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We present a new model of N ¼ 8 mechanics with semidynamic supermultiplets. The model is
constructed as an interaction ofN ¼ 4 supermultiplets which carry an implicitN ¼ 4 supersymmetry. The
initial field content consists of three dynamical ð1; 4; 3Þ multiplets: one bosonic and two fermionic. To
ensure implicit N ¼ 4 supersymmetry, we introduce the superfields describing three semidynamical
ð4; 4; 0Þ multiplets: one fermionic and two bosonic. To avoid the second-order Lagrangian for fermions
from the fermionic ð1; 4; 3Þ multiplets, we convert their velocities into new auxiliary fields. After
conversion, these multiplets turn into semidynamical mirror ð4; 4; 0Þmultiplets without noncanonical terms
in theN ¼ 8 Lagrangian at the component level. The finalN ¼ 8multiplet content is ð1; 8; 7Þ ⊕ ð8; 8; 0Þ.
As a first step to the ultimateN ¼ 4 superfield formulation of the model, we recall a natural description of
the standard and mirror ð4; 4; 0Þ multiplets in the framework of N ¼ 4; d ¼ 1 biharmonic superspace.
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I. INTRODUCTION

Models of supersymmetric (quantum) mechanics play an
important role as a training base for the study of systemswith
supersymmetry in higher space-time dimensions, involving
the proper supersymmetrizations of gauge, gravitation, and
cosmological theories. They are also closely related to
diverse superextensions of d ¼ 1 integrable systems.
The most advanced and suggestive method to deal with

supersymmetric theories is the superfield approach. While
there exists a huge corpus of references on the d ¼ 1

superfield description ofN ≤ 4 supersymmetric mechanics
models and the related superextended d ¼ 1 integrable
systems (see, e.g., [1–3]), much less is known about a
similar approach to N > 4 models, in particular, to N ¼ 8

ones. Until now,N ¼ 8models (see, e.g., [4–7]) have been
constructed in both N ¼ 4 and N ¼ 8 superspace
approaches.1 The superfields used in these models encom-
pass as a ruleN ¼ 8 supermultiplets of the same type. The
latter are dynamical, that is, they possess Lagrangians that
are of the second order in the time derivatives of the

component bosonic fields. The N ¼ 8 models involving
interactions of different types ofN ¼ 4 multiplets, with an
additional hidden N ¼ 4 supersymmetry that mixes up
these multiplets and extends the manifest N ¼ 4 super-
symmetry to N ¼ 8, were only considered, to the best of
our knowledge, in [15,16]. Yet, all of the involved N ¼ 4
supermultiplets were of the dynamical type.
On the other hand, a number of models with N ¼ 4

supersymmetry also include, in addition to dynamical
supermultiplets, semidynamical ones. The bosonic fields
of the latter are described by the d ¼ 1 Wess-Zumino (or
Chern-Simons)-type Lagrangians of the first order in the
time derivatives. The basic goal of the present work is to
construct the first example of N ¼ 8 supersymmetric
models of this sort, with some fields being semidynamical.
In [17], an N ¼ 4 generalization of the n-particle

rational Calogero system was proposed (see Ref. [18]
for the review). This N ¼ 4 Calogero model employs
the dynamical n × n matrix ð1; 4; 3Þ supermultiplet and n
semidynamical ð4; 4; 0Þ supermultiplets. The one-particle
(n ¼ 1) limit of the model of Ref. [17] was considered in
[19]. The more general form of the kinetic term of the
matrix ð1; 4; 3Þ supermultiplet in the model of [17] gives
rise to the N ¼ 4 supersymmetric hyperbolic Calogero-
Sutherland model [20]. Superconformal mechanics with
Dð2; 1; αÞ supersymmetry was constructed in [21] as a
generalization of the one-particle system of [19], such that
the Lagrangian of the ð1; 4; 3Þ superfields is a power
function of the latter.
In this paper, we construct an N ¼ 8 generalization

of the N ¼ 4 system suggested in [19]. We basically use
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1For a description of N ¼ 8 supersymmetric systems at the
component level, see, e.g., [8–14].
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N ¼ 4; d ¼ 1 harmonic superspace [22], which is a reduc-
tion of N ¼ 2; d ¼ 4 harmonic superspace [23,24].
Modulo gauge transformations of the involved super-

fields, the model of Ref. [19] is governed by the cubic
action (schematically)

Z
μHv2 þ

Z
μð−2ÞA VZþAZþBcðABÞ; ð1:1Þ

where cðABÞ are some constants. The superfield vðt; θ; θ̄Þ
encapsulates the ð1; 4; 3Þ supermultiplet, VðtA; θþ; θ̄þ; uÞ
is its analytic harmonic gauge prepotential, and
ZþAðtA; θþ; θ̄þ; uÞ, A ¼ 1, 2 amounts to the ð4; 4; 0Þ
supermultiplet, which is semidynamical in the model with
the action (1.1). In this paper, we just find the N ¼ 8
generalization of the model (1.1). We build this model by
making use of N ¼ 4 superfields carrying an additional
implicit N ¼ 4 supersymmetry. Similar to [15,16], we
extend the original N ¼ 4 superfield content by adding an
odd superfield ΨþAðtA; θþ; θ̄þ; uÞ as a superpartner of
the superfield vðt; θ; θ̄Þ with respect to the implicit
N ¼ 4 supersymmetry. Analogously, the superfield
ZþAðtA; θþ; θ̄þ; uÞ is extended to a widerN ¼ 4 superfield
set in which it occupies the same place as the superfield
ΨþAðtA; θþ; θ̄þ; uÞ in the first set. To ensure N ¼ 8

supersymmetry, we add one more superfield wðt; θ; θ̄Þ
which also has the field content ð1; 4; 3Þ but it is
Grassmann odd. In order to construct the N ¼ 8 invariant
action, it also turns out to be necessary to make use of at
least two superfields ZþA

a ðtA; θþ; θ̄þ; uÞ, a ¼ 1, 2 and two
superfields waðt; θ; θ̄Þ, a ¼ 1, 2. Requiring N ¼ 8 sym-
metry for the total extended N ¼ 4 superfield set, we
finally derive theN ¼ 8 invariant action as a generalization
of (1.1).
The plan of the paper is as follows. In Sec. II we present

the N ¼ 4 harmonic superfield description of the multip-
lets ð1; 4; 3Þ and ð0; 4; 4Þ. Each type of supermultiplets
involves both even and odd superfields and we describe the
implicitN ¼ 4 supersymmetry transformations realized on
these superfields. In Sec. III we present the N ¼ 4 super-
field formulation of the N ¼ 8 invariant coupling of these
supermultiplets. Section IV shows that the superfield model
constructed leads to the component Lagrangian in which
some fermionic fields enter only through their first-order
time derivative and no such fields without derivatives are
present. After applying the oxidation procedure of replac-
ing this time derivative by a new auxiliary fermionic field
[4,25], the Lagrangian yields the N ¼ 8 invariant model.
The resulting N ¼ 8 invariant model involves on the mass
shell one dynamic bosonic field and eight real fermionic
fields, as well as three sets of semidynamical bosonic
SU(2)-doublet fields. Some concluding remarks are col-
lected in Sec. V. In the Appendix we demonstrate that the
result of the oxidation procedure mentioned above can be

reproduced by using off-shell superfields involving, as
elementary components, the auxiliary fermionic fields
which imitate the time derivative of the original fermionic
fields. This is in agreement with the general proposition
of Ref. [26].

II.N = 4 SUPERFIELDS USED IN CONSTRUCTING
THE N = 8 MODEL

We build the N ¼ 8 model in terms of the N ¼ 4
superfields defined in both the usualN ¼ 4 superspace and
the N ¼ 4 harmonic superspace [22–24]. In this section,
we describe the main features of the objects used through-
out the paper.

A. Brief information about N = 4, d = 1
harmonic superspace

The powerful approach to constructing N ¼ 4, d ¼ 1
supersymmetric models and finding interrelations between
them is the N ¼ 4, d ¼ 1 harmonic formalism, which was
proposed in [22]. Compared with the description in the
usual superspace with the coordinates z ¼ ðt; θi; θ̄iÞ,
ðθiÞ� ¼ θ̄i, and covariant derivatives

Di ¼ ∂

∂θi
− iθ̄i∂t; D̄i ¼

∂

∂θ̄i
− iθi∂t;

ðDiÞ� ¼ −D̄i; fDi; D̄kg ¼ −2iδik∂t; ð2:1Þ

the harmonic description involves additional commuting
harmonic variables,

u�i ; ðuþi Þ� ¼ u−i; uþiu−i ¼ 1: ð2:2Þ

In the harmonic analytic basis,

ðzA;u�i Þ¼ ðtA;θ�; θ̄�;u�i Þ; tA ¼ tþ iðθþθ̄−þθ−θ̄þÞ;
θ� ¼ θiu�i ; θ̄� ¼ θ̄iu�i ; ð2:3Þ

half of theN ¼ 4 covariant spinor derivativesD� ¼ u�i D
i,

D̄� ¼ u�i D̄
i become short:

Dþ ¼ ∂

∂θ−
; D̄þ ¼ −

∂

∂θ̄−
: ð2:4Þ

This implies the existence of the harmonic analytic super-
fields defined on the analytic subspace of the full harmonic
superspace:

ðζ; uÞ ¼ ðtA; θþ; θ̄þ; u�i Þ; uþiu−i ¼ 1: ð2:5Þ

It is closed under N ¼ 4 supersymmetry and some

generalized conjugation, gðtAÞ¼ tA; gðθþÞ¼ θ̄þ; gðθ̄þÞ¼−θþ;fu�i¼u�i ;
fu�i ¼−u�i. The integration measure in the

SERGEY FEDORUK and EVGENY IVANOV PHYS. REV. D 109, 085007 (2024)

085007-2



harmonic analytic subspace is defined as dudζð−2Þ ¼
dudtAdθþdθþ. An important tool of the formalism is
the harmonic derivatives:

D�� ¼ ∂
�� þ 2iθ�θ̄�∂tA þ θ�

∂

∂θ∓ þ θ̄�
∂

∂θ̄∓
;

∂
�� ¼ u�i

∂

∂u∓i
: ð2:6Þ

The harmonic derivative Dþþ is distinguished in that it
commutes with the spinor derivatives (2.4) and so preserves
the analyticity.
The integration measures are defined as

μH ¼ dudtd4θ ¼ μð−2ÞA DþD̄þ; μð−2ÞA ¼ dudζð−2Þ;

dζð−2Þ ¼ dtAD−D̄−: ð2:7Þ

Here we presented only the definitions of the basic
notions to be used below. The full exposition of the
harmonic superspace formalism of d ¼ 1 models can be
found in Ref. [22].

B. N = 4 superfields

When building the model, we use the following N ¼ 4
superfields:

Bosonic superfield vðzÞ Fermionic superfield ΨiAðζ; uÞ
Fermionic superfields waðzÞ Bosonic superfields ZiA

a ðζ; uÞ

Below we describe these superfields in some detail.

1. Multiplet ð1;4;3Þ
The multiplet ð1; 4; 3Þ is described by the N ¼ 4 even

superfield vðzÞ, ṽ ¼ v, obeying the constraints [27]

DiDiv ¼ D̄iD̄iv ¼ 0; ½Di; D̄i�v ¼ 0: ð2:8Þ

The solution of the constraints (2.8) is

vðt; θi; θ̄iÞ ¼ vþ θiφ
i þ θ̄iφ̄

i þ iθiθ̄kAik −
i
2
ðθÞ2θ̄iφ̇i

−
i
2
ðθ̄Þ2θi ˙̄φi þ 1

4
ðθÞ2ðθ̄Þ2v̈; ð2:9Þ

where ðθÞ2 ¼ θkθ
k, ðθ̄Þ2 ¼ θ̄kθ̄k. The component fields in

the expansion (2.9) satisfy the reality conditions v† ¼ v,
ðφiÞ† ¼ φ̄i, ðAikÞ† ¼ Aik ¼ AðikÞ. In the harmonic super-
space, the constraints (2.8) are rewritten as

Dþþv ¼ 0; DþD−v ¼ D̄þD̄−v ¼ 0;

ðDþD̄− þ D̄þD−Þv ¼ 0: ð2:10Þ
The N ¼ 4 supersymmetry transformations of the compo-
nent fields in (2.9) are given by

δεv ¼ −εiφi þ ε̄iφ̄i;

δεφ
i ¼ iε̄iv̇ − iε̄kAki; δεφ̄i ¼ −iεiv̇ − iεkAki;

δεAik ¼ −2ðεðiφ̇kÞ þ ε̄ði ˙̄φkÞÞ; ð2:11Þ

where εi, ε̄i ¼ ðεiÞ� are odd parameters of the explicit
N ¼ 4 supersymmetry.
As was shown in [28], the ð1; 4; 3Þ multiplet can also be

described through the real analytic gauge superfield pre-
potential Vðζ; uÞ, which is defined up to the Abelian gauge
transformations,

V ⇒ V 0 ¼ V þDþþΛ−−; Λ−− ¼ Λ−−ðζ; uÞ: ð2:12Þ

They allow passing to the Wess-Zumino gauge:

Vðζ; uÞ ¼ vðtAÞ − 2θþφiðtAÞu−i − 2θ̄þφ̄iðtAÞu−i
þ 3iθþθ̄þAðikÞðtAÞu−i u−k : ð2:13Þ

The superfield vðzÞ is constructed from the superfield
Vðζ; uÞ through the transform

vðt; θi; θ̄kÞ ¼
Z

duVðtþ 2iθiθ̄kuþðiu
−
kÞ; θ

iuþi ; θ̄
kuþk ; u

�
l Þ:

ð2:14Þ

The constraints (2.8) now prove to be a consequence of the
harmonic analyticity constraints DþV ¼ D̄þV ¼ 0. The
inverse expression of V through the superfield v is given by
the relation [15]

V ¼ vþDþþV−−; ð2:15Þ

where V−− is some general harmonic superfield with the
transformation law δV−− ¼ Λ−− with respect to the gauge
transformations (2.12). In what follows, we make use of the
identity [15]

ðDþD̄− − D̄þD−Þv ¼ −2DþD̄þV−−: ð2:16Þ

In addition to the superfield vðzÞ, we also incorporate the
N ¼ 4 odd superfields waðzÞ, a ¼ 1, 2, w̃a ¼ −wa, obey-
ing the constraints (2.8)

DiDiwa ¼ D̄iD̄iwa ¼ 0; ½Di; D̄i�wa ¼ 0: ð2:17Þ

Similarly to (2.9), the constraints (2.17) have the solution

waðt; θi; θ̄iÞ ¼ wa þ θiBi
a þ θ̄iB̄i

a þ θiθ̄kρ
ik
a −

i
2
ðθÞ2θ̄iḂi

a

−
i
2
ðθ̄Þ2θi ˙̄Bi

a þ
1

4
ðθÞ2ðθ̄Þ2ẅa; ð2:18Þ
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where the reality conditions for the component fields are
ðwaÞ† ¼ −wa, ðBi

aÞ† ¼ B̄ai, ðρika Þ† ¼ ρaik ¼ ρaðikÞ. In the
harmonic superspace, the constraints (2.8) read

Dþþwa ¼ 0; DþD−wa ¼ D̄þD̄−wa ¼ 0;

ðDþD̄− þ D̄þD−Þwa ¼ 0: ð2:19Þ

The transformation properties of the component fields in
the expansion (2.18) under N ¼ 4 supersymmetry are
given by

δεwa ¼ −εiBi
a þ ε̄iB̄ai;

δεBi
a ¼ iε̄iẇa − ε̄kρ

ki
a ; δεB̄ai ¼ −iεiẇa − εkρaki;

δερ
ik
a ¼ −2iðεðiḂkÞ

a þ ε̄ði ˙̄BkÞ
a Þ: ð2:20Þ

As in (2.12), we can introduce the analytic prepotential
superfields Waðζ; uÞ defined up to the proper gauge
transformations,

Wa ⇒W 0
a¼WaþDþþΛ̃−−

a ; Λ̃−−
a ¼ Λ̃−−

a ðζ;uÞ: ð2:21Þ

In the Wess-Zumino gauge, these superfields read

Waðζ; uÞ ¼ waðtAÞ − 2θþBi
aðtAÞu−i − 2θ̄þB̄i

aðtAÞu−i
þ 3θþθ̄þρðikÞa ðtAÞu−i u−k : ð2:22Þ

The original superfield waðzÞ is related to Waðζ; uÞ by the
transform

waðt; θi; θ̄kÞ ¼
Z

duWaðtþ 2iθiθ̄kuþðiu
−
kÞ; θ

iuþi ; θ̄
kuþk ; u

�
l Þ:

ð2:23Þ

The constraints (2.17) emerge as a consequence of the
harmonic analyticity of Wa: DþWa ¼ D̄þWa ¼ 0. The
superfieldsWa are expressed through the superfields wa as

Wa ¼ wa þDþþW−−
a ; ð2:24Þ

where W−−
a are some general Grassmann-odd harmonic

superfields, such that δW−−
a ¼ Λ̃−−

a with respect to the
gauge transformation (2.21). In what follows, we use the
relations

ðDþD̄− − D̄þD−Þwa ¼ −2DþD̄þW−−
a : ð2:25Þ

2. Multiplets ð0;4;4Þ and ð4;4;0Þ
The multiplet ð0; 4; 4Þ is described by the fermionic

analytic superfield ΨþA, gðΨþAÞ ¼ Ψþ
A , A ¼ 1, 2, which

satisfies the constraint [22]

DþþΨþA ¼ 0: ð2:26Þ

The constraint (2.26) has the general solution

ΨþA ¼ ψ iAuþi þ θþFA þ θ̄þF̄A − 2iθþθ̄þψ̇ iAu−i ; ð2:27Þ

where component fields satisfy the reality conditions
ðψ iAÞ† ¼ −ψ iA, ðFAÞ† ¼ F̄A. The doublet index A ¼ 1, 2
is rotated by some Pauli-Gürsey group SUð2ÞPG commut-
ing with supersymmetry. TheN ¼ 4 supersymmetry trans-
formations of the component fields have the form (see,
e.g., [29])

δεψ
iA ¼ −ðεiFA þ ε̄iF̄AÞ; δεFA ¼ 2iε̄kψ̇A

k ;

δεF̄A ¼ 2iεkψ̇k
A: ð2:28Þ

In the central basis, the constraint (2.26) and the analyticity
conditions DþΨþA ¼ D̄þΨþA ¼ 0 imply

ΨþAðz; uÞ ¼ ΨiAðzÞuþi ;
DðiΨkÞAðzÞ ¼ D̄ðiΨkÞAðzÞ ¼ 0; ð2:29Þ

where ðΨiAÞ† ¼ −ΨiA.
The multiplets ð4; 4; 0Þ are described by the bosonic

analytic superfields ZþA
a , gðZþA

a Þ ¼ −Zþ
aA, A ¼ 1, 2, a ¼ 1,

2, which satisfy the harmonic constraint [22]

DþþZþA
a ¼ 0: ð2:30Þ

As a solution to this constraint, the superfields ZþA
a have

the following component expansions:

ZþA
a ¼ ziAa uþi þ θþπAa þ θ̄þπ̄Aa − 2iθþθ̄þżiAa u−i ; ð2:31Þ

where ðziAa Þ† ¼ zaiA, ðπAaÞ† ¼ π̄aA. The N ¼ 4 supersym-
metry transformations are realized on the component fields
as (see, e.g., [29])

δεziAa ¼ −ðεiπAa þ ε̄iπ̄AaÞ; δεπ
A
a ¼ 2iε̄kżAak;

δεπ̄aA ¼ 2iεkżkaA: ð2:32Þ

In the central basis, the constraint (2.30) and the analyticity
conditions DþZþA

a ¼ D̄þZþA
a ¼ 0 imply

ZþA
a ðz; uÞ ¼ ZiA

a ðzÞuþi ;
DðiZkÞA

a ðzÞ ¼ D̄ðiZkÞA
a ðzÞ ¼ 0; ð2:33Þ

where nonharmonic N ¼ 4 superfields ZiA
a ðzÞ are subject

to the reality conditions ðZiA
a Þ† ¼ ZaiA.
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3. Implicit N = 4, d = 1 supersymmetry

The extra implicit N ¼ 4 supersymmetry is realized on
the superfields vðzÞ and ΨiAðzÞ by the transformations
[6,15]

δξv¼−ξiAΨiA; δξΨiA¼ 1

2
ξAk ðDiD̄k− D̄iDkÞv; ð2:34Þ

where ξiA ¼ ðξiAÞ� are fermionic parameters of the second
N ¼ 4 supersymmetry. In terms of the harmonic super-
fields Vðζ; uÞ and ΨþAðζ; uÞ, the transformations (2.34)
take the form [15]

δξv ¼ ξ−AΨþ
A − ξþAΨ−

A; δξV ¼ 2ξ−AΨþ
A ;

δξΨþA ¼ DþD̄þðξ−Avþ ξþAV−−Þ; ð2:35Þ

where ξ�A ¼ ξiAu�i . The superfield transformations (2.34)
amount to the following ones for the component fields:

δξv ¼ −ξiAψ iA; δξφ
i ¼ ξiAFA; δξφ̄i ¼ −ξiAF̄A;

δξAik ¼ 2ξðiAψ̇A
kÞ; δξψ

iA ¼ iξiAv̇þ iξAkA
ik;

δξFA ¼ −2iξAk φ̇k; δξF̄A ¼ 2iξkA ˙̄φk: ð2:36Þ

Thus, the N ¼ 4 multiplets ð1; 4; 3Þ and ð0; 4; 4Þ in the
model under consideration together constitute the N ¼ 8
multiplet ð1; 8; 7Þ [6,9,11,12].
Similar implicit N ¼ 4 supersymmetry transformations

can be defined for theN ¼ 4 superfields waðzÞ andZiA
a ðzÞ.

In the conventional superspace, these read

δξwa¼−ξiAZiA
a ; δξZiA

a ¼1

2
ξAk ðDiD̄k−D̄iDkÞwa; ð2:37Þ

whereas in harmonic space, the superfields Waðζ; uÞ and
ZþA

a ðζ; uÞ transform as

δξwa ¼ ξ−AZþ
aA − ξþAZ−

aA; δξWa ¼ 2ξ−AZþ
aA;

δξZþA
a ¼ DþD̄þðξ−Awa þ ξþAW−−

a Þ: ð2:38Þ

For the component fields, these transformations amount to

δξwa ¼ −ξiAziAa ; δξBi
a ¼ ξiAπaA; δξB̄ai ¼ −ξiAπ̄Aa ;

δξρ
ik
a ¼ 2iξðiA ż

kÞA
a ; δξziAa ¼ iξiAẇa þ ξAkρ

ik
a ;

δξπ
A
a ¼ −2iξAk Ḃk

a; δξπ̄aA ¼ 2iξkA
˙̄Bak: ð2:39Þ

In the next section, we construct the interaction of all of
these superfields, which will be invariant under the implicit
N ¼ 4 supersymmetry.

III. N = 8 INVARIANT COUPLING

As shown in [6,15], the action

−
1

2

Z
μHv2 þ

1

2

Z
μð−2ÞA ΨþAΨþ

A ð3:1Þ

is invariant with respect to the implicit N ¼ 4 supersym-
metry (2.34) and describes the free N ¼ 8 multiplet
ð1; 8; 7Þ in terms of N ¼ 4 superfields.
Let us build the coupling of the multiplets v and ΨiA to

the multiplets wa, a ¼ 1, 2 and ZiA
a , a ¼ 1, 2. As the

guiding principle, we take the requirement of implicit
N ¼ 4 supersymmetry [(2.34) and (2.37)]. The natural
generalization of the second term in the action (1.1) is
the action with the analytic Lagrangian inabABVZ

þA
a ZþB

b ,
where nabAB are some constants. Then, the additional terms
needed to ensure the implicitN ¼ 4 supersymmetry (2.34)
must have the form imab

ABWaZ
þA
b ΨþB, where mab

AB are
some constants. Thus, we start with the trial interaction
Lagrangian in the form

i
Z

μð−2ÞA ½nabABVZþA
a ZþB

b þmab
ABWaZ

þA
b ΨþB�: ð3:2Þ

Considering only variations δξV, δξWa and using (2.35)
and (2.37), we obtain that the corresponding variation of
the action (3.2) is equal to

− 2i
Z

μð−2ÞA ξ−C½nabABZþA
a ZþB

b ΨþC þmab
ABZ

þC
a ZþA

b ΨþB�:

ð3:3Þ
The quantities ξ−1 and ξ−2 are independent. Therefore, the
requirement that (3.3) vanishes amounts to the equations

ðmab
A1Z

þ2
a ZþB

b ÞΨþ1

þ ðnabABZþA
a ZþB

b þmab
A2Z

þ2
a ZþB

b ÞΨþ2 ¼ 0;

ðmab
A2Z

þ1
a ZþB

b ÞΨþ2

þ ðnabABZþA
a ZþB

b þmab
A1Z

þ1
a ZþB

b ÞΨþ1 ¼ 0: ð3:4Þ
Since Ψþ1 and Ψþ2 are independent, these equations yield
the following restrictions on the constants:

mab
AB ¼ 2nabAB ¼ mϵabϵAB; ð3:5Þ

where m is a constant. Choosing m ¼ 1=2, we have2

i
Z

μð−2ÞA ½VZþA
1 Zþ

2A þ ðW1Z
þA
2 −W2Z

þA
1 ÞΨþ

A �: ð3:6Þ

Let us check the invariance of (3.6) under the implicit
N ¼ 4 supersymmetry (2.34). Considering only variations

2The superfield action with other choices of the constant m is
obtained from the action (3.6) by the following scale trans-
formation: ZþA

a → ð2mÞ1=2ZþA
a , Wa → ð2mÞ1=2Wa.
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δξV, δξWa and using Eqs. (2.35) and (2.37), we obtain that
the corresponding variation of the action (3.6) is

2i
Z

μð−2ÞA ξ−CΨþDZþA
1 ZþB

2 ðϵABϵCD þ ϵADϵBC þ ϵACϵDBÞ;

ð3:7Þ

and it is identically zero. In addition, the nullifying of the
set of such terms requires the use of two supermultiplets wa

and two supermultiplets ZþA
a in our construction.

Let us next consider the variation of superfields ZþA
a ,

ΨþA in the action (3.6).
Consider first the variation of the first term in (3.6) under

the transformation of ZþA
a and the variation of the second

term under that of ΨþA. Taking δξZþA
a from (2.38) and

δξΨþA from (2.35) and using the relation μH ¼ μð−2ÞA DþD̄þ

[see Eq. (2.7)] for the integration measures, we obtain

i
Z

μH½Vðξ−Aw1þξþAW−−
1 ÞZþ

2A−Vðξ−Aw2þξþAW−−
2 ÞZþ

1A

þðW1Z
þA
2 −W2Z

þA
1 Þðξ−AvþξþAV

−−Þ�: ð3:8Þ

Now we make the following substitutions in (3.8):
V¼vþDþþV−− [Eq. (2.15)] and Wa ¼ wa þDþþW−−

a
[Eq. (2.24)]. Half of the terms in the resulting expression
contain the superfield ZþA

1 , while the other half contains
ZþA

2 . Those terms in (3.8) that involve the superfield ZþA
2

are collected as

i
Z

μH½ðξ−Aw1 þ ξþAW−−
1 ÞðvþDþþV−−ÞZþ

2A

þ ðξ−Avþ ξþAV−−Þðw1 þDþþW−−
1 ÞZþ

2A�: ð3:9Þ

Making in (3.9) the substitutions ξþA ¼ Dþþξ−A and
integrating by parts with respect to Dþþ, we find that
the only surviving term is

−2i
Z

μHvw1ξ
−AZþ

2A:

It can be rewritten as

−i
Z

μHvw1δξW2 ¼ −i
Z

μHvw1ðδξw2 þDþþδξW−−
2 Þ

¼ −i
Z

μHvw1δξw2: ð3:10Þ

In a similar way, we can show that the terms in (3.8) that
contain the superfieldZþA

1 are reduced to−i
R
μHvðδξw1Þw2.

Thus, the total variation (3.8) finally proves to be equal
to −i

R
μHvδξðw1w2Þ.

It remains to take into account the variation of the second
term in (3.6) under the transformations δξZþA

a . Using

Eq. (2.38) for δξZþA
a , we find that this variation takes

the form

i
Z

μH½W1ðξ−Aw2 þ ξþAW−−
2 ÞΨþ

A

−W2ðξ−Aw1 þ ξþAW−−
1 ÞΨþ

A �; ð3:11Þ

where we made use of the relation μH ¼ μð−2ÞA DþD̄þ [see
Eq. (2.7)] for the integration measures. Substituting the
expressions Wa ¼ wa þDþþW−−

a [Eq. (2.24)] here, using
the conditions DþþΨþA ¼ 0 [Eq. (2.27)], and representing
ξþA ¼ Dþþξ−A, we find that, modulo a total harmonic
derivative in the integrand, the expression (3.11) is
reduced to

−2i
Z

μHðξ−AΨþ
A Þw1w2 ¼ −i

Z
μHðδξVÞw1w2

¼ −i
Z

μHðδξvÞw1w2: ð3:12Þ

In deriving (3.12), we used that V ¼ vþDþþV−−

[Eq. (2.15)], δξV ¼ δξvþDþþδξV−−, and omitted a total
harmonic derivative thanks to the condition Dþþwa ¼ 0
[Eq. (2.19)].
Thus, the total variation of the action (3.6) under the

implicit N ¼ 4 supersymmetry is reduced to

−i
Z

μHδξðvw1w2Þ: ð3:13Þ

As a result, the sum of the action (3.6) and the action

i
Z

μHvw1w2 ð3:14Þ

is invariant with respect to the implicit N ¼ 4 supersym-
metry [(2.34) and (2.37)].
Thus, we have obtained the N ¼ 8 supersymmetry-

invariant action, which is the sum of the actions (3.1), (3.6),
and (3.14),

S ¼ −
1

2

Z
μHv2 þ

1

2

Z
μð−2ÞA ΨþAΨþ

A þ i
2
ϵab

Z
μHvwawb

þ i
2
ϵab

Z
μð−2ÞA ½VZþA

a Zþ
bA þ 2WaZ

þA
b Ψþ

A �: ð3:15Þ

Let us demonstrate that the action (3.15) is a generali-
zation of the action (1.1) to the case of two semidynamic
multiplets ZþA

a . Introducing the superfields ZþA and YþA

by the relations

ZþA
1 ¼ ZþA þ iðσ3ÞABYþB;

ZþA
2 ¼ YþA − iðσ3ÞABZþB; ð3:16Þ
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we obtain

ZþA
1 Zþ

2A ¼ −iZþAZþBðσ3ÞAB − iYþAYþBðσ3ÞAB; ð3:17Þ

where ðσ3ÞAB ¼ ðσ3ÞðABÞ ¼ ϵACðσ3ÞCB. Thus, in the limit
YþA ¼ 0, ΨþA ¼ 0, wa ¼ 0, the action (3.15) is reduced to

the action (1.1) with cAB ¼ ðσ3ÞAB. Of course, when
performing the transition ZþA

a → ðZþA; YþAÞ [(3.16)],
the Pauli-Gürsey SU(2) symmetry acting on the capital
indices A, B gets broken.
The superfield action (3.15) can be cast in a more

suggestive form,

S ¼ −
1

2

Z
μH

�
v −

i
2
ϵabwawb

�
2

þ 1

2

Z
μð−2ÞA ðΨþA þ iϵabWaZ

þA
b ÞðΨþ

A þ iϵcdWcZ
þ
dAÞ

þ i
2

Z
μð−2ÞA

�
V −

i
2
ϵabWaWb

�
ϵcdZþA

c Zþ
dA: ð3:18Þ

The final action (3.18) contains the scalar composite super-
field v − i

2
ϵabwawb, the scalar composite analytic superfield

V − i
2
ϵabWaWb, the analytic composite superfields

ΨþA þ iϵabWaZ
þA
b , and the analytic superfields ZþA

a . It
is worth pointing out that, although the superfield V and
superfieldsWa are prepotentials for the superfields v andwa,
respectively, the composite superfield V − i

2
ϵabWaWb is by

no means a prepotential for the composite superfield
v − i

2
ϵabwawb.

IV. COMPONENT FORM OF THE N = 8 ACTION

The superfields entering the action (3.18) have the
following component expansions:

v −
i
2
ϵabwawb ¼

�
v −

i
2
ϵabwawb

�
þ θiðφi þ iϵabwaBi

bÞ þ θ̄iðφ̄i þ iϵabwaB̄i
bÞ

þ i
4
ðθÞ2ϵabBi

aBbi −
i
4
ðθ̄Þ2ϵabB̄i

aB̄bi þ iθiθ̄k½Aik − ϵabðwaρ
ik
b þ Bi

aB̄k
bÞ�

−
i
2
ðθÞ2θ̄i½φ̇i þ ϵabðiwaḂi

b þ Bakρ
ik
b Þ� −

i
2
ðθ̄Þ2θi½ ˙̄φi þ ϵabðiwa

˙̄Bi
b þ B̄akρ

ik
b Þ�

þ 1

4
ðθÞ2ðθ̄Þ2

�
v̈ − iϵabwaẅb −

i
2
ϵabρ

ik
a ρbik þ ϵabðBi

a
˙̄Bbi − Ḃi

aB̄biÞ
�
; ð4:1Þ

V −
i
2
ϵabWaWb ¼

�
v −

i
2
ϵabwawb

�
− 2θþðφ− þ iϵabwaB−

b Þ − 2θ̄þðφ̄− þ iϵabwaB̄−
b Þ

þ iθþθ̄þð3A−− − 3ϵabwaρ
−−
b − 4ϵabB−

a B̄−
b Þ; ð4:2Þ

ΨþA þ iϵabWaZ
þA
b ¼ ðψþA þ iϵabwaz

þA
b Þ

þ θþ½FA þ iϵabðwaπ
A
b þ 2zþa B−

b Þ� þ θ̄þ½F̄A þ iϵabðwaπ̄
A
b þ 2zþa B̄−

b Þ�

− 2iθþθ̄þ
�
ψ̇−A þ ϵab

�
iważ−Ab −

3

2
ρ−−a zþA

b − B−
a π̄

A
b − B̄−

aπ
A
b

��
: ð4:3Þ

Inserting (4.1) into the first term of (3.18), we see that
this term gives rise to the following component action:

Z
dtð−vv̈þ iv̈w1w2 þ ivẅ1w2 þ ivw1ẅ2Þ:

Up to a total derivative, this action equals

Z
dtðẋ ẋ−iϵabxẇaẇbÞ; ð4:4Þ

where

x ≔ v −
i
2
ϵabwawb: ð4:5Þ
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Thus, the model under consideration contains two fer-
mionic fields waðtÞ, a ¼ 1, 2, with the second-order
Lagrangians for them.
We shall try to bring the action (3.18) to a form in

which it only depends on ẇaðtÞ. By performing the

“oxidation procedure” [4,25,30], in which the quantities
ẇaðtÞ are replaced by new auxiliary variables, we get
rid of second-order terms in the derivatives of fermionic
fields.
In terms of the new variables (4.5) and

ϕi ≔ φi þ iϵabwaBi
b; ϕ̄i ≔ φ̄i þ iϵabwaB̄i

b; Cik ≔ Aik − ϵabwaρ
ik
b ; ð4:6Þ

χiA ≔ ψ iA þ iϵabwaziAb ; GA ≔ FA − iϵabwaπ
A
b ; ḠA ≔ F̄A − iϵabwaπ̄

A
b ; ð4:7Þ

the component off-shell expansions of the superfields (4.1), (4.2), and (4.3) are written as

v −
i
2
ϵabwawb ¼ xþ θiϕ

i þ θ̄iϕ̄
i þ i

4
ðθÞ2ϵabBi

aBbi −
i
4
ðθ̄Þ2ϵabB̄i

aB̄bi þ iθiθ̄k½Cik − ϵabBi
aB̄k

b�

−
i
2
ðθÞ2θ̄i½ϕ̇i þ ϵabðiBi

aẇb þ Bakρ
ik
b Þ� −

i
2
ðθ̄Þ2θi½ ˙̄ϕi þ ϵabðiB̄i

aẇb þ B̄akρ
ik
b Þ�

þ 1

4
ðθÞ2ðθ̄Þ2

�
ẍþ iϵabẇaẇb −

i
2
ϵabρ

ik
a ρbik þ ϵabðBi

a
˙̄Bbi − Ḃi

aB̄biÞ
�
; ð4:8Þ

V −
i
2
ϵabWaWb ¼ x − 2θþϕ− − 2θ̄þϕ̄− þ iθþθ̄þð3C−− − 4ϵabB−

a B̄−
b Þ; ð4:9Þ

ΨþA þ iϵabWaZ
þA
b ¼ χþA þ θþðGA þ 2iϵabzþA

a B−
b Þ þ θ̄þðḠA þ 2iϵabzþA

a B̄−
b Þ

− 2iθþθ̄þ
�
χ̇−A − ϵab

�
iẇaz−Ab þ 3

2
ρ−−a zþA

b þ B−
a π̄

A
b þ B̄−

aπ
A
b

��
: ð4:10Þ

In the expansions of the superfields (4.8), (4.9), (4.10), the
derivatives ẇaðtÞ are present, but no fermionic fields waðtÞ
appear on their own. Therefore, the component action
contains only ẇaðtÞ, which can be replaced [4,25,30] by
new fields,

ζaðtÞ ≔ ẇaðtÞ: ð4:11Þ

In terms of these variables, the N ¼ 4 supersymmetry
transformation (2.20) takes the form

δεζa ¼ −εiḂi
a þ ε̄i ˙̄Bai;

δεBi
a ¼ iε̄iζa − ε̄kρ

ki
a ; δεB̄ai ¼ −iεiζa − εkρaki;

δερ
ik
a ¼ −2iðεðiḂkÞ

a þ ε̄ði ˙̄BkÞ
a Þ: ð4:12Þ

After combining Bi
a, B̄i

a, ζa, ρika into the new fields

fa i
i0 ¼ ðfa i

i0¼1
; fa i

i0¼2
Þ ≔ ðBi

a; B̄i
aÞ;

ωai
k ≔ iζaδki þ ρai

k; ð4:13Þ

the transformations (4.12) are rewritten as

δfii
0

a ¼ εki
0
ωak

i; δωik
a ¼ −2iεij0 ḟa k

j0 ; ð4:14Þ

where the infinitesimal parameters εi, ε̄i are joined into the
SULð2Þ×SURð2Þ bispinor εii0 : εii0 ¼ðεii0¼1;εii

0¼2Þ¼ðεi;ε̄iÞ.
The indices i ¼ 1, 2 and i0 ¼ 1, 2 are acted upon by the
SULð2Þ and SURð2Þ groups, respectively, which form the
automorphism group SO(4) of theN ¼ 4 superalgebra. For
each value of the index a ¼ 1, 2, the bosonic d ¼ 1 fields
fa i

i0 and fermionic d ¼ 1 fields ωik
a are exactly component

fields of the semidynamical ð4; 4; 0Þ mirror (or twisted)
multiplet, which is described by the superfield qþA0

in the
biharmonic space [see Eq. (4.7) in [31] and Appendix]. The
transformations (4.14) are similar to the transformations
(2.32). But, the Pauli-Gürsey group acting on the index A0

of the mirror multiplet qþA0
in the present case was chosen

to coincide with the SULð2Þ group acting on the index i of
the original d ¼ 1 fields. Thus, after the oxidation pro-
cedure, two fermionic ð1; 4; 3Þ multiplets with noncanoni-
cal kinetic terms for fermions transform into two
semidynamical ð4; 4; 0Þ mirror multiplets with auxiliary
fermions. The superfield meaning of the mutual conversion
of different usual and mirror N ¼ 4 multiplets was
clarified in [26].
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It is important that the N ¼ 4 supersymmetry trans-
formations of the variables (4.5), (4.6), and (4.7) are
expressed only through new variables:

δεx ¼ −εkϕk þ ε̄kϕ̄k; ð4:15Þ

δεϕ
i ¼ iε̄iẋ− iε̄kðCkiþ ϵabB̄k

aBi
bÞþ

i
2
εiϵabBakBk

b; ð4:16Þ

δεϕ̄i ¼ iεiẋ− iεkðCki−ϵabBakB̄biÞþ
i
2
εiϵabBakBk

b; ð4:17Þ

δεCik ¼ −2ðεðiϕ̇kÞ þ ε̄ði ˙̄ϕkÞÞ − 2iϵabζaðεðiBkÞ
b þ ε̄ðiB̄kÞ

b Þ
þ ϵabðεjBj

b þ ε̄jB̄
j
bÞρikb ; ð4:18Þ

δεχ
iA¼−εiGA− ε̄iḠA−iεkϵabBk

aziAb −iε̄kϵabB̄k
aziAb ; ð4:19Þ

δεGA ¼ 2iε̄kχ̇Ak þ 2ε̄kϵabζazAbk þ iεkϵabBk
aπ

A
b

þ iε̄kϵabB̄k
aπ

A
b ; ð4:20Þ

δεḠA ¼ 2iεkχ̇kA þ 2εkϵabζazkAb þ iεkϵabBk
aπ̄

A
b

þ iε̄kϵabB̄k
aπ̄

A
b : ð4:21Þ

The full set of transformations of the new variables also
includes the explicit N ¼ 4 supersymmetry transforma-
tions δεziAa , δεπAa , δεπ̄aA given in (2.32).
On the other hand, the implicit N ¼ 4 supersymmetry

transformations (2.39) involving the variables (4.5), (4.6),
and (4.7) are of the form

δξx ¼ −ξiAχiA;

δξχ
iA ¼ iξiAẋþ iξAkC

ik þ ξkBϵabzkBa ziAb ; ð4:22Þ

δξζa ¼ −ξiAżiAa ; δξziAa ¼ iξiAζa þ iξAkρ
ik
a ; ð4:23Þ

δξCik ¼ 2ξðiA χ̇
kÞA − 2iξðiAϵabζaz

kÞA
b þ ξjAϵabz

jA
a ρikb ; ð4:24Þ

δξϕ
i ¼ ξiAGA − iξkAϵabzkAa Bi

b;

δξϕ̄
i ¼ ξiAḠA − iξkAϵabzkAa B̄i

b: ð4:25Þ

δξGA ¼ −2iξAk ϕ̇
k − 2ξAk ϵabζaB

i
b þ iξiBϵabziBa πAb ;

δξḠA ¼ −2iξAk
˙̄ϕk − 2ξAk ϵabζaB̄

i
b þ iξiBϵabziBa π̄Ab ; ð4:26Þ

and they also contain only new variables. The remaining
variations δξBi

a, δξB̄ai, δξρika , δξπAa , δξπ̄aA from the complete
set of transformations of new variables with respect to the
implicit N ¼ 4 supersymmetry are presented in (2.39).
Thus, the transformations of all new variables

(4.12)–(4.26) with respect to both explicit and implicit
N ¼ 4 supersymmetries are expressed only in terms of the
new variables. Therefore, the Lagrangian written in terms
of new variables, involving (4.11), is invariant under the
total N ¼ 8 supersymmetry.
Using the component expansions (2.31), (4.9), and

(4.10), we obtain

∂

∂θ̄þ
∂

∂θþ
½ðΨþAþiϵabWaZ

þA
b ÞðΨþ

A þiϵcdWcZ
þ
dAÞ�

¼−4iχþA

�
χ̇−A−ϵab

�
iζaz−bAþ

3

2
ρ−−a zþbAþB−

a π̄bAþB̄−
aπbA

��

þ2ðGAþ2iϵabzþA
a B−

b ÞðḠAþ2iϵcdz
þ
cAB̄

−
d Þ; ð4:27Þ

∂

∂θ̄þ
∂

∂θþ

��
V−

i
2
ϵabWaWb

�
ϵcdZþA

c Zþ
dA

�

¼−2xϵabð2izþA
a ż−bAþπAa π̄bAÞþ4ϵabzþA

a ðϕ−π̄bA− ϕ̄−πbAÞ
þ iϵabzþA

a zþbAð3C−− −4ϵcdB−
c B̄−

d Þ: ð4:28Þ

Taking into account (4.8), (4.27), and (4.28) and perform-
ing integration over the Grassmann coordinates [we

use
R
μHðθÞ2ðθ̄Þ2KðtÞ¼−4

R
dtKðtÞ, R μð−2ÞA θþθ̄þNðtAÞ ¼R

dtANðtAÞ], as well as over harmonics, we derive the off-
shell component Lagrangian LðtÞ corresponding to the
action S ¼ R

dtLðtÞ, defined in (3.18).
This Lagrangian has a somewhat cumbersome form

because of the large number of terms present in it:

L ¼ ẋẋþ xϵabðziAa żbiA þ Ḃi
aB̄bi − Bi

a
˙̄BbiÞ − iχiAχ̇iA − iϕ̄iϕ̇i þ i ˙̄ϕiϕi − ixϵabζaζb − ϵabðϕ̄iBi

a − ϕiB̄i
a − χiAzaiAÞζb

þ i
2
xϵabρika ρbik þ iϵabðϕ̄iBk

a − ϕiB̄k
a þ χiAzkaAÞρbik − ixϵabπAa π̄bA þ iϵabχiABaiπ̄bA − iϵabπAaχiAB̄bi

þ 1

2
ðCik − ϵabB

ði
a B̄

kÞ
b ÞðCik − ϵcdBciB̄dkÞ −

1

2
ϵabziAa zkbACik þGAḠA þ iGAϵabziaAB̄bi þ iϵabziaABbiḠA

þ 1

4
ðϵabBi

aB̄biÞ2 −
1

4
ϵabBi

aBbiϵcdB̄k
cB̄dk −

2

3
ϵabz

ði
aAz

kÞA
b ϵcdBciB̄dk þ

4

3
ϵabϵcdz

ði
aAz

kÞA
c BbiB̄dk: ð4:29Þ
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In (4.29) the bosonic fields Cik, GA, ḠA as well as the fermionic fields ρika , πAa , π̄aA, ζa are auxiliary. After eliminating these
auxiliary fields by their equations of motion, we obtain the following on-shell Lagrangian:

L ¼ ẋẋþ xϵabðziAa żbiA þ Ḃi
aB̄bi − Bi

a
˙̄BbiÞ − iχiAχ̇iA − iϕ̄iϕ̇i þ i ˙̄ϕiϕi

−
i
2x

ϵabðϕ̄iBk
a − ϕiB̄k

a þ χiAzkaAÞðϕ̄iBbk − ϕiB̄bk þ χBi zbkBÞ −
i
x
ϵabχ

iABaiχ
k
AB̄bk

þ 1

4
ðϵabBi

aB̄biÞ2 −
1

4
ϵabBi

aBbiϵcdB̄k
cB̄dk −

1

8
ϵabz

ði
aAz

kÞA
b ϵcdzciBzBdk

−
1

6
ϵabz

ði
aAz

kÞA
b ϵcdBciB̄dk þ

4

3
ϵabϵcdz

ði
aAz

kÞA
c BbiB̄dk − ϵabziaABbiϵcdzkAc B̄dk: ð4:30Þ

As follows from the Lagrangian (4.30), the bosonic
variable x and fermionic variables χia;ϕi are dynamical,
while the bosonic variables ziAa , Bi

a, B̄i
a have the kinetic

terms of the first order in ∂t and so are semidynamical.
Thus, under N ¼ 8 supersymmetrization, we deal with

the N ¼ 4 system which involves on the mass shell one
dynamical bosonic field x, two semidynamical bosonic fields
ziAa , and additional dynamical fermionic fields χiA and
semidynamical bosonic fields Bi

a, B̄i
a. It follows from the

transformations of the implicitN ¼ 4 supersymmetry given
above that the bosonic ð4; 4; 0Þ multiplets, the standard one

ðziAa ; πAaÞ and the mirror one ðBi
a; B̄i

a; ζa; ρ
ðikÞ
a Þ, are trans-

formed through each other and so together constitute the
multiplet ð8; 8; 0Þ of N ¼ 8 supersymmetry [6], while the
remaining fields (as already mentioned) fit well in a kind of
ð1; 8; 7Þ multiplet [6,9,11,12].

V. CONCLUDING REMARKS

In this paper, we have presented the N ¼ 8 super-
symmetric model with dynamical and semidynamical
d ¼ 1 fields. The initial “trial” model (3.18) was composed
from the dynamical N ¼ 4 multiplet ð1; 4; 3Þ (the super-
field v), two semidynamical bosonic multiplets ð4; 4; 0Þ
(the superfields ZþA

a ), and their partners with respect to the
implicit N ¼ 4 supersymmetry (the superfields ΨþA and
wa, respectively). The latter multiplets have the opposite
Grassmann parity compared with the former ones.
TheN ¼ 8model constructed describes a systemwith the

kinetic term of the second order in the “velocities” of
fermionic fields belonging towa. To get rid of this drawback,
we carried out the oxidation procedure, which amounts to
replacing the derivatives of fermionic fields with new
auxiliary fields [4,25]. We have shown that, after passing
to some suitable new variables, such a procedure works
perfectly well for our system. As a result of this procedure,
we obtained the newN ¼ 8 supersymmetric system (4.30).
On the mass shell, the obtained N ¼ 8 invariant model

(4.30) describes one dynamical bosonic field x and eight
real fermionic dynamical fields ϕi, ϕ̄i, χiA, as well as three
sets of semidynamical bosonic SU(2)-doublet fields ziAa ,
Bi
a, B̄i

a.

Surely, the N ¼ 8 superfield system (3.18) and the
N ¼ 8 supersymmetric component system (4.30) are not
equivalent to each other, because the directly applied
oxidation does not preserve the canonical structure of
the model. We obtained theN ¼ 8 supersymmetric system
(4.30) only at the component level. Rederiving this system
at the complete superfield level is the next interesting task.
A clue to this construction might be the fact that the fields
in the action (4.30) naturally fall into a set of one dynamical
N ¼ 8 multiplet ð1; 8; 7Þ and one semidynamical N ¼ 8
multiplet ð8; 8; 0Þ. When constructing the superfield action,
it may also be necessary to involve some extra auxiliary
supermultiplets. A hint for constructing the self-consistent
superfield formulation is the observation that the trans-
formations (4.12) can be identified with the transforma-
tions (4.14) of the component fields of two semidynamical
mirror (or twisted) ð4; 4; 0Þmultiplets. In the Appendix, we
demonstrate that such a multiplet has the natural descrip-
tion in the framework of the N ¼ 4; d ¼ 1 biharmonic
superfield formalism developed in [26,31]. Capitalizing
on this property, we conjecture that the self-consistent
superfield formulation of our system can be achieved
within such a biharmonic approach.3

Another prospective task in the further development of
the constructed model is to work out the N ¼ 8 covariant
procedure of gauging isometries in systems of this type.
The N ¼ 4 supersymmetric gauging procedure [28]
proved to be an important tool for the construction of
N ¼ 4 supersymmetric generalizations of integrable many-
particle systems of the Calogero type [20]. Being gener-
alized to the N ¼ 8 case, it would hopefully provide an
opportunity to find newN ¼ 8 supersymmetric extensions
of these notorious systems.

3It is worth noting that the set of fields of all eventual ð4; 4; 0Þ
multiplets is closed under both manifest and implicit N ¼ 4
supersymmetries, while the remaining fields are transformed
through both themselves and fields of ð4; 4; 0Þ multiplets. This
indicates that in the present case we are dealing with some not
fully reducible representation of N ¼ 8 supersymmetry and the
constraints onN ¼ 4 superfields belonging to the ð1; 8; 7Þ subset
should be nonlinear and properly include the ð4; 4; 0Þ superfields.
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APPENDIX: ð4;4;0Þ MULTIPLETS
IN BIHARMONIC SUPERSPACE

The automorphism group of the N ¼ 4; d ¼ 1 super-
symmetry algebra is the SOð4Þ ≅ SULð2Þ × SULð2Þ group.
Throughout our article, the group SULð2Þ is implemented
explicitly on the doublet SULð2Þ indices i ¼ 1, 2. The
harmonics u�i are only associated with this group. At the
same time, the group SURð2Þ is implicit, but there exists a
formulation in which both SULð2Þ and SURð2Þ symmetries
are explicit. Such a description is achieved in N ¼ 4
biharmonic superspace [31], which well suits describing
models where both N ¼ 4 ordinary and mirror multiplets
participate.
In such a description, the odd superspace coordinates

θi, θ̄i, which are SULð2Þ doublets, are added to the
SULð2Þ × SURð2Þ quartet θii

0
: ðθi;θ̄iÞ¼ðθii0¼1;θii

0¼2Þ,
where i ¼ 1, 2 and i0 ¼ 1, 2 are doublet indices of
SULð2Þ and SURð2Þ, respectively.
In the biharmonic formulation, in addition to the har-

monics u�i ∈SULð2Þ=Uð1Þ (2.2), additional commuting
harmonic variables v�i0 ∈SURð2Þ=Uð1Þ are introduced,
with the defining relations

v�i0 ; ðvþi0 Þ� ¼ v−i
0
; vþi0v−i0 ¼ 1: ðA1Þ

In the central basis, N ¼ 4, d ¼ 1 biharmonic superspace
is parametrized by the coordinates ðt; θii0 ; u�i ; v�i0 Þ. In this
superspace, we define the harmonic projections of θii

0
as

θ�;� ¼ θii
0
u�i v

�
i0 ; θ�;∓ ¼ θii

0
u�i v

∓
i0 : ðA2Þ

Given this, one of two analytical bases in the biharmonic
superspace can be defined: either with the coordinates

ðzþ; u�i ; v�i0 Þ; zþ ¼ ðtþ; θ�;�; θ�;∓Þ;
tþ ¼ t − iðθþ;þθ−;− þ θ−;þθþ;−Þ ðA3Þ

or with

ðz−; u�i ; v�i0 Þ; z− ¼ ðt−; θ�;�; θ�;∓Þ;
t− ¼ t − iðθþ;þθ−;− − θ−;þθþ;−Þ: ðA4Þ

Note that tþ coincides with the coordinate tA introduced
in (2.3): tþ ¼ tA.
In the analytic bases (A3) and (A4), half of the N ¼ 4

covariant spinor derivatives become short. This is a
reflection of the fact that the spaces (A3) and (A4) contain
the N ¼ 4 invariant subspaces with half of the initial

Grassmann coordinates. Namely, the analytic superspace
parametrized by supercoordinates

ðζþ; u�i ; v�i0 Þ; ζþ ¼ ðtþ; θþ;þ; θþ;−Þ ðA5Þ
is closed under the full N ¼ 4 supersymmetry. Another
analytic superspace,

ðζ−; u�i ; v�i0 Þ; ζ− ¼ ðt−; θþ;þ; θ−;þÞ; ðA6Þ

is also closed.
The ordinary ð4; 4; 0Þ supermultiplet is described by the

superfield qð0;þÞAðζþ; u; vÞ living in the analytic superspace
(A5), while a mirror multiplet is represented by a superfield
qð0;þÞA0 ðζ−; u; vÞ defined on the analytic superspace (A6).
Here, the indices A and A0 are transformed by two Pauli-
Gürsey groups, which are generically different. These
superfields are subject only to the harmonic conditions:

Dþþ;0qðþ;0ÞA ¼ D0;þþqðþ;0ÞA ¼ 0;

Dþþ;0qð0;þÞA0 ¼ D0;þþqð0;þÞA0 ¼ 0; ðA7Þ

where Dþþ;0 and D0;þþ are the harmonic derivatives
∂
þþ;0 ¼ uþi ∂=∂u

−
i and ∂

0;þþ ¼ vþi0 ∂=∂v
−
i0 rewritten in the

analytic bases (A3) and (A4), respectively [see Eq. (2.6)].
Solving the conditions (A7) yields the component expan-

sions of the superfields qðþ;0ÞA and qðþ;0ÞA0
. The ordinary

ð4; 4; 0Þ supermultiplet is described by the superfield

qðþ;0ÞAðζþ; u; vÞ ¼ ziAðtþÞuþi þ θþ;−πi
0AðtþÞvþi0

− θþ;þπi0AðtþÞv−i0
− 2iθþ;þθþ;−

∂tþz
iAu−i ; ðA8Þ

while the mirror multiplet is described by the superfield

qð0;þÞA0 ðζ−; u; vÞ ¼ fi
0A0 ðt−Þvþi0 þ θ−;þωiA0 ðt−Þuþi

− θþ;þπiA0 ðt−Þu−i
− 2iθþ;þθ−;þ∂t−ω

i0A0
vþi0 : ðA9Þ

The expansion (2.31) for the superfield ZþA
a at an arbitrary

value of a ¼ 1, 2 coincides with the expansion (A8) for
the superfield qðþ;0ÞA after the following identification of
the component fields: πi

0A¼ðπi0¼1A;πi
0¼2AÞ¼ðπA;π̄AÞ. The

mirror ð4; 4; 0Þmultiplets correspond to identifying the index
A0 in (A9) with the SUð2ÞL index j. The linear off-shell
transformations of the explicitN ¼ 4 supersymmetry on the
component fields can be easily obtained from the standard
superfield transformations.4

More details on N ¼ 4 supermultiplets in biharmonic
superspace can be found in [31].

4The realizations of implicit N ¼ 4 supersymmetry linearly
mixing both ð4; 4; 0Þ superfields can also be easily defined [31].
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