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We find bounds on the Wilson coefficients of effective field theories (EFTs) living in a universe
undergoing expansion by requiring that its modes do not propagate further than a minimally coupled
photon by a resolvable amount. To do so, we compute the spatial shift suffered by the EFT modes at a fixed
time slice within the WKB approximation and the regime of validity of the EFT. We analyze the bounds
arising on shift-symmetric scalars and curved space generalizations of Galileons.
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I. INTRODUCTION

While the standard cosmological model has been
extremely successful at explaining current observations,
many mysteries remain. Some examples of such mysteries
are the fundamental origin of the dark sector as well as
some cosmological tensions [1], with the most prominent
being the tension between the early and late time mea-
surements of the acceleration of the Universe [2,3]. It is
expected that the knowledge of the fundamental theory of
everything will resolve all of these unknowns, but in the
absence of this, we can work with effective field theories
(EFTs) that describe physics at low energies. The unknown
description of the theory at high energies is encoded in
the Wilson coefficients of these EFTs. From a bottom-up
perspective, these Wilson coefficients have no a priori
values, but it is well-known that certain values of these
coefficients can lead to unphysical properties.
In flat space, it is possible to define an S matrix, whose

analytic properties are well known. By imposing physical
principles, such as Lorentz invariance, analyticity, unitarity,
and locality at all scales; one can write dispersion rela-
tions that allow us to bound the Wilson coefficients of a
theory [4–8]. Applying this program to curved spacetimes
and more specifically to an expanding universe is not
straightforward due to the lack of a globally defined S
matrix. This has been the subject of many recent explora-
tions [9–20]. Nevertheless, these explorations are still in
early stages and not nearly as developed as the flat space
case. Here, we analyze a novel method to obtain bounds on
Wilson coefficients for EFTs living in a curved background

where a subset of the Lorentz symmetries are broken.
While the explicit examples we show correspond to fully
covariant EFTs that undergo a spontaneous symmetry
breaking due to the time-dependent scalar background,
these techniques can be applied to EFTs defined directly on
expanding backgrounds where time and spatial derivatives
are treated separately.
To constrain the values of the Wilson coefficients, we

will follow the techniques developed in [21,22] for impos-
ing bounds on EFTs in flat space based on causality
requirements. The physical requirement that leads to these
bounds is the causal propagation of modes around non-
trivial backgrounds. For related studies on the effects of
causality, see [23–28]. Explorations of causality on expand-
ing spacetimes can be found in [29–31]. In Sec. II, we
review this setup for a spherically symmetric background.
Then, Sec. III focuses on homogeneous backgrounds and
the specific example of de Sitter. We apply these techniques
to a shift symmetric scalar in Sec. IV and to the de Sitter
Galileon in Sec. V. We compute bounds for operators up to
mass dimension 12 with 4 and 6 fields. We shortly address
the causal properties of potential terms in Sec. VI and
conclude by discussing the results and future applications
in Sec. VII. We also show explicit calculations at higher
orders in the expansion in Appendix A and for the de Sitter
Galileon in Appendix B. Last, we analyze physical require-
ments on the background external source in Appendix C.

II. CAUSALITY AROUND NONTRIVIAL
BACKGROUNDS

Consider a generic effective field theory with a propa-
gating mode ϕ satisfying the equation of motion,�
−∂2t þ∇2 þ

X
i

gi
Mpi

O
�
ϕ; ∂ϕ;…; ∂;…

��
ϕ ¼ gmJ;

ð2:1Þ
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where J is an external source, gi the Wilson coefficients, gm
the strength of the matter coupling, M the cutoff of the
theory, and pi ∈Z a power that gives each term the correct
mass dimensions. We want to understand if the propagation
around a nontrivial, localized background ϕ̄ ¼ ϕ̄ðxμÞ
sourced by J is causal. To do so, we consider a linearized
perturbation φ ¼ ϕ − ϕ̄ around this background such that

�
−∂2t þ∇2 þ

X
i

gi
Mpi

O
�
ϕ̄; ∂ϕ̄;…; ∂;…

��
φ ¼ 0: ð2:2Þ

This equation can be solved perturbatively using the WKB
approximation assuming that the scale at which the
perturbation varies is much smaller than that of the back-
ground. After interacting with the nontrivial background,
the perturbation will experience a phase shift with respect
to a free particle. This phase shift encodes the support of the
retarded Green’s function. To determine whether we have
causal propagation, we will require that any incoming wave
arrives at a given point before the outgoing wave leaves that
point. To do so, let us consider a perturbation given by a
wave packet traveling in a nontrivial background such that
the outgoing wave reads

φout ¼
Z

d3kAðkÞ 1
r
eikre−iωtei2δ: ð2:3Þ

The center of this wave packet is found by solving
∂kðkr − ωtþ 2δÞ ¼ 0. Thus, at a given fixed distance r
the interacting wave packet arrives at a time tþ 2∂ωδ, while
a free one arrives at t, that is, it experiences a time delay
given by

ΔT ¼ 2∂ωδ: ð2:4Þ

Alternatively, one can see this as a spatial shift of the center
of the interacting wave packet that reads

Δr ¼ −2∂kδ: ð2:5Þ

We will assume that our spacetime has a chronology
determined by a minimally coupled photon or massless
high-energy mode. This means that, if our setup gives rise
to a resolvable time/spatial advance, then we can construct
closed timelike curves as in [7]. A different point of view
has been assumed in [32–34] and allows for a large time
advance without the consequence of closed timelike curves.
The resolvability criteria is a consequence of the uncer-
tainty principle which tells us that a time delay jΔtj ∼ ω−1

cannot be accurately measured. Equivalently, a spatial shift
jΔrj ∼ k−1 is not resolvable. This notion is encoded in
Wigner’s causal inequality,

kΔr < 1: ð2:6Þ

For a recent review on this topic, see Sec. 2 of [35]. Here,
we propose to use the exact nonrelativistic version for our
relativistic setup. The right-hand side (rhs) of this inequal-
ity is expected to be an order one number, but no strict
derivation of this precise number, in analogy to the non-
relativistic case [36], exits. Hence, we will show how the
bounds change under a change of this number. This test of
causal propagation has been previously applied to leading
order gravitational operators in Friedmann–Lemaître–
Robertson–Walker (FLRW) backgrounds in [23] without
putting specific bounds on the Wilson coefficients. In this
paper, we obtain bounds on higher-order Wilson coeffi-
cients of EFTs in an expanding universe. Despite
the EFT suppression on the higher-order operators, their
contribution to the spatial shift can be enhanced by
considering specific backgrounds that make the contribu-
tion of one operator larger but keep the contributions of all
others of the expected EFT suppressed order.

III. CAUSALITY AROUND HOMOGENEOUS
BACKGROUNDS

We will now focus on the specific case of a homo-
geneous background ϕ̄ ¼ ϕ̄ðtÞ. The perturbed field can be
expanded as ϕ ¼ fkðtÞeik·x and the equation of motion,
after field redefinitions that remove terms with ḟk, is
given by

f̈kðtÞ þWkðtÞfkðtÞ ¼ 0; ð3:1Þ

WkðtÞ ¼
�
k2c2sðk; tÞ þ Veff

�
; ð3:2Þ

where k ¼ jkj, c2sðk; tÞ is the effective speed of sound of the
propagating mode and Veff its effective potential. We solve
this equation with boundary conditions1 limt→−∞ fkðtÞ ¼
1ffiffiffiffi
2k

p e−ikt using the WKB approximation. The leading order

solution is given by

f ¼ Ce
−i
R

t

tin

ffiffiffiffiffiffiffiffiffi
WkðtÞ

p
dt
; ð3:3Þ

where C is fixed by the boundary conditions. We can
compute the phase shift by looking at the solution far away
from the scatterer, that is, far away from the time-dependent
localized background where the perturbation behaves as
follows: limt→∞f ∝ ðe2iδle−iktÞ. For a background that
varies over time scales H−1, we have at leading order,

δ ≃ −
k
2H

Z
Tout

T in

�
csðk; TÞ − 1

�
dT; ð3:4Þ

where we introduced the dimensionless time T ¼ Ht. The
WKB expansion requires that the prefactor k=H is large,

1The precise limit requires an iϵ prescription to ensure
convergence, that is, t → −∞ð1þ iϵÞ.
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while the validity of the EFT gives a small integrand; these
two expansions compete to lead to a resolvable spatial shift.

A. Fixed de Sitter backgrounds

In this section, instead of working in flat spacetimes,
we consider curved spacetimes, more specifically, de Sitter
space. In de Sitter, the situation is similar to the one
described above with the difference that at a fixed time slice
a free scalar in de Sitter will experience a phase shift
with respect to the plane wave in the far past due to the
spacetime expansion. We will work in the Poincare patch of
de Sitter which is described by the metric,

ds2 ¼ 1

H2τ2
�
−dτ2 þ dx2

�
; ð3:5Þ

where τ < 0 is the conformal time. A scalar ϕðTÞ ¼
ΨðTÞfkðTÞeik·x in this spacetime evolves following the
equation of motion,

f̈kðTÞ þ
k2

H2
WkðTÞfkðTÞ ¼ 0; ð3:6Þ

where the dimensionless time is now defined as T ¼ Hτ,
and ΨðTÞ is chosen such that it removes the friction term.
We can obtain the phase shift using the WKB approxima-
tion at a constant time slice with conformal time τ0 <
−
ffiffiffi
2

p
=k. We will not look at the phase shift at the boundary

since at τ ≥ −
ffiffiffi
2

p
=k the WKB approximation breaks down.

Thus, we always work at times before the mode crosses the
Hubble horizon.
To understand the effect of higher derivative operators

and whether they lead to violations of causality, we take as
a point of reference the support of the retarded Green’s
function of high energy modes propagating in de Sitter. We
require that the retarded Green’s function for the EFT does
not have measurable support outside the region where the
retarded Green’s function for the high energy modes has
support. In other words, we want to compute the phase shift
experienced by the perturbative mode within the EFT with
respect to that of a free scalar mode. Thus, we define the
phase shift such that limM→∞ δ ¼ 0 as

δ ¼ −
k
2H

Z
T0

−∞

� ffiffiffiffiffiffiffi
Wk

p
−

ffiffiffiffiffiffiffiffiffi
WdS

k

q �
dT; ð3:7Þ

where the function W for the free scalar is

WdS
k ðTÞ ¼

�
1 −

2H2

k2T2

�
: ð3:8Þ

With this, we find that the dimensionless spatial shift is
given by

k
aðT0Þ

�
aðT0ÞΔr

� ¼ k
H
∂k

�
k
Z

T0

−∞

� ffiffiffiffiffiffiffi
Wk

p
−

ffiffiffiffiffiffiffiffiffi
WdS

k

q �
dT

�
;

ð3:9Þ

where we have considered physical distances and wave-
lengths that redshift with the scale factor. The generaliza-
tion to FRLW spacetimes is straightforward. If a particle
horizon exists, the causality requirement in Eq. (2.6) tells us
that the EFT modes should not travel outside of the particle
horizon determined by minimally coupled photons by a
resolvable amount.

IV. SHIFT SYMMETRIC SCALAR

We will now use the requirement of causal propagation
as encoded in Eq. (2.6) to find bounds on the Wilson
coefficients of an EFT by computing spatial shifts. First, we
will analyze the case of a covariant, shift symmetric scalar
EFT. We will only consider operators that give nontrivial
scattering in trivial backgrounds. Hence, we can ignore all
contributions from cubic operators since the corresponding
scattering amplitudes have to be a constant (from a
potential term) or vanish. We consider the shift symmetric
scalar whose Lagrangian is given by

L ¼ −
1

2
ðϕ;μÞ2 þ

g8
M4

�ðϕ;μÞ2
�
2 − gmatterϕJðtÞ

þ g10
M6

ðϕ;μÞ2
	ðϕ;μνÞ2 − ð∇2ϕÞ2
þ g12

M8

�ðϕ;μνÞ2
�
2;

ð4:1Þ

where the external source JðTÞ sources a time-dependent
background, localized around T ≃ −Oð1Þ, of the form,

ϕ̄ðTÞ ¼ Φ̄0

 Xn
i¼2

ai
Ti

!
E− 1

jTjp ; ð4:2Þ

with p∈Z and ai ¼ Oð1Þ. Here, ðϕ;μÞ2 ¼ ∇μϕ∇μϕ and
similarly for higher derivative orders. We have included the
ðϕ;μÞ2ð∇2ϕÞ2 term which gives trivial scattering in flat
space since its contribution to the spatial shift vanishes
and its presence will allow us to make contact with curved
spacetime generalizations of Galileons. As required for
a well-defined phase shift at T0 ≲ −

ffiffiffi
2

p
H=k, we have

ϕðTÞ → 0 as we approach the T0 and T ¼ −∞. We
consider a mode φ ¼ ϕ − ϕ̄ moving around this back-
ground and use the WKB approximation to compute the
phase shift it feels at the time slice T ¼ T0 with respect to
that of a free scalar in de Sitter. To do so, we construct a
second-order equation of motion for the mode perturba-
tively. That is, we remove higher derivative contributions
by using the solution to the equations of motion at lower
order. Overall, we have to make sure that our perturbative
approach, the WKB approximation, and the EFT expansion
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are under control. This can be measured by considering the
following small parameters2:

ϵ1 ≡HΦ̄0

M2
≪ 1; ϵ2 ≡ kH

M2
≪ 1; and ϵ3 ≡H

k
≪ 1;

ð4:3Þ

which encode the WKB approximation (ϵ3 ≪ 1) and the
validity of the EFT (∇ϕ=M∼ϵ1≪1;∇=M∼ ffiffiffiffiffiffiffiffiffi

ϵ2ϵ3
p ≪1).

The contributions of each Wilson coefficient are of order:
g8∶ Oðϵ21Þ, g10∶ Oðϵ21ϵ2ϵ3Þ, g12∶ Oðϵ21ϵ22Þ, so that the
perturbative equation of motion that we use is valid as
long as

g8 < ðϵ21Þ−1; g10 < ðϵ21ϵ2ϵ3Þ−1; g12 < Oðϵ21ϵ22Þ−1:
ð4:4Þ

Higher-order contributions in ϵ1 encode operators with
more fields and higher-order contributions in ϵ2, ϵ3 arise
from higher order WKB corrections as well as operators
with more derivatives.
We can now compute the phase shift experienced by this

perturbation with respect to a free particle in de Sitter which
is given in Eq. (3.7) with

Wk ¼ 1 −
2ϵ23
T2

− 4g10T2ϵ21ϵ2ϵ3ϕ̄
0�6Tϕ̄00 þ 7ϕ̄0�

− 8g8T2ϵ21ϕ̄
02 − 8g12T4ϵ21ϵ

2
2

�
Tϕ̄00 þ 2ϕ̄0�2

− 12g8ϵ21ϵ
2
3

�
T2ϕ̄002 − ϕ̄02 þ Tϕ̄0ðTϕ̄ð3Þ þ 2ϕ̄00Þ�:

ð4:5Þ

Here, we have considered all terms of order ϵ21ϵ
2
2=3 and

neglected higher-order contributions such as ϵ41 that encode
operator with more than four fields and also terms with an
additional ϵ2=3 suppression. This implies that our power
counting requires ϵ1 < ϵ2; ϵ3. We will refer to this as the
leading order contribution, that is, the terms of the
following order:

LO∶
�
ϵ21; ϵ

2
1ϵ

2
2; ϵ

2
1ϵ

2
3; ϵ

2
1ϵ2ϵ3

�
∼Oð10−2–10−1Þ;

and the next-to-leading order terms are

NLO∶
�
ϵ41; ϵ

4
1ϵ

2
2; ϵ

4
1ϵ

2
3; ϵ

2
1ϵ4ϵ3; ϵ

2
1ϵ

2
2ϵ

2
2; ϵ

2
1ϵ2ϵ

3
2; ϵ

2
1ϵ

3
2ϵ2
�

∼Oð10−3Þ:

The spatial shift including the next-to-leading order terms
can be found in Eq. (A5). While there are nonsign definite
g8 terms, these have to be suppressed to have well-defined
EFT and WKB expansions. Then, having g8 > 0 (g8 < 0)
gives a negative (positive) spatial shift. Meanwhile, the g10
term does not seem to be sign definite, but its contri-
bution to the spatial shift is a positive definite term plus a
total derivative. For the assumed one-dimensional, time-
dependent background, the contributions to the spatial shift
from all the gi considered here have definite sign, so we can
only bound the Wilson coefficients from one side.
We obtain bounds on a given coefficient by optimizing

the background solution to give a larger than naively
expected contribution to the spatial shift from its corre-
sponding operator. This is done by choosing T0, ai, and p
in Eq. (4.2) such that some derivatives grow while the other
ones stay of order one. To confirm that the EFT and WKB
expansions are under control, in addition to imposing the
bounds in Eq. (4.3), we explicitly compute the corrections
from the NLO operators and verify that they are suppressed
for our choice of background, that is, for the choice of T0,
ai and p. Details on this computation can be found in
Appendix A. We find that this optimization leads to the
choice n ¼ 4 and p ¼ 4 for our expansion in Eq. (4.2) so
that higher order derivatives do not grow uncontrollably at
small T and at the same time, ϕ̄ðTÞ → 0 and ϕ̄ðnÞðTÞ → 0 at
the time slice T ¼ T0.
As in the flat space case, the simplest bound is g8 > 0.

This can be inferred easily by requiring a power counting
where ϵ2; ϵ3 ≪ ϵ1 such that

LO∶
�
ϵ21
�
∼Oð10−1Þ;

NLO∶
�
ϵ21ϵ

2
2; ϵ

2
1ϵ

2
3; ϵ

2
1ϵ2ϵ3

�
∼Oð10−2–10−3Þ:

In this case, only the ϵ21 term is considered leading order
while all other terms are subleading. We have checked
explicitly that we can construct backgrounds leading to this
result.3 Thus, we can set g8 ¼ 1 which simply rescales the
precise relation between the EFT cutoff and the scale M.
The bounds that we obtain on g10 and g12 are shown in
Fig. 1. The bound on g12 is

g12 > 0; ð4:6Þ

but it becomes stronger as g10 is increased. The bound on
Eq. (4.6) holds for order one numbers on the rhs of
Eq. (2.6). We do not quote a similar bound on g10 since
it is of order 100 and hence, not significant within the
regime of validity of the EFT.2To be more precise, these parameters are time dependent.

The validity of the EFT requirement is in fact jϵ1Tϕ0ðTÞj ≪ 1, but
since ϕ is localized near T ¼ −1, requiring ϵ1 ≪ 1 is enough.
Meanwhile, the WKB approximation requires ϵ3 ≪ jTj <
jT0j ≪ 1, where this choice of T0 allows us to probe deeper
into the de Sitter bulk.

3The strict positivity of g8 is obtained since numerically the
specific lower bound is smaller than the numerical precision
considered for the calculation. Similarly, the contributions of
higher-order operators fall in this category.
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Besides the operators in Eq. (4.1), we can also include a
term with six fields at mass dimension 12 which is given by

LHO ¼ h12
M8

�ðϕ;μÞ2
�
3: ð4:7Þ

To probe this operator, we will include corrections to the
spatial shift of order ϵ4i , where i ¼ 1, 2, 3, and neglected
higher-order contributions with additional ϵi suppression.
The power counting is now

LO∶
�
ϵ21; ϵ

2
1ϵ

2
2; ϵ

2
1ϵ

2
3; ϵ

2
1ϵ2ϵ3; ϵ

4
1

�
∼Oð10−2–10−1Þ;

NLO∶
�
ϵ41; ϵ

4
1ϵ

2
2; ϵ

4
1ϵ

2
3; ϵ

2
1ϵ4ϵ3;

ϵ61; ϵ
2
1ϵ

2
2ϵ

2
2; ϵ

2
1ϵ2ϵ

3
2; ϵ

2
1ϵ

3
2ϵ2
�
∼Oð10−3Þ:

The new contributions to Wk at order ϵ41 are

W
ϵ4
1

k ¼ ϵ41
�
96g28 þ 24h12

�
T4ϕ̄0ðTÞ4: ð4:8Þ

Since the contribution from h12 to the spatial shift is
positive, we can only impose an upper bound. This upper
bound is not highly sensitive to changes in g10, g12, which
in this case, we can always suppress with the choice of a
specific background. The bound on h12 is

h12 < 1.64; ð4:9Þ

and becomes slightly stronger as g10, g12 → 0, to be more
specific, at g10 ¼ g12 ¼ 0, we find h12 < 1.54. If we vary
the order one number on the rhs of Eq. (2.6) we find that the
bound changes as follows: when the number is changed to
0.5, the bound is h12 < 1.60, and when it is changed to 2, it
is h12 < 1.72. Note that bounds on operators with six fields
cannot be obtained from the standard positivity bounds
using tree-level 2 − 2 scattering. An extension to higher-
point positivity bounds for PðXÞ theories has been con-
sidered in [38]. Interestingly, within this context, they find
that the operator h12 is required to be negative.
It is worth highlighting that, although not obvious in

Eq. (4.5), the g10 term is proportional to the Hubble
parameter, so that it vanishes in the flat space limit, as
analyzed in [21]. While this simple time-dependent back-
ground would give no bounds on g10 when considering
propagation around a Minkowski spacetime, it gives an
upper bound when propagating in a de Sitter background.
This is the case since in Minkowski the g10 operator realizes
the Galileon symmetry, but in curved spacetimes, this is no
longer true. In our setup, if instead of measuring the phase
shift at a time slice near (Hubble) horizon crossing, we
measured it at a time slice with large negative T, we will be
probing the Minkowski limit. In that case, we will obtain no
bounds on g10. Instead, one could be interested in probing
generalizations of Galileons to curved spacetime [39–42].
Here, we will briefly mention the bounds on one of them
and in the next section, we analyze the second case in more
detail.

A. Quartic covariant Galileon

The covariant Galileon [42] removes higher derivatives
in all field equations at the cost of losing the Galileon sym-
metry. Nevertheless, the nonminimal couplings to gravity
only lead to a weakly broken galileon symmetry [43]. This
type of theories correspond to a subset of the broader
Horndeski class [44]. On a fixed de Sitter background, the
covariant Galileon corresponds to taking g8 ¼ 3g10ϵ2ϵ3.
Thus, the leading term is now g10, and it gives a negative
contribution to the spatial shift,

kΔr ¼ −8g10ϵ21ϵ2
Z

T0

−∞
dT T2ϕ̄0ðTÞ2: ð4:10Þ

By choosing ϵ3 ≪ ϵ2; ϵ1, we can enhance the g10 contri-
bution and it is easy to find backgrounds ϕ̄ðTÞ leading to
the bound,

g10 > 0; ð4:11Þ

where g10 is now the Wilson coefficient in front of the
quartic covariant Galileon.

FIG. 1. Comparison of causality bounds on scalar shift-
symmetric theories from propagation in de Sitter (blue) against
positivity bounds obtained from scattering in flat space
(yellow) [37]. The colored regions are the allowed ones by the
corresponding criteria. The solid line corresponds to the criteria
in Eq. (2.6), the dashed-dotted line to the same criteria but with
0.5 on the rhs, and the dashed one with a value of 2.
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V. DE SITTER GALILEON

The de Sitter Galileon [39,41] realizes the symmetry
breaking pattern isoðD; 1Þ → soðD; 1Þ in the nonrelativ-
istic limit, that is, is the generalization of the flat space
Galileons to the de Sitter case. The Lagrangian changes by
a total derivative under the shift,

π ⟶ π −
1

Hτ

�
cþ vixi þ v0Hðxixi − τ2Þ�; ð5:1Þ

where vi is a constant three-vector, and v0 and c are
constants. For the kinetic term to be invariant (up to total
derivatives) under this shift, one has to consider a massive
scalar with mass m2

π ¼ −4H2. Notice that the coupling of
the background to an external source in Eq. (4.1) breaks
this symmetry, but as is standard, one can consider a
gravitational coupling which is Planck mass suppressed so
that this is only softly broken. More details on this type of
source can be found in Appendix C.
In this case, we cannot neglect the cubic terms since the

theory cannot be defined around flat space. The EFT power
counting for the de Sitter Galileon requires

ϵ̃ ¼ ϵ1
ffiffiffiffiffiffiffiffiffi
ϵ2ϵ3

p
≪ 1; ϵ3 ≪ 1; ð5:2Þ

where these expansion parameters have been defined in
Eq. (4.3), and the first equation encodes the EFTexpansion,
while the second one corresponds to the WKB expansion.
The nth de Sitter Galileon contributes at order ϵ̃n−2ϵm3 ,
where m ≥ 0. Following the same procedure as above, we
bound the Wilson coefficients of the cubic and quartic
Galileons by considering contributions to the spatial shift
up to order ϵ̃2 and neglecting WKB corrections of order ϵ̃ϵ23
and higher. This means that we take ϵ23 ≪ ϵ̃ ≪ 1. The order
of magnitude of the contributions at leading and next-to-
leading order are thus

LO∶
�
ϵ̃; ϵ̃2; ϵ̃ϵ3

�
∼Oð10−1 − 10−2Þ;

NLO∶
�
ϵ̃3; ϵ̃2ϵ3; ϵ̃ϵ23

�
∼Oð10−3Þ:

At leading order the terms in the Lagrangian contributing to
the spatial shift are

LdSGal ¼ LdSGal
2 þ LdSGal

3 þ LdSGal
4 ; ð5:3Þ

LdSGal
2 ¼ −

1

2

�ðπ;μÞ2 − 4H2π
�
; ð5:4Þ

LdSGal
3 ¼ f8

M3

�ðπ;μÞ2∇2π þ 6H2πðπ;μÞ2 − 8H4π3
�
; ð5:5Þ

LdSGal
4 ¼ g10

M6

�ðπ;μÞ2	ðπ;μνÞ2 − ð∇2πÞ2
 − 1

2
H2ðπ;μÞ4

−6H2πðπ;μÞ2∇2π − 18H4π2ðπ;μÞ2 þ 12H6π4
�
:

ð5:6Þ

The explicit expressions for the equations of motion and
spatial shift can be found in Appendix B.
The f8 term will have no contribution at linear order

since at that order it gives a total derivative in the integrand
of the spatial shift and the other linear contribution is
suppressed by the WKB expansion parameter. Meanwhile,
the linear in g10 the terms with H4 and H6 factors do not
contribute since they contribute to the effective potential
and thus, are inherently suppressed. The usual quartic
Galileon and theH2 term contribute to the spatial shift with
a positive-definite contribution and a total derivative so that

kΔrg10 ¼ 6g10ϵ21ϵ2

Z
T0

−∞
dT T2ϕ̄0ðTÞ2; ð5:7Þ

which leads to an upper bound. Optimizing the background
to find the strongest bounds, we get

g10 < 7.81f28; ð5:8Þ

which can be observed in Fig. 2. Note that at f8 ¼ 0, we
have the opposite sign to that of the covariant Galileon.

VI. A NOTE ON POTENTIALS

Scalar fields with potentials are relevant for various
cosmological scenarios from early to late universe.
One could ask whether potential terms can lead to acausal
propagation since they can modify the two-point corre-
lator around nontrivial backgrounds. Let us consider a

FIG. 2. Causality bounds on the de Sitter Galileon at cubic (f8)
and quartic (g10) order. The blue region is allowed by the
requirement in Eq. (2.6). The bound does not change if we
change the Oð1Þ number on the right-hand side of Eq. (2.6).
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canonically normalized scalar field with a potential VðϕÞ
living in a fixed FLRW background. The perturbations
around a time-dependent scalar background ϕ̄ðtÞ generated
by a localized external source will acquire a time-dependent
effective mass meffðϕ̄ðtÞÞ. The phase shift is thus given by

δ ¼ −
k
2H

Z
T0

−∞

�
m2

effðϕ̄ðTÞÞ
2k2

�
dT; ð6:1Þ

where H ¼ HðT0Þ is the Hubble parameter at T0. We can
estimate the spatial shift to be of order,

kΔr ≃ −
m2

effðΦ0Þ
k2

1

ϵ3
; ð6:2Þ

which automatically satisfies the causality requirement as
long as we have a positive effective mass squared. In the
case m2

eff < 0, it will naively seem that we can get acausal
propagation, but we should be more careful. The scale m2

eff
is set by the background equation of motion of the scalar,
which has an external localized source. Thus, we have two
options. First, if the derivatives dominate, we must have
jm2

eff j ≲H2, which implies an unresolvable spatial advance
jkΔrj≲ ϵ3 < 1. If instead, the potential dominates, then
jm2

eff j > H2, and the scale of variation of the background
is not set by H, but rather by jm2

eff j1=2. The validity of the
WKB approximation implies again an unresolvable spatial
advance: jkΔrj≲ jm2

eff j=k < 1. Hence, the potential terms
can not lead to acausal propagation. Note that outside of the
WKB regime of validity, it could be possible that potential
terms lead to a resolvable spatial advance, but this is not a
violation of causality, but rather an effect from bouncing off
the potential barrier similar to that analyzed in nonrelativ-
istic systems [36,45]; for a review on this topic, see [35] and
a field theory example in Appendix A of [21].

VII. DISCUSSION

We have shown that the requirement of causal propa-
gation imposes bounds on the Wilson coefficients of
higher-order operators for EFTs in de Sitter. Our causality
criterion consists of requiring that the EFT modes do not
propagate further than a minimally coupled photon mode
by a resolvable amount. To bound higher order terms which
naively are always subleading, we constructed nontrivial
scalar field backgrounds that enhance a specific operator
while keeping the higher order terms suppressed.
Our point of view is that a theory should have causal

propagation around any localized background that can be
continuously deformed to the trivial one (ϕ ¼ 0). We have
been agnostic about the precise origin of the external source
and have only required it to be localized. If the scalar field
was describing a component of a complex scalar coupled to

a Uð1Þ gauge field then any positive or negative source
would be physical since it would simply encode the sign of
the charge. On the other hand, if the field had gravitational
couplings, one should be more careful and make sure that
the type of matter sourcing the profile is not pathological.
In Appendix C, we analyzed this case and showed that our
profile can be sourced by a stress-energy tensor satisfying
the weak energy condition.
We also want to highlight that the bounds obtained here

are certainly not optimal. Likely, a different profile and a
better optimization procedure for maximizing the spatial
shift can lead to stronger bounds. Similarly, considering
backgrounds that break additional symmetries can lead to
stronger bounds. Here, we have only considered back-
grounds consistent with the FLRW symmetries.
In the analysis above, we have kept the de Sitter back-

ground fixed. It would be interesting to understand how
dynamical gravity, that is, both the interaction with propa-
gating graviton modes and the backreaction on the back-
ground, can affect any of these calculations. It is worth
noting that the expected corrections will be Planck mass
suppressed. We have worked with fully covariant theories
with symmetry breaking due to their time-dependent back-
ground. In a similar direction, one could be interested in
exploring the bounds between coefficients of other excep-
tional field theories in de Sitter space such as those
in [46,47]. Another interesting direction is to apply this
technique to bound higher dimensional gravitational oper-
ators in the spirit of the leading order analysis in [23]. More
generally, we would like to impose bounds on an EFT
defined around FRLW backgrounds such as the EFT of
inflation. This would be the subject of future work.
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APPENDIX A: HIGHER-ORDER CORRECTION
TO SHIFT-SYMMETRIC SCALAR

In this appendix, we show the higher-order contributions
to the phase shift and hence, the spatial shift that we analyze
to make sure that both the WKB and EFT expansions are
under control. At next-to-leading order (NLO), that is,
including the contributions at order ϵ41 and ϵ21ϵ

4
2=3, we have

new operators contributing to the spatial shift, their
Lagrangian reads
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L ⊂
h12
M8

ð∇ϕÞ6 þ h14
M10

ð∇ϕÞ4ðϕ;μν Þ2 þ
g14
M10

ðϕ;μν Þ2ðϕ;αβγ Þ2: ðA1Þ

Their contribution to the equations of motion is encoded in the function W appearing in Eq. (3.6) which, including these
new operators and all the contributions at NLO, now reads

W ¼ 1 −
2ϵ23
T2

þ g8
�
ϵ21
�
−8T2ϕ̄02 − 12ϵ23

�
T2ϕ̄002 − ϕ̄02 þ Tϕ̄0ðTϕ̄ð3Þ þ 2ϕ̄00Þ��þ 96g10T4ϵ41ϵ2ϵ3ϕ̄

03ð3Tϕ̄00 þ 5ϕ̄0Þ
þ 32g12T6ϵ41ϵ

2
2ϕ̄

02ðTϕ̄00 þ 2ϕ̄0Þð7Tϕ̄00 þ 10ϕ̄0Þ − 528h12T6ϵ61ϕ̄
06�þ g28ϵ

4
1

�
96T4ϕ̄04

þ 144T3ϵ23ϕ̄
02�2Tϕ̄002 þ ϕ̄0ðTϕ̄ð3Þ þ 4ϕ̄00Þ��þ h12ϵ41

�
24T4ϕ̄04 þ 60T2ϵ23ϕ̄

02�3T2ϕ̄002 þ ϕ̄02 þ Tϕ̄0ðTϕ̄ð3Þ þ 6ϕ̄00Þ��
þ g10ϵ21ϵ2ϵ3

�
−4T2ϕ̄0ð6Tϕ̄00 þ 7ϕ̄0Þ − 18ϵ23

�
T2ϕ̄002 − ϕ̄02 þ Tϕ̄0ðTϕ̄ð3Þ þ 2ϕ̄00Þ��þ g12ϵ21ϵ

2
2

�
−8T4ðTϕ̄00 þ 2ϕ̄0Þ2

þ 8T3ϵ23
�
ϕ̄0�T�Tϕ̄ð4Þ þ 18ϕ̄ð3Þ�þ 48ϕ̄00�þ TðT2ðϕ̄ð3ÞÞ2 þ T

�
Tϕ̄ð4Þ þ 19ϕ̄ð3Þ�ϕ̄00 þ 40ðϕ̄00Þ2��� − 1152g38T

6ϵ61ðϕ̄0Þ6
− 4g14T4ϵ21ϵ

3
2ϵ3
�
T2
�
T2ðϕ̄ð3ÞÞ2 þ T

�
Tϕ̄ð4Þ þ 6ϕ̄ð3Þ�ϕ̄00 − 28ðϕ̄00Þ2�þ 4Tϕ̄0�T�Tϕ̄ð4Þ þ 6ϕ̄ð3Þ� − 13ϕ̄00� − 52ðϕ̄0Þ2�

þ 8h14T4ϵ41ϵ2ϵ3ðϕ̄0Þ2�5T2ðϕ̄00Þ2 þ 2Tϕ̄0�Tϕ̄ð3Þ þ 5ϕ̄00� − 7ðϕ̄0Þ2�: ðA2Þ

Additionally, we have contributions arising from higher-order WKB corrections to the phase shift which are given by

δð0ÞWKB ¼
ffiffiffiffiffiffiffi
Ŵl

q
;

δð2ÞWKB ¼ −
1

ðωr0Þ2
1

8
ffiffiffiffiffiffiffi
Ŵl

p
 
Ŵ00

l

Ŵl
−
5

4

�
Ŵ0

l

Ŵl

�
2
!
;

δð4ÞWKB ¼ 1

ðωr0Þ4
1

32Ŵ3=2
l

"
Ŵð4Þ

l

Ŵl
− 7

Ŵ0
lŴ

ð3Þ
l

Ŵ2
l

−
19

4

�
Ŵ00

l

Ŵl

�
2

þ 221

8

Ŵ00
lŴ

02
l

Ŵ3
l

−
1105

64

�
Ŵ0

l

Ŵl

�
4
#
; ðA3Þ

where δð2ÞWKB will have contributions from g8, g10, and g12, while δ
ð4Þ
WKB only has contributions from g8 at NLO. The phase

shift is now defined as

δ ¼ k
2H

Z
T0

−∞

 X
j≥0

δðjÞWKB −
X
j≥0

δðjÞWKB−dS

!
dT; ðA4Þ

from this, we can compute the spatial shift using Eq. (2.5). Explicitly, we have

kΔr ¼ 1

ϵ3

Z
T0

−∞
dT


g8ϵ21

�
−4T2ðϕ̄0Þ2 þ 4ϵ23

�
T2ðϕ̄00Þ2 þ Tϕ̄0�Tϕ̄ð3Þ þ ϕ̄00� − ðϕ̄0Þ2��

− 2g10T2ϵ21ϵ2ϵ3ϕ̄
0�7ϕ̄0 þ 6Tϕ̄00� − 12g12T4ϵ21ϵ

2
2

�
2ϕ̄0 þ Tϕ̄00�2 þ 4T4ϵ41

�
10g28 þ 3h12

�ðϕ̄0Þ4
− 6g14T4ϵ21ϵ

3
2ϵ3
�
T2ðT2ðϕ̄ð3Þ�2 − 28ðϕ̄00Þ2 þ T

�
6ϕ̄ð3Þ þ Tϕ̄ð4Þ�ϕ̄00�þ 4Tϕ̄0�T�6ϕ̄ð3Þ þ Tϕ̄ð4Þ� − 13ϕ̄00� − 52ϕ̄02�

− g10ϵ21ϵ2ϵ
3
3

�
Tϕ̄0�3T2ϕ̄ð4Þ þ 16ϕ̄00 þ 16Tϕ̄ð3Þ�þ T2ϕ̄00�16ϕ̄00 þ 9Tϕ̄ð3Þ�þ 2ϕ̄02�

− 8g8T6ϵ61
�
52g28 þ 27h2

�
ϕ̄06 þ 96g8g12T6ϵ41ϵ

2
2ϕ̄

02�3T2ϕ̄002 þ 10Tϕ̄0ϕ̄00 þ 8ϕ̄02�þ 2g12T2ϵ21ϵ
2
2ϵ

2
3

�
T2
�
3T2
�
ϕ̄ð3Þ�2

þ 117ϕ̄002 þ T
�
56ϕ̄ð3Þ þ 3Tϕ̄ð4Þ�ϕ̄00�þ 4Tϕ̄0�40ϕ̄00 þ T

�
15ϕ̄ð3Þ þ Tϕ̄ð4Þ��þ 16ϕ̄02�

−
3g8ϵ21ϵ

4
3

�
ϕ̄0�T3

�
5ϕ̄ð4Þ þ Tϕ̄ð5Þ� − 8Tϕ̄00�þ T3

��
15ϕ̄ð3Þ þ 4Tϕ̄ð4Þ�ϕ̄00 þ 3Tðϕ̄ð3Þ�2�þ 4ϕ̄02�

T2

− 2T2ϵ41ϵ
2
3ϕ̄

02�T2
�
20g28 þ 27h2

�
ϕ̄002 þ Tϕ̄0�2�8g28 þ 21h2

�
ϕ̄00 þ 3T

�
4g28 þ 3h2

�
ϕ̄ð3Þ�þ �3h2 − 16g28

�
ϕ̄02�

þ ϵ41ϵ2ϵ3
�
8g8g10T4ϕ̄03�23ϕ̄0 þ 12Tϕ̄00�þ 4h14T4ϕ̄02�5T2ϕ̄002 þ 2Tϕ̄0�5ϕ̄00 þ Tϕ̄ð3Þ� − 7ϕ̄02���: ðA5Þ

Note that the leading order g10 term can be written as −2∂Tð3T3ϕ02Þ þ 4T2ϕ02, where the total derivative term does not
contribute leaving a positive definite contribution.
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APPENDIX B: DE SITTER GALILEON
EQUATION OF MOTION AND SPATIAL SHIFT

The equation of motion for the perturbation around a
time-dependent background ϕ̄ðtÞ is given by Eq. (3.6) with

Wk ¼ 1 −
6ϵ23
T2

þ f8

�
6ϵ23ϵ̃

�
−
16ϕ̄

T2
þ Tϕ̄ð3Þ −

6ϕ̄0

T
− 2ϕ̄00

�

þ 4Tϵ̃
�
Tϕ̄00 þ 2ϕ̄0��þ 48f28Tϵ̃

2
�
Tϕ̄0 þ 2ϕ̄

�
×
�
Tϕ̄00 þ 2ϕ̄0� − 24g10Tϵ̃2

�
Tϕ̄0 þ ϕ̄

��
Tϕ̄00 þ 2ϕ̄0�:

ðB1Þ

The spatial shift thus reads

kΔr¼ 1

ϵ3

Z
T0

−∞
dT


f8

�
2Tϵ̃

�
Tϕ̄00ðTÞþ 2ϕ̄0ðTÞ�

þ ϵ23ϵ̃

�
1

2
T2ϕ̄ð4ÞðTÞþ 48ϕ̄ðTÞ

T2
þ 3ϕ̄00ðTÞþ 6ϕ̄0ðTÞ

T

��
− 12g10Tϵ̃2

�
Tϕ̄0ðTÞþ ϕ̄ðTÞ��Tϕ̄00ðTÞþ 2ϕ̄0ðTÞ�

− 2f28Tϵ̃
2
�
Tϕ̄00ðTÞþ 2ϕ̄0ðTÞ��T�Tϕ̄00ðTÞ− 10ϕ̄0ðTÞ�

− 24ϕ̄ðTÞ��: ðB2Þ

Note that the leading order f8 term can be written as
∂Tð2T2ϕ̄0Þ, that is, it is a total derivative that will not
contribute to the spatial shift.

APPENDIX C: PHYSICAL REQUIREMENTS
ON THE SOURCE

We have considered generic external sources for the
background profiles of the fields. One could ask whether
this source is unphysical and hence, generates acausal
propagation; i.e., the problem lies in the source and not in
the EFT operator. Here, we show that the profiles consid-
ered in Eq. (4.2) can arise from a coupling to a stress-
energy tensor satisfying the null energy condition. We
assume that the coupling to source J is given by

gmϕ̄J ¼ gmϕ̄
Tμ
μ

MPl
; ðC1Þ

where Tμ
μ is the trace of the stress-energy tensor of a perfect

fluid, i.e., Tμν ¼ diagðρ; P; P; PÞ, where ρ ¼ ρðTÞ is the
energy density and P ¼ PðTÞ is the pressure. Conservation
of the stress-energy tensor requires P ¼ −ρ − ρ0=ð3HÞ,
where H≡ a0=a. We will require that this stress-energy
tensor satisfies the null energy condition, that is,

ρþ P ≥ 0: ðC2Þ

We want to see what constraints do these conditions imply
on our source Tμ

μ. To do so we solve for ρ in terms of Tμ
μ by

realizing that for a conserved stress-energy tensor,

Tμ
μ ¼ ð3P − ρÞ ¼ −4ρ −

ρ0

H
: ðC3Þ

This allows us to rewrite weak energy conditions as

4c1m4 þ a4ðτÞTμ
μðτÞ þ 4

Z
τ

1

dt
�
aðtÞ4HðtÞTμ

μðtÞ
�
≥ 0;

ðC4Þ

where c1 is an integration constant, aðτÞ > 0, and m is an
energy scale that is fixed by choosing boundary conditions
for the energy density. Given a choice of background
profile, we have a choice of source and hence, a given
Tμ
μðtÞ. We can see that as long as the constant c1 is chosen

such that

c1 > −
Z

τ

1

dt

�
aðtÞ4HðtÞT

μ
μðtÞ
m4

�
− a4ðτÞT

μ
μðτÞ
4m4

; ðC5Þ

which is always possible since the rhs is a bounded function
due to the choice of a localized source, we can satisfy the
null energy condition. This shows that the violations of
causality observed in the analysis in the bulk are not caused
by an unphysical source.
In a similar manner, we can ask whether the stress energy

tensor of the background scalar satisfies the null energy
condition. This is in fact the case and it is easy to see
since the stress energy tensor is dominated by the kinetic
term instead of the subleading EFT corrections; thus, it is
approximated by the free scalar result where ρ ∼ P∼
ϕ02=ð2a2Þ > 0. The EFT corrections are suppressed and
do not change the sign of the energy density and pressure.
Last, we also want to verify that the backreaction of

this stress-energy tensor on the metric is negligible.
From the equations of motion of the background, we
can estimate that Tμν ∼ Φ̄0H2MPlfμνðTÞ with fμνðTÞ a
diagonal matrix whose components are polynomials in T
with order 1 magnitude. Thus, the backreaction on the
metric is of order δgμν ∼ ðgmΦ̄0H2MPlfμνðTÞÞ=ðMPlHÞ2 ¼
gmΦ̄0=MPlfμνðTÞ. Since we can always choose Φ̄0 ≪ MPl,
we can always neglect the backreaction. Similarly, the
backreaction from the background scalar on the spacetime
metric can be neglected since Tμν

ϕ̄
∼ Φ̄2

0H
2fμνðTÞ and

thus, δg ∼ Φ̄2
0=M

2
Pl ≪ 1.
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