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We present a new model of A/ =8 mechanics with semidynamic supermultiplets. The model is
constructed as an interaction of A" = 4 supermultiplets which carry an implicit N = 4 supersymmetry. The
initial field content consists of three dynamical (1,4, 3) multiplets: one bosonic and two fermionic. To
ensure implicit A" =4 supersymmetry, we introduce the superfields describing three semidynamical

(4,4, 0) multiplets: one fermionic and two bosonic. To avoid the second-order Lagrangian for fermions

from the fermionic (1,4,3) multiplets, we convert their velocities into new auxiliary fields. After

conversion, these multiplets turn into semidynamical mirror (4,4, 0) multiplets without noncanonical terms
in the A/ = 8 Lagrangian at the component level. The final V" = 8 multiplet content is (1,8,7) & (8,8,0).
As a first step to the ultimate N = 4 superfield formulation of the model, we recall a natural description of
the standard and mirror (4,4, 0) multiplets in the framework of N' =4, d = 1 biharmonic superspace.
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I. INTRODUCTION

Models of supersymmetric (quantum) mechanics play an
important role as a training base for the study of systems with
supersymmetry in higher space-time dimensions, involving
the proper supersymmetrizations of gauge, gravitation, and
cosmological theories. They are also closely related to
diverse superextensions of d = 1 integrable systems.

The most advanced and suggestive method to deal with
supersymmetric theories is the superfield approach. While
there exists a huge corpus of references on the d =1
superfield description of A/ < 4 supersymmetric mechanics
models and the related superextended d = 1 integrable
systems (see, e.g., [1-3]), much less is known about a
similar approach to ' > 4 models, in particular, to ' = 8
ones. Until now, A = 8 models (see, e.g., [4—7]) have been
constructed in both AN =4 and N =8 superspace
approaches.1 The superfields used in these models encom-
pass as a rule A/ = 8 supermultiplets of the same type. The
latter are dynamical, that is, they possess Lagrangians that
are of the second order in the time derivatives of the
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'For a description of N = 8 supersymmetric systems at the
component level, see, e.g., [§—14].
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component bosonic fields. The A/ = 8 models involving
interactions of different types of A/ = 4 multiplets, with an
additional hidden A =4 supersymmetry that mixes up
these multiplets and extends the manifest A" = 4 super-
symmetry to N = 8, were only considered, to the best of
our knowledge, in [15,16]. Yet, all of the involved N = 4
supermultiplets were of the dynamical type.

On the other hand, a number of models with N =4
supersymmetry also include, in addition to dynamical
supermultiplets, semidynamical ones. The bosonic fields
of the latter are described by the d = 1 Wess-Zumino (or
Chern-Simons)-type Lagrangians of the first order in the
time derivatives. The basic goal of the present work is to
construct the first example of N =8 supersymmetric
models of this sort, with some fields being semidynamical.

In [17], an N =4 generalization of the n-particle
rational Calogero system was proposed (see Ref. [18]
for the review). This N =4 Calogero model employs
the dynamical n x n matrix (1,4,3) supermultiplet and n
semidynamical (4,4,0) supermultiplets. The one-particle
(n = 1) limit of the model of Ref. [17] was considered in
[19]. The more general form of the kinetic term of the
matrix (1,4, 3) supermultiplet in the model of [17] gives
rise to the N =4 supersymmetric hyperbolic Calogero-
Sutherland model [20]. Superconformal mechanics with
D(2,1,a) supersymmetry was constructed in [21] as a
generalization of the one-particle system of [19], such that
the Lagrangian of the (1,4,3) superfields is a power
function of the latter.

In this paper, we construct an N = 8 generalization
of the N/ = 4 system suggested in [19]. We basically use

Published by the American Physical Society
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N = 4,d = 1 harmonic superspace [22], which is a reduc-
tion of ' = 2, d = 4 harmonic superspace [23,24].

Modulo gauge transformations of the involved super-
fields, the model of Ref. [19] is governed by the cubic
action (schematically)

/MH’UZ+/M§4_2)VZ+AZ+BC<AB), (11)

where c(4p) are some constants. The superfield v(z,6, 6)
encapsulates the (1,4,3) supermultiplet, V(¢ 4, 0%, 0%, u)
is its analytic harmonic gauge prepotential, and
ZA(t4,0%,0%,u), A=1, 2 amounts to the (4,4,0)
supermultiplet, which is semidynamical in the model with
the action (1.1). In this paper, we just find the N =8
generalization of the model (1.1). We build this model by
making use of A =4 superfields carrying an additional
implicit A/ = 4 supersymmetry. Similar to [15,16], we
extend the original " = 4 superfield content by adding an
odd superfield W (r4,0%,6,u) as a superpartner of
the superfield v(z,0,0) with respect to the implicit
N =4 supersymmetry. Analogously, the superfield
ZHA(t4,0%,0%, u) is extended to a wider N/ = 4 superfield
set in which it occupies the same place as the superfield
WHA(14,0%,0%,u) in the first set. To ensure A =8
supersymmetry, we add one more superfield w(z,@,0)
which also has the field content (1,4,3) but it is
Grassmann odd. In order to construct the N' = 8 invariant
action, it also turns out to be necessary to make use of at
least two superfields Z;4 (1 4,0%,6%,u), a = 1, 2 and two
superfields w,(t,6,0), a = 1, 2. Requiring N = 8 sym-
metry for the total extended N =4 superfield set, we
finally derive the N' = 8 invariant action as a generalization
of (1.1).

The plan of the paper is as follows. In Sec. II we present
the A/ = 4 harmonic superfield description of the multip-
lets (1,4,3) and (0,4,4). Each type of supermultiplets
involves both even and odd superfields and we describe the
implicit ' = 4 supersymmetry transformations realized on
these superfields. In Sec. Il we present the ' = 4 super-
field formulation of the A/ = 8 invariant coupling of these
supermultiplets. Section IV shows that the superfield model
constructed leads to the component Lagrangian in which
some fermionic fields enter only through their first-order
time derivative and no such fields without derivatives are
present. After applying the oxidation procedure of replac-
ing this time derivative by a new auxiliary fermionic field
[4,25], the Lagrangian yields the N/ = 8 invariant model.
The resulting N = 8 invariant model involves on the mass
shell one dynamic bosonic field and eight real fermionic
fields, as well as three sets of semidynamical bosonic
SU(2)-doublet fields. Some concluding remarks are col-
lected in Sec. V. In the Appendix we demonstrate that the
result of the oxidation procedure mentioned above can be

reproduced by using off-shell superfields involving, as
elementary components, the auxiliary fermionic fields
which imitate the time derivative of the original fermionic
fields. This is in agreement with the general proposition
of Ref. [26].

II. A =4 SUPERFIELDS USED IN CONSTRUCTING
THE N =8 MODEL

We build the N’ =8 model in terms of the N =4
superfields defined in both the usual ' = 4 superspace and
the A/ = 4 harmonic superspace [22-24]. In this section,
we describe the main features of the objects used through-
out the paper.

A. Brief information about A" =4, d=1
harmonic superspace

The powerful approach to constructing N’ =4, d =1
supersymmetric models and finding interrelations between
them is the N’ = 4, d = 1 harmonic formalism, which was
proposed in [22]. Compared with the description in the
usual superspace with the coordinates z = (t,6;,6),
(0,)* = @', and covariant derivatives

0 _ a0
D= oo~ 00, Dy =5~ i,
(Di)* = =D,  {Di,D;} = —2i5.0, (2.1)

the harmonic description involves additional commuting
harmonic variables,

utluy =1.  (2.2)

In the harmonic analytic basis,

(zas i) = (1.4.05,6%,uf),

0+ =0u,

ta=t+i(070~+0°07),
0+ =0'u, (2.3)

half of the N = 4 covariant spinor derivatives D* = uiD’,
D* = uFD' become short:

0 - 0
D+:aaﬁ, D+:—% (24)

This implies the existence of the harmonic analytic super-
fields defined on the analytic subspace of the full harmonic
superspace:

(& u) = (t4,0%,0%, uf), utluy = 1.

(2.5)

It is closed under N =4 supersymmetry and some

generalized conjugation, (t4)=14,(67)=0%,(07)=-0",

ut'=uF ui =—ur. The integration measure in the
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harmonic analytic subspace is defined as dud(? =

dudt 4d0*dO". An important tool of the formalism is
the harmonic derivatives:

_ 0 -0
D** = 0 +2i040%0, + 60 ——+ 0 —_.
+ 21 s 507 + PV
0
ot = uf —. 2.6
ul aul:F ( )

The harmonic derivative D™ is distinguished in that it
commutes with the spinor derivatives (2.4) and so preserves
the analyticity.

The integration measures are defined as

pin = dudtd*0 = u;? D* D,
d¢=? = dt ,D~D~.

/,4&(2) = dud(;(_2>,
(2.7)
Here we presented only the definitions of the basic
notions to be used below. The full exposition of the

harmonic superspace formalism of d = 1 models can be
found in Ref. [22].

B. N =4 superfields

When building the model, we use the following N' = 4
superfields:

Fermionic superfield ¥ (¢, u)
Bosonic superfields Z% (¢, u)

Bosonic superfield v(z)
Fermionic superfields w,(z)

Below we describe these superfields in some detail.

1. Multiplet (1,4,3)

The multiplet (1,4, 3) is described by the N' = 4 even
superfield v(z), # = v, obeying the constraints [27]

D'D;v = D;D'v =0, [Di,D;Jv =0. (2.8)
The solution of the constraints (2.8) is
v(1,0,,0') = v +0,0' + 0,p' + 0,0, A™ — % (0)%0:¢'
- 3020+ (02, 29

where ()% = 0,6%, (0)> = 6*0,. The component fields in
the expansion (2.9) satisfy the reality conditions v" = v,
(¢")" = @i (A™)" = Ay = A In the harmonic super-
space, the constraints (2.8) are rewritten as
D™y =0, DD v=D"D v =0,
(D*D~+D*D7)v =0. (2.10)

The N = 4 supersymmetry transformations of the compo-
nent fields in (2.9) are given by

0,V = —€;90' +E¢;,
bt = iE — B AN, 5. = —ies — ie¥ A,

SeAix = =2(&(ix) + EiPr)) (2.11)
where ¢;, & = (g;)* are odd parameters of the explicit
N = 4 supersymmetry.

As was shown in [28], the (1,4, 3) multiplet can also be
described through the real analytic gauge superfield pre-
potential V({, u), which is defined up to the Abelian gauge
transformations,

V=V =V+D"A, A=A u). (2.12)

They allow passing to the Wess-Zumino gauge:

V(o) = v(14) = 2079 (t)u; = 2079 (14)u;
+3i00T A (1 )i uy;. (2.13)

The superfield v(z) is constructed from the superfield
V(¢, u) through the transform

v(t,0',0,) = /duV(t+2i€iéku5u;),9iu;’,éku:,uli).
(2.14)

The constraints (2.8) now prove to be a consequence of the
harmonic analyticity constraints D*) = D"V = 0. The
inverse expression of V through the superfield v is given by
the relation [15]

V=v+D"V—, (2.15)
where V™~ is some general harmonic superfield with the
transformation law 6V~ = A7~ with respect to the gauge
transformations (2.12). In what follows, we make use of the
identity [15]

(D*D~ = D™D )v =-2D*DTV=—.  (2.16)

In addition to the superfield v(z), we also incorporate the

N = 4 odd supetfields w,(z), a = 1, 2, w, = —w,, obey-
ing the constraints (2.8)

DiDiWa = DiDiWa — Oa

D', DJw, =0. (2.17)

Similarly to (2.9), the constraints (2.17) have the solution
W (1,0.0) = W, + 0,8, + 0B, + 0,00t = (0)0:B,

_ é @205 + i (0)2(0)%%,, (2.18)
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where the reality conditions for the component fields are
(Wa)T = —Wq, (B’a)T = B, (Pizk)T = Paik = Pa(iv)- 10 the
harmonic superspace, the constraints (2.8) read

Dtfw, =0, Dt*D w, =D*tDw, =0,

(D™D~ + D*D™)w, = 0. (2.19)

The transformation properties of the component fields in
the expansion (2.18) under A =4 supersymmetry are
given by

8w, = —&;Bl, +&B,;,
8.Bi, = ie'w, — & pk  5.By;

Sopik = =2i(eV By + 20BY).

e k
= TIEW, — E Pakis

(2.20)
As in (2.12), we can introduce the analytic prepotential

superfields W, ({,u) defined up to the proper gauge
transformations,

W, =W, =W, +Dt*A;~, A, =A;7(C.u). (2.21)
In the Wess-Zumino gauge, these superfields read
Wallou) = Wo(ta) =207 Bl (14)u; =207 Bi(t )u;

+ 39*5’+pgik)(tA)uju,:. (2.22)

The original superfield w,(z) is related to W, (¢, u) by the
transform

wo(t,60.0,) = /duW (t+2i0'0%u uiug, Ol 0l uf).
(2.23)

The constraints (2.17) emerge as a consequence of the
harmonic analyticity of W,: D™ W, = D™ W, = 0. The
superfields W, are expressed through the superfields w,, as

W,=w,+D"W,, (2.24)
where W,~ are some general Grassmann-odd harmonic
superfields, such that 6W;~ = A;~ with respect to the

gauge transformation (2.21). In what follows, we use the
relations

(DD~ =D™D7)w, = =2D"D*W_=. (2.25)
2. Multiplets (0,4,4) and (4,4,0)
The multiplet (0,4,4) is described by the fermionic

analytic superfield ¥, (¥™) =W¥:, A =1, 2, which
satisfies the constraint [22]

DA =0, (2.26)
The constraint (2.26) has the general solution
WA = Ayt + 0 FA + 07 FA = 2i070Ny A uy,  (2.27)

where component fields satisfy the reality conditions
(W) = —ys, (FY)" = F,. The doublet index A = 1, 2
is rotated by some Pauli-Giirsey group SU(2)p; commut-
ing with supersymmetry. The N' = 4 supersymmetry trans-
formations of the component fields have the form (see,
e.g., [29])

Syt = (e FA +8FY), 6P = 2ighyrf,

8,F = 2iegjrk . (2.28)

In the central basis, the constraint (2.26) and the analyticity
conditions DTYH4 = DTYHA = 0 imply

YA (7, u) =
DUWhA(7) =

Y (2)uf,
DUWhA(7) =0, (2.29)
where (P4)1 = —W,,.

The multiplets (4,4,0) are described by the bosonic
analytic superfields Zj4, (Z;4) = -2, A=1,2,a =1,
2, which satisfy the harmonic constraint [22]

D2 = . (2.30)

As a solution to this constraint, the superfields ZF4 have
the following component expansions:

Z+A — ZZAMJF +9+ﬂ.A —|—9+7TA 219+9+Z1A -

l El

(2.31)

where (7/4)" = z 4, (72)" = 4. The N' = 4 supersym-
metry transformations are realized on the component fields
as (see, e.g., [29])

58Z£1A =

—(e'nh +&'75),

567_1'HA = 2i8kZ§A-

Sl = 2iek A,
(2.32)
In the central basis, the constraint (2.30) and the analyticity
conditions D* Z4 = D* Z}4 = 0 imply
ZiMzou) = Z(2)u

DUz (2) = DUz (z) =0, (2.33)

where nonharmonic N = 4 superfields Z/4(z) are subject
to the reality conditions (Zi4)" = Z;,.
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3. Implicit N =4, d =1 supersymmetry
The extra implicit N' = 4 supersymmetry is realized on

the superfields v(z) and W*(z) by the transformations
[6,15]

) . 1 - _
551}:_5&4‘1’%’ 6§lPlA :Ef’é(Dle—Dle)U, (234)

where &4 = (£)* are fermionic parameters of the second
N =4 supersymmetry. In terms of the harmonic super-
fields V(¢,u) and W (¢, u), the transformations (2.34)
take the form [15]

8ev = EAWL — EHAP
5§T+A

8V = 2674

— DD (EAy + V), (2.35)

where &4 = g4y, The superfield transformations (2.34)

amount to the following ones for the component fields:

OV = ~&iay™, 5§(Pi = EAFy, Osp; = —EiaFA,
O:Aj = 2¢ iAl/'/f . Sep'™t = iEAV + iERATK,
8:F* = =2iglql, 8:Fy = 2iE . (2.36)

Thus, the N' =4 multiplets (1,4,3) and (0,4,4) in the
model under consideration together constitute the N' = 8
multiplet (1,8,7) [6,9,11,12].

Similar implicit N” = 4 supersymmetry transformations
can be defined for the N = 4 superfields w,(z) and Z(z).
In the conventional superspace, these read

. | o
Sewy =—Ein 2, 6§Z;A:§§Q(D’Dk—D’Dk)wa, (2.37)

whereas in harmonic space, the superfields W, (¢, u) and
ZFA(¢, u) transform as

Sew, = EAZD,
5:Z 4

- &z, oWV,
=D DT (&M w, + &M W;‘)-

=262,
(2.38)

For the component fields, these transformations amount to

5§Wa = _giAZZA’ 55351 = ‘fiA”aA’ 5§Bai = _gtAﬂa’
= 2igz8h, 5,2 = igihw, + EApik,
Semh = =2iELBL, St 0 = 2iEk B . (2.39)

In the next section, we construct the interaction of all of
these superfields, which will be invariant under the implicit
N = 4 supersymmetry.

III. A/ =8 INVARIANT COUPLING
As shown in [6,15], the action

1 1 [ (o
_E/ﬂHDzJFE/MEA Nt

is invariant with respect to the implicit N' = 4 supersym-
metry (2.34) and describes the free N = 8 multiplet
(1,8,7) in terms of N = 4 superfields.

Let us build the coupling of the multiplets » and ¥ to
the multiplets w,, a =1, 2 and Z4, a =1, 2. As the
guiding principle, we take the requirement of implicit
N =4 supersymmetry [(2.34) and (2.37)]. The natural
generalization of the second term in the action (1.1) is
the action with the analytic Lagrangian in45VZAZ /5,
where n4b are some constants. Then, the additional terms
needed to ensure the implicit ' = 4 supersymmetry (2 34)
must have the form im34W,Z4¥+E, where mgl, are
some constants. Thus, we start with the trial interaction
Lagrangian in the form

i/,uE4

Considering only variations 5:V, 6:)V, and using (2.35)
and (2.37), we obtain that the corresponding variation of
the action (3.2) is equal to

(3.1)

[nabVZHAZE + mibw, Z AP (3.2)

- 21'//1&‘_2)5(: [n4b, Z4A ZBYHC 4 b ZHC ZHApHB]
(3.3)

The quantities £; and &, are independent. Therefore, the
requirement that (3.3) vanishes amounts to the equations

( al} Z+ZZ+B)\P+1
+ (B ZFAZ5B + meb 252 2B )2 =0,
(mA2 Z“ Z*B)‘I”Z
n +m = .
( ABZ+A2+B AIZ+12+B)lII+l (3 4)

Since W*! and W*? are independent, these equations yield
the following restrictions on the constants:

ab
miy = 2nfy = me,perp, (3.5)

where m is a constant. Choosing m = 1/2, we have®

. -2
,/,»A>

Let us check the invariance of (3.6) under the implicit
N = 4 supersymmetry (2.34). Considering only variations

VZMZ3, + W25t -Whzi)¥i]. (3.6)

*The superfield action with other choices of the constant m is
obtained from the action (3.6) by the following scale trans-
formation: Z74 — (2m)'2Z, W, — (2m)'*W,.
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ozV, 6:WW, and using Eqs. (2.35) and (2.37), we obtain that
the corresponding variation of the action (3.6) is

. —2) o
21//454 ).f WP Z A 27 (eqpecp + €anepe + €acenp)
(3.7)

and it is identically zero. In addition, the nullifying of the
set of such terms requires the use of two supermultiplets w,
and two supermultiplets Z}4 in our construction.

Let us next consider the variation of superfields Z34,
P+ in the action (3.6).

Consider first the variation of the first term in (3.6) under
the transformation of Z}4 and the variation of the second
term under that of ¥4, Taking §;Z/* from (2.38) and

5:¥* from (2.35) and using the relation 5, = /154_2)D+D+
[see Eq. (2.7)] for the integration measures, we obtain

i/ﬂH WV(EAw) +EMWTT) 25, = V(E A w, +EMW;7) 2T,

W Z34=Wh Z) (Eo+E V). (3.8)

Now we make the following substitutions in (3.8):
V=v+D"tV~" [Eq. (2.15)] and W, =w, + DTTW,~
[Eq. (2.24)]. Half of the terms in the resulting expression
contain the superfield Z;, while the other half contains
Z34. Those terms in (3.8) that involve the superfield Z;4
are collected as

j / i[(E MWy + EAWT) (0 + DY V) 2,

+ (EAv+ EAVT)(wy + DTTWTT) 25, (3.9)
Making in (3.9) the substitutions &4 = D¥FE4 and
integrating by parts with respect to D™, we find that
the only surviving term is

—2i / ppow EAZT

It can be rewritten as

—l.///lH’UW15§W2 = —i/ﬂHUW1(5§W2 +D++5§W5_)

= —i/,quwléfwz. (3.10)
In a similar way, we can show that the terms in (3.8) that
contain the superfield 2| are reduced to —i [ pz,v(8:w))wy.
Thus, the total variation (3.8) finally proves to be equal
to —i [ ppv8:(wiwy).

It remains to take into account the variation of the second
term in (3.6) under the transformations 6§ZjA. Using

Eq. (2.38) for 6§Zj{A, we find that this variation takes
the form

i/MH[Wl(f_sz + EMAWE )Py

—Wh(EAwy + EMWTT Y], (3.11)
where we made use of the relation yyy = ,ui\_z)DJrl_)+ [see
Eq. (2.7)] for the integration measures. Substituting the
expressions W, = w, + D™TW,~ [Eq. (2.24)] here, using
the conditions D*+W¥*4 = 0 [Eq. (2.27)], and representing
EHA = DtHEA] we find that, modulo a total harmonic
derivative in the integrand, the expression (3.11) is
reduced to

—2i/ﬂH(«f—A‘PXL)W1W2 = —i/HH(CSg“V)Wle
:—i/ﬂH((ng)WIW} (312)

In deriving (3.12), we used that V=v+ D V=
[Eq. (2.15)], 6:V = 6:v + D**6,V~", and omitted a total
harmonic derivative thanks to the condition D™*w, =0
[Eq. (2.19)].

Thus, the total variation of the action (3.6) under the
implicit N' = 4 supersymmetry is reduced to

—i/,uH(Sé(vwlwz). (3.13)

As a result, the sum of the action (3.6) and the action

i/ﬂH””’le

is invariant with respect to the implicit N' = 4 supersym-
metry [(2.34) and (2.37)].

Thus, we have obtained the A/ =8 supersymmetry-
invariant action, which is the sum of the actions (3.1), (3.6),
and (3.14),

(3.14)

1 1 _ j
S:—Z/MHvz+2/”E42)\P+A\PX+;€ub/[/{HUWaWb

—l—%eab / W VEAZS oW, 200 (3.15)

Let us demonstrate that the action (3.15) is a generali-
zation of the action (1.1) to the case of two semidynamic
multiplets Z}4. Introducing the superfields Z*4 and Y4
by the relations

ZA =7 +i(o3)A YT,

ZiA =Y —i(03)" 3275, (3.16)
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we obtain

ZTAZ;A = _iZMZJrB(%)AB - iy+AY+B(63)AB’ (3-17)
where (63),5 = (03)(ap) = €ac(03)p. Thus, in the limit
Y+t4 =0, ¥ =0, w, = 0, the action (3.15) is reduced to

|

1 i 2 1]
S = —5 Hul U — Eeabwawb ‘|‘§
LA (v L wom, ezt 2z
+§ Hy 5 €aWValVp |€caze” 2y

The final action (3.18) contains the scalar composite super-
field v — %eabwa w;,, the scalar composite analytic superfield
V—3€uW, W)y, the analytic composite superfields
YA e, W, 2, and the analytic superfields Z}4. It
is worth pointing out that, although the superfield ¥V and
superfields WV, are prepotentials for the superfields v and w,,
respectively, the composite superfield V — %eabWqu is by

|

i i
V== €pWoWp, = <V — —€WaWp

the action (1.1) with cp = (63)45. Of course, when
performing the transition Z 4 — (Zt4,Y™) [(3.16)],
the Pauli-Giirsey SU(2) symmetry acting on the capital
indices A, B gets broken.

The superfield action (3.15) can be cast in a more
suggestive form,

/MELl_Z) (lP+A + iGabVVaZIJ;A)(‘P;\r + iechcZ:!rA)

(3.18)

[
no means a prepotential for the composite superfield

v—1

) EapWaWp.

IV. COMPONENT FORM OF THE N =8 ACTION

The superfields entering the action (3.18) have the
following component expansions:

) + 0,(¢" + ic,yW,Bl) + 0:(p" + i€y W, B})

2 2
Lo i LA hin 0D TAk ik i pk
+ Z (9) eabBaBbi - Z (9) €abBaBbi + leiek[A - €ab(wapb + BaBb>]
i . P e
3 (0)20:(¢" + €ap(iWaB), + Bupy)] = 3 (0)260,[%" + €ap(iw,B), + Bupiy)]
1 — i . - -
+ 4 (9)2<9)2 {V — i€,pW W), — §€ab,02k,0bik + €ap(BuBpi — BuBy;) | s (4.1)
Y — %eabWaWb = (v - %eabwawb) = 20" (¢~ + ieyW,By ) — 207 (p~ + i€y W, B})
+ 010" (3A™" = e, Wap;~ — € B7B}), (4.2)
WA Lie W 24 = (WA + iegwazf?)
+ O [FA + degy(worh + 225 By)] + 0T [FA + ey (Woith + 225 B3)]
_ 3 _
—2i0+6" [zj/—A + € <iwaz;A - Ep;_zz'A - B ) — B;n‘,‘})} ) (4.3)
Inserting (4.1) into the first term of (3.18), we see that o R
this term gives rise to the following component action: di(X X —i€ X W, W), (4.4)
o A~ . .. where
dt(—vV + iVW Wy + IVW{ Wy + IVW{W,).
: (4.5)

Up to a total derivative, this action equals

X:=V—= Eeabwawb'
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Thus, the model under consideration contains two fer-
mionic fields w,(¢), a =1, 2, with the second-order

Lagrangians for them.
We shall try to bring the action (3.18) to a form in
which it only depends on w,(¢). By performing the
|

“oxidation procedure” [4,25,30], in which the quantities
w, (1) are replaced by new auxiliary variables, we get
rid of second-order terms in the derivatives of fermionic
fields.

In terms of the new variables (4.5) and

¢i = (pi + ieabwaBé;’ q_ﬁi = @i + ieabwaB;;’ C* = A% — eabwap;;k’ (46)
7=yt e, w, i, GA i= FA — e yW,ml, G = FA — e yW, 7, (4.7)
the component off-shell expansions of the superfields (4.1), (4.2), and (4.3) are written as
i N ) I - - o -
V=S CapWaWp =X + 0:¢' +0,0' + 1 (0)%€q,BiBy; — 1 (0)*€qBLBy; + 10,0,[C™* — e, B}, B}]
i S i e i i - i D = i
- 5 (9)291 [¢l + eab(lBilwb + Bakpbk)] - 5 (9)291 [¢ + eab(lBawb + Bakpbk)]
1 - i . - L
Ty (0)*(0)? [X + i€y W Wy — §€ab,051kﬂbik + €up(BuBpi — BZBbi)] ; (4.8)
V- %eabWaWb = X =20t — 207 ¢ + 070 (3C — de,, BB, (4.9)
P i W, 2 =y + 01 (GA + 2ie, 25 By) + 01(GA + 2ie,, 254 By)
_ 3 _
—2i0t0* [;(—A — €, (iv’vaz;A + Epa“z,fA + B ) + B;n/,j)] : (4.10)
In the expansions of the superfields (4.8), (4.9), (4.10), the S f{j’ = gki’wa &, Sk = —Digil fa /]g, (4.14)

derivatives w, () are present, but no fermionic fields w,(7)
appear on their own. Therefore, the component action
contains only w,(¢), which can be replaced [4,25,30] by
new fields,

Calt) =Wy (1). (4.11)

In terms of these variables, the N =4 supersymmetry
transformation (2.20) takes the form

5s§a = _81'B£1 + éiéah
5832 = iéiCa - Ekp]t;iv

— k
5£Bai - _lgié/a — & Pakis

S.pik = —2i(elBY) + 2By, (4.12)

After combining Bi, Bi, ¢,, pi¥ into the new fields

fa i:’ = (fa i:/:lvfa E/:Z) = (BZ’B;)v

waik = lé:aé{{ + paikv (413)

the transformations (4.12) are rewritten as

where the infinitesimal parameters &', & are joined into the
SU, (2) x SUg(2) bispinor &'': e/ = (¢! £"=2) = (¢, &").
The indices i = 1, 2 and i’ = 1, 2 are acted upon by the
SU; (2) and SUg(2) groups, respectively, which form the
automorphism group SO(4) of the A = 4 superalgebra. For
each value of the index a = 1, 2, the bosonic d = 1 fields
fa f, and fermionic d = 1 fields wi* are exactly component
fields of the semidynamical (4,4,0) mirror (or twisted)
multiplet, which is described by the superfield g+ in the
biharmonic space [see Eq. (4.7) in [31] and Appendix]. The
transformations (4.14) are similar to the transformations
(2.32). But, the Pauli-Giirsey group acting on the index A’
of the mirror multiplet g™’ in the present case was chosen
to coincide with the SU; (2) group acting on the index i of
the original d = 1 fields. Thus, after the oxidation pro-
cedure, two fermionic (1,4, 3) multiplets with noncanoni-
cal kinetic terms for fermions transform into two
semidynamical (4,4,0) mirror multiplets with auxiliary
fermions. The superfield meaning of the mutual conversion
of different usual and mirror N =4 multiplets was
clarified in [26].
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It is important that the N =4 supersymmetry trans-
formations of the variables (4.5), (4.6), and (4.7) are
expressed only through new variables:

6.x = —g,pF + ey, (4.15)
5.0 = iE'% — 7, (CY + €, BXBL) +%e"eab3ak3’g, (4.16)
s¢l lé‘ X—ie (th abBakai) +%8i€abBakB]1§7 (417)

5.C = —2(eligh) 1 8!y — 2ie,, ¢, (B} + E0BY)

+ ean(€;B), + B} )i (4.18)
8oy =—€'G*—&'G* —igre,, Biz) —iEe,BizZ) . (4.19)
5.GH = 2ie i} + 2 e Lty + ieeas Bim)

+ iékeabBﬁﬂA, (420)
5,G* = i + 2eenCazt® + ievea, BT

+ iékeabB];]_T?. (421)

The full set of transformations of the new variables also
includes the explicit N' = 4 supersymmetry transforma-
tions 8,24, 8,74, 5,7,4 given in (2.32).

On the other hand, the implicit N/ = 4 supersymmetry
transformations (2.39) involving the variables (4.5), (4.6),
and (4.7) are of the form

5:G
5:G

= _2l§1]?¢k - 25 Eabz:a b + létBeabZa 7[2
b»

— 2B — 288 e LBl + iEipe 2 BRY,  (4.26)

and they also contain only new variables. The remaining
variations 8;B,, 5:B,;, 5:pX, 5:mh, 8¢7,4 from the complete
set of transformations of new variables with respect to the
implicit N' = 4 supersymmetry are presented in (2.39).

Thus, the transformations of all new variables
(4.12)—(4.26) with respect to both explicit and implicit
N = 4 supersymmetries are expressed only in terms of the
new variables. Therefore, the Lagrangian written in terms
of new variables, involving (4.11), is invariant under the
total A/ = 8 supersymmetry.

Using the component expansions (2.31), (4.9), and
(4.10), we obtain

Jd 0
0+60+[(T+A+l€abw ZIN (YL +ie WV 20

. . R - =
:—4[){+A |:)(A—€ab<lCaZhA+§,0a ZI;LA+BaﬂbA+BaﬂbA):|
+2(G*+2ie,,25 By ) (Gy +2ieqzty B), (4.27)

Jd o0 i
aé—Jraoﬁ |:(V _Eeabwawb) €chjAZj1_A:|

= —2x€,p(2izf 2y + TaTpa) +4€apZa N (P Tpa — P Tpa)

5ex =~y +i€apzdAzy, (3C —4e 4Bz B7). (4.28)
= &0,
A _ agidg | gA ik kB iA
Oey'™™ = i8"X + i&LC™ + Erpeupa 2y » (4.22) Taking into account (4.8), (4.27), and (4.28) and perform-
. ing integration over the Grassmann coordinates [we
blu=—Endl. Bt = iEAC, +iklpt. (423
: A : @ ekl 42 e [ (02 (02K (1) =4 [dtK (1), [uV0M N (1) =
5,Ck = 2§(i)~(k)A _ 2i§<ie W Ay Epenipl,  (4.24) [ di4N(14)], as well as over harmonics, we derive the off-
A ATavath e b shell component Lagrangian L(¢) corresponding to the
B = EAG — igpeat B, action S = [ drL(t), defined in (3.18).
. i ) A B This Lagrangian has a somewhat cumbersome form
et = &Gy — iGra€apa” By (4.25)  pecause of the large number of terms present in it:
|
L = XX + Xeap (25 2pia + BiByi — BiByi) — iy Jia — i + idh' i — ixeanCuly — €an(iBly — §iBly — ¥ 241a)C
i . _ o , o
+ 2X€abPa Poik + 1€ap ("B = B'BY + 12k ) pvir — iX€ap a7y + €00 Buiftps — i€apmox'y B
1 _ 1 _ o
5 +5(C*~ €abB£lB ))(C — €.aB.iBy) — 2€abZ2AZI;§ACik + G Gy + iG e 2y Byi + i€ap Ty ByiGa
1 - . — = 2 i kA - i KA —
+ 4_1( €asBuByi)” — ZeabBthiQdBf-Bdk - geahZE;lAZh) €caBeiBak + §€ab€cd25fAZo) BB .- (4.29)
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In (4.29) the bosonic fields C*, GA, G* as well as the fermionic fields p¥, 74, 7,4, {, are auxiliary. After eliminating these
auxiliary fields by their equations of motion, we obtain the following on-shell Lagrangian:

L = XX + X€4, (224 + BiBy; — BiBy) — ixyia — i + id' s

2xX

1

*a 4
1

6 3

As follows from the Lagrangian (4.30), the bosonic
variable x and fermionic variables y'*, ¢, are dynamical,
while the bosonic variables z/4, B, B have the kinetic
terms of the first order in 0, and so are semidynamical.

Thus, under A = 8 supersymmetrization, we deal with
the A/ = 4 system which involves on the mass shell one
dynamical bosonic field x, two semidynamical bosonic fields
7, and additional dynamical fermionic fields y** and
semidynamical bosonic fields B, B'. It follows from the
transformations of the implicit N' = 4 supersymmetry given
above that the bosonic (4,4, 0) multiplets, the standard one
(z4,74) and the mirror one (B;,Bﬂ,,é‘a,p,(fk)), are trans-
formed through each other and so together constitute the
multiplet (8,8,0) of AV = 8 supersymmetry [6], while the
remaining fields (as already mentioned) fit well in a kind of
(1,8,7) multiplet [6,9,11,12].

V. CONCLUDING REMARKS

In this paper, we have presented the A/ =8 super-
symmetric model with dynamical and semidynamical
d =1 fields. The initial “trial” model (3.18) was composed
from the dynamical NV = 4 multiplet (1,4, 3) (the super-
field v), two semidynamical bosonic multiplets (4,4,0)
(the superfields Z4), and their partners with respect to the
implicit A/ = 4 supersymmetry (the superfields ¥*4 and
w,, respectively). The latter multiplets have the opposite
Grassmann parity compared with the former ones.

The NV = 8 model constructed describes a system with the
kinetic term of the second order in the “velocities” of
fermionic fields belonging to w,. To getrid of this drawback,
we carried out the oxidation procedure, which amounts to
replacing the derivatives of fermionic fields with new
auxiliary fields [4,25]. We have shown that, after passing
to some suitable new variables, such a procedure works
perfectly well for our system. As a result of this procedure,
we obtained the new N = 8 supersymmetric system (4.30).

On the mass shell, the obtained N/ = 8 invariant model
(4.30) describes one dynamical bosonic field x and eight
real fermionic dynamical fields ¢', ¢, ™, as well as three
sets of semidynamical bosonic SU(2)-doublet fields z4,
B!, B..

(i kA n o 4 (i WAp 7 : KA T
—€apZapZy €caBeiBak t 5 €an€caZonzc” BpiBak — €apZuaBri€cazc” Bak-

i - - . - _ i . _
- —Gab(f/”Blé - 4’13]2 +Z’AZ§A)(¢iBbk — ¢iBpi +Z?Zbk3) - ;%b)(mBaiZ/]ngk

- 1 ) _— 1 i
2 k (i KA B
<€abBéBbi) — —€u,ByBpi€caBcB gk — o €ablaalp €cdZciBZgk

8
(4.30)

Surely, the A =8 superfield system (3.18) and the
N = 8 supersymmetric component system (4.30) are not
equivalent to each other, because the directly applied
oxidation does not preserve the canonical structure of
the model. We obtained the N = 8 supersymmetric system
(4.30) only at the component level. Rederiving this system
at the complete superfield level is the next interesting task.
A clue to this construction might be the fact that the fields
in the action (4.30) naturally fall into a set of one dynamical
N = 8 multiplet (1,8,7) and one semidynamical N = 8
multiplet (8, 8, 0). When constructing the superfield action,
it may also be necessary to involve some extra auxiliary
supermultiplets. A hint for constructing the self-consistent
superfield formulation is the observation that the trans-
formations (4.12) can be identified with the transforma-
tions (4.14) of the component fields of two semidynamical
mirror (or twisted) (4,4, 0) multiplets. In the Appendix, we
demonstrate that such a multiplet has the natural descrip-
tion in the framework of the N =4,d = 1 biharmonic
superfield formalism developed in [26,31]. Capitalizing
on this property, we conjecture that the self-consistent
superfield formulation of our system can be achieved
within such a biharmonic approach.3

Another prospective task in the further development of
the constructed model is to work out the N/ = 8 covariant
procedure of gauging isometries in systems of this type.
The N =4 supersymmetric gauging procedure [28]
proved to be an important tool for the construction of
N = 4 supersymmetric generalizations of integrable many-
particle systems of the Calogero type [20]. Being gener-
alized to the N/ = 8 case, it would hopefully provide an
opportunity to find new N = 8 supersymmetric extensions
of these notorious systems.

*It is worth noting that the set of fields of all eventual (4,4, 0)
multiplets is closed under both manifest and implicit N = 4
supersymmetries, while the remaining fields are transformed
through both themselves and fields of (4,4, 0) multiplets. This
indicates that in the present case we are dealing with some not
fully reducible representation of A/ = 8 supersymmetry and the
constraints on N = 4 superfields belonging to the (1, 8, 7) subset
should be nonlinear and properly include the (4, 4, 0) superfields.
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APPENDIX: (4,4,0) MULTIPLETS
IN BIHARMONIC SUPERSPACE

The automorphism group of the N'=4,d = 1 super-
symmetry algebra is the SO(4) = SU, (2) x SU, (2) group.
Throughout our article, the group SU; (2) is implemented
explicitly on the doublet SU, (2) indices i = 1, 2. The
harmonics uF are only associated with this group. At the
same time, the group SUg(2) is implicit, but there exists a
formulation in which both SU; (2) and SUg(2) symmetries
are explicit. Such a description is achieved in N =4
biharmonic superspace [31], which well suits describing
models where both A" = 4 ordinary and mirror multiplets
participate.

In such a description, the odd superspace coordinates
0, 0', which are SU,(2) doublets, are added to the
SU,(2) x SUg(2) quartet 67: (0',0")=(67=",0"=2),
where i =1, 2 and i =1, 2 are doublet indices of
SU,(2) and SUg(2), respectively.

In the biharmonic formulation, in addition to the har-
monics uF € SU,(2)/U(1) (2.2), additional commuting
harmonic variables v € SUg(2)/U(1) are introduced,
with the defining relations

vi, (of) =0,

=
vy =1 (A1)
In the central basis, N' = 4, d = 1 biharmonic superspace
is parametrized by the coordinates (,0", u7", v7). In this
superspace, we define the harmonic projections of 6% as
ei,:t — Qii/u;tvi

i’

Pl
0= = 0 uFoT

(A2)

Given this, one of two analytical bases in the biharmonic
superspace can be defined: either with the coordinates

(2o uf, v3), 2, = (o, 605, 657),
t,=t—i(0"T0-" +6-T07) (A3)
or with
(z, uf, v7), = (1_,05% 657),
t=t—i(00 — gt (Ad)

Note that 7, coincides with the coordinate ¢4 introduced
in 2.3): t, =ty

In the analytic bases (A3) and (A4), half of the N = 4
covariant spinor derivatives become short. This is a
reflection of the fact that the spaces (A3) and (A4) contain
the N =4 invariant subspaces with half of the initial

Grassmann coordinates. Namely, the analytic superspace
parametrized by supercoordinates

(o= ”ii’ 7)?’[)9 {y=(t,007,077) (A5)

is closed under the full N' =4 supersymmetry. Another
analytic superspace,

CouEvE), L= (.075.07%),  (A6)
is also closed.

The ordinary (4,4, 0) supermultiplet is described by the
superfield ¢(®)4(¢ ., u, v) living in the analytic superspace
(AS5), while a mirror multiplet is represented by a superfield
q P4 (£_, u, v) defined on the analytic superspace (A6).
Here, the indices A and A’ are transformed by two Pauli-
Giirsey groups, which are generically different. These
superfields are subject only to the harmonic conditions:

D++,0q(+,0)A — D0,++q(+,0)A =0,

D++,0q(0,+)A’ _ D0.++q(0.+)A’ =0, (A7)

where D9 and D%+ are the harmonic derivatives
0t = ufo/ou; and **" = v 9/dv; rewritten in the
analytic bases (A3) and (A4), respectively [see Eq. (2.6)].
Solving the conditions (A7) yields the component expan-
sions of the superfields ¢(*94 and ¢(+94'. The ordinary
(4,4,0) supermultiplet is described by the superfield

gONE, ) = A1t + 0 () v
-0t (1 vy

—2i070" 0, My, (A8)

while the mirror multiplet is described by the superfield

GO () = F )0 0o (1

!
—gtt A (t_ ) uy

—2i0tF 010, "N v (A9)
The expansion (2.31) for the superfield Z; at an arbitrary
value of a = 1, 2 coincides with the expansion (AS8) for
the superfield ¢(+94 after the following identification of
the component fields: 7/4 = (/=" z'=24) = (z*,7*). The
mirror (4, 4, 0) multiplets correspond to identifying the index
A’ in (A9) with the SU(2), index j. The linear off-shell
transformations of the explicit ' = 4 supersymmetry on the
component fields can be easily obtained from the standard
superfield transformations.”

More details on A/ = 4 supermultiplets in biharmonic
superspace can be found in [31].

“The realizations of implicit N' = 4 supersymmetry linearly
mixing both (4, 4,0) superfields can also be easily defined [31].
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