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In ordinary thermodynamics, around first-order phase transitions, the intensive parameters such as
temperature and pressure are automatically fixed to the phase transition point when one controls the
extensive parameters such as total volume and total energy. From the microscopic point of view, the
extensive parameters are more fundamental than the intensive parameters. Analogously, in conventional
quantum field theory (QFT), coupling constants (including masses) in the path integral correspond to
intensive parameters in the partition function of the canonical formulation. Therefore, it is natural to expect
that, in a more fundamental formulation of QFT, coupling constants are dynamically fixed a posteriori, just
as the intensive parameter in the microcanonical formulation. Here, we demonstrate that the automatic
tuning of the coupling constants is realized at a quantum phase transition point at zero temperature, even
when the transition is of higher order, due to the Lorentzian nature of the path integral. This naturally
provides a basic foundation for the multicritical point principle. As a concrete toy model for solving the
Higgs hierarchy problem, we study how the mass parameter is fixed in the ϕ4 theory at the one-loop level
in the microcanonical or further generalized formulation of QFT. We find that there are two critical points
for the renormalized mass: zero and of the order of ultraviolet cutoff. In the former, the Higgs mass is
automatically tuned to be zero and thus its fine-tuning problem is solved. We also show that the quadratic
divergence is absent in a more realistic two-scalar model that realizes the dimensional transmutation.
Additionally, we explore the possibility of fixing quartic coupling in ϕ4 theory and find that it can be fixed
to a finite value.

DOI: 10.1103/PhysRevD.109.085009

I. INTRODUCTION

By the discovery of the Higgs boson at LHC, it has been
confirmed that the electroweak symmetry breaking is
triggered by the Higgs mechanism. However, the question
of why there is a huge hierarchy between the electroweak
scale 102 GeV and the Planck scale 1018 GeV is not
unveiled yet. In the Standard Model (SM), the electroweak
scale is merely obtained by fine-tuning the mass parameter

of the Higgs potential, which makes the Higgs boson mass
sensitive to ultraviolet (UV) scales such as the grand
unification or Planck scale. Although supersymmetry has
been discussed as one of the most promising new physics
scenarios beyond the SM because of the stabilization of the
Higgs boson mass to be the electroweak scale, it does not
explain the smallness of the electroweak scale, nor is it
found near the expected TeV scale. In order to confront this
fine-tuning problem, more radical and fundamental
approaches beyond ordinary quantum field theory (QFT)
appear to be required [1–14].
Nature might already give us some important clues to

tackle this problem. Let us recall a basic notion of
statistical mechanics: there are several different formula-
tions depending on which parameters are used as control
parameters, and they are equivalent in the thermodynamic
limit V → ∞. In particular, the most fundamental formu-
lation is obtained with the microcanonical ensemble
where all the extensive parameters, e.g., energy E,
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volume V, and number of particles N are chosen as control
parameters, while intensive parameters, e.g., temperature
T, pressure p, and chemical potential μ, are determined as
functions of these extensive parameters in the thermody-
namic limit. Here, the important point is that this corre-
spondence is not injective when a system undergoes
phase transitions. For example, in a first-order phase
transition, the temperature stays at the critical temperature
TcriðEÞ until the system releases or absorbs all the latent
heat, which means that the critical point spans the finite
region of E in the microcanonical formulation.1 More
generally, with a finite probability, intensive parameters
are fixed at the point where the extensive quantities
become discontinuous.
In this paper, we explore a correspondence inQFT similar

to that observed in statistical mechanics. Our objective is to
address the fine-tuning problem by determining parameters
in the canonical partition function of QFT from the micro-
canonical partition function, thereby eliminating the need
for tuning. In essence, the fine-tuning problem is resolved
when a finite region in the parameter space of micro-
canonical (or further generalized) QFT corresponds to a
specific point in the canonical-QFT parameter space that
appears fine-tuned. We also acknowledge various attempts
to construct microcanonical QFT, as discussed in previous
studies [1–3,11–14] and the references therein.
The concept of generalized QFT is both fascinating and

intriguing; however, the actual fine-tuning of couplings
remains unclear, necessitating further research. As a first
step, we investigate the free scalar theory to explore how the
bare mass-squared parameter m2

B is fixed in the generalized
QFT. We calculate the generalized partition function and
find two critical points in the large volume limit:m2

B ¼ 0 and
OðΛ2Þ, whereΛ denotes the cutoff scale. In particular, while
the latter corresponds to a saddle point of the vacuum energy
and depends on the regularization schemes in general, the
former corresponds to its discontinuity and does not depend
on the regularization schemes. In this regard, one might
find m2

B ¼ 0 physically more preferable, meaning that
massless theory is naturally realized in the microcanonical
(or further generalized) picture. This can be also interpreted
as a theoretical explanation of the origin of the so-called
“classical scale invariance” or “classical conformality” in
the literature [15–30], which is also the basic assumption
behind the Coleman-Weinberg mechanism [31].
We proceed to examine the ϕ4 theory at the one-loop

level and generalize it to a large-N model. In both cases, the
mass term receives UV divergent corrections δm2

UV ∼ Λ2,
prompting us to investigate at which value the renormalized

mass m2 ≔ m2
B þ δm2

UV is fixed in the generalized QFT.
A key distinction from the above free theory lies in the
vacuum transition at m2 ¼ 0; for m2 > 0, we observe a
trivial vacuum expectation value (VEV) hϕi ¼ 0, while it
becomes nonzero for m2 < 0. This behavior corresponds to
the discontinuity of the (second) derivative of the vacuum
energy at m2 ¼ 0, which remains a critical point in both
cases. Although our analysis is limited to the one-loop level
or the large-N limit, we anticipate that the conclusions will
remain unaffected by higher-order corrections as long as
the theory is in the perturbative region.
In our next nontrivial example, we examine a two-real-

scalar model at the one-loop level. This model has been
extensively studied in a phenomenological context [32–37]
because it can realize the Coleman-Weinberg mechanism
[31] under the assumption of classical conformality, i.e.,
m2 ¼ 0. However, in the generalized QFT, this is not an
assumption but a point of discussion for determining where
and how renormalized masses are fixed. To streamline our
analysis, we assume Z2 × Z2 symmetry and focus on the
coupling space where one real scalar ϕ can develop a
nonzero VEV hϕi ≠ 0 due to the radiative potential. We
discover that the classical conformal point m2

ϕ ¼ m2
S ¼ 0 is

not a critical point in the generalized partition function.
Instead, we identify another critical point with m2

ϕ ≠ 0 and
m2

S ¼ 0, which corresponds to a quantum first-order phase
transition point. From a phenomenological perspective, this
critical point may serve as an alternative possibility for a
dimensional transmutation mechanism [36,37] compared to
the conventional classical conformal point; see alsoRef. [35]
for other possible critical points without Z2 symmetry.
The organization of this paper is as follows: In Sec. II,

we introduce the generalized QFTand explain how the fine-
tuning of coupling constants can be automatically achieved
within this framework. We also review the standard
discussion on the equivalence between different ensembles
in statistical mechanics to clarify the underlying concept. In
Sec. III, we investigate the free scalar theory in the context
of generalized QFT, focusing on how the bare mass-
squared parameter is fixed in the large volume limit. In
Sec. IV, we delve into a more nontrivial example by
considering the ϕ4 theory, discussing how the renormalized
mass squared is fixed at the one-loop level, as well as in the
large-N model. In Sec. V, we explore the possibility of
automatically tuning the quartic coupling constant. In
Sec. VI, we analyze the two-real-scalar model within a
simple parameter space where only one scalar can develop
a VEV. Finally, in Sec. VII, we summarize our result.
Throughout the paper,wework in natural unitsℏ ¼ c ¼ 1

and employ themetric convention ημν ¼ diagð−;þ; � � � ;þÞ.

II. GENERALIZED QUANTUM FIELD THEORY

In this section, we briefly review the basics of statistical
mechanics, introduce a generalized partition function in the

1Although the terminology “critical point” is often used to
express the end point of a phase equilibrium curve, such as a
vapor-liquid critical point, we do not use the term in this sense
here, but use it in the sense that a phase transition of any order
occurs.
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microcanonical formulation of QFT, and illustrate how the
tuning of the coupling constants becomes possible. See,
e.g., Ref. [3] and Appendix D in Ref. [38] for other reviews.

A. Statistical mechanics

To clarify the idea, let us briefly recall statistical
mechanics. When control parameters are temperature T
and volume V, the system is described by the canonical
partition function

ZVðTÞ ¼ e−FVðTÞ=T ¼
X
n

e−En=T; ð1Þ

where En denotes the energy eigenvalue and FVðTÞ ¼
−T logZVðTÞ is the Helmholtz free energy.
On the other hand, we can also consider the micro-

canonical formulation where E is a control parameter
instead of T. The corresponding partition function, the
number of states, is given by

ΩVðEÞ ¼ ΔE
X
n

δðEn − EÞ ¼ eSV ðEÞ; ð2Þ

where SVðEÞ denotes the entropy and ΔE denotes a
sufficiently small energy interval whose effects on observ-
ables vanish in the thermodynamic limit V → ∞. In the
following, we omit the subscript V for simplicity.
The equivalence between the canonical and microca-

nonical formulations can be shown as

e−FðTÞ=T ¼
X
n

e−En=T ¼
Z

dE
X
n

δðE − EnÞe−E=T

¼ 1

ΔE

Z
dEeSðEÞ−E=T

¼ V
ΔE

Z
dεeVðsðεÞ−ε=TÞ; ð3Þ

where s ¼ S=V (ε ¼ E=V) represents the entropy (energy)
density. The integration is dominated by the saddle point in
the thermodynamic limit V → ∞ as

ZVðTÞ ¼ e−FðTÞ=T ≈
Tð2πCÞ1=2

ΔE
eVðsðε�Þ−ε�=TÞ; ð4Þ

∴
FðTÞ
T

¼ E�
T

− SðE�Þ þOðlogVÞ; ð5Þ

where C ¼ ∂E=∂T is the specific heat and E� ¼ ε�V is the
solution of

∂S
∂E

¼ 1

T
: ð6Þ

Equations (5) and (6) are nothing but the Legendre trans-
formation between the free energy and the entropy in
thermodynamics. It is also straightforward to check the
equivalence of the ensemble averages of a general observ-
able x̂. The canonical ensemble average is given by

hx̂ican ¼
1

ZVðTÞ
X
n

xne−En=T; ð7Þ

where xn ¼ hEnjx̂jEni. This can be written as

hx̂icanT ¼ 1

ZVðTÞ
X
n

xn

Z
dEe−E=TδðE − EnÞ ð8Þ

¼ 1

ZVðTÞΔE
Z

dEeSðEÞ−E=Thx̂imic
E ; ð9Þ

where

hx̂imic
E ¼

P
nxnδðE − EnÞ
ΩVðEÞ

ð10Þ

is the microcanonical ensemble average. Because the
integrand in Eq. (9) has a strong peak at E ¼ E� as in
Eq. (4), we obtain

hx̂icanT ¼ hx̂imic
E ð11Þ

in the thermodynamic limit V → ∞. In particular, during
the first-order phase transition, T is equal to the critical
temperature TcðEÞ, but E varies between the two phases.
This means that the coexisting phases are described in the
finite parameter region of the microcanonical scheme. In
this sense, a fine-tuning to a first-order phase transition
point T ¼ TcðEÞ is automatically realized as long as E is
the finite region. The correspondence is summarized in
Table I.

B. Microcanonical formulation of QFT

Now let us return to QFT. Conventionally, we start from
the “canonical” partition function with the bare coupling
constants fλg ≔ fλjgj¼0;1;2;…,

TABLE I. Relation between canonical and microcanonical formulations in statistical mechanics.

Parameter Partition function Thermodynamic function

Canonical T ZðTÞ ¼Pn e
−En=T FðTÞ ¼ −T logZðTÞ

Microcanonical E ΩðEÞ ¼ ΔE
P

n δðEn − EÞ SðEÞ ¼ logΩðEÞ
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ZðfλgÞ ¼
Z

Dϕ exp

�
i
X
j

λjOj½ϕ�
�
; ð12Þ

whereOj½ϕ� (j ¼ 0; 1; 2;…) denotes a spacetime integral of
a local operator such as

R
ddx 1

2
ð∂μϕðxÞÞ2,

R
ddx 1

2
ðϕðxÞÞ2,R

ddx 1
4!
ðϕðxÞÞ4, etc. After the renormalization procedure,

we can calculate physical observables finitely as functions
of (renormalized) couplings. However, the problem is that
there is no principle to pick up specific values of fλg
theoretically, and this is the very origin of the fine-tuning
problems. Here the analogy between QFT and statistical
mechanics comes into play: What if we start from the
“microcanonical” picture in QFT?
The number of states ΩðEÞ in statistical mechanics can

naturally be promoted to the partition function in QFT as

ΩðfAgÞ ¼
Z

Dϕ
Y
j

δðOj½ϕ� − AjÞ; ð13Þ

where we write fAg ≔ fAjgj¼0;1;2;… and each Aj is an
“extensive parameter” corresponding to Oj½ϕ�, which is
proportional to the spacetime volume Vd. By using the
Fourier transformof the δ function, Eq. (14) can bewritten as

ΩðfAgÞ ¼
Z �Y

j

dλj

�Z
Dϕ exp

�
i
X
l

λlðOl½ϕ� − AlÞ
�

¼
Z �Y

j

dλj

�
ZðfλgÞe−i

P
l
λlAl : ð14Þ

Now, one can see that we have an ensemble average of
various coupling constants and their weight is proportional
to the canonical partition function (12).

C. Further generalized QFT

The essence of the above discussion is the Fourier
transform of the δ function2

δðfxgÞ ¼
Z

∞

−∞

�Y
i

dλj
2π

ei
P

j
λjxj

�
: ð15Þ

We can generalize it to an arbitrary function,

WðfxgÞ ¼
Z �Y

j

dλjeiλjxj
�
ωðfλgÞ: ð16Þ

Here we assume that the functionWðfxgÞ does not contain
any extensive parameters and consider the following
generalized field theory [3]:

ΩðfAgÞ ¼
Z

DϕWðfO½ϕ� − AgÞ

¼
Z �Y

j

dλj

�
ZðfλgÞe−i

P
l
λlAlωðfλgÞ: ð17Þ

If there exists a strong peak fλ�g of ZðfλgÞ in the infinite
volume limit V → ∞, the generalized QFT is equivalent to
the ordinary canonical QFT whose (bare) coupling con-
stants are fixed at fλ�g. In other words, the fine-tuning of
coupling constants is automatically realized in the gener-
alized partition function. We will see that only the behavior
of the canonical partition function ZðfλgÞ matters for the
realization of the Higgs fine-tuning, regardless of whether it
is in the microcanonical QFT (14) or in the generalized
QFT (17). See Table II for the summary of naive corre-
spondence. In the following sections, we will verify this
fine-tuning mechanism for the (bare) mass term m2

B in
scalar field theory.

III. FIXING MASS IN FREE SCALAR THEORY

We study the free scalar theory in the generalized QFT
and show how the bare mass parameter is fixed.

A. Partition function of free scalar theory

We consider the free scalar theory in the d-dimensional
spacetime,

S0 ¼ −
Z

ddx
1

2
ð∂μϕÞ2: ð18Þ

Here, we introduce the bare mass term according to the
generalized QFT, while leaving the kinetic term (18) in the
ordinary canonical way.3 Then the generalized partition
function is defined by

2Here, it is understood that fxg ≔ fxjgj¼0;1;2;….

3One may treat the kinetic term in the framework of gener-
alized QFT as

Z
DϕWðS0Þ � � � ¼

Z
∞

−∞

dz
2π

Z
DϕωðzÞeizS0 � � � :

There are several possibilities for ωðzÞ. If ωðzÞ has support only
for positive values of z, then we can always take the canonical
form as in Eq. (19) by the field redefinition. If ωðzÞ has support
only for negative values of z, then we can take the coefficient of
the kinetic term to be −1 by the field redefinition, and such a
theory would not have a ground state and lead to instability. If
ωðzÞ has support at z ¼ 0, such a scalar field should be regarded
as an auxiliary field, which can be eliminated by using the
equation of motion. If ωðzÞ has support for both positive and
negative values of z, we need to compare the partition functions
of both the contributions. Throughout this paper, we consider the
first case, i.e., ωðzÞ having support only for positive values of z.
Note also that, after the field redefinition, z appears in the
coupling constants so that the case z ¼ 0 can be regarded as a
limit where the coupling constants are large.
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ΩðAÞ ≔
Z

DϕeiS0W

�
A −

1

2

Z
ddxϕ2ðxÞ

�
ð19Þ

¼
Z

∞

−∞

dm2

2π

Z
Dϕωðm2Þ

× exp

�
i

�
S0 þm2

�
A −

1

2

Z
ddxϕ2ðxÞ

���
ð20Þ

¼
Z

∞

−∞

dm2

2π
ωðm2Þeim2AZðm2Þ; ð21Þ

where ωðm2Þ is the Fourier transform of WðxÞ and Zðm2Þ
denotes the ordinary canonical partition function

Zðm2Þ ¼
Z

Dϕ exp

�
i

�
S0 −

m2

2

Z
ddxϕ2ðxÞ

��
: ð22Þ

Note that, since we are studying the free theory here, there
is no distinction between bare mass and renormalized mass.
We can now perform the path integral as

ΩðAÞ ∝
Z

∞

−∞

dm2

2π
ωðm2Þ

× exp

�
im2A −

1

2
tr log ½ið−□þm2 − iεÞ�

�
ð23Þ

¼
Z

∞

−∞

dm2

2π
ωðm2Þ exp ½iVdðam2 − Fðm2ÞÞ�; ð24Þ

where □ ¼ ημν∂μ∂ν, a ¼ A=Vd, iε is Feynman’s prescrip-
tion, and

Fðm2Þ ¼ 1

2

Z
ddpE

ð2πÞd logðp
2
E þm2 − iεÞ þ const; ð25Þ

with pμ
E being the Euclidean momentum. This is apparently

UV divergent and we need a regularization.

B. Mass squared in free scalar theory

To discuss how the mass is tuned, we employ cutoff and
dimensional regularizations.

1. Cutoff regularization

First, let us study the cutoff regularization. As a function
of m2, the integrand in Eq. (24) has a branch cut at

−Λ2 þ iε ≤ m2 ≤ iε; ð26Þ

and the integration line −∞ < m2 < þ∞ is located below
this branch cut, as shown in the left panel in Fig. 1. Then,
Eq. (25) can be evaluated as

Fðm2Þ ¼ Sd−1
2ð2πÞd

Z
Λ

0

dpEpd−1
E log ðp2

E þm2 − iεÞ ð27Þ

¼ Sd−1Λd

4ð2πÞd
Z

1

0

dxx
d
2
−1 log ðxþ ξ − iεÞ; ξ ¼ m2=Λ2 ð28Þ

¼ Sd−1Λd

4ð2πÞd ×

8>><
>>:
R
1
0 dxx

d
2
−1 logðxþ ξÞ for ξ > 0R

1
0 dxx

d
2
−1 log jxþ ξj − i 2πd ð−ξÞd2 for 0 > ξ > −1R

1
0 dxx

d
2
−1 log jxþ ξj − i 2πd for − 1 > ξ

; ð29Þ

where Sd−1 denotes the area of a d − 1-dimensional sphere. The negative imaginary part can be interpreted as the instability
of vacuum.
We see that the function Fðm2Þ contains the imaginary part for m2 < 0, which gives a large suppression in the partition

function when Vd is large. Qualitatively, the contribution from m2 < 0 is

Z
0

−∞
dξe−VdΛdð−ξÞd=2 ¼ O

�
1

ðVdΛdÞ2d
�
: ð30Þ

TABLE II. Naive correspondence in QFT.

Parameter Partition function Generating function

Canonical QFT λ ZðλÞ ¼ R DϕeiλO½ϕ� FðλÞ ¼ −i−1 logZðλÞ
Microcanonical QFT A ΩðAÞ ¼ R DϕδðO½ϕ� − AÞ SðAÞ ¼ logΩðAÞ
Generalized QFT A ΩðAÞ ¼ R DϕWðO½ϕ� − AÞ SðAÞ ¼ logΩðAÞ
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The exponential suppression in the large volume limit is
due to the above-mentioned negative imaginary part.
On the other hand, there is no such suppression for

m2 > 0, and the integrand is a rapidly oscillating function
of m2. In this case, the saddle point can exist at the point
determined by

a ¼ dF
dm2

¼ Sd−1Λd−2

4ð2πÞd
Z

1

0

dx
x
d
2
−1

xþ ξ
: ð31Þ

When d ¼ 4, this equation becomes

a ¼ S3Λ2

4ð2πÞ4
�
1 − ξ log

1þ ξ

ξ

�
≕

Λ2

32π2
fðξÞ; ð32Þ

where fðξÞ is a monotonic function satisfying fð0Þ ¼ 1
and fð∞Þ ¼ 0; see the right panel in Fig. 1. Thus, there
can be a saddle point when a=Λ2 ≤ ð32π2Þ−1, while the
exponent am2 − Fðm2Þ becomes a monotonic function
when a=Λ2 > ð32π2Þ−1.

2. Dimensional regularization

Let us also calculate the partition function in the dimen-
sional regularization. We define ϵ ¼ 4 − d. In this case, the
free energy is calculated as

Fðm2Þ¼−
ðm2Þ2
2ð4πÞ2

�
1

ϵ
−
γ

2
þ3

4
þ1

2
log4π−

1

2
log

�
m2− iε
μ2

��

≕−
ðm2Þ2
2ð4πÞ2

�
cMS−

1

2
log

�
m2− iε

μ2e3=2

��
; ð33Þ

where μ is the renormalization scale and cMS contains both
the finite and divergent terms.
For m2 ≤ 0, we again have the imaginary part from the

logarithmic term, and the partition function is highly
suppressed. On the other hand, for m2 > 0, the saddle
point is determined by

a ¼ dF
dm2

¼ m2

32π2
log

�
m2

μ2e1þ2c
MS

�
; ð34Þ

which always has a solution, unlike the cutoff case. If we
identify μecMS as the cutoff scale, the location of the saddle
points is

m2 ∼ Λ2 ∼ μ2e2cMS ð35Þ

in both of the regularizations.

3. Mass tuning in free scalar theory

As we have seen, the existence of a saddle point depends
on the regularization scheme, but in any case,m2 ¼ 0 holds
over a wide range of the parameter space. First, if there is
no saddle point, the m2 integration is dominated by the
boundary m2 ¼ 0 by the mathematical formula (A2) for
any smooth weight function ωðm2Þ. On the other hand, if
there is a saddle point, am2 − Fðm2Þ is monotonic below
the saddle point m2 ≲ Λ2. Thus, when the weight function
ωðm2Þ has a finite support for m2

B ≲ Λ2, the free energy
am2 − Fðm2Þ is monotonic, and the boundary m2 ¼ 0 is
always dominant due to the mathematical formula (A2). In
conclusion, m2 ¼ 0 appears to be a unique critical point
that is physically reasonable in the generalized partition
function (24).

C. Equivalence in large volume limit

Finally, let us confirm the equivalence between gener-
alized QFT and canonical QFT in the large volume limit.
When A ≠ 0, the first derivative of m2A=Vd − Fðm2Þ is
continuous and nonzero at m2 ¼ 0, while the second
derivative is discontinuous. Then, we can use the math-
ematical formula (A6) and ΩðAÞ is evaluated as

lim
Vd→∞

ΩðAÞ ¼ lim
Vd→∞

Z
∞

−∞

dm2

2π
ωðm2Þeim2AZðm2Þ

¼ N lim
Vd→∞

Zðm2 ¼ 0Þ
V2
d

; ð36Þ

i

Re(mB
2)

Im(mB
2) 32 2 a

N 2

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

=mB
2/ 2

f(
)

FIG. 1. Left: integration line. Right: fðξÞ (blue) and 32π2a=ðNΛ2Þ (orange).
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where N is an unimportant numerical factor. That is,

lim
Vd→∞

logΩðAÞ ¼ lim
Vd→∞

logZðm2 ¼ 0Þ þOðlogVdÞ: ð37Þ

We apparently see the equivalence in the large volume limit.
We can also check the equivalence of correlation functions. We introduce a source term as

Ω½A; J� ¼
Z

DϕeiS0−i
R

ddxJðxÞϕðxÞW
�
A −

1

2

Z
ddxϕ2ðxÞ

�

¼
Z

∞

−∞

dm2

2π
ωðm2ÞeiVdðm2a−Fðm2ÞÞ exp

�
i
2

Z
ddxJðxÞð−□þm2 − iϵÞ−1JðxÞ

�

¼
Z

∞

−∞

dm2

2π
ωðm2ÞeiAm2

Zðm2ÞGðJ;m2Þ: ð38Þ

As long as JðxÞ is a finite supported function, i.e., when it
has no volume dependence, the factor GðJ;m2Þ does not
have exponentially large volume dependence, and the m2

integral in Eq. (38) is dominated by the critical point of
Zðm2Þ. Namely, we have

lim
Vd→∞

Ω½A; J� ¼ const ×GðJ;m2 ¼ 0Þ: ð39Þ

Then, by taking the functional derivatives with respect to
JðxÞ, we obtain

hTfϕðx1Þ � � �ϕðxnÞgimic ¼ hTfϕðx1Þ � � �ϕðxnÞgicanjm2¼0;

ð40Þ

which corresponds to Eq. (11) in statistical mechanics.

IV. FIXING MASS IN ϕ4 THEORY

In this section, we analyze the ϕ4 theory in the scope of
generalized QFT. In particular, we study how the mass term
is fixed by studying its critical point at the one-loop level
and also in the large-N extended model. Our investigation
reveals that the renormalized mass settles at zero in the one-
loop analysis as well as in the large-N model, due to the
discontinuity of the derivative of the vacuum energy.
In this section, we assume that the quartic coupling is

prefixed at a certain value, as in the ordinary QFT. The
possibility of its tuning will be discussed in the next section.

A. Mass squared at one-loop level

We first introduce a bare action without the bare mass
term,

SB½ϕ� ¼
Z

ddx

�
−
1

2
ð∂μϕÞ2 −

λB
4!

ϕ4 − ΛB

�
; ð41Þ

where we have also included the bare cosmological con-
stant term for later convenience. For simplicity, we
have imposed the Z2 symmetry ϕ → −ϕ, which leaves
only the quadratic and quartic terms in the renormalizable
potential.
Our starting point is the generalized partition function

ΩðAÞ, which can be expressed in terms of the canonical
partition function Zðm2

BÞ by the same procedure as in
Sec. III A,

ΩðAÞ ¼
Z

∞

−∞

dm2
B

2π
ωðm2

BÞeim2
BAZðm2

BÞ; ð42Þ

where

Zðm2
BÞ ¼

Z
DϕeiS½ϕ�; S½ϕ� ¼ SB½ϕ� −

m2
B

2

Z
ddxϕ2:

ð43Þ

The canonical partition function Z can be obtained from the
ordinary effective action Γ½ϕ� via Z ¼ eiminϕ Γ½ϕ�. At the
one-loop level, we obtain

Γ½ϕ� ¼ S½ϕ� − 1

2i
tr log

�
−□þm2

B þ λB
2
ϕ2 − iε

�

¼ S½ϕ� þ Vd

2

Z
ddpE

ð2πÞd log
�
p2
E þm2

B þ λB
2
ϕ2 − iε

�

¼ S½ϕ� þ Vd

2

ðM2
ϕðϕÞÞ2
ð4πÞ2

�
cM̄S −

1

2
log

�
M2

ϕðϕÞ − iε

μ2e3=2

��
;

ð44Þ

where M2
ϕðϕÞ ¼ m2

B þ λB
2
ϕ2.

Now the one-loop effective potential is given by
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VeffðϕÞ ≔ −
Γ½ϕ�
Vd

����
ϕ¼const

¼ ΛB þm2
B

2
ϕ2 þ λB

4!
ϕ4 −

ðM2
ϕðϕÞÞ2
32π2

�
cMS −

1

2
log

�
M2

ϕðϕÞ − iε

μ2e3=2

��

¼ ΛR þm2
R

2
ϕ2 þ λR

4!
ϕ4 þ ðM2

ϕðϕÞÞ2
64π2

log

�
M2

ϕðϕÞ − iε

μ2e3=2

�
; ð45Þ

where

ΛR ¼ ΛB − cMS

m4
B

32π2
; m2

R ¼ m2
B −

cMS

16π2
λBm2

B;

λR ¼ λB −
3cMS

16π2
λ2B ð46Þ

denote the renormalized parameters. We can regard these
renormalized couplings as our parameters instead of the
bare couplings ðm2

B; λBÞ.
As a consistency check, let us consider the free theory

limit: λB ¼ λR ¼ 0. In this case, there is no difference
between the bare mass and the renormalized mass, and the
effective potential is exactly given by

VeffðϕÞjλB¼0 ¼ ΛR þm2
B

2
ϕ2 þ m4

B

64π2
log

�
m2

B − iε

μ2e3=2

�
; ð47Þ

which has a trivial minimum at ϕ ¼ 0 and the correspond-
ing vacuum energy is

Vmin ¼ ΛB −
ðm2

BÞ2
32π2

�
cMS −

1

2
log

�
m2

B − iε

μ2e3=2

��
; ð48Þ

which is nothing but Eq. (33).
Let us come back to the interacting scalar theory. We

assume λR > 0 to ensure the stability of the effective
potential. As usual, we can obtain the renormalization
group (RG) improved effective potential by choosing the
renormalization scale μ appropriately. For m2

R ≥ 0, the
VEV is trivial v ¼ 0, and we take μ ¼ mRe−3=4, which
will give a simple expression of the vacuum energy [as in
the first line in Eq. (51) below]. On the other hand, for
m2

R < 0, the field ϕ develops a nonzero VEV, which is
determined by

∂VeffðϕÞ
∂ϕ

¼0

⇔ m2
Rvþ

λR
6
v3þ λRv

32π2

�
M2

ϕðvÞlog
�
M2

ϕðvÞ
μ2e

��
¼0: ð49Þ

By choosing the renormalization scale at μ2 ¼ M2
ϕðvÞe−1,

the VEV is given by

v2 ¼ −
6m2

R

λR
: ð50Þ

Now the vacuum energy as a function of m2
R is given by

Vminðm2
RÞ ¼ ΛB −

cMS

32π2
ðm2

RÞ2

þ
(
0 for m2

R ≥ 0

− 3ðm2
RÞ2

2λR
− ð2m2

RÞ2
128π2

for m2
R < 0

; ð51Þ

which shows that the second derivative of Vminðm2
RÞ is

discontinuous at m2
R ¼ 0 as

∂
2Vmin

∂ðm2
RÞ2
����
m2

R¼0þ
¼ −

cMS

16π2
;

∂
2Vmin

∂ðm2
RÞ2
����
m2

R¼0−

≃ −
cMS

16π2
−

3

λR
þ 1

16π2
: ð52Þ

Note that the first derivative of m2
BA=Vd − Vminðm2

RÞ is
continuous and nonzero at m2

R ¼ 0 as long as A ≠ 0, which
means that we can use the mathematical formula (A6) in
Appendix A. Then, the partition function is evaluated as

lim
Vd→∞

eim
2
BAþlogZðm2

RÞ ¼ lim
Vd→∞

eim
2
BA−iVdVminðm2

RÞ

∝ lim
Vd→∞

e−iVdVminðm2
R¼0Þ

V2
d

δðm2
RÞ; ð53Þ

which leads to

lim
Vd→∞

ΩðAÞ ¼
Z

∞

−∞

dm2
R

2π

�
∂m2

B

∂m2
R

�
ωðm2

BÞeim2
BAþlogZðm2

RÞ

¼ N
V2
d

elogZðm2
R¼0Þ; ð54Þ

where N is an unimportant factor. That is,

lim
Vd→∞

logΩðAÞ¼ lim
Vd→∞

logZðm2
R¼0ÞþOðlogVdÞ: ð55Þ

We see that the equivalence between two formulations still
holds in the ϕ4 theory at the one-loop level in the large
volume limit. In particular, the renormalized mass param-
eter m2

R is fixed at zero because of the discontinuity of the
second derivatives of the vacuum energy.4 This result

4Precisely speaking, there is also a saddle point solution
m2

R ∼ − A
VdcMS

, the value of which depends on the regularization

schemes and the way the large volume limit A=ðcMSVdÞ ¼ fixed
is taken. On the other hand, the critical point m2

R ¼ 0 has no such
uncertainty and is uniquely determined as in the free case.
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implies that the quadratic divergence problem is absent in
the microcanonical formulation. Moreover, in the simple ϕ4

theory, the conclusion is not affected by higher-loop
corrections as long as λR ≲ 1. However, the situation can
be different in more general theories with more than one
field because another mass scale can be radiatively gen-
erated by other fields. See Sec. VI for a concrete two-
scalar model.

B. Mass squared in large-N model

In this section, we turn to theOðN þ 1Þ symmetric scalar
theory with ϕi (i ¼ 0; 1;…; N), and discuss how the mass
parameter is fixed in the generalized partition function in
the large-N limit. The bare action is given by

SB ¼
Z

ddx

�
−
1

2
ð∂μϕiÞ2 −

λB
4!

ðϕ2
i Þ2
�
; ð56Þ

where we have omitted the bare mass term as before and
apply the Einstein summation convention for the field
index i.
The generalized partition function now becomes

ΩðAÞ ¼
Z

∞

−∞

dm2
B

2π
ωðm2

BÞeim2
BNA

Z
DϕeiS

¼
Z

∞

−∞

dm2
B

2π
ωðm2

BÞeim2
BNAZðm2

BÞ; ð57Þ

where

S ¼
Z

ddx

�
−
1

2
ð∂μϕiÞ2 −

1

2
m2

Bϕ
2
i −

λB
4!

ðϕ2
i Þ2
�
: ð58Þ

We can generally separate the original field ϕi as

ϕi ¼
� ffiffiffiffi

N
p

s i ¼ 0

πi i ¼ 1; 2;…; N
; ð59Þ

where s is the field that may acquire a VEV. The
Lagrangian now becomes

L ¼ N

�
−
1

2
ð∂μÞ2 −

m2
B

2
s2
�
−
1

2
ð∂μπiÞ2

−
m2

B

2
π2i −

λB
4!

ðNs2 þ π2i Þ2: ð60Þ

We can introduce an auxiliary scalar field c in the
Lagrangian such that the partition function does not change
after performing the path integral over c,

L ¼ N

�
−
1

2
ð∂μÞ2 −

1

2
ðm2

B þ cÞs2
�

−
1

2
ð∂μπiÞ2 −

1

2
ðm2

B þ cÞπ2i þ
3

2λB
c2: ð61Þ

By performing the path integral of πi, the partition function
is given as

Zðm2
BÞ ¼

Z
DϕeiS

¼
Z

Dc
Z

Ds exp

�
iN
Z

ddx

�
−
1

2
ð∂μÞ2 −

1

2
ðm2

B þ cÞs2 þ 1

4λ̃B
c2 −

1

2

Z
ddpE

ð2πÞd logðp
2
E þm2

B þ c − iϵÞ
��

; ð62Þ

where λ̃B ≔ λBN=6. The variation of c gives

−s2 þ 1

λ̃B
c −

Z
ddpE

ð2πÞd
1

p2
E þm2

B þ c − iϵ
¼ 0; ð63Þ

while the variation of s gives

ð−□þm2
B þ cÞs ¼ 0: ð64Þ

As long as we focus on the ground state, we can omit □s.
For a given value of λ̃B, the parameter space of m2

B is
divided into two regions as shown in Fig. 2, which
correspond to the broken phase (blue) and the unbroken
phase (uncolored), respectively. Now let us discuss the
behavior of the partition function in each region.

1. Broken phase

When s ≠ 0, we have m2
B þ c ¼ 0. Equation (63) then

becomes

s2 ¼ −
1

λ̃B
m2

B −
Z

Λ ddpE

ð2πÞd
1

p2
E
> 0; ð65Þ

which indicates the parameter space of broken phase. This
is shown by the blue region in Fig. 2. We represent the
critical value of m2

B as −m2
Λ. For d ¼ 4, it is

m2
Λ ¼ λ̃BΛ2

16π2
: ð66Þ

For the parameters obeying Eq. (65), the canonical partition
function (62) becomes very simple in the large-N analysis.
In fact,
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eim
2
BNAZðm2

BÞ∼ exp

�
N

�
const:þ im2

BAþ i

4λ̃B

Z
ddxc2

��
ð67Þ

¼ exp

�
N

�
const:þ i

Vd

4λ̃B

�
m2

B þ
2λ̃BA
Vd

�
2
��

:

ð68Þ

One can see that there is a saddle point atm2
B ¼ −2λ̃BA=Vd

if it is smaller than the critical value −m2
Λ. Otherwise, the

exponent in Eq. (68) is a monotonic function for
m2

B ≤ −m2
Λ. In particular, the second derivative is given by

∂
2 logZðm2

BÞ
∂ðm2

BÞ2
¼ i

NVd

2λ̃B
: ð69Þ

2. Unbroken phase

When s ¼ 0, the system is in the unbroken phase. In this
case, c is determined by the gap equation

c ¼ λ̃B

Z
ddpE

ð2πÞd
1

p2
E þm2

B þ c − iε
: ð70Þ

This equation has a solution only for

−
1

λ̃B
m2

B −
Z

Λ

0

ddpE

ð2πÞd
1

p2
E
< 0; ð71Þ

which is consistent with Eq. (65). In this case, the canonical
partition function becomes

Zðm2
BÞ ∼ exp

�
iNVd

�
−
1

2

Z
ddpE

ð2πÞd logðp
2
E þm2

B

þ c − iεÞ þ 1

4λ̃B
c2
��

; ð72Þ

where c depends on m2
B via the gap equation (70). The

exponent in Eq. (72) is a monotonically decreasing function
of m2

B and the second derivative with respect to m2
B at the

critical point −m2
Λ is

∂
2 logZðm2

BÞ
∂ðm2

BÞ2
����
m2

B¼−m2
Λ

¼ iNVd

2

�Z
ddpE

ð2πÞd
1

ðp2
E þm2

B þ cÞ2
�
1þ dc

dm2
B

�
2

þ 1

λ̃B

�
dc
dm2

B

�
2
�
jm2

B¼−m2
Λ

¼ iNVd

2λ̃B

λ̃B
R ddpE

ð2πÞd
1

ðp2
EÞ2

1þ λ̃B
R ddpE

ð2πÞd
1

ðp2
EÞ2

: ð73Þ

By comparing Eqs. (69) and (73), one can see that the
second derivative is discontinuous at the critical point
m2

B ¼ −m2
Λ. Thus, we conclude that m2

B is fixed at −m2
Λ

by the mathematical formula (A6) (as long as A ≠ 0) at
which the renormalized mass m2

R ¼ m2
B þ c is zero.

V. FIXING QUARTIC COUPLING IN ϕ4 THEORY

We briefly comment on the possibility of fixing the
quartic coupling. As well as the mass term, we can also
consider the generalized partition function for the quartic
coupling

Z
dm2

R

Z
dλRωðm2

R; λRÞeim
2
RAm2þiλRAλZðm2

R; λRÞ; ð74Þ

where we take the renormalized couplings as the integra-
tion parameters instead of the bare couplings for
simplicity.5 Note that Aλ is another extensive parameter
proportional to the spacetime volume V. We will discuss
the case where ωðm2

R; λRÞ has support only for non-
negative values of λR.

6

At the one-loop level of the ϕ4 theory, the vacuum
energy (51) vanishes at the critical point of the mass
squared m2

R ¼ 0 for any λR ≥ 0, which means that the
above partition function becomes

FIG. 2. Parameter space in the large-N limit.

5The Jacobian from the change of variables has been absorbed
by the redefinition of ω.

6We can also consider the case where ω has support for both
positive and negative values of λR. In this case, we have to
consider contributions to the partition function from both.
However, it is possible that the negative values of λR lead to
the exponential damping of the partition function for the large
volume limit; this is because the vacuum energy density for
negative λR has a negative imaginary part due to the instability of
vacuum, as we have seen in Eq. (30) for the mass parameter.

KAWAI, KAWANA, ODA, and YAGYU PHYS. REV. D 109, 085009 (2024)

085009-10



∼
Z

∞

0

dλRωðλRÞeiλRAλ : ð75Þ

As long as Aλ ≠ 0, the exponent is a linear function of λR,
and this integration is strongly dominated by λR ¼ 0 by the
formula (A2) in the large volume limit. Thus, the free scalar
theory seems to be realized in the generalized QFT in the ϕ4

theory at least at one-loop level. As long as the renormal-
ized mass m2

R is fixed at zero and we focus on the cutoff
independent part of the vacuum energy, this conclusion
will not be significantly altered by the higher-loop effects
because the cutoff independent part should be proportional
to ðm2

RÞ2 by dimensional analysis and they vanish at the
critical point m2

R ¼ 0.
On the other hand, a nontrivial saddle point can appear if

we also include the cutoff-dependent parts. For example, at
the three-loop level, we have the following contributions to
the vacuum energy:

λR
Aλ

V4

þ ðc1λR − c2λ2RÞΛ4; ð76Þ

where ci > 0 are just constants containing the loop sup-
pression factors. Thus, one can see that there exists a saddle
point at

λR ∼
�
Aλ

V4

þ c1

�
=c2: ð77Þ

This is a very interesting possibility but its physical
meaning is subtle, as in the mass parameter case. More
detailed studies are left for future investigations. See also
Appendix B for the possibility of fixing λR in the large-
N limit.

VI. DIMENSIONAL TRANSMUTATION
IN TWO-REAL-SCALAR MODEL

As discussed above, the low energy effective theory of
the generalized QFT is nothing but the ordinary QFT,
whose parameters are tuned to be the critical values. In a
wide range of parameter spaces of various models, one of
the quartic couplings vanishes and a VEV is generated at a
nonperturbatively small scale, which is known as the
Coleman-Weinberg mechanism [31].
As an example, we study a two-real-scalar model

[32–37] at the one-loop level. We show that an automatic
tuning of the mass-squared parameter is realized so that the
dimensional transmutation is successfully achieved. Note
also that we treat the scalar quartic couplings in the usual
canonical way and fix them to be positive values to
guarantee the stability of the system for simplicity.
For simplicity, we again impose the Z2 × Z2 symmetry,

which leads to the following Lagrangian:

L ¼ −
1

2
ð∂ϕÞ2 − 1

2
ð∂SÞ2 −m2

ϕ

2
ϕ2

−
m2

S

2
S2 −

λϕS
4

ϕ2S2 −
λϕ
4!

ϕ4 −
λS
4!

S4: ð78Þ

To simplify the discussion further, we focus on the
parameter space λϕ ≪ λS ∼ 1 and λϕS > 0, which means
that the ϕ direction is almost flat for m2

ϕ ∼ 0. ϕ and S play
the roles of the scalar and gauge fields in the original
Coleman-Weinberg mechanism. On the other hand, the S
direction is always dominated by the tree-level potential;
that is, its VEV is well determined by m2

SS
2 þ λS

4!
S4.

Under these conditions, we will show that there is a
critical point atm2

S ¼ 0 andm2
ϕ ≠ 0 which corresponds to a

quantum first-order phase transition point. Although the
conventional classical conformal pointm2

S ¼ m2
ϕ ¼ 0 is not

realized in the current formulation, our result serves as a
concrete way of dimensional transmutation without assum-
ing an artificial symmetry such as classical conformality.
Now let us discuss the details. The one-loop effective

potential in the MS scheme is given by

Veffðϕ; SÞ ¼
m2

ϕ

2
ϕ2 þm2

S

2
S2 þ λϕS

4
ϕ2S2 þ λϕ

4!
ϕ4 þ λS

4!
S4

þ ðM2þðϕ; SÞÞ2
64π2

log
�
M2þðϕ; SÞ
μ2e3=2

�

þ ðM2
−ðϕ; SÞÞ2
64π2

log

�
M2

−ðϕ; SÞ
μ2e3=2

�
; ð79Þ

where

M2
�ðϕ; SÞ ¼

1

2
ðM2

ϕ þM2
S �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

ϕ −M2
SÞ2 þ 4λ2ϕSϕ

2S2
q

Þ
ð80Þ

with

M2
ϕ¼m2

ϕþ
λϕS
2
S2þλϕ

2
ϕ2; M2

S¼m2
Sþ

λϕS
2
ϕ2þλS

2
S2:

ð81Þ

Here, all the coupling constants are the renormalized ones.
As usual, we can take the renormalization scale at the point
μ ¼ M where λϕ vanishes. In the following, we first
examine how m2

ϕ is fixed for a given value of m2
S and

then discuss the fixing of m2
S.

First, let us consider the parameter space m2
S ≥ 0. In this

case, hSi ¼ 0 as long as the tree-level potential dominates
in the S direction. The effective potential for ϕ is then
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Veffð0;ϕÞ ¼
ðm2

ϕÞ2
64π2

log

�
m2

ϕ

M2e3=2

�
þm2

ϕ

2
ϕ2

þ ðm2
S þ λϕS

2
ϕ2Þ2

64π2
log

�
m2

S þ λϕS
2
ϕ2

M2e3=2

�
: ð82Þ

In Fig. 3, we show the plots of Veffð0;ϕÞ where the
different colors correspond to the different values of m2

ϕ.

Here, ϕ̃ and Vϕðϕ̃Þ are defined by

ϕ̃2 ¼ ðm2
S þ λϕSϕ

2=2Þ=M2e3=2; ð83Þ

Vϕðϕ̃Þ ≔ ðM2e3=2Þ2
�
m̃2

ϕ

2
ϕ̃2 þ ϕ̃4

64π2
log ϕ̃2

�
: ð84Þ

In particular, one can see that there exists a quantum first-
order phase transition at

m2
ϕ ¼ λϕSe1=2

64π2
M2≕m2

c; ð85Þ

meaning that ϕ achieves a nonzero VEV, hϕi ¼ vϕ, for
m2

ϕ < m2
c. See Appendix C for the derivation of Eq. (85).

Correspondingly, the VEV and the vacuum energy are
given by

hϕi ¼
�
0 for m2

ϕ ≥ m2
c

vϕ for m2
ϕ < m2

c

; ð86Þ

Veffð0; hϕiÞ −
ðm2

ϕÞ2
64π2

log

�
m2

ϕ

M2e3=2

�
¼

8><
>:

ðm2
SÞ2

64π2
log



m2
S

M2e3=2

�
for m2

ϕ ≥ m2
c

m2
ϕ

2
v2ϕ þ

ðm2
Sþ

λϕS
2
v2ϕÞ2

64π2
log


m2

Sþ
λϕS
2
v2ϕ

M2e3=2

�
for m2

ϕ < m2
c

: ð87Þ

As in the simple ϕ4 theory, the additional contribution in
the second line gives the discontinuity of the second
derivative of the vacuum energy at m2

ϕ ¼ m2
c, and this

point is dominant in the generalized partition function.
Second, we turn to the case m2

S < 0. In this case, S
already has a VEV at hSi2 ¼ −6m2

S=λS at tree level, and
there exists the tree-level vacuum energy −3ðm2

SÞ2=ð2λSÞ as
in the simple ϕ4 theory discussed in the previous sections.
As for the ϕ potential, nonzero VEV of S just changes the
effective mass in Eq. (81) as

M2
S ¼ m2

S þ
λS
2
hSi2 þ λϕS

2
ϕ2 ¼ 2jm2

Sj þ
λϕS
2

ϕ2: ð88Þ

Note thatM2
ϕ is just a constant because of λϕ ¼ 0. Thus, we

can repeat the same discussion as above and conclude that
m2

ϕ is still fixed at the critical point m2
ϕ ¼ m2

c.
Finally, at such a critical point ofm2

ϕ, the vacuum energy
as a function of m2

S is given by

Vminjm2
ϕ¼m2

c
≃

8>><
>>:

ðm2
SÞ2

64π2
log



m2
S

M2e3=2

�
for mS ≥ 0

− 3ðm2
SÞ2

2λS
þ ðm2

Sþ
λϕS
2
v2ϕÞ2

64π2
log


m2

Sþ
λϕS
2
v2ϕ

M2e3=2

�
for mS < 0

: ð89Þ

As in the simple ϕ4 theory, m2
S is fixed at zero because the second derivative of this equation is discontinuous at m2

S ¼ 0.
The conventional Coleman-Weinberg point m2

S ¼ m2
ϕ ¼ 0 is not realized in the current formation because such a point

m2
S ¼ m2

ϕ ¼ 0 corresponds to the degeneracy of false vacua as discussed in Ref. [35]. We leave the discussion on the
criticality of general extrema for future investigation.

FIG. 3. One-loop effective potential of ϕ̃. Different colors
correspond to the different values of m2

ϕ.
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VII. SUMMARY

In this paper, we have investigated the Higgs hierarchy
problem in the generalized QFT. We first studied the
free scalar theory and found that there are two critical
points in the large volume limit: one is m2

B ¼ 0 and the
other is m2

B ¼ OðΛ2Þ. While the former does not depend
on the regularization methods, the latter does, implying
that m2

B ¼ 0 is a physically reasonable critical point.
This can be a theoretical origin/explanation of classical
conformality, which is implicitly assumed in many
literatures.
We then studied the ϕ4 theory at the one-loop level,

as well as the large-N model. In this case, we found that a
critical point exists at the point where the renormalized
mass m2 ¼ m2

B þ δm2
UV vanishes due to the discontinuity

of the vacuum energy’s derivative. This further backs up the
fine-tuning of the (Higgs) mass squared being automati-
cally accomplished in the generalized QFT.
We have also discussed the possibility that the quartic

coupling is automatically fixed, with a positive result.
As a next nontrivial example, we examined the Z2

invariant two-real-scalar model at the one-loop level by
focusing on a simple parameter space, where only one real
scalar ϕ can develop a nonzero VEV hϕi ≠ 0. Under these
conditions, we found that there exists a critical point where
m2

ϕ ¼ m2
c > 0 and m2

S ¼ 0, which corresponds to a quan-
tum first-order phase transition point of the theory. This
result gives a complete realization of dimensional trans-
mutation without assuming classical conformality that has
been implicitly assumed in many literatures.
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APPENDIX A: MATHEMATICAL FORMULAS

In the following, we often use mathematical formulas of
generalized functions. We summarize them here. The first
one is well known as the saddle point approximation,

lim
V→∞

e−VgðxÞ ≃ e−Vgðx0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

Vg00ðx0Þ

s
× δðxÞ; ðA1Þ

where gðxÞ is a smooth function and x0 is a saddle point,
g0ðx0Þ ¼ 0. The proof of this equation is textbook level and
we will not repeat it here. The second formula is

lim
V→∞

eiVgðxÞθðxÞ ≃ i
V

���� dgdx
����−1eiVgð0Þ × δðxÞ; ðA2Þ

where gðxÞ is now a real, smooth, and monotonic function
for x ≥ 0 and satisfies g0ð0Þ ≠ 0. The proof is as follows.
By multiplying a test function fðxÞ with a finite support
and integrating from 0 to ∞, we have

Z
∞

0

dxeiVgðxÞfðxÞ ¼
Z

gð∞Þ

gð0Þ
dg

���� dgdx
����−1eiVgfðx ¼ xðgÞÞ ðA3Þ

¼
�
eiVg

iV

���� dgdx
����−1fðxðgÞÞ

�
gð∞Þ

gð0Þ
−

1

iV

Z
gð∞Þ

gð0Þ
dg

d
dg

����� dgdx
����−1fðxðgÞÞ

�
eiVg

¼ i
eiVgð0Þ

V

���� dgdx
����−1fðxÞjx¼0 −

1

ðiVÞ2
�
d
dg

����� dgdx
����−1fðxðgÞÞ

�
eiVg

�
gð∞Þ

gð0Þ
þ � � �

¼ i
eiVgð0Þ

V

���� dgdx
����−1fðxÞjx¼0 þOðV−2Þ; ðA4Þ

which confirms Eq. (A2). Note that the contribution from x ¼ ∞ is zero because we have assumed that fðxÞ has a finite
support. More generally, when gðxÞ is a monotonic and smooth function for both sides x > 0 and x < 0, but its derivative
g0ðxÞ is discontinuous at x ¼ 0, we have

lim
V→∞

eiVgðxÞ ¼ lim
V→∞

i
V

����� dgdx
����−1
0þ

−
���� dgdx
����−1
0−

�
eiVgð0Þ × δðxÞ: ðA5Þ
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Note that when g0ðxÞ is also continuous at x ¼ 0, the right-
hand side vanishes and higher-order terms dominate. In
general, when the derivatives of gðxÞ are continuous and
nonzero up to (n − 1)th order but the nth derivative of gðxÞ
is discontinuous, we have

lim
V→∞

eiVgðxÞ ¼ c lim
V→∞

in

Vn e
iVgð0Þ × δðxÞ; ðA6Þ

where c is a coefficient determined by g0ð0Þ; g00ð0Þ;…;
dðn−1Þgð0Þ=dxn−1; dgðnÞð0þÞ=dxn; dgðnÞð0−Þ=dxn.

APPENDIX B: FIXING QUARTIC COUPLING IN
LARGE-N MODEL

In this appendix, we study a possibility of fixing the
quartic coupling by taking the N−1 corrections. In the
following, the mass term m2 is fixed at the critical point
m2 ¼ m2

B þ ccl ¼ 0 and we focus on d ¼ 4.
Around the large-N solution ðc; sÞ ¼ ðccl; sclÞ studied in

Sec. IV B, the effective action in Eq. (62) becomes

S ¼ NΛ4V4

4λ̃B

�
λ̃B
16π2

Λ2

�
2

þ N
Z

d4x

�
−
1

2
ð∂μδsÞ2 −

1

2
δcδs2 þ 1

4

�
1

λ̃B
þ
Z

d4pE

ð2πÞ4
1

ðp2
EÞ2
�
δc2 þ � � �

�
; ðB1Þ

where δs ¼ s − scl; δc ¼ c − ccl, and � � � represents the
higher-order terms. Note that the first term is the leading
vacuum energy contribution and it is proportional to λ̃B.
Thus, this can be absorbed into the definition of Aλ. In the
following, we represent

1

λ̃B
þ
Z

d4pE

ð2πÞ4
1

ðp2
EÞ2

¼ 1

λ̃B
þ 1

8π2
log

�
Λ
μ

�
≔

1

NλðμÞ ; ðB2Þ

where μ is some (IR) scale. We can check that λðμÞ
corresponds to the usual renormalized quartic coupling
because Eq. (B2) is nothing but the solution of the RG
equation in the large-N limit,

dλ
d log μ

≈
N
8π2

λ2: ðB3Þ

In Eq. (B1), the δc part can be rewritten as

1

4NλðμÞ ðδc − NλðμÞδs2Þ2 − NλðμÞ
4

δs4: ðB4Þ

By the field redefinitions N1=2δs → δs and
N1=2ðδc − NλðμÞδs2Þ → δc, the action becomes

S¼
Z

d4x

�
−
1

2
ð∂μδsÞ2−

λðμÞ
4

δs4þ 1

4NλðμÞδc
2þOðN−1Þ

�
:

ðB5Þ

Now we can perform the one-loop integration of δc as

−
V4

2

Z
d4qE
ð2πÞ4 logðNλðμÞ=2Þ−1

¼ −
F
2
log

�
2

NλðμÞ
�

¼ −
F
2
log

�
1

λB
þ N
8π2

log

�
Λ
μ

��
þ const; ðB6Þ

where F ¼ V4Λ4=ð32π2Þ. Note that we have singular
points at

λðμÞ ¼ 0; �∞: ðB7Þ

Now the λB integration in the microcanonical partition
function is given by

ΩðAÞ ¼
Z

∞

−∞

dλB
2π

exp

�
iλBNAλ

− i
F
2
log

�
1

λB
þ N
8π2

log

�
Λ
μ

���
ðB8Þ

¼
Z

∞

−∞

dλB
2π

eiNAλðλðμÞÞ; ðB9Þ

where

GðλðμÞÞ ≔ λðμÞ
1 − NλðμÞ

8π2
log

�
Λ
μ

�þ F
2NAλ

log λðμÞ: ðB10Þ

One can check that there exist two saddle points,

NλðμÞ ¼ Nλ� ¼ 1

B

 
1 −

Aλ

FB
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

Aλ

FB

�
2

− 1

s !
;

ðB11Þ
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where

B ¼ 1

8π2
log

�
Λ
μ

�
: ðB12Þ

We can see that Nλ� is real and positive if we take the
following large-N limit:

N → ∞ NλRðμÞ ¼ fixed;
Aλ

F
¼ fixed;����1 − Aλ

FB

���� ≥ 1: ðB13Þ

More detailed analysis is necessary to verify the validity of
this limit because we now have an additional parameter Aλ

that is absent in the usual large-N analysis.

APPENDIX C: DETAILS OF
TWO-REAL-SCALAR MODEL

By putting ϕ̃2 ¼ ðm2
S þ λϕSϕ

2=2Þ=M2e3=2, we can
rewrite Eq. (82) as

Veffð0;ϕÞ ¼ Λðm2
ϕ; m

2
SÞ þ Ṽϕðϕ̃Þ; ðC1Þ

where

Λðm2
ϕ; m

2
SÞ ≔

ðm2
ϕÞ2

64π2
log

�
m2

ϕ

μ2e3=2

�
−
m2

Sm
2
ϕ

λϕS
; ðC2Þ

Ṽϕðϕ̃Þ ≔ ðM2e3=2Þ2
�
m̃2

ϕ

2
ϕ̃2 þ ϕ̃4

64π2
log ϕ̃2

�
; ðC3Þ

in which

m̃2
ϕ ≔

2m2
ϕ

λϕSM2e3=2
: ðC4Þ

The effective potential has minima at ϕ ¼ 0 and

ϕ̃ ¼ ṽϕ; ðC5Þ

where ṽ2ϕ is a solution of

m̃2
ϕ þ

ϕ̃2

16π2
logðϕ̃2e1=2Þ ¼ 0: ðC6Þ

Correspondingly, vϕ will denote the VEV of the original
field ϕ below.

Note that hϕi ¼ 0 is always the true vacuum for

m2
S >

λϕS
2
v2ϕ because ϕ̃2 > ṽ2ϕ for any values of ϕ2 > 0.

On the other hand, the minimum of Ṽϕðϕ̃Þ depends on m2
ϕ

for λϕS
2
v2ϕ ≥ m2

S ≥ 0. In particular, it has a critical point at

0 ¼ Ṽϕð0Þ ¼ ṼϕðṽϕÞ → m̃2
ϕ ¼ 1

32π2e
≕ m̃2

c: ðC7Þ

See Fig. 3 for the explicit plots of Ṽϕðϕ̃Þ.
As a consistency check of hSi ¼ 0 form2

S ≥ 0, let us also
check the positivity of the effective mass of S at S ¼ 0,

m2
eff;S ¼

∂Veff

∂S2

����
S¼0;ϕ¼hϕi

ðC8Þ

¼m2
Sþ

λϕS
2
hϕi2þ λS

32π2

�
m2

Sþ
λϕS
2
hϕi2

�

×log

�
m2

Sþ λϕS
2
hϕi2

M2e

�
þλϕSm2

ϕ

32π2
log

�
m2

ϕ

M2e

�
: ðC9Þ

The last term is negligible at around the critical point
m2

ϕ ¼ m2
c because

λϕSm2
ϕ

32π2
log

�
m2

ϕ

M2e

�
∼ −

λ2ϕS
ð32πÞ2 hϕi

2 ≪
λ2ϕS
2

hϕi2: ðC10Þ

On the other hand, the second term in Eq. (C9) seems to
become negative at aroundm2

S ∼ 0 for hϕi ¼ 0, but it is just
an illusion of looking at the first term of leading log
corrections. By summing up all the leading log terms
(which correspond to the RG improvement), we have

1þ λS
32π2

log

�
m2

S

M2e

�
þ
�

λS
32π2

log

�
m2

S

M2e

��
2

þ � � �

¼ 1

1 − λS
32π2

log



m2
S

M2e

� ; ðC11Þ

which is always positive for m2
S ≥ 0.7 Thus, hSi ¼ 0 is

justified at this one-loop level calculation andm2
ϕ is fixed at

the critical point m2
c by the discontinuity of the vacuum

energy.

7This is nothing but the well-known fact [31] that the Cole-
man-Weinberg mechanism does not work for a single (real)
scalar.
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