, and (’) denotes the k-fold y trace of O oty
applied from the right. The massive spin n + 1 /2 correlation functions (wﬂ]...ﬂnﬂ_ (X)W, (Y)) from (6.37) can be
obtained from (¥,_;(X, s)¥,_;(Y,1)) by applying derivatives

o an—i an—j _
Wi K0y (V) = P e (i (X 9) T (0. ), (6.38)

VII. DISCUSSION the prescription of dimensional reduction of massless
particles in d + 1 dimensions first described in [41].

The formulation of massive particles exhibits a gauge
symmetry (5.10), (6.9). Because of this, we were able to
arrive at propagators which grow like ~p~2, and ~p~!,
respectively, at the cost of including unphysical polar-
izations. Because of the gauge invariance, there must exist a
gauge which only includes physical polarizations. The

In this paper, we have outlined the covariant formulation
of free particles with any mass m and spin s, in any
spacetime dimension d. For massless particles with integer
spins, their covariant action is (3.10), first written down in
[5], and their propagator is (3.31), in agreement with [47].
For massless particles with half integer spins, their covar-
iant action is (4.11), first written down in [6], and their . . . .
propagator is (4.24). For massive particles we arrived at phystlcal gauges for integer and. half integer spins are
their covariant actions (5.45), (6.37) and their correspond- obtained by complete!y exhausﬂpg the g.auge freedom.
ing propagators (5.39)—(5.44), (6.31)~(6.36) by following /A1 example of a physical gauge is respectively
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integer spin: PZ((1 — k)o%®, + ik, @, ) =0 k21,
Pd((1 - k)o@, + ika, " ®, ) =0 k>0, (7.1)
half integer spin: P¢((1 — k)g2W, + ikgi* W, ) =0 k>1,
PA(ikg? Y, + i122R, | 4+ kP, ) =0 k>0, (7.2)

where P,‘; and P;f are the projection operators onto traceless and y traceless hyperfields, respectively, defined in Sec. Il A. In
these physical gauges, we are left in the action with traceless rank n,n — 2, n — 3, ..., 0 hyperfields for integer spins, and y
traceless rank n, n — 1 hyperfields, and two series of y traceless rank n —2,n — 3, ..., 0 hyperfields for half integer spins.
These are precisely the minimal auxiliary field contents used in the Singh-Hagen actions [3,4]. The equations of motion in
this gauge imply that @, and ¥, Fierz-Pauli and Rarita-Schwinger systems (5.19), (6.17), respectively, while the remaining
hyperfields vanish. Operators which vanish on-shell make correlation functions vanish after insertions except at coincident
points. The physical gauges are then such that correlations functions with ®,_,, ®,_,, ®,_3, (0% — m?)®,, 9, - 0xD,,, 7D,
¥,_1, ¥,_s, (dx + m)¥,, or ¢,¥, inserted vanish except at coincident points. In momentum space, this forces the

correlation functions to be of the form

2

(@8, (=p.1) = Gulp) g (=5 V5 Pt P 1)

(T)n n

(®,_i(p,s)®@,_;j(—p. 1)) = polynomial

<an(p» S)an(_p’ t)> =

(5 n 2

-5 (=) w7150

+ polynomial,

(¥,_i(p.s)¥,_;(—p.1)) =polynomial j=12, (7.6)

where P, =1n,, + p,,p,,/m2. The physical poles in (7.3),
(7.5) are uniquely determined by demanding that
a§<d)n(p,s)d)n(—p, t>>’ p'as<q)n(pvs)q)n<_p7t>>’ and

d,(¥,(p.s)¥,(=p.1)), as well as the equivalent expres-
sions in ¢ are polynomials in p. The normalization is
determined such that there exists gauge transformations
(5.36), (6.27) between this gauge and the expressions
(5.39) and (6.31). It would be interesting to find the
specific polynomials which appear in (7.3)—(7.6).

The exact forms of the propagators in this physical gauge
are however not necessary to have. Indeed, as long as
interactions are introduced in a gauge invariant way, the
propagators (5.39)—(5.44), (6.31)—(6.36) are sufficient. In
the case of spin 1 particles, gauge invariance implies
generalized Ward identities which guarantee that all
Feynman diagrams with external legs with unphysical
polarizations vanish [63,64]. Thus whenever perturbation
theory is valid, the gauge invariant interacting theory can
continue to describe a spin 1 particle at the level of the S-
matrix. A natural expectation is that this general result will

11 i nog-
—'<Am(p)<——\/s-P-st~P~t> C; (

i n—1 d—1
)(—5\/S‘P'S1'P'l‘> an_l(

s-P-t

Vs -P-st-P-t

Jj=1273,

) + polynomial,  (7.3)

(7.4)

s-P-t )
\Vs-P-st-P-t

Trt)
(7.5)

|
continue to hold for higher spins, although an independent
proof of this is necessary. One complication of such a proof
is that when interactions are introduced, one generally needs
to correspondingly deform the gauge symmetry, as is what
happens for instance in Yang-Mills theory and general
relativity. The exact form of the generalized Ward identities
in turn depend on the gauge symmetry. One should therefore
first find a consistent set of interactions and corresponding
deformations of the gauge symmetry in the way outlined for
instance in [65]. Previous work in this direction includes
[32,39,40,66]. A particularly important application is find-
ing consistent interactions of massive higher spins with
electromagnetism and gravity to model black hole binary
dynamics [21-32]. An analysis of introducing interactions
within this formulation is postponed for future work.
Finally, with the explicit expressions for all propagators,
this work may be thought of as “solving” every Poincaré
and parity invariant free theory when, importantly, d = 4.
When d > 5, there are more irreducible representations of
the little group which are not covered by totally symmetric
representations, corresponding to Young tableaux with
more than one row. In the future it would be useful to
do the same for more general representations with mixed
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symmetry, along the lines of the formulation of massless
particles in [67], to complete the program of solving every
free theory. Having a complete understanding of such
representations, much more control is to be gained when
constructing more general theories with the same field
content as string field theory by using a hyperfield
®(X,{s;}) as described in Sec. II, allows one to find
classes of interactions which result in UV complete
amplitudes, and avoids the causality violations inherent
with interacting massive particles [12—14].
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