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In this paper we parallel the construction of Tong of a gauge theory for shallow water, by writing a gauge
theory for the Euler fluid in 2þ 1 dimensions. We then extend it to a Euler fluid coupled to an
electromagnetic background. We argue that the gauge theory formulation provides a topological argument
for the quantization of 2þ 1 dimensional Euler Hopfion solution. In the process, we find a (nongauge)
action for the Euler fluid that can be extended to any dimension, including the physical 3þ 1 dimensions.
We also discuss several aspects of the Arnold-Beltrami-Childress flow.
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I. INTRODUCTION

In a very interesting paper [1], Tong rewrote the shallow
water equations, with variables: 2þ 1 dimensional velocity
u⃗ðx; y; tÞ and height hðx; y; tÞ, in terms of a gauge theory.1

In the case of linearized theory, one obtains a Maxwell-
Chern-Simons theory, which is known to have boundary
chiral modes, that are now identified with the coastal
Kelvin waves of the shallow water equations, giving them
a topological reason. An action for the shallow water and
the equivalent gauge theory is also obtained. He also
suggests that a similar analysis could be made for Euler
fluids with equation of state P ¼ Cργ [so barotropic,
P ¼ PðρÞ], though that is not done.
In this paper, we show that indeed, similar to the

construction in [1], one can rewrite the 2þ 1 dimensional
Euler fluids as a gauge theory. For that purpose we map the
magnetic field B to the density of the fluid ρ, instead of
the height function, and find that the magnetic term in the
action is linear, and not quadratic in B. The resulting action
describes fluids, not necessarily barotropic, such as to
include the case of the 2þ 1 dimensional fluid Hopfion
with constant ρ, but nontrivial P, considered in [3,4]. We

also consider the case of Euler fluids coupled to electro-
magnetism, as considered by Abanov and Wiegmann [5]
and for which nontrivial a Hopfion solution was found
in [6]. The quantization of the Hopfion solution will then be
related to the quantization of the Chern-Simons level.
In the process, we write an action principle for the Euler

fluid, which generalizes to any dimension, though only in
2þ 1 dimensions is rewritten as a gauge theory.2 Writing
an effective action for an Euler fluid was considered before
in quantum field theory formalisms, starting with [8] (based
on AdS/CFT holographic arguments), and various con-
structions were attempted in [9–13] (see also other refer-
ences therein), but here the action principle is based simply
on the fluid variables. We also briefly discuss several
aspects of the Arnold-Beltrami-Childress (ABC) flow. In
particular, we review its Clebsh formulation, and for a
special case of the ABC flow, we map it to electric and
magnetic fields, which we also write in terms of the
Bateman construction.
The paper is organized as follows. In Sec. II we put the

Euler fluid in gauge theory form, and we also compare the
energy-momentum tensors of the fluid and gauge forms. In
Sec. III we couple the system to electromagnetism, and find
that this is very natural in the gauge picture. As a further
application, we also couple the shallow water equations to
electromagnetism, and write it in the gauge picture. In
Sec. IV we describe the main application of the gauge
theory picture, describing the Euler fluid Hopfions as
topological modes in the gauge theory. In Sec. V we first
write an action for the Euler fluid in any dimension, and
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1The gauge formulation was found to be related to a
2-dimensional area preserving diffeomorphisms in [2].

2The action is in fact equivalent to an action written in [7], as
we became aware after the paper was first posted on the arXiv.
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then write a gauge theory form for it, and we consider the
ABC flow, and present its Clebsh parametrization and a
gauge field representation. We conclude in Sec. VI.

II. EULER FLUID IN GAUGE THEORY FORM

We consider the 2þ 1 dimensional Euler (nondissipa-
tive) fluids, with the following variables: the flow velocity
u⃗ðx; y; tÞ, the fluid density ρðx; y; tÞ, and the pressure
Pðx; y; tÞ. The well-known equations of motion are

∂tρþ ∇! · ðρu⃗Þ ¼ 0;

ρ∂tui þ ∂iPþ ρðu⃗ · ∇!Þui ¼ 0 ⇔ ρ
Du⃗
Dt

¼ −∇!P; ð2:1Þ

where we have defined the “covariant derivative,”

D
Dt

¼ ∂t þ u⃗ · ∇!: ð2:2Þ

We then define the chemical potential μ, as usual, by

dP
ρ

¼ dμ
m

: ð2:3Þ

It would seem like we need a barotropic fluid, P ¼ PðρÞ,
in order to integrate the relation and find μ, but actually, we
see that the other case of interest for us, nontrivial P and ρ
constant, is also included in it. In general then, all we need
is to be able to integrate dP=ρ.
We note that in the appendix of [1] it was stated that we

could consider the barotropic Euler fluid with P ¼ Cργ , in
which case, in the action below (2.5), we would replace the
term with B∂0μ̃ by a term with Bγ−1. However, one of the
reasons we consider our gauge theory action for the Euler
fluid is that we want to obtain a topological gauge
description for the fluid Hopfion (just like Tong obtained
a topological gauge description for the coastal Kelvin
waves), and for the Hopfion P as a function of space,
but ρ is constant.
Further, we define μ̃ by

∂0μ̃ ¼ μ

m
; ð2:4Þ

which is introduced because we want to make μ̃ a variable
in the action, and by partial integration its equation of
motion is ∂0 on what it multiplies equals zero, rather than
just what it multiplies equals zero.
The result of this is that the μ̃ equation of motion will

enforce ∂0B ¼ 0, so ∂0ρ ¼ 0 (density constant in time), and

by the continuity equation this also means ∇! · ðρu⃗Þ ¼ 0.
We could find no way to avoid such a restriction, so we
obtain a gauge description of the Euler fluid only in
this case.

We then write the gauge theory action for the fluid

S ¼
Z

dt
Z

d2x

�
E⃗2

2B
− B∂0μ̃ − ϵμνρAμ∂νÃρ

�
; ð2:5Þ

where E⃗; B is the gauge field strength that describes the
fluid (note that, since u⃗; ρ are observables, they could only
be related to field strengths, not to gauge fields themselves),
via the definition

B ¼ ρ; Ei ¼ ϵijρuj; ð2:6Þ

and Ãμ is an auxiliary gauge field, defined through the
usual Clebsch parametrization as3

Ãμ ¼ ∂μχ þ β∂μα; ð2:7Þ

with α, β, χ real functions that are considered the actual
variables (instead of Ãμ).
The action in terms of these variables reads

S ¼
Z

dt
Z

d2x

�
E⃗2

2B
− B∂0μ̃ − ϵμνρAμ∂νðβ∂ραÞ

�
; ð2:8Þ

Thus, in fact, χ does not show up in action.
This action is manifestly not Lorentz invariant and

instead it is invariant under rotation transformations, and
space-time translations. Due to the CS term the action is
also not invariant under parity and time-reversal trans-
formations. It is obviously also invariant under gauge trans-
formation of Aμ → Aμ þ ∂μλ assuming that ϵμνρλ∂νÃρ

vanishes on the boundary of space-time, and separately
under gauge transformations of Ãμ.
A comparison between this action and the one used

in [1]4 reveals the following differences: (i) here we have a
term linear in B whereas in [1] it is quadratic; (ii) in the
latter there is a term linear in A0 that couples to the Coriolis
parameter that our action lacks. We have not introduced this
term, since it is not present in (exactly) 2þ 1 dimensional
Euler fluids, only in the shallow water fluids (2þ 1
dimensional velocity, but also height of the water, however
small). Formally, we could consider such a term without
worrying about where it comes from, just an fϵijuj on the
right-hand side of Dui

Dt , and then, like for [1], this would give
an fA0 term in the action. But this is implicitly added in the
next section, where we couple to external electromagnetic

3The Clebsch parametrization in the case of fluids was
described in gauge theory language in [14], which also discusses
anomalies. In [15], the group theory version was used to construct
various topological terms.

4In [16], the fluid equations of [15] were also found to be
equivalent to a Chern-Simons action, using a Clebsch para-
metrization for the gauge field.
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fields E⃗e; Be: we just need to shift the external magnetic
field as

e
m
Be →

e
m
Be þ f; ð2:9Þ

and we obtain the desired term.
Next we consider the equations of motion associated

with the variations of Aρ, μ̃, χ, α, and β. We see now that the
μ̃ equation of motion gives

∂0B ¼ ∂0ρ ¼ 0 ⇒ B ¼ constantðtÞ; ð2:10Þ

instead of just B ¼ ρ ¼ 0 in the case we wrote simply μ=m
and not ∂0μ̃ in the action, which would have made it a trivial
fluid. As it is though, the action only describes time-
independent densities ρ, but that is enough for our
purposes.5

Then, first we see that χ is a pure gauge, so it has no
equation of motion, whereas the equations of motion of β
and α are

Bα̇þ ϵijEi∂jα ¼ 0; Bβ̇ þ ϵijEi∂jβ ¼ 0; ð2:11Þ

and then defining Ẽi and B̃ as the “electric” and “magnetic”
fields of Ãμ, such that for instance

Ẽi ¼ β̇∂iα − ð∂iβÞα̇; ð2:12Þ

from the above α and β equations of motion we get

Ẽi ¼
Ei

B
B̃: ð2:13Þ

Then the Gauss constraint, i.e., the A0 equation of
motion, gives

∂i

�
Ei

B

�
¼ B̃; ð2:14Þ

and, considering that Ei=B ¼ ϵijuj and that ∂iðϵijujÞ≡ ω
is the 2þ 1 dimensional vorticity, replacing in the above
equation of motion we get

Ẽi ¼ ϵijujω: ð2:15Þ

The Bianchi identity for the gauge field Aμ is

ϵμνρ∂μð∂νAρÞ ¼ 0; ð2:16Þ

and it becomes

∂0Bþ ϵijð∂iEjÞ ¼ 0 ⇒ ∂0ρþ ∂iðρuiÞ ¼ 0; ð2:17Þ

i.e., the continuity equation. Since from the equation of
motion of μ̃, ∂0ρ ¼ 0, it implies that the action describes
flows for which

∇! · ðρu⃗Þ ¼ 0: ð2:18Þ

Finally, the Euler equation appears from the Ai equation
of motion of the action, combined with the relation Ẽi ¼
ϵijujω, obtained previously. Indeed, the Ai equation is

∂0

�
Ei

B

�
þ 1

2
ϵij∂j

�
E⃗2

B2

�
þ ϵij∂jμ=m − ϵijẼj ¼ 0; ð2:19Þ

which translates into

∂0ðϵijujÞ þ
1

2
ϵij∂jðu⃗2Þ þ ϵij

∂jP

ρ
¼ ϵijẼj ¼ −uiω; ð2:20Þ

and it is easy to see that, by multiplying the equation by ϵki,
the left-hand side, minus the term on the right-hand side,
becomes equal to

−∂tðukÞ − uj∂juk − ∂kP ¼ 0; ð2:21Þ

i.e., the Euler equation.
An interesting observation is that, taking ∂i on the Ai

equation of motion (2.19), and using (2.14), we obtain

∂0∂i

�
Ei

B

�
¼ ∂0B̃ ¼ ϵij∂iẼj; ð2:22Þ

which is a Maxwell equation in 2þ 1 dimensions for Ãμ.

A. The energy-momentum tensor

For the calculation of Tμν, the CS term does not count (it
is independent of the metric), so consider the action

Ŝ ¼
Z

dt
Z

d2x

�
E⃗2

2B
− B∂0μ̃

�
: ð2:23Þ

We will consider the Belinfante energy-momentum
tensor. In general, we first couple to a metric, and then write

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LÞ
δgμν

¼ −2
δL
δgμν

þ gμνL: ð2:24Þ

First, we need to understand the fluid system better, to
understand what we will be comparing against. For a fluid,
we have

Tμν ¼ ρuμuν þ Pðημν þ uμuνÞ; ð2:25Þ
5Note that [2] consider a term BP in the Lagrangian for their

shallow water action, but that is necessarily an external pressure
field, not a dynamical one as we take here.
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where, however, ρ refers to the comoving (in the local
center of mass of the fluid) total energy density, so is really

ρ → ρ0 ¼ m0n0 ¼ m0

dN
dV0

; ð2:26Þ

where m0 is the rest mass of the fluid particle, and dV0 is
the volume element in the center-of-mass system, related
to the moving frame by dV0 ¼ γdV. In a nonrelativistic
approximation, u0 ¼ γ, so u0 ≃ −1 − v2=2, and ui ¼ γvi,
so ui ≃ vi. Then, in the moving frame,

T00 ¼ γ2ρ ≃ ρþ ρv2; T0i ≃ −ρvi;

Tij ≃ ρvivj þ Pδij; ð2:27Þ

and ρ really refers to ρ0. The energy of the fluid is then

E ¼
Z

dVγ2ρ ¼ γ

Z
dV0ρ ≃

Z
dV0

�
ρþ ρ

v2

2

�
: ð2:28Þ

However, to this restþ kinetic energy of the fluid parti-
cles we can add the subleading term of the potential
energy

R
dV0P.

In the nonrelativistic approximation, the total energy
contains the term with the rest energy density ρ, and we
integrate over the rest volume, as well as the kinetic energy
density. With the map Ei ¼ ϵjiρvj, B ¼ ρ, the action Ŝ
above contains only the kinetic energy density (thus
omitting the rest mass energy), minus a potential term
which, for constant ρ, is just PdV0. The rest mass energy is
neglected since we consider the case ∂tρ ¼ 0.
The continuity equation and the Euler equation appear,

as usual, from the 0 and i components of ∂μTμν ¼ 0 for the
fluid, respectively (after we use the 0 component in the i
component also). The difference now is that ∂tρ ¼ 0 and,
instead, we keep just the subleading term with ∂tðρv2=2Þ, in
the 0 component.
To construct Tμν from the action Ŝ, we couple to the

metric as follows. First, since −Ei ¼ F0i and Fij ¼ ϵijB,
ϵ12 ¼ þ1, and we keep these relations even in the case of a
nontrivial metric, we write

E⃗2 ¼ −F0iF0i ¼ −F0iFμνg0μgiν

¼ −
�
F0iF0jg00gij þ F0jFikg0igjk

�
;

2B ¼ gikgklϵjlFik; ð2:29Þ

and we obtain

T00 ¼ −
2ffiffiffiffiffiffi−gp δŜ

δg00
¼ 2E⃗2

2B
−
�
E⃗2

2B
− B∂0μ̃

�

¼ E⃗2

2B
þ B∂0μ̃ ↔ ρ

v⃗2

2
þ ρ∂0μ̃: ð2:30Þ

The T0i components are obtained from the Lagrangian
density term

L ¼ −
�
g0jgikF0iFjk

2B

�
þ � � � ; ð2:31Þ

so we obtain

T0i ¼ −2
δL
δg0i

¼ −ϵijEj ↔ −ρvi: ð2:32Þ

The Tij components are obtained by varying both the E⃗2

terms and the B terms with respect to gij, so

Tij ¼ −
2ffiffiffi
g

p δŜ
δgij

¼ −
EiEj

B
þ E⃗2

B
δij þ 2B∂0μ̃δij

þ
�
E⃗2

2B
− B∂0μ̃

�
δij

¼ −EiEj þ E⃗2δij
B

þ
�
E⃗2

2B
þ B∂0μ̃

�
δij: ð2:33Þ

Explicitly, this gives

T11 ¼
E2
2

B
þ
�
E⃗2

2B
þ B∂0μ̃

�
↔ ρ

v21
2
þ
�
ρv⃗2

2
þ ρ∂0μ̃

�

T22 ¼
E2
1

B
þ
�
E⃗2

2B
þ B∂0μ̃

�
↔ ρ

v22
2
þ
�
ρv⃗2

2
þ ρ∂0μ̃

�

T12 ¼ −
E1E2

B
↔ ρ

v1v2
2

: ð2:34Þ

We see that we obtain the correct fluid energy Tμν, except
for an extra term ρv2=2δij, an extra momentum flux that
should be related to the nonrelativistic corrections to ρ
that we kept: in ∂

0T0i þ ∂
jTji ¼ 0, we get an extra

−vi∂tðρv2=2Þ from the first, and an extra ∂iðρv2=2Þ from
the second, cancelling under the assumption of a kinetic
energy depending explicitly only on time.
A much more interesting case would have been the

viscous Navier-Stokes case. However, it is not easy to
generalize to the presence of the viscous term in the energy-
momentum tensor, because of the complicated nature of the
equations in the gauge theory form. We have not been able
to find the gauge theory action that corresponds to the
Navier-Stokes fluid.

HORATIU NASTASE and JACOB SONNENSCHEIN PHYS. REV. D 109, 085006 (2024)

085006-4



III. EULER FLUID COUPLED TO
ELECTROMAGNETISM IN GAUGE

THEORY FORM

In this section we consider the Euler fluid equations
coupled to external electromagnetism, as considered by
Abanov and Wiegmann [5]6 in 3þ 1 dimensions, and then
by us [6] in 2þ 1 dimensions, with equations of motion

∂tρþ ∇! · ðρu⃗Þ ¼ 0;

ρ∂tui þ ∂iPþ ρðu⃗ · ∇!Þui ¼ e
m

�
E⃗e þ u⃗ × B⃗e

�
; ð3:1Þ

which in 2þ 1 dimensions gives the Euler equation

Dui

Dt
þ ∂iP ¼ e

m

�
Ei
e þ Beϵ

ijuj
�
; ð3:2Þ

where E⃗e; Be are the true, external (i.e., nondynamical),
electromagnetic fields, and we have put c ¼ 1 for
simplicity.
It is perhaps clear (at least a posteriori, after figuring it

out), that the correct way to incorporate the electromagnetic
fields into the gauge theory action is to add another Chern-
Simons term (or rather, BF term) coupling the gauge fields
Aμ and Ae

μ (electromagnetic), so the final action is

S ¼
Z

dt
Z

d2x

�
E⃗2

2B
− B∂0μ̃ − ϵμνρAμ∂νÃρ

þ e
m
ϵμνρAμ∂νAe

ρ

�
: ð3:3Þ

Then the α, β equations are unchanged, so is the Bianchi
identity for Aμ, giving the continuity equation, but the
Gauss law constraint (equation of motion for A0) gets a new
contribution from the added term, so is now

∂i

�
Ei

B

�
− B̃þ e

m
Be ¼ 0; ð3:4Þ

and gives

B̃ ¼ ωþ e
m
Be: ð3:5Þ

From the α and β equations, we get

Ẽi ¼
Ei

B
B̃ ¼ ϵijuj

�
ωþ e

m
Be

�
: ð3:6Þ

Then the equation of motion of Ai contains two extra
terms, one directly from the coupling of Ai to Ej

e, and one

indirectly, from the fact that now Ẽi contains the extra Be

term above, giving

DtðϵijujÞ þ ϵij∂j
μ

m
þ e
m
uiBe ¼ e

m
ϵijEe

j ; ð3:7Þ

which is nothing but the Euler equation coupled to external
electromagnetism, as we wanted.
The Maxwell equation for Ãμ in (2.22) is then modified as

∂0∂i

�
Ei

B

�
¼ ∂0

�
B̃ −

e
m
Be

�
¼ ϵij∂i

�
Ẽj −

e
m
Ee
j

�
: ð3:8Þ

A. Shallow water equations coupled to
electromagnetism, and gauge theory form

Here we make a small aside, and note that we can also
couple the shallow water equations to electromagnetism,
and write it in gauge theory form, just as above for the
Euler case.
Indeed, the shallow water equations coupled to electro-

magnetism (for velocity ui and height h of the fluid) are

∂thþ h∇! · u⃗ ¼ 0;

Dui

Dt
¼ fϵijuj − g∂ihþ e

m

�
Ei
e þ ϵijujBe

�
; ð3:9Þ

where f is the Coriolis parameter, g is the gravitational
acceleration, and Ei

e; Be are the true external electric and
magnetic fields.
Again, the correct way to introduce the coupling to

Ei
e; Be in the gauge theory formulation is to introduce an

extra BF term, of the type AdAe, namely to modify the
gauge theory action in [1] to (here, as before, we have the
Clebsch parametrization Ãμ ¼ ∂μχ þ β∂μα)

S ¼
Z

dtd2x

�
E⃗2

2B
−
g
2
B2 þ fA0 − ϵμνρAμ∂νÃρ

þ e
m
ϵμνρAμ∂νAe

ρ

�
: ð3:10Þ

Indeed, again one finds that only the Gauss constraint
(equation of motion for A0) is modified, adding a term e

m Be

to B̃, which becomes

B̃ ¼ ωþ f þ e
m
Be; ð3:11Þ

and also implies (from the α and β equations of motion)

Ẽi ¼
Ei

B
B̃ ¼ ϵijuj

�
ωþ f þ e

m
Be

�
; ð3:12Þ6See also the earlier paper [17] for Euler fluids coupled to

electromagnetism and anomalies.
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as well as the Ai equation of motion, in which we get an
extra term from the coupling of Ai to Ej

e, and an indirect
term, via the contribution of B̃ to Ẽi above,

∂t

�
Ei

B

�
þ 1

2
ϵij∂j

�
E⃗2

B2

�
þ gϵij∂jB − ϵijẼj þ

e
m
ϵijE

j
e ¼ 0:

ð3:13Þ

When substituting the map to the fluid, we get indeed the
shallow water equation coupled to electromagnetism,

DtðϵijujÞþfujþgϵij∂jhþ
e
m
uiBe−

e
m
ϵijEj

e ¼ 0: ð3:14Þ

IV. 2 + 1 DIMENSIONAL HOPFION AS A GAUGE
THEORY TOPOLOGICAL MODE

Similar to the way Tong found the coastal Kelvin waves
of the shallow water equations as chiral boundary modes
(topological modes) in the effective Chern-Simons theory
obtained for small fluctuations [1], in this section we want
to see if the 2þ 1 dimensional Hopfion solution with
constant ρ can be similarly understood from topological
considerations in the corresponding gauge theory.
The 2þ 1 dimensional Hopfion solution was obtained

in [3,4] by dimensional reduction of the 3þ 1 dimensional
Hopfion, which is a null (u⃗2 ¼ 1) fluid solution obtained
from the analogy to 3þ 1 dimensional electromagnetism
with a Hopfion solution (that is also null in electro-
magnetism).
The 2þ 1 dimensional Hopfion solution has ρ ¼ 1, is

time independent, and has

P ¼ P∞ −
2

1þ x2 þ y2
;

ux ¼
2y

1þ x2 þ y2
;

uy ¼ −
2x

1þ x2 þ y2
; ð4:1Þ

which gives the vorticity

ω ¼ ϵij∂iuj ¼ −
4

ð1þ x2 þ y2Þ2 ; ð4:2Þ

which integrates to −4π.

A. The winding number in the gauge picture

We translate the winding number which is the integral
over the vorticity to the gauge theory language,

H ¼
Z

d2xwðt; x; yÞ ¼
Z

d2x
�
∂xuy − ∂yux

�

¼
Z

d2x∂i

�
Ei

B

�
: ð4:3Þ

We would like to check if this quantity is conserved in
time. For that purpose we use the equations of motion for
Ai, or more precisely the Maxwell equations (2.22) derived
from them, and find that

∂tH ¼
Z

d2x∂tB̃ ¼
Z

d2xϵij∂iẼj

¼
Z

d2xϵij∂t
�
∂iβ∂jα − ∂iα∂jβ

�
: ð4:4Þ

Thus, the winding H is conserved in time, since it is a
total derivative, so a boundary term, that can be put to zero.
We also note that, in the more general case of coupling to an
electromagnetic field Be; E⃗e, if we have a constant Be and
vanishing E⃗e, the same result applies.

B. Linearized fluctuations

Again following the logic in [1], we write a linearized
theory by expanding around a background with α̂; β̂; ρ0; Âμ,
but with a small (perturbation) velocity ui ¼ δui and
ω ¼ δω, so Ei=B ¼ ϵijuj, as

α ¼ α̂þ q; β ¼ β̂ þ p;

∂1β̂∂2α̂ − ∂2β̂∂1α̂≡ k ⇒ ∂jβ̂∂lα̂ − ∂lβ̂∂jα̂ ¼ kϵjl;

B ¼ ρ0 þ δb; Ei ¼ δei;

Aμ ¼ Âμ þ δAμ; Â0 ¼ 0

⇒ ∂1Â2 − ∂2Â1 ¼ ρ0; ð4:5Þ

and writing simply Aμ for δAμ, so B for δb ¼ δρ and Ei for
δei ¼ ρ0ϵ

ijuj. Note that we have defined

B̃ ¼ ∂1β̂∂2α̂ − ∂2β̂∂1α̂≡ k; ð4:6Þ

but the Gauss constraint of the action (3.3) is, in the above
notation for linearization,

k≡ B̃ ¼ ωþ e
m
BeðþfÞ; ð4:7Þ

where we have put an f which is just a shift of Be, but we
have assumed that ω is a perturbation, ω ¼ δω, so the only
way to assume k is not (as we will see that we need) is to
say that Be or f are large. That, in turn, means that the
Hopfion solution (4.1) is not valid, as it was derived at
Be ¼ f ¼ 0. Nevertheless, we would still like to see if there
is a quantization condition possible in this (as of yet not
considered) case for the Hopfion.
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Then the action becomes

S ¼
Z

dt
Z

d2x

�
E⃗2

2ρ0
− ρ0∂0μ̃ − δb∂0μ̃ − ρ0pq̇

þ ϵijEiðq∂jβ̂ − p∂jα̂Þ
�
: ð4:8Þ

The equations of motion for p, q (coming originally
from Ãμ) are

ρ0q̇ ¼ −ϵijEi∂jα̂; ρ0ṗ ¼ −ϵijEi∂jβ̂; ð4:9Þ

the equation of motion for Ai is

Ėi ¼ −ρ0ϵij∂j∂0μ̃ − ρ0ϵij
�
∂jβ̂ q̇−∂jα̂ ṗ

�
; ð4:10Þ

and the equation for A0 (Gauss constraint, for the A0 ¼ 0
gauge) is

∂iEi ¼ ρ0ϵij
�
∂iβ̂∂jq − ∂iα̂∂jp

�
: ð4:11Þ

Replacing ρ0q̇ and ρ0ṗ from the equations for q and p
into the equation for Ai, and using ∂jβ̂∂lα̂ − ∂lβ̂∂jα̂ ¼ kϵjl,
we obtain

Ėi ¼ ϵij½kEj − ρ0∂j∂0μ̃�: ð4:12Þ

But also using the solutions

ρq ¼ −ϵijAi∂jα̂; ρp ¼ −ϵijAi∂jβ̂ ð4:13Þ

of the equations for p and q, and using ∂jβ̂∂lα̂−
∂lβ̂∂jα̂ ¼ kϵjl, we obtain that the Gauss constraint in the
A0 ¼ 0 gauge becomes

∂iEi ¼ kB; ð4:14Þ

and the effective action for the linearized fluctuations
becomes

S ¼
Z

dt
Z

d2x

�
Ȧ2
i

2ρ0
− B∂0μ̃þ

k
2ρ0

ϵijAiȦj

�
; ð4:15Þ

whose Ai equation is the same as (4.12), so that the full
action (including A0) is

S¼ 1

2ρ0

Z
dt
Z

d2x½E2−2Bρ0∂0μ̃−kϵμνρAμ∂νAρ�; ð4:16Þ

which contains now a true CS term (not a BF term like the
full nonlinear theory).
Note that in fluid variables, the Gauss constraint

∂iEi ¼ kB becomes, at this linearized level,

∂iEi ≃ ρ0ϵ
ij
∂iuj ≡ ρ0ω ¼ kδρ ⇒ ω ¼ k

ρ0
δρ: ð4:17Þ

But then, from the quantization of the coefficient of the
CS term, we obtain ðk=ρ0Þ∈ 2πZ, so ω=δρ∈ 2πZ, which is
the topological reason we wanted for the quantization of
vorticity ω when we perturb the constant density ρ0 by δρ,
in the background of a constant density ρ0 ¼ 1 and a
constant external magnetic field Be (or Coriolis term f).
Finally, that means that the 2þ 1 dimensional fluid

Hopfion with quantized vorticity appears because of the
existence of quantized linearized modes in the gauge theory
action.

V. AN ACTION FOR A EULER FLUID IN ANY
DIMENSION AND A 2+ 1 DIMENSIONAL

GAUGE ACTION

Like in the appendix of [1] (for the shallow water case
h; u⃗), one can start with an action for the 2þ 1 dimensional
Euler fluid (with variables ρ; u⃗; P), and derive the same
gauge theory action directly from it. However, now we will
focus on the Euler fluid action, and generalize it to higher
dimensions.
We start with the Euler fluid action

L ¼ ρu⃗2

2
− ρ∂0μ̃þ ϕ

�
Dρ

Dt
þ ρ∇! · u⃗

�
− ρβa

Dαa

Dt
; ð5:1Þ

where ϕ is a Lagrange multiplier and αa, βa are variables
from a Clebsch parametrization of the velocity u⃗, as we
will see.
In this action, the first two terms are obvious. Indeed, the

first term is just the kinetic term of the fluid, the second is
¼ −ρμ=m, where −∂μ=m ¼ −dP=ρ, so the term is just (at
least if ρ is constant) P, so for the Lagrangian L (not the
Lagrangian density L) this would be −

R
PdV, giving a

potential energy. The third term just enforces the conser-
vation of the energy density ρ,

Dρ

Dt
þ ρ∇! · u⃗ ¼ ∂ρ

∂t
þ ∇!ðρu⃗Þ ¼ 0; ð5:2Þ

with the Lagrange multiplier ϕ. The last term is more
unusual but is the exact analog of the corresponding term
for the shallow water action in [1].
We then have equations of motion for the varia-

bles ρ; u⃗;ϕ; αa; βa.
We want to obtain the Euler equation from the

Lagrangian, which in our definitions is

Du⃗
Dt

¼ −
∇!P
ρ

¼ −∇!μ ¼ −∇!∂0μ̃: ð5:3Þ
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(i) The equation of motion for ρ gives

u⃗2

2
− ∂0μ̃ −

Dϕ

Dt
¼ 0 ⇒

Dϕ

Dt
¼ u⃗2

2
−
∂tP
ρ

: ð5:4Þ

(ii) The ϕ equation of motion gives, as we said, the
conservation of ρ (the continuity equation),

∂tρþ ∇! · ðρu⃗Þ ¼ 0: ð5:5Þ

(iii) The αa equation of motion gives

∂tðρβaÞ þ ∇! · ðρβau⃗Þ ¼ 0; ð5:6Þ

but using the conservation of ρ above, this gives the
conservation of βa,

Dβa
Dt

¼ ∂tβa þ ∇! · ðβau⃗Þ ¼ 0: ð5:7Þ

(iv) The βa equation of motion gives the conservation
of αa,

Dαa

Dt
¼ 0: ð5:8Þ

(v) The equation of motion of u⃗ gives the form of u⃗ in a
Clebsch-like parametrization,

u⃗ ¼ ∇!ϕþ βa∇!αa: ð5:9Þ

Now the Euler equation is obtained as a combination of
the u⃗; αa; βa, and ρ equations.
We first use the u⃗ equation of motion (the resulting

Clebsch-like parametrization) to calculate first

Dui

Dt
¼ ∂tui þ ∇! · ∇!ui

¼ ∂t∂iϕþ ∂tðβa∂iαaÞ þ uj∂jð∂iϕþ βa∂iα
aÞ

¼ ∂i∂tϕþ ðuj∂jÞ∂iϕþ ð∂tβaÞð∂iαaÞ þ ðuj∂jβaÞð∂iαaÞ
þ βa∂i∂tα

a þ βaðuj∂j∂iαaÞ: ð5:10Þ

In the last expression, we use the ρ equation of motion
Dϕ=Dt ¼ 0 in the first line, the second line vanishes due to
the αa equation of motion (that used also the ϕ equation, the
ρ conservation, as we saw) Dβa=Dt ¼ 0, and in the third
line we use the βa equation of motion Dαa=Dt ¼ 0, to
obtain

Dui

Dt
¼ −βað∂iujÞ∂jαa − ð∂iujÞ∂jϕþ ∂

i u⃗
2

2
− ∂

i
∂tμ̃

¼ −∂i∂tμ̃; ð5:11Þ

where in the last equality we have used again the equation
of motion of ui, that ∂jϕþ βa∂jα

a ¼ uj.
We see that we finally obtained the Euler equation, as we

wanted.
The above action is trivially generalized to 3þ 1

dimensions, as nothing in it, not the action, and not the
above derivation, depends on dimension.
The equation of motion for u⃗ in the above action gives

the Clebsch parametrization for the velocity (5.9), which is
true in any dimension. In particular, it has been used in
3þ 1 dimensions, as we note in the next subsection.

We can also integrate by parts Dρ=Dt ¼ ∂tρþ u⃗ · ∇!ρ,
in order to obtain ρ as a common factor of the action,
obtaining the Euler action in general dimension7

L ¼ ρ

�
u⃗2

2
− ∂0μ̃ −

Dϕ

Dt
− βa

Dαa

Dt

�
: ð5:15Þ

The transition to a gauge theory action works, however,
only in 2þ 1 dimensions.
We introduce the Lorentz covariant parametrization

Cμ ≡ ∂μϕ, and consider now Cμ as the independent field,
and impose the parametrization with the new Lagrange
multiplier ¼ gauge field Aμ, via a new term in L,

L → ρ

�
u⃗2

2
− ∂0μ̃ − ðC0 þ uiCiÞ − βa

Dαa

Dt

�
þ ϵμνρAμ∂νCρ:

ð5:16Þ

Then the equation of motion for C0 gives

B≡ ∂1A2 − ∂2A1 ¼ ρ; ð5:17Þ

7This action has essentially been used by [7], as we became
aware after the first version of this paper was posted on the arXiv.
Indeed, in [7], one uses the Lagrangian

L ¼ −jμaμ þ
1

2
ρv⃗2 − V; ð5:12Þ

where V is some potential giving a pressure (or force), and

jμ ¼ ðcρ; ρv⃗Þ; aμ ¼ ∂μθ þ αi∂μβ
i; ð5:13Þ

so the auxiliary gauge field aμ is given in a Clebsch para-
metrization.

Writing explicitly, we have

L ¼ ρ

�
v⃗2

2
−
V
ρ
−
Dθ

Dt
− αi

Dβi

Dt

�
: ð5:14Þ

We see that it is basically our action, since −
R
V=ρ ¼ R

∂0μ̃. It
is not clear to us whether [7] meant for it to be used in any
dimension (since in fact, they did not have indices i on αi, βi, but
rather a single set).

Note that the extension of [7] to cases with spin was done in [18].
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the equation of motion for Ci gives

Ei ≡ −ð∂0Ai − ∂iA0Þ ¼ ϵijρuj; ð5:18Þ

and the rest are as before.
Imposing these equations of motion amounts to dropping

the terms −ρðC0 þ uiCiÞ and ϵμνρAμ∂νCρ from the action,
and replacing ðρ; uiÞ with ðB;EiÞ according to the above
map, which gives

ρu⃗2

2
¼ E⃗2

2B
;

βa
Dαa

Dt
¼ ðρÞβa∂tαa þ ðρujÞβa∂jαa

¼ ð∂1A2 − ∂2A1Þβa∂tαa − ð∂tAi − ∂iA0Þϵikβa∂jαa
¼ ϵμνρð∂μAνÞβa∂ραa: ð5:19Þ

Thus the action becomes

L ¼ E⃗2

2B
− B∂0μ̃ − ϵμνρð∂μAνÞβa∂ραa; ð5:20Þ

which is just the action (2.5) with the Clebsch paramet-
rization (2.7).

A. The ABC flow, in Clebsh and gauge field
representations

As an example of the Clebsch parametrization for Euler
flow in the case of 3þ 1 dimensions, the standard ABC
flow8 solution of the Euler equations in 3þ 1 dimensions,

ux ¼ ẋ ¼ b sin y − c cos z;

uy ¼ ẏ ¼ c sin z − a cos x;

uz ¼ ż ¼ a sin x − b cos y; ð5:21Þ

can be written in the Clebsch parametrization,

u⃗ ¼ ∇!ϕþ β1∇!α1 þ β2∇!α2; ð5:22Þ

where [19]

ϕ ¼ zða sin x − b cos yÞ;
β1 ¼ b sin y − c cos z − az cos x;

β2 ¼ c sin z − a cos x − bz sin y;

α1 ¼ x;

α2 ¼ y: ð5:23Þ

Can one map the ABC flow to a gauge field configura-
tion? In [3,4] we proposed a map between fluid and gauge
dynamics by mapping the corresponding components of the
energy-momentum tensor. This map to ordinary Maxwell
theory in 3þ 1 dimensions is valid for u⃗2 ¼ 1 (null motion,
uμuμ ¼ 0) and takes the form (here a ¼ 1, 2, 3)

T00 ¼ ρ ↔
1

2

�
E⃗2 þ B⃗2

�
; Ta0 ¼ ρua ↔ ½E⃗ × B⃗�i:

ð5:24Þ

We start with the degenerate ABC flow where
b ¼ c ¼ 0; a ¼ 1. In this case the flow vector is given by

v⃗ ¼ ð0;− cos x; sin xÞ; ρ ¼ 1: ð5:25Þ

It is easy to check that in this case the corresponding
electric and magnetic fields are given by

E⃗ ¼ ð1; 0; 0Þ;
B⃗ ¼ −ð0; sin x; cos xÞ ¼ ∇!× A⃗ ⇒ A⃗

¼ −ð0; sin x; cos xÞ ¼ B⃗: ð5:26Þ

It is interesting to note that the dual (electromagnetic)
of this special ABC flow is a “null configuration” [20]
obeying

E⃗ · B⃗ ¼ 0; E⃗2 ¼ B⃗2: ð5:27Þ

As such the electromagnetic fields admit conserved
nontrivial helicities, in particular the nonzero magnetic-
magnetic helicity,

Hmm ¼
Z

d3xA⃗ · B⃗ ¼
Z

d3xðcos2 xþ sin2 xÞ ¼
Z

d3x:

ð5:28Þ

Note however that this magnetic field B⃗ does not obey
the (free, vacuum) Maxwell equations, since

∇!× B⃗ ¼ −ð0; sin x; cos xÞ ¼ B⃗; ð5:29Þ

so at most it can be interpreted as being sourced by a current
J⃗ ¼ −ð0; sin x; cos xÞ ¼ B⃗ (but the electromagnetic helic-
ities are usually defined for Maxwell fields in vacuum).
Next we can express the electric and magnetic fields in

terms of two complex scalar fields α and β using the
Bateman formulation [20], namely

F⃗ ¼ E⃗þ iB⃗ ¼ ∇!α × ∇!β: ð5:30Þ
8We thank P. Wiegmann for bringing the ABC flow to our

attention.
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The complex scalar fields that yield the electric and
magnetic fields given above are

α ¼ y − i cos x; β ¼ zþ i sin x: ð5:31Þ

In the Bateman formulation, half of the (free, vacuum)

Maxwell’s equations are automatic, ∇! · F⃗ ¼ 0, while the
other half are

∇!× F⃗ ¼ i∂tF⃗ ⇒ ið∂tα∇!β − ∂tβ∇!αÞ ¼ F⃗ ¼ ∇!α × ∇!β;

ð5:32Þ

and these are not satisfied, since ∂tα ¼ ∂tβ ¼ 0, a statement
equivalent to

∇!× B⃗ − ∂tE⃗ ≠ 0; ∇!× E⃗þ ∂tB⃗ ≠ 0; ð5:33Þ

which we already noted happens in this case

(∇!× B⃗ − ∂tE⃗ ¼ B⃗ now).
Can we map a more general ABC flow to electromag-

netism? The answer turns out to be no, as we see now.
Basically, the problem is that the map is only valid for
u⃗2 ¼ 1, which for the ABC flow becomes

a2 þ b2 þ c2 − 2bc sin y cos z − 2ac sin y cos x

− 2ab sin x cos y ¼ 1; ð5:34Þ

which we can easily see that it cannot be solved for
arbitrary x, y, z in the case of nonzero a, b, c. In fact, in
order to have a solution at arbitrary x, y, z, we need to have
at least two of a, b, c vanish, so that ab ¼ bc ¼ ac ¼ 0.
We also note that the special case considered, with

b ¼ c ¼ 0, obeys the two-dimensional relations (here
i ¼ 1, 2)

ui ¼ ϵij
Ei

jE⃗j ; ρ ¼ jE⃗j2; B ¼ jE⃗j; ð5:35Þ

where B ¼ Bz and Ei ¼ ðEx; EyÞ correspond to the for-
mulation of the 2þ 1 dimensional electromagnetism
(though, of course, it is not quite 2þ 1 dimensional, since
all are functions of the third coordinate, z).
Finally, in this case, also the space-space components of

the energy-momentum tensor match between the fluid and
electromagnetism, since (replacing Ba ¼ Bδa3 ¼ jE⃗jδa3 in
the electromagnetic Tab)

Tab ¼ ρuaub ¼ jE⃗2jδab − EaEb − jE⃗2jδa3δb3; ð5:36Þ

which we can check separately for the cases a ¼ 3 ¼ z
and a; b ≠ 3 ¼ z.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we have written a gauge theory for the
Euler fluids in 2þ 1 dimensions, with or without a coup-
ling to electromagnetism. Using it, we were able to obtain
the quantization of vorticity of 2þ 1 dimensional Hopfion
solutions from the quantization of the level of Chern-
Simons. As a small aside, we have also coupled the shallow
water equations to electromagnetism, and wrote the result-
ing equations in gauge theory form.We have also written an
action for the Euler fluid in any dimension, using the
Clebsch parametrization for the velocity.9

There are several open questions that deserve further
research. In particular, we note the following:

(i) An important challenge is the quest for gauge theory
formulation that corresponds to the Navier-Stokes
fluid in 2þ 1 dimensions.

(ii) We derived the action for an Euler fluid coupled to
an electromagnetic background. A not less interest-
ing phenomenon is the incorporation of the electro-
magnetic interactions of the fluid itself.

(iii) The action we derived for the Euler fluid in any
dimensions includes a Lagrange multiplier term for
the continuity equation. It would be more elegant to
have an action that yields that equation not due to a
Lagrange multiplier.

(iv) The study of the interplay between fluid flows and
topologically nontrivial electromagnetic solutions
has been touched upon in this paper. There are
several additional questions about it, in particular,
the use of special conformal transformation to derive
novel solutions following [20].
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