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The topology of photons in vacuum is interesting because there are no photons with k ¼ 0, creating a
hole in momentum space. We show that while the set of all photons forms a trivial vector bundle γ over this
momentum space, the R and L photons form topologically nontrivial subbundles γ� with first Chern
numbers ∓2. In contrast, γ has no linearly polarized subbundles, and there is no Chern number associated
with linear polarizations. It is a known difficulty that the standard version of Wigner’s little group method
produces singular representations of the Poincaré group for massless particles. By considering repre-
sentations of the Poincaré group on vector bundles we obtain a version of Wigner’s little group method for
massless particles which avoids these singularities. We show that any massless bundle representation of the
Poincaré group can be canonically decomposed into irreducible bundle representations labeled by helicity,
which in turn can be associated to smooth irreducible Hilbert space representations. This proves that the R
and L photons are globally well defined as particles and that the photon wave function can be uniquely split
into R and L components. This formalism offers a method of quantizing the electromagnetic field without
invoking discontinuous polarization vectors as in the traditional scheme. We also demonstrate that the spin-
Chern number of photons is not a purely topological quantity. Lastly, there has been an extended debate on
whether photon angular momentum can be split into spin and orbital parts. Our work explains the precise
issues that prevent this splitting. Photons do not admit a spin operator; instead, the angular momentum
associated with photons’ internal degree of freedom is described by a helicity-induced subalgebra
corresponding to the translational symmetry of γ.
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I. INTRODUCTION

Following the breakthrough discoveries of the quantum
Hall effect, the Berry connection, and the existence of
topological insulators in condensed matters with periodic
lattice structures, topology has played an increasingly impor-
tant role in physics. It is now understood that there is inherent
topology in wave physics, and researchers have studied the
topological properties of waves in various continuous media
suchas fluids [1–6] andplasmas [7–12].Here,weexamine the
topology of a simpler system, that of Maxwell’s equations in
vacuum. That this system can exhibit topologically nontrivial
behavior is due to the fact that there are no photons withwave
vector k ¼ 0, creating a hole in the momentum space M.
We will show that the collection of all wave solutions in
Fourier space formavector bundle γ overM,whichwecall the
photon bundle.
Using this framework, we give an extensive study of the

topological properties of photons by examining the topo-
logical properties of γ and its subbundles. We give two
proofs that the photon bundle γ is topologically trivial. The

first is an abstract proof using Chern numbers and results
from low-dimensional topology. The second proof involves
an explicit construction of two linearly independent,
globally defined polarization vector fields via the clutching
construction from algebraic topology [13]. These are
complex polarization vectors perpendicular to the wave
vector k, and are mathematically equivalent to sections of
the complexification of TS2, the tangent bundle of the two-
sphere. It has been claimed in some quantum field theory
textbooks [14,15] that such global polarization vectors do
not exist as they would violate the hairy ball theorem,
which states that the tangent bundle of the sphere TS2 is
nontrivial ([16], Theorem 1). However, as we show, the
hairy ball theorem only applies to TS2, not its complex-
ification, which resolves the apparent paradox.
While the total photon bundle is trivial, we show that the

right (R) and left (L) circularly polarized photons form
globally well-defined nontrivial subbundles with first
Chern numbers ∓2. These Chern numbers were also
obtained by Bliokh et al. in their study of the quantum
spin Hall effect [17]. They calculated the Chern numbers
via the Berry connection, which is a geometric quantity, but
the concepts of vector bundle and subbundle were not
defined or discussed. We emphasize that it is crucial to
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establish the topological structures of vector bundles before
calculating their Chern numbers. Owing to the Chern-Weil
homomorphism, a deep result from differential geometry,
the Berry connection can be used to calculate the topo-
logically invariant Chern numbers [18]. Generally though,
quantities derived from the Berry connection will depend
on the geometry as well as topology of the underlying
vector bundle. Indeed, while Bliokh et al. [17] also define
the spin Chern number of light, we show that this quantity
is not a true topological invariant like the ordinary Chern
numbers.
To further illustrate the importance of vector bundle

structures, we investigate the familiar linearly polarized
photons. As circularly polarized photons have nontrivial
topology characterized by nonvanishing Chern numbers,
one might guess the same is true of linear polarizations. We
show that this question is actually ill defined as there are no
linearly polarized subbundles of γ. This implies that linear
polarization is only a locally defined concept in momentum
space, and it is meaningless to discuss its topology or Chern
number.
In addition to thesepurely topological results,westudy the

interplay of this topology with the geometry of light, that is,
with Poincaré symmetry. Poincaré symmetry plays a funda-
mental role in the theory of photons as elementary particles,
bothmassive andmassless, are defined as unitary irreducible
representations of the Poincaré group. Conventionally, these
are assumed to be vector space (in particular, Hilbert space)
representations, and are classified via Wigner’s little group
method [19,20]. This theory works well for massive par-
ticles; however, a topological singularity occurs when the
mass is taken to zero. In this limit, the momentum space
jumps frombeing a topologically trivialmass hyperboloid to
the nontrivial light cone. This results in nonsmoothmassless
representations generated by the standard little group
method. This difficulty has been noted by others [21,22].
Here, we present a solution to this problem by considering
vector bundle representations rather than vector space
representations. Such representations are known to mathe-
maticians under the name of equivariant vector bundles, but
they are rarely used in physics. As such, we will develop
the necessary theory here. Using these vector bundle
representations, we present a version of the little group
theory for vector bundle representations that does not
encounter discontinuities. We prove that massless irreduc-
ible unitary vector bundle representations of the Poincaré
group induce corresponding unitary irreducible representa-
tions on the Hilbert space of bundle sections, and thus
correspond to particles by the conventional definition. We
apply this method in the case of photons to show thatR- and
L-polarizedphotons are amassless unitary irreduciblevector
bundle representation of the Poincaré group labeled by
helicity, and thus correspond to globally well-defined
particles.

This equivariant bundle formalism also lends itself to
other problems in the theory of photons. The standard quan-
tization of the electromagnetic field in the Coulomb gauge
involves expanding the field in global R- and L-polarization
bases which cannot be continuous [14,15,23]. While con-
tinuous global R- and L-polarization vectors do not exist,
the R- and L-photon bundles are well defined. Using
projections onto these bundles, we show that the electro-
magnetic field can be quantized to obtain the usual QED
creation and annihilation operators without using discon-
tinuous bases.
Lastly, there has been a long debate as to whether photon

angular momentum can be split into spin and orbital parts
[17,24–30]. It is known that the most commonly proposed
“spin and orbital angular momentum operators” satisfy
peculiar commutation relations, different from the soð3Þ
commutation relations expected of angular momentum
operators [25,26,30]. Our theoretical study of the massless
vector bundle representation confirms that photons do not
admit a spin operator. We show that the proposed “spin
angular momentum operator” is neither spin nor angular
momentum, but a three-dimensional commuting subalge-
bra corresponding to the R3 translational symmetry of the
photon bundle characterizing the photons’ internal degree
of freedom.
This paper is organized as follows. In Sec. II, we

construct the total photon bundle γ and give two proofs
that it is trivial. The second proof is used to explicitly
construct two linearly independent global polarization
vector fields. In Sec. III, we show that R and L photons
form well-defined subbundles of γ that are topologically
nontrivial. We also show that no analogous linearly
polarized subbundles exist. In Sec. IV, we define vector
bundle representations and develop a modified little group
construction. These are used to classify photons as unitary
irreducible vector bundle representations of the Poincaré
group. We prove that massless irreducible vector bundle
representations of the Poincaré group naturally induce
unitary irreducible Hilbert space representations, and thus
correspond to particle via the conventional definition. In
Sec. V, we apply our theory to three problems in the theory
of photons: the geometric nature of the spin Chern number,
the quantization of the electromagnetic field, and the
decomposition of photon angular momentum into spin
and orbital parts.

II. TOPOLOGY OF THE PHOTON BUNDLE

Consider photons in the vacuum, defined as the eigenm-
odes of Maxwell equations,

∂tE ¼ ∇ ×B ð1Þ

∂tB ¼ −∇ × E ð2Þ
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∇ · E ¼ 0 ð3Þ

∇ ·B ¼ 0; ð4Þ

where t has been normalized by 1=c and has the unit of
length. Via the Fourier transform, the fields can be
expressed as

EðxÞ ¼
Z

d4k
ð2πÞ4 e

−ikμxμẼðkÞ ð5Þ

BðxÞ ¼
Z

d4k
ð2πÞ4 e

−ikμxμB̃ðkÞ; ð6Þ

where we have used the four-vector notation xμ ¼ ðt; xÞ
and kμ ¼ ðω; kÞ, along with the flat spacetime metric
ημν ¼ diagð−1;þ1;þ1;þ1Þ. As Maxwell’s equations have
a real discrete spectrum, the momentum space fields can be
written as

ẼðkÞ ≐ 2π
X
j

δðω − ωjðkÞÞEjðkÞ ð7Þ

B̃ðkÞ ≐ 2π
X
j

δðω − ωjðkÞÞBjðkÞ; ð8Þ

where the ωj and Ej are solutions of the eigenvalue
problem

H

�
Ej

Bj

�
¼ ωj

�
Ej

Bj

�
ð9Þ

H ¼
�

0 −k×
k× 0

�
ð10Þ

subject to the constraints

k · Ej ¼ 0 ð11Þ

k · Bj ¼ 0: ð12Þ

The spectrum ofH has six eigenmodes (photons) divided
into three twofold degenerate groups:
(1) Two transverse photons with ω1 ¼ jkj≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y þ k2z
q

.

(2) Two transverse antiphotons with ω−1 ¼ −jkj.
(3) Two longitudinal photons with ω0 ¼ 0.
The longitudinal photons are forbidden by the trans-

versality conditions (11) and (12), although they can appear
as virtual photons in QED [31]. Furthermore, since the
spacetime fieldsE andB are real, themomentumspace fields
must satisfy E−1ðkÞ ¼ E�

1ð−kÞ and B−1ðkÞ ¼ B�
1ð−kÞ, and

thus the transverse antiphotons are not independent of the
transverse photons. Therefore, we need only analyze the

transverse photons, which will henceforth be referred to just
as photons with E ≐ E1 and B ≐ B1. The condition ω ¼ jkj
says that photons reside on the forward light cone Lþ in
4-momentum space. Note that the origin is not contained in
Lþ. Physically, this corresponds to the fact that kμ ¼ 0
modes are stationary and do not propagate at the speed of
light, and therefore are not photons. Mathematically, the
originmust be removed in order for the forward light cone to
be a regular submanifold ofMinkowski space.Lþ is a three-
dimensional manifold homeomorphic toR3nf0gwith coor-
dinates given by k ¼ fkx; ky; kzg ≠ 0. At each k, the twofold
degenerate photon eigenvectors form a C2 vector space
consisting of vectors E satisfying E · k ¼ 0. Note that
B ¼ k̂ × E, so these vector spaces can be described purely
in terms of the electric field. Since H is smooth and the
dimensionof the eigenspaces is constant, the eigenspaces for
all values of k fit together to form a rank-2 complex vector
bundle π∶ γ → Lþ over the light cone, which we term the
photon bundle. Here, π is the projection of the bundle γ onto
the base manifold, and γðkÞ will denote the fiber at k. γ is a
Hermitian bundle with respect to the Hermitian product
inherited by embedding E in C3. That is, for two vectors
vectors Ea;Eb ∈ γðkÞ,

hEa;Ebi ¼ E�
a · Eb: ð13Þ

We are concerned here with the topology of photons,
which is equivalent to the topology of the bundle γ. If the
base manifold Lþ were contractible, then γ would neces-
sarily be trivial ([13], Corollary 1.8). Recall that a rank-r
vector bundle over M is trivial if it is isomorphic to the
trivial bundle M × Cr, or equivalently, if there exist r
nonvanishing sections of the bundle which are pointwise
linearly independent. For example, for massive particles,
the momenta kμ form a mass hyperboloid ðk0Þ2 − k · k ¼
m2 which is homeomorphic to R3 and thus contractible. As
a result, massive particles in vacuum do not allow for
nontrivial topology. However, for massless photons, the
base manifold Lþ ≅ R3nf0g is not topologically trivial in
the sense of homotopy, so it is not obvious if γ is a trivial
bundle. The following theorem is one of the main results of
this paper:
Theorem 1. The photon bundle γ → R3nf0g is trivial.
We will give two proofs of this result in the next two

sections. The first is purely abstract using the machinery of
Chern classes and results from low-dimensional topology.
The second proof utilizes clutching functions which has the
advantage of giving an explicit construction of linearly
independent sections of γ.
We give some remarks about Theorem 1 before present-

ing the proofs. It is often more convenient to work with γjS2 ,
the bundle obtained by restricting the base manifold of γ to
the unit sphere S2 ∈R3nf0g, rather than with γ itself. Since
R3nf0g deformation retracts onto S2, the bundles γ and γjS2
are essentially topologically equivalent. In particular, the
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rank-r vector bundles over R3nf0g and S2 are in bijective
correspondence ([13], Cor 1.8). Bundles over R3nf0g map
to bundles over S2 by restricting the base manifold. If we
denote by r∶ R3nf0g → S2 the projection k → k̂, then the
inverse mapping sends a bundle ξ over S2 to the pullback
bundle r�ξ over R3nf0g.
There are two main advantages to working with S2, the

first being the immediate observation that since the electric
field is transverse to k̂, γjS2 is isomorphic to TCS2 ≅
TS2 ×R C, the complexification of the tangent bundle
TS2 of the sphere. Thus,
Lemma 2. The photon bundle γ is trivial if and only if

γjS2 ≅ TCS2 is trivial.
This lemma allows the use of specialized techniques that

apply to bundles over spheres such as the clutching
construction. Unlike R3nf0g, S2 also has the advantage
of being even dimensional and thus possessing Chern
numbers in addition to Chern classes. This is useful
because Chern numbers are simply integers rather than
cohomology classes.
By Lemma 2, the question of whether or not γ is trivial

can be rephrased by asking if it is possible to smoothly
choose polarization vectors E for each direction k̂. It can
also be interpreted as asking is it possible to have photons
traveling in all directions simultaneously. This issue shows
up in many treatments of QED when quantizing the
electromagnetic field [14,15,23]. Just prior to quantization,
the Coulomb gauge vector potential is usually expressed in
the form

AðxÞ ¼
Z X2

j¼1

1ffiffiffiffiffiffiffiffi
2jkjp ½e−ikμxμϵjðkÞajðkÞ

þ eikμx
μ
ϵ�jðkÞa�jðkÞ�

d3k
ð2πÞ3 : ð14Þ

Here, ϵjðkÞ are polarization unit vectors which are sup-
posed to satisfy the transversality condition ϵjðkÞ · k ¼ 0

imposed by the Coulomb gauge condition ∇ ·A ¼ 0. This
gauge condition imposes the same transversality constraint
on the ϵj that Gauss’s law imposes on E, and we see that
ajðkÞϵjðkÞ and its conjugate can be considered as sections
of γ. Despite using this expansion, Tong [14] and Woit [15]
claimed that no continuous functions ϵjðkÞ actually exist.
Indeed, this is true if one requires the ϵj to be real, that is, if
one considers only linear polarizations. In particular, if the
ϵj are real, then they are sections of TS2 when restricted to
S2. By the hairy ball theorem, there are no continuous
nonvanishing sections of TS2. Despite this fact,
Staruszkiewicz attempted to construct real, global polari-
zation vectors [32]. These vector fields are not actually
global though as they are only defined on stereographic
coordinates and thus exclude one of the poles of the

momentum sphere. Since we are working in momentum
space, it is natural to work with complex polarization
vectors, not just linear polarizations. R- and L-circular
polarizations play a particularly important role due to their
invariance under Lorentz transformations. The question can
then be asked, is it possible to comb complex hairs on a ball
flat? By explicit construction, it is indeed possible.
Theorem 3. There exists at least one nonvanishing

section of the bundles γ and γjS2 ≅ TCS2.
Proof. Consider the sections of γ:

E1ðkÞ ¼ ð0; kz;−kyÞ; ð15Þ

E2ðkÞ ¼ ð−kz; 0; kxÞ: ð16Þ

Then

u ¼ E1 þ iE2 ð17Þ

is a nonvanishing section of γ since

juj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ 2k2z

q
> 0: ð18Þ

By restricting u to S2 one obtains a nonvanishing section
of γjS2 ≅ TCS2. ▪
Thus, it is possible to consistently choose at least one of

the ϵj. However, to prove Theorem 1, one would need to
construct a second linearly independent polarization, which
is a much harder task. For example, while one might guess
that u0 ¼ E1 − iE2 may be such a vector field, u and u0 are
linearly dependent at any k where E1 or E2 vanishes. We
note that Folland [23] states without proof that two such
complex polarizations do exist. However, to our knowl-
edge, there is neither an explicit construction of such
polarizations nor a proof of their existence in the literature.
We fill in these gaps in the remainder of this section.

A. Proof of Theorem 1 via Chern numbers

The first proof of Theorem 1 relies on Chern classes, the
characteristic classes of complex vector bundles. An
advantage of this approach is that Chern classes are
commonly used in physical applications of topology, such
as in the study of topological insulators and the topological
properties of waves.
By Lemma 2, it is sufficient to show γjS2 is trivial. We

begin by proving that all of the Chern classes cj of γjS2
are 0.
Definition 4 (Conjugate vector bundle). Let π∶ E → M

be an n-dimensional complex vector bundle. On each fiber
Ep, p∈M, define multiplication of a complex number
aþ ib∈C with a vector v∈Ep by

ðaþ ibÞv ¼ av − ibv; ð19Þ
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which forms a new complex vector space Ēp. Then

Ē ¼ ⋃Ēp ð20Þ

is defined to be the conjugate bundle of E.
In general, complex vector bundles are not isomorphic to

their conjugates. However,
Lemma 5. The complexification EC ¼ ER ⊗R C of a

real vector bundle ER is isomorphic to its own conjugate

bundle EC ¼ ER ⊗R C.
See Ref. [33], Lemma 15.1 for a proof. This helps us

calculate Chern classes by the following lemma.
Lemma 6. Let E be a complex vector bundle. The Chern

classes cj of E and Ē are related by

cjðĒÞ ¼ ð−1ÞjcjðEÞ: ð21Þ

See Ref. [33], Lemma 14.9 for a proof.
Theorem 7. The Chern classes and Chern numbers of γjS2

are 0.
Proof. Since γjS2 is a vector bundle over the two-

dimensional manifold S2 and cj is represented by a 2j-
form on S2, cjðγjS2Þ ¼ 0 for all j > 1. By Lemmas 5 and 6,

c1ðγjS2Þ ¼ c1ðTCS2Þ ¼ c1ðTCS2Þ
¼ −c1ðTCS2Þ ¼ −c1ðγjS2Þ; ð22Þ

so c1ðγjS2Þ ¼ 0. The Chern numbers are integrals of
products of Chern classes, so it follows that the Chern
numbers are also 0. ▪
While the Chern classes do not completely classify

general complex vector bundles, this is true for certain
low-dimensional, low-rank vector bundles. Here, we show
that the vanishing of the Chern classes is sufficient to prove
the triviality of the bundle γ by using results about
symplectic vector bundles, relying heavily on results from
Ref. [34]. A symplectic vector bundle is a real vector
bundle π∶ E → M equipped with a symplectic 2-form ω.
Complex vector bundles and symplectic vector bundles
have the same characteristic classes, namely the Chern
classes [34]. We have the following classification theorem:
Theorem 8. Two symplectic vector bundles E and E0

over a closed (i.e., compact without boundary) oriented two
manifold are isomorphic if and only if they have the same
rank and the same first Chern number.
Proof. Reference [34], Theorem 2.7.1. ▪
The relationship between symplectic and complex vector

bundles is given by the following theorem:
Theorem 9. For j ¼ 1, 2 let ðEj;ωjÞ be a symplectic

vector bundle over a manifold M and let Jj be a complex
structure on Ej satisfying ωjðv; JjvÞ > 0 for all v∈Ej.
Then the symplectic vector bundles ðE1;ω1Þ and ðE2;ω2Þ
are isomorphic if and only if the complex vector bundles
ðE1; J1Þ and ðE2; J2Þ are isomorphic.

Proof. Reference [34], Theorem 2.6.3. ▪
In the context of γjS2 , the complex structures are just

multiplication by i. We combine the preceding three
theorems to prove the main result.
Theorem 10. γjS2 is trivial.
Proof. For j ¼ 1, 2, let wj ¼ αj þ iβj ∈ γjS2ðkÞ for some

k, where αj; βj ∈R3. γjS2 has the Hermitian structure

hw1;w2i ¼w�
1 ·w2 ¼ ðα1 ·α2þ β1 · β2Þþ iðα1 · β2− β1 ·α2Þ:

ð23Þ

Define the bilinear form ω on γjS2 by

ωðw1; w2Þ ¼ α1 · β2 − β1 · α2: ð24Þ

Equation (23) can be written as

hw1; w2i ¼ ωðw1; iw2Þ þ iωðw1; w2Þ: ð25Þ

Since ω is nondegenerate and skew symmetric, it defines a
symplectic form on each fiber γjS2ðkÞ. Since the Hermitian
form is smooth in k, and since ω is the imaginary part of the
Hermitian form, ω is also smooth in k. Thus, ðγjS2 ;ωÞ is a
symplectic vector bundle. Furthermore,

ωðw1; iw1Þ ¼ jw1j2 > 0: ð26Þ

The definitions of the Chern classes for complex vector
bundles and symplectic vector bundles agree [34], so by
Theorems 7 and 8, ðγjS2 ;ωÞ is trivial as a symplectic
bundle. By Theorem 9, γjS2 is trivial as a complex vector
bundle. ▪

B. Proof of Theorem 1 via the clutching construction

Here we give a second proof that γ is trivial via the
clutching construction [13]. Again, we proceed by showing
TCS2 is trivial. One advantage of this method is that it can
be adapted to explicitly furnish two independent vector
fields on TCS2.
The clutching construction is a method for determining

the isomorphism type of a real or complex vector bundle
over Sn; here, we only consider the case of rank-2 complex
bundles over S2. Consider a rank-2 complex vector bundle
π∶ E → S2, and decompose S2 into its upper and lower
hemispheres, S2 ¼ D2þ ∪ D2

−. Since each hemisphere is
contractible, the restricted bundles EjD2

þ
and EjD2

−
are

trivial. Fix a trivialization for each of these bundles, and
let ½v1�; v2�� be an orthonormal frame for D2

�. These
frames will generally not agree on the equator D2þ ∩ D2

− ¼
S1 where the hemispheres overlap, and there is a function
f∶ S1 → Uð2Þwhich rotates one frame into the other on S1:
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½v1þ; v2þ�ðϕÞ ¼ fðϕÞ½v1−; v2−�ðϕÞ: ð27Þ

f is referred to as a clutching function for E.
Conversely, given an arbitrary function f∶ S1 → Uð2Þ,

one can construct a rank-2 complex vector bundle Ef (see
Ref. [13], p. 22). For smooth manifoldsM andN, let ½M;N�
denote the set of homotopy classes ofmaps fromM toN, and
let VectrCðS2Þ be the set of isomorphism classes of rank-r
complex vector bundles over S2. The following fundamental
theorem says that the homotopy type of a clutching function
determines the isomorphism class of a vector bundle.
Theorem 11. The map Φ∶ ½S1;Uð2Þ� → Vect2CðS2Þ

which sends a clutching function f to the vector bundle
Ef is a bijection.
Proof. This is a special case of Proposition 1.11

in [13]. ▪
½S1;Uð2Þ� ¼ π1ðUð2ÞÞ, where π1 denotes the fundamen-

tal group, and π1ðUð2ÞÞ ≅ Z, so the complex vector
bundles over S2 can be labeled by the integers, with the
trivial bundle corresponding to 0. It is well known that
SU(2) is simply connected (for example, by the fact that it
is diffeomorphic to S3), so we get the following corollary.
Corollary 12. If a rank-2 vector bundle π∶ E → S2 has a

clutching function f which factors through SU(2), that is, if
f∶ S1 → SUð2Þ ⊆ Uð2Þ, then E is trivial.
Proof. Since SU(2) is simply connected, f is homotopic

to the constant map 1∶ S1 → Uð2Þ which sends every
element of S1 to the identity of U(2). 1 is the clutching
function for the trivial bundle, so the corollary follows by
Theorem 11. ▪
We now use this corollary to prove TCS2 is trivial. We

construct a clutching function for TCS2 by adapting a
construction of a clutching function of TRS2 given by
Hatcher ([13], p. 22). We start by constructing orthonormal
frames for the two hemispheres D2

� of S2. Choose a vector
field v1þ by first picking some real tangent vector at the
north pole and then extending it along each meridian so that
it maintains a constant angle with the meridian (see Fig. 1).
Let v1− be the vector field on the lower hemisphere D2

−
obtained by reflecting v1þ across the equatorial plane. We
can produce a second real vector field v2� on each
hemisphere by rotating v1� by 90 degrees counterclock-
wise when viewed from the exterior of the sphere. Then
½v1þ; v2þ� and ½v1−; v2−� are orthonormal trivializations of
D2þ and D2

−, respectively. Explicitly, by using Cartesian
ðx; y; zÞ and spherical ðr; θ;ϕÞ coordinates related in the
standard way, and by choosing v1þ to be ŷ at the north pole,
we have

v1þ ¼ sinðϕÞθ̂ þ cosðϕÞϕ̂ ð28Þ

v2þ ¼ − cosðϕÞθ̂ þ sinðϕÞϕ̂ ð29Þ

v1− ¼ − sinðϕÞθ̂ þ cosðϕÞϕ̂ ð30Þ

v2− ¼ − cosðϕÞθ̂ − sinðϕÞϕ̂: ð31Þ

On the equator, the two frames are related by rotating the
lower frame by −2ϕ:

½v1þ;v2þ�¼
�

cos2ϕ sin2ϕ

−sin2ϕ cos2ϕ

�
½v1−;v2−�≐ fðϕÞ½v1−;v2−�

ð32Þ

where f∶ S1 → SUð2Þ ⊆ Uð2Þ is the clutching function
and the matrix of f and the column vectors are expressed
in the ðθ̂; ϕ̂Þ basis. Since f factors through SU(2),
Corollary 12 proves the following.
Theorem 13. TCS2 is trivial.

C. Explicit construction of a frame on TCS2 and γ

Using methods related to the clutching construction,
we can explicitly construct two independent vector fields
on TCS2, from which one can immediately obtain
corresponding independent vector fields on γ. We do
this in three steps. First, we find an explicit homotopy in
SU(2) between the clutching function f∶ S1 → SUð2Þ
and the identity 1. Second, we use this homotopy to
extend the domain of f to all of D2

−. From this we will
obtain a continuous, piecewise smooth frame for TCS2.
The last step is to modify the construction so that the
frame is everywhere smooth.

1. Homotopy from f to the identity

From the fact that f factors through SU(2), we showed
that ½f� ¼ 0, meaning that there exists a homotopy between

fðϕÞ ¼
�

cos 2ϕ sin 2ϕ

− sin 2ϕ cos 2ϕ

�
and 1 ¼

�
1 0

0 1

�
:

R(−2φ)

v1−

v1+

FIG. 1. Vector fields v1þ on D2þ and v1− on D2
−. The clutching

function relating them along the equator is a −2ϕ rotation.
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We construct one such homotopy as follows. SU(2) is
homeomorphic to the unit three-sphere S3 via

ðw; x; y; zÞ∈ S3 ↦

�
xþ iz yþ wi

−yþ wi x − iz

�
∈SUð2Þ: ð33Þ

By setting w ¼ 0, we obtain a map from S2 into SU(2):

ðx; y; zÞ∈ S2 ↦
�
xþ iz y

−y x − iz

�
∈SUð2Þ: ð34Þ

Under this map, fðϕÞ corresponds to a loop along the
equator in the xy plane traversed twice, while 1 corresponds
to the fixed point ðx; y; zÞ ¼ ð1; 0; 0Þ. By shrinking the
equator down to (1, 0, 0) while remaining on S2, we obtain
the desired homotopy as illustrated in Fig. 2. Explicitly,
choose

xðt;ϕÞ ¼ cosð2ϕÞcos2
�
πt
2

�
þ sin2

�
πt
2

�
ð35Þ

yðt;ϕÞ ¼ sinð2ϕÞ cos
�
πt
2

�
ð36Þ

zðt;ϕÞ ¼ sin2ðϕÞ sinðπtÞ: ð37Þ

Note that

xðt;ϕÞ2 þ yðt;ϕÞ2 þ zðt;ϕÞ2 ¼ 1; ð38Þ

so these points reside on S2. Define the homotopy
Fðt;ϕÞ∶ ½0; 1� × S1 → SUð2Þ by

Fðt;ϕÞ ¼
�
xðt;ϕÞ þ izðt;ϕÞ yðt;ϕÞ

−yðt;ϕÞ xðt;ϕÞ − izðt;ϕÞ

�
: ð39Þ

Since Fðt;ϕþ 2πÞ ¼ Fðt;ϕÞ, F is well defined as a
function on ½0; 1� × S1.

2. Constructing a piecewise smooth frame for TCS2

On each hemisphere we have a frame, namely, ½v1þ; v2þ�
and ½v1−; v2−�. We can transform ½v1−; v2−� along the
equator via f so that it agrees with ½v1þ; v2þ�. If we can
extend f to a function F̃ðθ;ϕÞ on all of D2

−, then
F̃½v1−; v2−� would extend ½v1þ; v2þ� to a frame on all of
S2. The primary difficulty is ensuring that F̃ is defined at
the coordinate singularity θ ¼ π. Note that even if the
matrix representation of F̃ is independent of ϕ when θ ¼ π,
it may still be ill defined at this point since the matrix
representation is written in the ðθ̂; ϕ̂Þ basis and θ̂ is not
defined at the singularity. One way of avoiding this issue is
to require that F̃ðπ;ϕÞ ¼ 1 since the matrix representation
of the identity is basis independent. Thus, we can interpret
the desired function F̃ðθ;ϕÞ as a homotopy between fðϕÞ
and 1 with θ∈ ½π=2; π� as the homotopy parameter. By
reparametrizing from t∈ ½0; 1� to θ∈ ½π=2; π� in Eq. (39),
we obtain the desired function:

F̃ðθ;ϕÞ ¼
�
xðθ;ϕÞþ izðθ;ϕÞ yðθ;ϕÞ

−yðθ;ϕÞ xðθ;ϕÞ− izðθ;ϕÞ

�
; ð40Þ

xðθ;ϕÞ ¼ cosð2ϕÞsin2ðθÞ þ cos2ðθÞ; ð41Þ

yðθ;ϕÞ ¼ sinð2ϕÞ sinðθÞ; ð42Þ

zðθ;ϕÞ ¼ −sin2ðϕÞ sinð2θÞ: ð43Þ

Thus, the two vector fields ½v1; v2� given by ½v1þ; v2þ� on
D2þ and F̃ðθ;ϕÞ½v1−; v2−� on D2

− are independent and
nonvanishing on all of S2. While ½v1; v2� are continuous
everywhere, they are not smooth at θ ¼ π=2, and thus form
a continuous, piecewise smooth frame. This is sufficient to
prove that TCS2 is trivial as a topological vector bundle, but
not as a smooth vector bundle.

3. Smoothing the frame

The last step is to modify the previous construction to
form smooth vector fields ½ṽ1; ṽ2�. This is done using a
smooth step function as follows. Let g∈C∞ðRÞ be any
smooth monotonic function such that gðt ≤ π=2Þ ¼ π=2,
gðt ≥ πÞ ¼ π, and gðnÞðπ=2Þ ¼ gðnÞðπÞ ¼ 0 for all n ≥ 1.
For concreteness, we can define

hðtÞ ¼
�
e−1=t t > 0

0 t ≤ 0;
ð44Þ

and then set

gðθÞ ¼ π

2

�
1þ hðθ − π=2Þ

hðθ − π=2Þ þ hðπ − θÞ
�
: ð45Þ

FIG. 2. Illustration of the homotopy Fðt;ϕÞ∶ ½0; 1� × S1 →
SUð2Þ from fðϕÞ to the identity 1. The image of F resides on
an embedding of S2 in SU(2). The equator at t ¼ 0 corresponds to
fðϕÞ and shrinks down to the identity (1, 0, 0) at t ¼ 1.
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The desired smooth homotopy is obtained by replacing θ by gðθÞ in Eq. (40):

F̃sðθ;ϕÞ ¼
�
xðgðθÞ;ϕÞ þ izðgðθÞ;ϕÞ yðgðθÞ;ϕÞ

−yðgðθÞϕÞ xðgðθÞ;ϕÞ − izðgðθÞ;ϕÞ

�
: ð46Þ

Since g is smooth, this replacement preserves smoothness
for θ ≠ π=2. At θ ¼ π=2 we must show that

∂
α
θ∂

β
ϕ½v1þ; v2þ�jθ→π=2− ¼ ∂

α
θ∂

β
ϕF̃s½v1−; v2−�jθ→π=2þ : ð47Þ

Since θ̂ and ϕ̂ are smooth at π=2, it is sufficient to show
Eq. (47) holds when v1;� and v2;� are expressed as column
vectors in the ðθ̂; ϕ̂Þ basis. From Eqs. (28)–(31), all θ
derivatives of the column vectors v1� and v2� vanish, so the
lhs vanishes for α ≥ 1. Since also gðαÞðπ=2Þ ¼ 0 for α ≥ 1,
all θ derivatives of F̃ðθ;ϕÞ vanish as θ → π=2þ, so the
rhs is also 0 for α ≥ 1. In the α ¼ 0 case, all ϕ derivatives
agree since

½v1þ; v2þ�θ¼π=2;ϕ ¼ F̃s½v1−; v2−�jθ¼π=2;ϕ: ð48Þ

This completes the proof that the two vector fields ½v1; v2�
given by ½v1þ; v2þ� on D2þ and F̃sðθ;ϕÞ½v1−; v2−� form a
smooth global frame on TCS2.
We can use v1 and v2 to write the trivialization of γ:

ṽ1;2ðkÞ ¼ v1;2

�
k
jkj

�
ð49Þ

are global nonvanishing sections of γ, and as such generate
trivial line subbundles τ1 and τ2 of γ. By construction

γ ¼ τ1 ⊕ τ2: ð50Þ

D. Vector potential formulation

We briefly outline the technical advantages of working
with the electric field E rather than the electromagnetic four
potential Aμ ¼ ðA0;AÞ in the vector bundle formulation.
Here, A ¼ Aðt; xÞ and A ¼ AðkÞ refer to the potential in
spacetime and its Fourier transform in 4-momentum space,
respectively. We will discuss the two most commonly used
gauges, the Lorentz gauge and the Coulomb gauge. In the
Lorentz gauge, in which ∂μAμ ¼ 0, the potential satisfies
the wave equation ∂ν∂

νAμ ¼ 0 [14]. Fourier transforming
gives kμAμ ¼ 0 and the dispersion relation kνkν ¼ 0, i.e., k
is on the light cone Lþ. Note that if A were real, the former
equation would imply that ðk; AÞ is in the tangent bundle of
the light cone TLþ. Indeed, ðk; ϵÞ∈TLþðkÞ if and only if
ðkþ ϵÞ∈Lþ to order ϵ, that is, if

ðkν þ ϵνÞðkν þ ϵνÞ ¼ 2kνϵν ¼ 0; ð51Þ

where we have neglected terms of order Oðϵ2Þ. Since A is
complex, the modes ðk; AÞ actually form the complexified
tangent bundle of the light cone TCLþ. This is a rank-3
bundle despite there only being two physical wave modes,
reflecting the fact that the Lorenz gauge is not complete,
and has a remaining degree of redundancy [14]. This is
problematic because two linearly independent modes can
represent the same physical wave, making it difficult to
draw meaningful conclusions from the topology of this
bundle. One can remove the residual gauge freedom by
enforcing the Coulomb gauge condition k · A ¼ 0, which
then implies A0 ¼ 0 [14]. We then see that in the Coulomb
gauge A and E are defined by the same equations, and thus
form the same bundle γ. The analysis in the preceding
sections thus also describes the topology of the vector
potential bundle in the Coulomb gauge. However, a
difficulty arises in discussing the Poincaré symmetry of
Maxwell’s equation. The Coulomb gauge is not Lorentz
invariant [14], and generally a Lorentz transformation will
map a mode ðk; AÞ∈ γ out of the bundle γ. In fact,
applying a Lorentz transformation to all ðk; AÞ∈ γ will
produce a new bundle, which will be isomorphic to γ.
Working directly with this formulation is cumbersome
since one must keep track of the different isomorphisms
that result from each Lorentz transformation. We thus use
the simpler alternative of working with the physically
observable field E since Lorentz transformations must
keep ðk;EÞ∈ γ on the bundle γ, as will be discussed at
length in Sec. IV. An alternative approach, developed by
Asorey et al. [35], is to work with the vector potential
bundle but to quotient out all gauge redundancy within
each fiber (without picking a particular gauge), giving a
new bundle in which the fibers are equivalence classes.
The resultant bundle is Lorentz invariant, but has a more
abstract description than γ and it is not obviously
topologically equivalent to TCS2. For our goal of simul-
taneously studying the geometry and topology of photons,
the bundle γ is most suitable.

III. TOPOLOGY OF CIRCULARLY POLARIZED
SUBBUNDLES AND THE NONEXISTENCE OF

LINEARLY POLARIZED SUBBUNDLES

We have shown that the total photon bundle is trivial,
possessing global nonvanishing sections. This decomposes
γ into two trivial subbundles τ1;2. However, because the
base manifold Lþ is not contractible, γ can possess
topologically nontrivial subbundles. Indeed, we will show
that γ also decomposes into R and L circularly polarized
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subbundles which are nontrivial. This decomposition is
important because, unlike the trivial decomposition, it is
Lorentz invariant, and therefore plays a special role in
particle physics.
We discuss three important types of photon polariza-

tions. There are the trivial polarizations constructed in the
previous sections. In physics, one frequently encounters
linear and circular polarizations as well. We will show that
these three types of polarizations are significantly different
in terms of their global properties. The trivial polarizations
form subbundles τ1;2 with global nonvanishing sections.
We will show that the R and L circularly polarized bundles
also form well-defined subbundles of γ; however, they are
topologically nontrivial, and therefore do not admit global
nonvanishing sections. Linear polarizations, on the other
hand, do not even form vector bundles, and are thus not
globally well defined.
Definition 14 (Circularly polarized subbundles). Avector

v∈ γðkÞ is defined to be R circularly polarized if v ¼
αðe1 þ ie2Þ where α∈C and e1, e2 are real unit vectors in
γðkÞ such that ðe1; e2; kÞ form a right-handed orthogonal
coordinate system. The R circularly polarized vectors in
γðkÞ form a vector space denoted γþðkÞ. Collected together,
these vector spaces form the R circularly polarized vector
bundle γþ ¼ ⨿kγþðkÞ. The L circularly polarized bundle
γ− is defined analogously, with ðe1; e2; kÞ left handed.
We show that γþ and γ− are in fact well-defined line

subbundles of γ via the subbundle criterion ([18],
Theorem 20.4):
Lemma 15 (Subbundle criterion). Let π∶ E → M be a

smooth rank-r vector bundle and F ¼ ⨿p∈MFp a subset of
E such that for every p∈M, the set Fp is a k-dimensional
vector subspace of the fiber Ep. If for every p∈M, there
exist a neighborhood U of p and m ≥ k smooth sections
s1;…; sm of E over U that span Fq at every point q∈U,
then F is a smooth subbundle of E.
Theorem 16. γþ and γ− are complex line subbundles of γ

such that γ ¼ γþ ⊕ γ−.
Proof.We first prove that γþ is a subbundle of γ using the

subbundle criterion with m ¼ k ¼ 1. For k0 ∈R3nf0g, let
U be small ball centered around k0 which does not contain
0. U is contractible, so there exists a smooth right-handed
orthonormal frame ðf 1; f 2; k̂Þ of γjU. s ¼ f 1 þ if 2 is then a
smooth section of γjU consisting of right circularly polar-
ized vectors. To show that s spans γþðkÞ for each k∈U, let
αðe1 þ ie2Þ∈ γðkÞ with α∈C. Since ðe1; e2; k̂Þ and
ðf 1; f 2; k̂Þ are both right-handed, they are related by a
rotation by some angle θ about k:

½e1; e2� ¼ ½f 1; f 2�
�

cos θ sin θ

− sin θ cos θ

�
: ð52Þ

Then at k we have

αeiθs ¼ αeiθðf 1 þ if 2Þ
¼ α½ðcos θf 1 − sin θf 2Þ þ iðsin θf 1 þ cos θf 2Þ�
¼ αðe1 þ ie2Þ; ð53Þ

showing that s spans γþðkÞ. Thus, γþ is a rank-1 subbundle
of γ by the subbundle criterion, as is γ− by an analogous
argument. For fixed k, R and L polarizations form a basis
for all polarization states. Allowing k to vary then shows
that γ ¼ γþ ⊕ γ−. ▪
An intuitive way to see that the complex line bundles γ�

are nontrivial is to consider the underlying rank-2 real
vector bundles γR� obtained by forgetting the complex
structure on γ�. That is, γR� consists of the same base
space and fibers as γ�, but scalar multiplication is restricted
to R.
Theorem 17. The real vector bundles γR�jS2 and TS2 are

isomorphic, which implies that γþ and γ− are nontrivial.
Proof. Let ðk; vÞ∈TS2 and let Rkðπ2Þ denote a π=2

rotation about k in the positive sense. Define the functions
h�∶ TS2 → γR�jS2 by

h�ðk; vÞ ¼
�
k; v� iRk

�
π

2

�
v

�
: ð54Þ

h� is a clearly a smooth, injective bundle map of real vector
bundles over S2. To show that it is also surjective, and thus
an isomorphism, note that by Definition 14 any vector
u� ∈ γR�jS2ðkÞ can be expressed as

u� ¼ α

�
w� iRk

�
π

2

�
w

�
ð55Þ

for some w∈TS2ðkÞ and α ¼ ðaþ ibÞ∈C. This can be
rewritten as

u� ¼ w0 � iRkw0 ¼ h�ðw0Þ ð56Þ

w0 ≐ aw∓ bRk

�
π

2

�
w∈TS2ðkÞ; ð57Þ

showing that h� is surjective, and thus γR�jS2 ≅ TS2.
If γ� were trivial there would exist a nonvanishing

section of s of γ�jS2 , which can then be considered as a
nonvanishing section of γR�jS2 ≅ TS2 which contradicts the
hairy ball theorem. ▪
While the previous theoremshows that γ� are nontrivial, it

remains to classify them as complex line bundles. As with γ,
it is easier towork with the restrictions γ�jS2 . γþjS2 and γ−jS2
are quite similar as they are conjugate bundles γþjS2 ¼ γ̄−jS2 .
Furthermore, they are isomorphic when considered as real
vector bundles by the previous theorem. However, they are
not actually isomorphic as complex vector bundles, as the
complex structure detects their different orientations. To see
this, note that by Lemma 6, the first Chern number of a line
bundle and its conjugate differ by a sign:
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C1ðγþjS2Þ ¼ −C1ðγ−jS2Þ: ð58Þ

Complex line bundles over S2 are completely classified by
their first Chern number C1 [34], so C1ðγ�jS2Þ ≠ 0 as these
are nontrivial bundles. Equation (58) then implies these
bundles are not isomorphic. The next result fully classifies
γ�jS2 . By the correspondence of bundles over S2 and
R3nf0g, this also classifies γ�.
Theorem 18. C1ðγ�jS2Þ ¼ ∓2.
Proof. We calculate the Chern numbers using the Berry

curvature. The Hermitian structure along with the identi-
fication of the electric fields of the fibers with vectors in C3

gives a natural Berry connection. For any local frame e�ðkÞ
of γ�jS2 in some neighborhood U, the Berry connection
form is [36]

ω� ¼ he�; de�i: ð59Þ

On the neighborhood U consisting of all unit k̂ not on the z
axis, we can choose the frames for γ�jS2 to be

e� ¼ 1ffiffiffi
2

p ðθ̂ � iϕ̂Þ: ð60Þ

Then,

ω� ¼ ∓i cos θdϕ; ð61Þ

and the curvature form is given on U by

Ω� ¼ dω� ¼ �i sin θdθ ∧ dϕ ¼ �idA; ð62Þ

where dA is the Euclidean area form on S2. Unlike the
connection forms, the curvature forms are always globally
defined. Since Ω� ¼ �idA on a dense neighborhood U,
this relation holds on all of S2. The first Chern number is
then given by [18]

C1ðγ�jS2Þ ¼
i
2π

Z
S2
Ω� ¼ ∓2: ð63Þ

Since C1 is nonzero, γ� are nontrivial. ▪
One consequence of the nontriviality of γ� can be found

in the momentum space representation of the photon wave
function [27,37]. In this representation, the wave function
of a photon is written as a two component wave function,
with an R and L part:

f ðkÞ ¼
�
fþðkÞ
f−ðkÞ

�
¼

�
fþðkÞeþðkÞ
f−ðkÞe−ðkÞ

�
; ð64Þ

where eþðkÞ is a choice of unit R-polarization vector
and e−ðkÞ ≐ e�þðkÞ is a corresponding L polarization.
Frequently, the vectors e� are left implicit, and the wave
function is written in terms of the two scalar functions f� as

f ¼
�
fþðkÞ
f−ðkÞ

�
: ð65Þ

However, the e� are sections of the nontrivial bundles γ�,
and thus no continuous e� exist! If Sa denotes the sphere of
radius a > 0 in momentum space R3nf0g, then eþ must be
discontinuous for at least one point k0ðaÞ on each Sa. For
f ðkÞ to be continuous at k0ðaÞ, the component functions
must satisfy f�ðk0ðaÞÞ ¼ 0. Thus, the photon wave func-
tion components f� are not free scalar functions. They
must obey the topological constraint of having a zero on
every closed surface enclosing k ¼ 0.
Our calculation of C1ðγ�Þ is very similar to one done by

Bliokh et al. [17], although they use a different sign
convention for the Berry connection and Chern number,
resulting in an overall sign difference. Our approach differs
in that it emphasizes the underlying vector bundle struc-
tures, and in particular, shows that γ� are in fact well-
defined bundles. This is important, for example, because by
analogy one might assume that linearly polarized photons
also possess some topological structure. However, we show
that unlike the circularly polarized subbundles γ� or the
trivial subbundles τ1;2, there are no linearly polarized
subbundles.
Definition 19 (Linearly polarized subbundle). Linearly

polarized vectors in γ are those of the form αe where α∈C
and e∈R3; a rank 1 subbundle is linearly polarized if it
only contains linearly polarized vectors.
Theorem 20. There are no linearly polarized subbundles

of γ.
To prove Theorem 20 we use the following known result.
Lemma 21.Any real line bundle over a simply connected

space is trivial. In particular, all real line bundles over S2 are
trivial.
Proof. A real line bundle is trivial if and only if it is

orientable [38]. The result then follows from the fact that
every real line bundle over a simply connected space is
orientable ([39], Proposition 11.5). ▪
We can now prove Theorem 20 via a contradiction:
Proof of Theorem 20. Suppose γlin is a linearly polarized

line subbundle of γ. Then γ̃lin ≐ γlinjS2 is a subbundle of
γjS2 ≅ TCS2. Each fiber γ̃linðk̂Þ contains a 1D real subspace
γRðkÞ. The collection of these subspaces γR ¼ ⨿k̂γRðk̂Þ
forms a real line bundle over S2 which is a subbundle of
TS2. By Corollary 21, γR is trivial and must therefore have
a nonvanishing section s. However, s would also then be a
nonvanishing section of TS2, violating the hairy ball
theorem. ▪
Although the total photon bundle γ is topologically

trivial, the R and L circularly polarized photons form
nontrivial subbundles. This nontriviality embedded within
γ can be detected in the associated frame bundle F ðγÞ of γ
by reducing the structure group. F ðγÞ is a principal bundle
over R3nf0g where the local sections consist of local
frames of γ. The most general structure group of F ðγÞ is
GLð2;CÞ. By considering only orthonormal frames, the
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structure group can be reduced to U(2). We showed in the
previous section that ½v1; v2� forms a global orthonormal
frame of γ, so the U(2)-frame bundle is trivial. However, we
can further reduce the structure group by considering local
frames of the form ½wþ; w−� where w� are local orthonor-
mal sections of γ�. The linear transformations preserving
such frames have the form

�
eiθ1 0

0 eiθ2

�
ð66Þ

for real θ1, θ2, that is, the structure group is reduced to
Uð1Þ × Uð1Þ. There are no global sections of this form, so
the Uð1Þ × Uð1Þ-frame bundle is nontrivial.
We have shown that γ decomposes into both the trivial

bundles τ1;2 and the nontrivial subbundles γ�. These are
not, however, the only possible decompositions. In fact, γ
has an infinite number of nontrivial decompositions by the
following observation. The complex line bundles over S2

are labeled by the first Chern number [34]. By the
correspondence of bundles over S2 and R3nf0g, the same
is true of line bundles over R3nf0g. Denote the complex
line bundle over R3nf0g with Chern number j∈Z by lj.
Theorem 22. γ ≅ lj ⊕ l−j for every j∈Z. In particular,

γ has a subbundle isomorphic to lj for every j.
Proof. By the Whitney product formula [18], the first

Chern number is additive, meaning that if E1 and E2 are
vector bundles, then

C1ðE1 ⊕ E2Þ ¼ C1ðE1Þ þ C1ðE2Þ: ð67Þ

Thus,

C1ðlj ⊕ l−jÞ ¼ 0: ð68Þ
As we previously argued, rank-2 vector bundles over
R3nf0g are also labeled by their first Chern number.
Thus, lj ⊕ l−j is trivial and therefore isomorphic
to γ. ▪
Despite the existence of these other nontrivial subbundles,

only the circularly polarized subbundles γ� ≅ l∓2 are
typically used in applications. From a practical standpoint
this is easy to understand, as γ� have simple descriptions,
while finding explicit expressions for subbundles of γ
isomorphic to lj is a nontrivial task. However, from a purely
topological perspective, there is no reason to prefer the
circularly polarized subbundles over the other lj. We will
show in the next section that γ� are special from a geometric
perspectivewhenwe consider the role of Poincaré symmetry.

IV. CLASSIFICATION OF PHOTONS AND OTHER
MASSLESS PARTICLES BY VECTOR BUNDLE

REPRESENTATIONS OF THE POINCARÉ GROUP

In this section we show how Poincaré symmetries of
vector bundles can be used to classify massless particles

such as photons. In quantum field theory, particles are
unitary irreducible representations of the Poincaré group on
a Hilbert space. We restrict our discussion to nonprojective
representations since this includes the photon case. The
conventional method for constructing and classifying such
representations is via Wigner’s little group method [20].
While this method produces smooth representations of
massive particles, obstructions form in the massless case
with the space of single-particle states becoming discon-
tinuous [21,22], resulting in nonsmooth representations on
the Hilbert space of wave functions. By this we mean
Poincaré transformations generally map smooth wave
functions to nonsmooth wave functions. We will see that
this issue traces back to a topological singularity that occurs
in the m → 0 limit as the mass hyperboloid of momentum
space becomes the topologically nontrivial light cone. We
will show that by considering vector bundle representations
on the single-particle states rather than vector space
representations, one can obtain globally well-defined rep-
resentations on the single-particle states. We prove that
massless unitary irreducible vector bundle representations
of the Poincaré group naturally induce unitary irreducible
representations on the Hilbert space of L2 bundle sections,
and therefore such bundle representations correspond to
particles by the usual definition. We show that Wigner’s
little group method generalizes to this bundle formalism,
and can be used to decompose bundle representations into
irreducible representations and classify these irreducible
representations. In the case of the photon bundle, this
induces the decomposition γ ¼ γþ ⊕ γ−, showing that R
and L photons are globally well-defined particles. An
important implication of this research is that a given global
photon wave function can be uniquely decomposed into
R- and L-photon components, even though there exist no
global bases for the R and L photons.
Our results complement the body of work which has

further developed Wigner’s original version of the little
group method. Mackey [40–42] developed the mathemati-
cian’s version of this theory which generalized the little
group method from the Poincaré group to any locally
compact group. Simms [43] showed that Mackey’s theory
had an underlying vector bundle structure, using what he
called G-Hilbert bundles which are very similar to the
modern notion of equivariant vector bundles which we
use. However, Simms worked with only topological vector
bundles, not smooth vector bundles, and as such his
theory did not resolve the nonsmoothness problem with
Wigner’s representations. Indeed, Simms’s bundle formal-
ism did not offer obvious advantages over Mackey’s theory,
and Mackey referred to the bundle formulation as a “digres-
sion” [42]. However, we show that our bundle formalism
produces smooth representations for massless particles.
Asorey et al. [35] connected the representations developed
by Mackey and Simms [40–43] to the covariant representa-
tions more commonly used in physics. Boya et al. [44] and
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Flato et al. [21] also noted singularities in the standard
massless representations of the Poincaré group. Flato et al.
remedied this issue by developing a theory of twisted delta
(“twelta”) functions, which they use to represent single-
particle states. This produced smooth vector space repre-
sentations on the functionals of sections of vector bundles.
They primarily use field-theoretic techniques, with line
bundles appearing implicitly via transformation properties
of functions. Dragon [22] also recently approached this
problem, finding massless field representations with under-
lying vector bundle structures. The formalism we develop is
based on the notion of equivariant vector bundles and differs
from previous methods in that it considers Poincaré actions
directly on smooth vector bundles. This is useful, as we have
seen in the case of Maxwell’s equations that single-particle
states (eigenmodes) naturally form a vector bundle γ.
This section is organized as follows. In Sec. IVA we

define our notation and conventions. In Sec. IV B, we
discuss vector bundle representations of symmetry groups.
In mathematics, these bundle representations are known as
equivariant vector bundles. Since equivariant vector bun-
dles are rarely used in physics, we will develop the
necessary theory here to discuss massless particles. In
Sec. IV C, we discuss the issues with the conventional little
group method for constructing irreducible representations
for massless particles. In Sec. IV D, we show that these
issues can be overcome by developing a modified version
of the little group method for bundle representations of
massless particles. In particular, we will see that R and L
photons are globally well-defined as irreducible bundle
representations of the Poincaré group, and are thus globally
well defined. In Sec. IV E we prove that unitary irreducible
massless bundle representations induce unitary irreducible
Hilbert space representations, and thus correspond to
particles in the usual sense.

A. Geometric notation and conventions

We use the ð−;þ;þ;þÞ signature for Minkowski space,
with the minus sign on the time component. The spacetime
metric is denoted by

ημν ¼ ημν ¼

0
BBB@

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA: ð69Þ

The Poincaré group, consisting of all isometries of
Minkowski space, is denoted by IO(3, 1), where the “I”
indicates the inclusion of inhomogeneous transformations.
Likewise, the Euclidean group ISOðnÞ ≅ Rn ⋊ SOðnÞ is
the group of all isometries of n-dimensional Euclidean
space and ⋊ denotes the semidirect product. The Lorentz
group O(3, 1) is the subset of IO(3, 1) consisting of only
homogeneous isometries. A generic element of IO(3, 1) can

be expressed uniquely as a ∘Λ, where a is a spacetime
translation and Λ∈Oð3; 1Þ. The orthochronous Poincaré
and Lorentz groups, IOþð3; 1Þ and Oþð3; 1Þ, consist of
transformations preserving the orientation of time:

IOþð3; 1Þ ¼ fa ∘Λ∈ IOð3; 1ÞjΛ0
0 ≥ þ1g ð70Þ

Oþð3; 1Þ ¼ fΛ∈Oð3; 1ÞjΛ0
0 ≥ þ1g: ð71Þ

The proper orthochronous Poincaré and Lorentz groups,
ISOþð3; 1Þ and SOþð3; 1Þ, are the further restrictions of
IOþð3; 1Þ and Oþð3; 1Þ to transformations preserving the
orientation of space, that is, with detΛ ¼ 1. The parity and
time inversion operators are the Lorentz transformations
defined by their action on the four-vector x ¼ ðx0; xÞ by

Pðx0; xiÞ ¼ ðx0;−xi Þ ð72Þ

Tðx0; xiÞ ¼ ð−x0; xiÞ: ð73Þ

SOþð3; 1Þ is the connected identity component of O(3, 1)
and contains neither P nor T. Oþð3; 1Þ containsP but not T.

B. Representations on vector bundles

Representation theory is the method of representing
groups by their actions on a linear space. Typically this
linear space is taken to be a vector space. However, vector
bundles also possess a linear structure, albeit one that is
more complicated than that of a vector space. We now
define a representation of a Lie group on a vector bundle:
Definition 23 (Equivariant vector bundle). LetG be a Lie

group. A G-equivariant vector bundle is a vector bundle
π∶ E → M equipped with a smooth group action Σ∶ G ×
E → E such that for each g∈G, Σg ¼ Σðg; ·Þ∶ E → E is a
vector bundle isomorphism. In particular, there is an
induced diffeomorphism Σ̃g∶ M → M such that

ð74Þ

commutes. We also say that ðE;ΣÞ is a representation of G
on the vector bundle E. The action of g on a vector v∈E or
basepoint m is sometimes written with the shorthand gv ≐
Σgv or gm ≐ Σ̃gm when there is no chance of ambiguity.
We also frequently use the notation ΣðgÞ ≐ Σg.
E is said to be a homogeneous bundle representation if

the action Σ̃ on M is transitive. If E is a Hermitian bundle,
then we say the representation is unitary if the restriction of
Σg to any fiber is unitary, i.e., if ΣgjEp

∶ Ep → EΣ̃gðpÞ is
unitary. If F is a subbundle of Ewith nonzero rank, then we
say ðF;ΣÞ is a subrepresentation of ðE;ΣÞ if Σ restricts to
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an action of G on F. E is irreducible if it has no proper
subrepresentations.
Definition 24 (Isomorphism of equivariant vector bun-

dles). An isomorphism between two G-equivariant vector
bundles π1∶ E1 → M and π2∶ E2 → M with group actions
Σ1 and Σ2 is a vector bundle isomorphism h∶ E1 → E2

which preserves base points,

hðE1ðmÞÞ ¼ E2ðmÞ ð75Þ

for m∈M, and which satisfies the equivariance property

hðΣ1ðgÞðm; vÞÞ ¼ Σ2ðgÞhðm; vÞ ð76Þ

for any g∈G and ðm; vÞ∈E1ðmÞ. h is said to be a unitary
isomorphism if the actions Σ1 and Σ2 are unitary, and if h is
unitary. If such an isomorphism exists, the representations
are said to be equivalent or unitarily equivalent.
These definitions are analogous to those for ordinary

representations, with vector spaces and linear maps
replaced by vector bundles and bundle maps. As for
ordinary representations, a representation of a Lie group
G on a vector bundle E describes a G symmetry of the
system represented by E. We show that the photon bundle γ
is unitary and equivariant with respect to the orthochronous
Poincaré group, IOþð3; 1Þ, describing the Poincaré sym-
metry of the Maxwell system. We note that it is possible to
construct a bundle representation of the full Poincaré group
IO(3, 1) if one includes the backward light cone in the base
manifold of γ. However, little is gained by doing so, and it
introduces two complications. First, the full light cone is
not connected while the forward light Lþ cone is. Second,
the representation would no longer be unitary since the
action of time inversion is antiunitary [45].
Let ðk;EÞ∈ γ where k ¼ ðjkj; kÞ is a lightlike four-

vector. Both k and E have well-known transformation laws
under Lorentz transformations. For Λ∈Oð3; 1Þ, k trans-
forms like a four-vector: k → k0 ¼ ðjk0j; k0Þ ¼ Λk. As Lþ
can be parametrized by k, we sometimes write k0 ¼ Λk for
the spatial part of k0. For equivariant bundles with base
manifold a subset of 4-momentum space, we will always
assume that the action Σ̃ on the base manifold is the four-
vector action. Under the subset of O(3, 1) consisting of
rotations in three space, E transforms like a three-vector,
since 3D rotations and the Fourier transform commute. Let
Λv denote a boost by velocity v. Under this transformation,
the electric field EðxÞ becomes [46]

E0ðΛvxÞ ¼ γLor½EðxÞ þ v × BðxÞ� − γ2Lor
γLor þ 1

ðEðxÞ · vÞv;

γLor ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p : ð77Þ

Then,

Ẽ0ðΛvkÞ¼
Z

eiðΛvkÞμx0μE0ðx0Þd4x0

¼
Z

eiðΛvkÞμðΛvxÞμE0ðΛvxÞdetðΛvÞd4x

¼
Z

eik
μxμE0ðΛvxÞd4x

¼ γLor½ẼðkÞþ v× ðk̂× ẼðkÞÞ�− γ2Lor
γLorþ1

ðẼðkÞ · vÞv:

ð78Þ

Note that for two four-vectors aμ ¼ ða0; aÞ and
bμ ¼ ðb0; bÞ, both δ4ðaμ − bμÞ ¼ δða0 − b0Þδ3ða − bÞ
and a0δ3ða − bÞ are Lorentz invariant [20], and therefore
so is ða0Þ−1δða0 − b0Þ:

δððΛaÞ0 − ðΛbÞ0Þ
ðΛaÞ0 ¼ δða0 − b0Þ

a0
ð79Þ

for any Poincaré transformation Λ. It then follows from
Eqs. (7), (78), and (79) that

EðΛvkÞ ¼
jkj

jΛvkj
�
γLor½EðkÞ þ v × ðk̂ × EðkÞÞ�

−
γ2Lor

γLor þ 1
ðEðkÞ · vÞv

�
; ð80Þ

and thus the action of Λv on ðk;EÞ∈ γ is given by

ΣΛv
ðk;EÞ ¼ ðΛvk;E0Þ ð81Þ

E0 ≐
jkj

jΛvkj
�
γLor½Eþ v × ðk̂ × EÞ� − γ2Lor

γLor þ 1
ðE · vÞv

�
:

ð82Þ

Similar calculations show that spatial inversion P and
spacetime translations a ¼ ða0; aÞ act via

ΣPðk;EÞ ¼ ð−k;−EÞ; ð83Þ

Σaðk;EÞ ¼ ðk; eiðk·a−jkja0ÞEÞ: ð84Þ

Any element of IOþð3; 1Þ can be expressed as a
combination of boosts, spatial rotations, spacetime trans-
lations, and spatial inversion, so together these relations
define an action of IOþð3; 1Þ on γ. An essential property is
that k transforms independently of E, and thus the Poincaré
action preserves fibers: ΣðΛÞγðkÞ ⊆ γðΣ̃ðΛÞkÞ ¼ γðΛkÞ.
This ensures that elements of IOþð3; 1Þ are represented
by bundle maps, and therefore this action gives an
equivariant bundle structure on γ. We have thus proved
most of the following theorem.
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Theorem 25. γ is a homogeneous IOþð3; 1Þ-equivariant
vector bundle under the usual Poincaré transformations of
the electric field described above. This representation is
unitary with respect to the Hermitian product (13).
Proof. The representation is homogeneous since

IOþð3; 1Þ acts transitively on the base manifold Lþ. It
remains to prove unitarity. The Hermitian product induces a
norm on each fiber γðkÞ given by Ej ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

E� · E
p

. The inner
product of two arbitrary vectors can be expressed purely in
terms of the norm via the polarization identity [47]:

hE1;E2i ¼
1

4
ðjE1 þ E2j2 − jE1 − E2j2 − ijE1 þ iE2j2

þ ijE1 − iE2j2Þ: ð85Þ
It is thus sufficient to check that

hΣΛE;ΣΛEi ¼ hE;Ei ð86Þ
for all Λ∈ IOþð3; 1Þ. Furthermore, it is sufficient to check
the cases when Λ is a spatial rotation, spatial inversion,
spacetime translation, or boost. The first three are trivial,
and for the latter one can show directly from Eq. (82) that

E0� · E0 ¼ E� · E; ð87Þ
which completes the proof. ▪
As in the case of vector space representations, a

representation Σ of a Lie group G on a vector bundle
π∶ E → M induces an action σ of the Lie algebra LieðGÞ
on that bundle in the following sense. For g∈LieðGÞ, the
generator σg associates to each vector ðm; vÞ∈E a tangent
vector in Tðm;vÞE describing the infinitesimal group action.
Explicitly,

σgðm; vÞ ≐ d
dt

����
t¼0

ΣExpðtgÞðm; vÞ∈Tðm;vÞE: ð88Þ

Thus, σg ∈XðEÞ where XðEÞ is the set of vector fields on
E. The next result says that σg respects the vector bundle
structure of E in the sense that it is a lift of the
corresponding vector field on the base manifoldM induced
by Σ̃. Define the vector field σ̃ ∈XðMÞ by

σ̃gðmÞ ≐ d
dt

����
t¼0

Σ̃ExpðtgÞðmÞ∈TmM: ð89Þ

Proposition 26.

σ̃g ∘ π ¼ π� ∘ σg ð90Þ
where π� is the pushforward of π. That is, the diagram

ð91Þ

commutes.

Proof. ΣExpðtgÞðm; vÞ is a curve through ðm; vÞ∈E with
tangent vector σgðm; vÞ at t ¼ 0. So

π� ∘ σgðm; vÞ ¼ d
dt

����
t¼0

π ∘ΣExpðtgÞðm; vÞ

¼ d
dt

����
t¼0

Σ̃ExpðtgÞπðm; vÞ

¼ σ̃g ∘ πðm; vÞ: ð92Þ
▪

XðEÞ is a Lie algebra with respect to the Jacobi-Lie
bracket

½X; Y�− ¼ −ðXY − YXÞ: ð93Þ

The minus sign in this definition is needed for the next
result and accounts for the fact that Σ and σ act on the left
rather than on the right. The following proposition justifies
calling σ a Lie algebra bundle representation.
Proposition 27. σ∶LieðGÞ → XðEÞ is a Lie algebra

homomorphism.
Proof. See Ref. [48], Theorem 20.18 (a). ▪
Following the notation of Weinberg [20], the infinitesi-

mal Poincaré transformations with homogeneous and trans-
lational parts

Λμ
ν ¼ δμν þ ωμ

ν ð94Þ

aμ ¼ ϵμ ð95Þ

define the generators of the Poincaré group iJμν and iPμ by

ΣðI þ ω; ϵÞ ¼ 1þ 1

2
ωσηðiJσηÞ − ϵρðiPρÞ þOðω2; ϵ2;ωϵÞ;

ð96Þ

where ωση is antisymmetric. The generators are ω and ϵ
independent and go by standard names: the Hamiltonian
H ¼ P0 generating time translation, momentum P ¼
fP1; P2; P3g generating spatial translations, angular
momentum J ¼ fJ23; J31; J12g ≐ fJ1; J2; J3g generating
spatial rotations, and boost K ¼ fJ01; J02; J03g ≐
fK1; K2; K3g generating the boost transformations.
Given v∈R3, these also define the generators Jv ¼ v · J
and Kv ¼ v · K. The generators satisfy the commutation
relations

½Ja; Jb� ¼ iϵabcJc; ½Ja; Kb� ¼ iϵabcKc ð97Þ

½Ka; Kb� ¼ −iϵabcJc; ½Ja; Pb� ¼ iϵabcPc ð98Þ

½Ka; Pb� ¼ iHδab; ½Ka;H� ¼ iPa ð99Þ

½Ja;H� ¼ ½Pa;H� ¼ ½Pa; Pb� ¼ ½H;H� ¼ 0: ð100Þ
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C. Singularities in massless vector space representations

In this section we illustrate how the conventional form of
the little group method [19,20] produces vector space
representations of the Poincaré group with singularities.
We will discuss this method in its modern form, as
presented by Weinberg [20], and in its original and slightly
more rigorous form as developed by Wigner [19]. In the
modern formulation, one constructs unitary representations
Σ of the Poincaré group on the space of single-particle
states, that is, on the (generalized) eigenvectors Ψk;a of the
momentum operator:

PμΨk;a ¼ kμΨk;a: ð101Þ

Here, a labels the internal degrees of freedom. It is assumed
that a is a discrete index, reflecting the fact that no particles
with continuous internal degrees of freedom have been
experimentally observed [20]. The little group method
seeks to construct all possible representations Σ as follows.
One begins by fixing some momentum k̄, and considering
the little group Hk̄ consisting of the elements in SOþð3; 1Þ
stabilizing k̄:

Hk̄ ≐ fΛ∈SOþð3; 1ÞjΛðk̄Þ ¼ k̄g: ð102Þ

The little groups for different choices of k̄ are conjugate to
each other since if Λ is any Poincaré transformation taking
k1 to k2, then

Hk2 ¼ ΛHk1Λ
−1: ð103Þ

Thus, up to isomorphism, Hk̄ is independent of k̄. The
single-particle states at k̄ form a representation of the little
group, since for Λ∈Hk̄

ΣðΛÞΨk̄;a ¼
X
b

DabðΛÞΨk̄;b ð104Þ

for some scalarsDabðΛÞ. It ismuch easier to classify the little
group representations since the little group is smaller than the
Poincaré group. For massive particles, the momentum space
is a mass hyperboloid, and one can choose the reference
momentum k̄ ¼ ð1; 0; 0; 0Þ as that of a particle at rest. The
little group is then clearly SO(3). The finite-dimensional
representations are 2sþ 1 dimensional and labeled by the
spin s. For nonprojective representations, s is restricted to
positive integer values. The situation is considerably differ-
ent for massless particles. In this case the momenta are
lightlike, and there is no preferred reference momentum as
there is no rest frame. One typically chooses the reference
momentum k ¼ ð1; 0; 0; 1Þ. One can show that the little
group is ISO(2) [20]. In contrast to SO(3), the finite-
dimensional representations of ISO(2) are all one-dimen-
sional. They are labeled not by spin but by the helicity h
which, for nonprojective representations, can take on all

integer values. The change in themomentum space atm ¼ 0
accounts for the fact that massless particles such as photons
are characterized by helicity rather than by spin.
To construct representations of SOþð3; 1Þ from repre-

sentations of the little group, one must relate the states
with momentum k̄ to those with other momenta. The
conventional method for doing so is to assign to each k in
the momentum space M a Lorentz transformation LðkÞ
such that

LðkÞk̄ ¼ k: ð105Þ

Thus, L∶ M → SOþð3; 1Þ. Up to normalization, one then
defines the single-particle states of momentum k in terms of
those of the reference momentum k̄ by [20]

Ψk;a ¼ ΣðLðkÞÞΨk̄;a: ð106Þ

Then, the action of an arbitrary Λ∈SOþð3; 1Þ is given by

ΣðΛÞΨk;a ¼ ΣðLðΛkÞÞΣðLðΛkÞ−1ΛLðkÞÞΨk̄;a: ð107Þ

Since LðΛkÞ−1ΛLðkÞ∈Hk̄, the action in Eq. (107) is
completely determined by Eqs. (104) and (106).
Equation (107) thus extends the little group action to a
Poincaré action on all single-particle states. However, the
validity of this procedure relies on being able to smoothly
define L∶ M → SOþð3; 1Þ satisfying Eq. (105). If L is not
smooth, then the space of single-particle states constructed
in Eq. (106) does not have a smooth structure. It is then not
possible to say that the Poincaré group acts smoothly on the
single-particle states, and therefore the formal representa-
tions described by Eq. (107) are not actually Lie group
representations.
For massive particles this is not an issue. For the

reference momentum k̄ ¼ ð1; 0; 0; 0Þ, one can smoothly
choose LðkÞ to be the unique boost taking k̄ to k. However,
for massless particles there are no smooth choices of L.
This result was proved by Boya et al. [44] using the
principal bundle structure of SLð2;CÞ. We present a short
alternative proof based on the fact that the R- and L-photon
bundles are Poincaré symmetric:
Theorem 28. Let k̄∈Lþ. There exists no smooth

function L∶ Lþ → SOþð3; 1Þ satisfying Eq. (105) for all k.
Proof. Suppose there were such a function LðkÞ. We will

prove in Theorem 37 that R- and L-polarization states are
preserved under the action Σ of SOþð3; 1Þ. Additionally, a
photon will appear as a propagating wave in any reference
frame, so under a Lorentz transformation a wave ðk;EÞ∈ γk
with E ≠ 0 will transform into another wave with nonzero
electric field. This can also be seen by taking the dot and
cross product of Eq. (81) with v. If one fixes a choice of
ðk̄;EþÞ∈ γþðk̄Þ with Eþ ≠ 0 then ΣLðkÞðk̄;EþÞ, considered
as a function of k, is a continuous nonvanishing section of
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γþ, contradicting the fact that γþ is a nontrivial bundle.
Thus, no continuous function LðkÞ exists. ▪
As an example, Weinberg [20] chooses

LðkÞ ¼ expðiϕJ3Þ expðiθJ2ÞBðjkjÞ; ð108Þ

where

k ¼ jkjð1; sin θ cosϕ; sin θ sinϕ; cos θÞ ð109Þ

and B is a boost in the z direction. However, LðkÞ is
discontinuous at θ ¼ 0 and θ ¼ π since

lim
θ→0

expðiϕJ3Þ expðiθJ2Þ ¼ expðiϕJ3Þ;
lim
θ→π

expðiϕJ3Þ expðiθJ2Þ ¼ − expðiϕJ3Þ ð110Þ

both depend on the value of ϕ. This illustrates that the
modern formulation of the little group method [20,49] fails
for massless particles.
This issue presents slightly differently in Wigner’s

original and more rigorous formulation on the little group
method [19]. The single-particle states used by Weinberg
do not themselves form a Hilbert space (for example, they
are are delta-function normalized [20]). Weinberg instead
builds representations on the Hilbert space of L2 wave
functions ψðk; aÞ where again a is a finite index. Given a
unitary matrix representation of the little groupHk̄ in which
Λ ↦ DabðΛÞ, Wigner defines the Hilbert space represen-
tation

½ΣðΛÞψ �ðk; aÞ ¼
X
b

DabðLðkÞ−1ΛLðΛ−1kÞÞψðΛ−1k; bÞ:

ð111Þ

In the massless case, L is discontinuous for at least one k0.
Thus, if ψ is smooth, the transformed wave function ΣðΛÞψ
is discontinuous at k0 and Λk0. The trivial exceptions to this
are when Λ is the identity or when Dab is the trivial
representation with DabðΛÞ ¼ 1 for every Λ. The latter is
interesting because it shows that the massless helicity 0
representation is smooth. However, all the nonzero helicity
representations are not smooth. We do note that such
discontinuous wave functions are still elements of the L2

Hilbert space, and Wigner showed that these representa-
tions can be regarded as continuous in the technical sense
that if Λα → Λ, then jΛαψ j → jΛψ j in the L2 norm.
Nevertheless, such nonsmooth representations are both
practically awkward and physically unnatural.
One way to understand this issue is that the conventional

little group method constructs representations on the
“wrong” Hilbert space for massless particles. From a
mathematical standpoint, there is a single infinite-dimen-
sional Hilbert space since between any two Hilbert spaces
H1 andH2, there exists a (nonunique) unitary isomorphism

F∶ H1 → H2. However, there are many concrete manifes-
tations of this Hilbert space, for example, the spaces
L2ðRnÞ of C-valued square-integrable functions on Rn.
For a massive particle with spin s, Eq. (111) gives a
smooth representation on the 2sþ 1 component wave
functions over the mass hyperboloid, that is, on the
Hilbert space H ¼ ⨁2sþ1L

2ðR3Þ. However, for any other
Hilbert space, say L2ðRÞ, there exists a unitary isomor-
phism F∶ H → L2ðRÞ, which then induces a representa-
tion on L2ðRÞ. Of course, there is no guarantee that F will
map smooth wave functions into smooth wave functions,
and thus, the induced representation on L2ðRÞ is generally
not smooth. This is to say, it is possible to describe a spin s
particle by a single wave function over the real line, but it
would behave pathologically under Poincaré transforma-
tions, and is thus unnatural from a physical standpoint.
Indeed, such representations are never used in physics. In
this sense, one might regard L2ðRÞ as the “wrong” Hilbert
space to represent spin s particles. That the conventional
little group method produces nonsmooth massless repre-
sentation on L2ðLþÞ suggests that L2ðLþÞ is not a well-
suited Hilbert space for massless particles (except when
h ¼ 0). Wewill show in Sec. IV E that L2 sections of vector
bundles over Lþ support smooth representations, and thus
form natural Hilbert spaces for massless particles.

D. The little group method for massless
vector bundle representations

We can resolve global nonsmoothness issues in the
massless case by considering vector bundle representations
of the Poincaré group over the light cone. We will show that
a vector bundle version of the little group method can be
used to canonically decompose any unitary ISOþð3; 1Þ-
equivariant vector bundle π∶ E → Lþ into irreducible
bundle representations labeled by helicity.
We begin by defining bundle representations of the

little group.
Definition 29 (Stabilizing vector bundle representation).

A G-equivariant vector bundle π∶ E → M with group
action ðΣ; Σ̃Þ is said to be stabilizing if Σ̃g is the identity
for every g∈G, that is, if

ΣgðEkÞ ⊆ Ek ð112Þ

for every k∈M.
Definition 30 (Little group of a vector bundle represen-

tation). Let π∶ E → M be a homogeneous G-equivariant
vector bundle. The isotropy group at k∈M is defined by

Hk ¼ fg∈GjΣ̃gðkÞ ¼ kg: ð113Þ

The little group H of the representation is defined as the
isomorphism type ofHk, which is independent of k because
HΣ̃gk

¼ gHkg−1 and E is homogeneous.
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In the case that G is the Poincaré group, H and Hk are
restricted to elements of SOþð3; 1Þ, that is, they are defined
in terms of the corresponding proper orthochronous
Lorentz action.
Theorem 31 (Little group representation). Let π∶ E → M

be a homogeneous G-equivariant vector bundle with action
ðΣ; Σ̃Þ and little group H. Let Hk denote the little group at
k∈M. Suppose f∶ H ×M → G is a smooth map such that
fðh; kÞ∈Hk for all h, k, and for each fixed k, fðh; kÞ is a
group homomorphism from H to G. Such an f induces a
stabilizing bundle representation of H on E with action Π
given by

Πhðk; vÞ ¼ Σfðh;kÞðk; vÞ ð114Þ
for ðk; vÞ∈E. Π is unitary if Σ is unitary. A bundle
representation of H induced by such an f is called a little
group representation.
Proof. Π is smooth because Σ and f are. It is a vector

bundle representation because

Πh1h2ðk; vÞ ¼ Σfðh1h2;kÞðk; vÞ ¼ Σfðh1;kÞfðh2;kÞðk; vÞ ð115Þ
¼ Σfðh1;kÞΣfðh2;kÞðk; vÞ ¼ Πh1Πh2ðk; vÞ: ð116Þ

It is stabilizing since fðh; kÞ∈Hk. Since Π can be written
in terms of Σ, if Σ is unitary then so is Π. ▪
By the definition of the little group H, for each k there

exists an isomorphism fk∶ H → Hk. Note that fk is not
typically unique. One can then define

fðh; kÞ ¼ fkðhÞ: ð117Þ
However, this f is not generally smooth since there is no
guarantee that the choices of fk fit together smoothly. Our
first goal is construct a canonical smooth f for an arbitrary
ISOþð3; 1Þ-equivariant vector bundle π∶ E → Lþ, which
will then furnish a canonical little group representation.
Note that any such bundle E is homogeneous since
ISOþð3; 1Þ acts transitively on Lþ.
For a fixed k̄∈Lþ, any Λ∈Hk̄ satisfies ΣðΛÞEk̄ ⊆ Ek̄,

so Σ gives a finite-dimensional vector space representation
of Hk̄ ≅ ISOð2Þ on the fiber Ek̄; we will use Σk̄ to denote
this restriction of Σ to Ek̄.
Consider first the special case of k̄ ¼ ð1; 0; 0; 1Þ.

Weinberg [20] showed that the little group of this k̄ can
be described by a function of three parameters
Wk̄ðθ; α; βÞ∶ ISOð2Þ → ISOþð3; 1Þ and is represented by

ΣðWk̄ðθ; α; βÞÞ ¼ exp ðiαAþ iβBþ iθJ3Þ;
A ¼ J2 þ K1;

B ¼ −J1 þ K2: ð118Þ
Under the isomorphism with ISO(2), J3 generates 2D
rotations while A and B generate translations. They satisfy
the commutation relations

½J3; A� ¼ þiB; ð119Þ

½J3; B� ¼ −iA; ð120Þ

½A;B� ¼ 0: ð121Þ

It is known that all finite-dimensional irreducible repre-
sentations of ISO(2) are one-dimensional. The general case
was proved by Schwarz [50]; simpler proofs for unitary
representations of ISO(2) are presented by Weinberg [20]
and Maggiore [49]. Therefore, on each such irreducible
representation, J3, A, and B must all be multiplication
operators and thus commute. Equations (119) and (120)
then imply A ¼ B ¼ 0 on each irreducible representation,
which in turn implies A ¼ B ¼ 0 on all of Ek̄. Thus,

J2 þ K1 ¼ 0; ð122Þ
−J1 þ K2 ¼ 0 ð123Þ

when restricted to γk̄. We note two subtleties here. First, the
relations (122) and (123) hold only on the fiber Ek̄. Second,
J2 andK1 are not independently operators in the little group
representation since neither generate transformations leav-
ing k̄ invariant. However, since J2 þ K1 ¼ 0 in the little
group representation, this relation holds also in the bundle
representation when restricted to Ek̄, and in this sense the
perpendicular boosts and angular momenta are related by
J2 ¼ −K1 and J1 ¼ K2 on Ek̄.
Since A ¼ B ¼ 0, the irreducible representations are

completely determined by the action of the generator J3.
In fact, they are just the eigenspaces of J3. Let Ψk̄;h be the
eigenvectors with eigenvalues h:

J3Ψk̄;h ¼ hΨk̄;σ: ð124Þ

h defines the helicity of each irreducible representation of
Hk̄. Since

ei2πJ3Ψk̄;h ¼ e2πihΨk̄;h ¼ Ψk̄;h; ð125Þ

h must be an integer. Note that if one allows projective
representations, h may also be a half integer [20].
These results generalize easily to arbitrary k ¼

ðjkj; kÞ∈Lþ as there is nothing special about k̄ ¼
ð1; 0; 0; 1Þ. Choose any f 1; f 2 ∈R3 such that ðf 1; f 2; k̂Þ
form a right-handed orthonormal coordinate system. Then
the little group Hk is given by a function Wkðθ; α; βÞ
represented by

ΣðWkðθ; α; βÞÞ ¼ exp ½iαAk þ iβBk þ iθðk̂ · JÞ�; ð126Þ

Ak ¼ f 2 · J þ f 1 · K ¼ 0; ð127Þ

Bk ¼ −f 1 · J þ f 2 · K ¼ 0: ð128Þ
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The latter two equations say that the boosts and
perpendicular angular momentum are related on Ek by

J⊥ ¼ −k̂ × K⊥ ¼ −k̂ × K ð129Þ

where

J⊥ ≐ J − k̂ðk̂ · JÞ; ð130Þ

K⊥ ≐ K − k̂ðk̂ · KÞ: ð131Þ

The only nontrivial generator of the little group is k̂ · J, and
its eigenspaces are again labeled by integer helicities. For
systems with a well-defined spatial-inversion symmetry,
such as the photon system, it can further be shown that the
eigenvalues must come in �h pairs [20].
We would like to show that the fiberwise little group

representations fit together to form a bundle representation
of the little group ISO(2) via Theorem 31. However,
Wkðθ; α; βÞ considered as a function from ISOð2Þ × Lþ
to ISOþð3; 1Þ is not smooth because it is not possible to
smoothly choose ðf 1ðkÞ; f 2ðkÞÞ by the hairy ball theorem.
However, the fiberwise little group representations have the
important property that the translations Ak and Bk act
trivially. Thus, f∶ ISOð2Þ × Lþ → SOþð3; 1Þ given by

fððθ; α; βÞ; kÞ ¼ Wkðθ; 0; 0Þ ð132Þ

is smooth and produces precisely the same action as
Wkðθ; α; βÞ under Σ:

Σðfððθ; α; βÞ; kÞÞ ¼ ΣðWkðθ; α; βÞÞ: ð133Þ

Applying Theorem 31 to this f then gives a canonical little
group action.
Theorem 32. Every ISOþð3; 1Þ-equivariant vector bun-

dle π∶ E → Lþ with group action Σ has an associated little
group representation of ISO(2) with action Π given by

Πðθ; α; βÞðk; vÞ ¼ ðk; eiθχvÞ ¼ ðk; eiθðk̂·JÞvÞ ð134Þ

where

χ ¼ k̂ · J ð135Þ

is the helicity operator. If Σ is unitary, then so is Π.
Note that the helicity operator can be written as

χ ¼ k̂ · J ¼ P
jkj · J ¼ 1

H
P · J: ð136Þ

This operator is smooth on the vector bundle since H ¼
jkj ≠ 0 on the light cone and is thus invertible. Note that
H−1 commutes with P and J. Furthermore, for each
a∈ f1; 2; 3g, Pa and Ja commute, so P · J ¼ J · P.

Thus, the terms in Eq. (136) can be rearranged, and there
is no ordering ambiguity in the definition of χ. The
following is an important property of χ.
Theorem 33. The ISOþð3; 1Þ action Σ and its associated

little group action Π commute.
Proof. We prove this by showing that χ commutes with

all generators of the ISOþð3; 1Þ action. In the following
calculations, we implicitly sum over all repeated indices.
That χ commutes with the spacetime translation generators
and the Hamiltonian H is trivial. For the generators Pb,
we have

½χ; Pb� ¼
�
Pa

H
Ja; Pb

�
¼ Pa

H
½Ja; Pb�

¼ iϵabcH−1PaPc ¼ 0: ð137Þ

For Jb,

½χ; Jb� ¼ H−1½PaJa; Jb�
¼ H−1ðPa½Ja; Jb� þ ½Pa; Jb�JaÞ
¼ iH−1ðϵabcPaJc þ ϵabcPcJaÞ
¼ 0: ð138Þ

To show that χ commutes with boosts, note that

½H−1; Kb� ¼ H−1Kb − KbH−1

¼ H−1KbHH−1 −H−1HKbH−1

¼ H−1½Kb;H�H−1 ¼ iH−1PbH−1

¼ iH−2Pb: ð139Þ

Thus,

½χ;Kb� ¼ ½H−1PaJa;Kb�
¼H−1Pa½Ja;Kb�þ ½H−1Pa;Kb�Ja
¼ iϵabcH−1PaKcþH−1½Pa;Kb�Jaþ ½H−1;Kb�PaJa

¼−iH−1ðP×KÞb− iδabJaþ iH−2PbPaJa

¼ ið−Jb − ðk̂×KÞbþ k̂bðk · JÞÞ: ð140Þ

By the relation (129) between the boost and rotation
generators for massless representations, these terms cancel
giving

½χ; Kb� ¼ 0: ð141Þ

▪
We can now show that the massless unitary irreducible

bundle representations of ISOþð3; 1Þ are the constant
helicity representations.
Theorem 34. Let π∶ E → Lþ be a unitary ISOþð3; 1Þ-

equivariant vector bundle of rank r such that a spacetime
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translation by a∈R4 acts on a vector ðk; vÞ∈Ek by
Σaðk; vÞ ¼ ðk; eikμaμvÞ. Then E can be decomposed as

E ¼ E1 ⊕ � � � ⊕ Er ð142Þ

where the Ej are unitary irreducible ISOþð3; 1Þ-equivariant
line subbundles of E. Each Ej has definite helicity hj in the
sense that every element of Ej is an eigenvector of χ with
helicity hj.
Proof. Choose some k̄∈Lþ. Let ðv1;…; vrÞ be a basis of

the fiber Ek̄ consisting of eigenvectors of χ with helicities
ðh1;…; hrÞ. Define the subset Ej ⊆ E as the orbit of ðk̄; vjÞ
under the group action and scalar multiplication:

Ej ≐ fcΣðLÞðk̄; vjÞjL∈ ISOþð3; 1Þ; c∈Cg: ð143Þ

Wewill show that each Ej is a rank-1 subbundle of E by the
subbundle criterion. Partition Ej as

Ej ¼ ⨿k∈LþEjðkÞ; ð144Þ

where EjðkÞ is the subset of Ej consisting of vectors at k.
Each EjðkÞ is a vector space, and it is nonempty since if
LðkÞ is any Poincaré transformation taking k̄ to k, then
ΣðLðkÞÞðk̄; vjÞ∈EjðkÞ. Thus, EjðkÞ is at least one-dimen-
sional. Suppose ðk; w1Þ and ðk; w2Þ are both in EjðkÞ and
nonzero. Then

ðk; w1Þ ¼ c1ΣðL1Þðk̄; vjÞ ð145Þ

ðk; w2Þ ¼ c2ΣðL2Þðk̄; vjÞ ð146Þ

for some nonzero scalars ðc1; c2Þ and Poincaré transfor-
mations ðL1; L2Þ. As L−1

2 L1 leaves k̄ invariant, it must be a
combination of a spacetime translation by some a and an
element of the little group Hk, so

ΣðL−1
2 L1Þðk̄; vjÞ ¼ ðk̄; eiðθhjþkμaμÞvjÞ ð147Þ

for some θ. Then

ðk; w1Þ ¼ c1ΣðL2ÞΣðL−1
2 L1Þðk̄; vjÞ

¼ c1c−12 eiðθhjþkμaμÞðk; w2Þ; ð148Þ

so ðk; w1Þ and ðk; w2Þ are linearly dependent. This shows
that every EjðkÞ is one-dimensional.
Now, let k0 ∈Lþ be arbitrary andU be a small ball about

k0. Choose the radius of U to be small enough that it does
not enclose the origin. We construct a smooth function
L∶ U → SOþð3; 1Þ such that LðkÞk0 ¼ k. Note that we
showed in Theorem 28 that it is not possible to construct
such a function if the domain is all of Lþ. However, it is
possible to construct such a function locally. Indeed, we can

simply choose LðkÞ ¼ RðkÞBðkÞ where BðkÞ is the boost
parallel to k0 taking k0 to k0

jkj
jk0j and RðkÞ is the unique

rotation by angle 0 ≤ θ < π along the great circle connect-
ing k0

jkj
jk0j to k. Let ðk0; vÞ be a nonzero vector in Ejðk0Þ.

Then ΣðLðkÞÞðk0; vÞ is a smooth section of E over U that
span EjðkÞ for each k∈U. Thus, each Ej is a line
subbundle of E by Lemma 15. They are unitary equivariant
subbundles by their definitions in Eq. (143). Every vector
ðk; w1Þ∈E1 is an eigenvector of χ with helicity hj since by
Theorem 32,

χðk; w1Þ ¼ χc1ΣðL1Þðk̄; vjÞ
¼ c1ΣðL1Þχðk̄; vjÞ
¼ hjðk; w1Þ: ð149Þ

▪
In this bundle decomposition, it is possible for multiple

line bundles Ej to have the same helicity. The next result
says that such representations are equivalent, showing that
the irreducible bundle representations of ISOþð3; 1Þ are
completely characterized by their helicity.
Theorem 35. Suppose π∶ E1 → Lþ and π2∶ E2 → Lþ

are unitary ISOþð3; 1Þ-equivariant line bundles with
actions Σ1 and Σ2 and helicities h1 and h2, and such that
spacetime translations by a act via multiplication by eik

μaμ.
They are unitarily equivalent representations if and only
if h1 ¼ h2.
Proof. If E1 and E2 are equivalent representations, then

there exists an isomorphism g∶ E1 → E2 as in
Definition 24. Let χ1 and χ2 be the helicity operators
induced by Σ1 and Σ2. For ðk; vÞ∈E1, linearity gives

gðeiθχ1ðk; vÞÞ ¼ gðeih1θðk; vÞÞ ¼ eih1θgðk; vÞ: ð150Þ

By equivariance,

gðeiθχ1ðk; vÞÞ ¼ eiθχ2gðk; vÞ ¼ eih2θgðk; vÞ: ð151Þ

Thus, h1 ¼ h2.
Conversely, suppose h1 ¼ h2. Wewill construct a unitary

isomorphism of representations g∶ E1 → E2. Fix some
ðk0; v0Þ∈E1 and ðk0; w0Þ∈E2 such that jv0j ¼ jw0j ≠ 0.
We define

gðk0; v0Þ ¼ ðk0; w0Þ; ð152Þ

andextend this relationbyequivariance and linearity.That is,
for every L∈ ISOþð3; 1Þ and c∈C, define

gðΣ1ðLÞðk0; v0ÞÞ ¼ Σ2ðLÞðk0; w0Þ; ð153Þ

gðk0; cv0Þ ¼ cðk0; w0Þ: ð154Þ

Any ðk; vÞ∈E1 can be expressed as
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ðk; vÞ ¼ cΣ1ðΛÞðk0; v0Þ ð155Þ

for some choice of c, Λ. Indeed, if one chooses a
Lorentz transformation Λ such that Λk0 ¼ k, then
ΣðΛÞðk0; v0Þ∈E1ðkÞ. Since E1 is a line bundle, any other
vector inE1ðkÞ can be obtained by scalar multiplication.We
must still show that g is single valued under this definition.
Suppose Σ1ðL1Þðk0; v0Þ ¼ Σ1ðL2Þðk0; v0Þ. We need to

show

Σ2ðL1Þðk0; w0Þ ¼ Σ2ðL2Þðk0; w0Þ ð156Þ

or equivalently,

Σ2ðL−1
2 L1Þðk0; w0Þ ¼ ðk0; w0Þ: ð157Þ

Since L−1
2 L1 leaves k0 invariant, it corresponds to

a ∘ ðθ; α; βÞ where a is a spacetime translation and
ðθ; α; βÞ is an element of Hk0 ≅ ISOð2Þ. It thus acts on
the fibers E1;k0 and E2;k0 via multiplication by c1 ≐
eiðθhþkμ

0
aμÞ. By assumption

Σ1ðL−1
2 L1Þðk; v0Þ ¼ ðk; v0Þ; ð158Þ

so c1 ¼ 1 and Eq. (157) holds. Next, suppose

Σ1ðLÞðk0; v0Þ ¼ ðk0; cv0Þ: ð159Þ

We need to show that

Σ2ðLÞðk0; w0Þ ¼ ðk0; cw0Þ: ð160Þ

Again, since L leaves k0 invariant, it can be expressed as
a ∘ ðθ; α; βÞ, and it thus acts on both E1;k0 and E2;k0 via

multiplication by eihθþkμ
0
aμ. Thus Eq. (159) implies Eq. (160),

showing that g is well defined.
g is a basepoint preserving unitary vector bundle

isomorphism by its defining properties. All that remains
to show is that g is equivariant, that is,

gðΣ1ðLÞðk; vÞÞ ¼ Σ2ðLÞgðk; vÞ ð161Þ

for arbitrary ðk; vÞ∈E1 and L∈ ISOþð3; 1Þ. Choose some c
andΛ such that Eq. (155)holds.Then, usingEqs. (152)–(154)
we have

gðΣ1ðLÞðk; vÞÞ ¼ cgðΣ1ðLΛÞðk0; v0ÞÞ
¼ cΣ2ðLΛÞðk0; w0Þ
¼ cΣ2ðLÞΣ2ðΛÞðk0; w0Þ
¼ Σ2ðLÞgðcΣ1ðΛÞðk0; v0ÞÞ
¼ Σ2ðLÞgððk; vÞÞ: ð162Þ

Thus, E1 and E2 are equivalent representations. ▪

We can apply this vector bundle version of the little
group method to decompose the photon bundle γ into
Poincaré invariant line bundles. First note that γ� have
definite helicity.
Proposition 36. The R and L bundles γ� have definite

helicities �1.
Proof. An arbitrary vector v� ∈ γ� can be written as

v� ¼ αðe1 � ie2Þ where ðe1; e2; k̂Þ is real, right handed,
and orthonormal. RðθÞ ¼ eiðk·JÞ describes a passive rotation
by θ about k̂. Using the ðe1; e2Þ basis,

RðθÞv� ¼
�

cos θ sin θ

− sin θ cos θ

��
1

�i

�
¼ e�iθv�: ð163Þ

Differentiating with respect to θ gives

χv� ¼ ðk̂ · JÞv� ¼ �v�: ð164Þ

▪
We now show that γ� are irreducible subrepresentations

of the representation Σ on γ, provided we restrict Σ from
IOþð3; 1Þ to ISOþð3; 1Þ. This restriction is necessary since
the parity operator P maps γ� to γ∓, and therefore the R
and L bundles are not P symmetric.
Theorem 37. γþ and γ− are unitary irreducible vector

bundle representations of ISOþð3; 1Þ.
Proof. By Theorem 34, γ decomposes as

γ ¼ E1 ⊕ E2 ð165Þ

into two unitary irreducible line bundle representations of
ISOþð3; 1Þ with definite helicity. By Proposition 36, these
line bundles must be γ�. ▪
This result shows that R and L photons are globally well

defined. In particular, this construction avoids the singu-
larities that appear in the conventional little group method
for massless particles.

E. Vector bundle representations as particles

We have shown that the solutions of Maxwell’s equations
fit together into a smooth vector bundle γ. Furthermore, γ
splits into two unitary irreducible bundle representations of
the Poincaré group, γþ and γ−. It is thus natural to consider
these bundle representations to be particles. However, by
the conventional definition, particles are unitary irreducible
Hilbert space representations of the Poincaré group [19,20].
In this section we bridge the gap between these two view-
points, proving that massless unitary irreducible bundle
representations of the Poincaré group generate correspond-
ingunitary irreducibleHilbert space representations, and can
thus be considered particles under the standard definition.
TheseHilbert space representations are smooth, avoiding the
singularities described in Sec. IV C that occur in Wigner’s
little group construction. We note that this method of
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generating Hilbert space representations from bundle rep-
resentations was described by Simms [43]. Our work differs
in that we use smooth bundles rather than topological
bundles, which allows us to resolve the nonsmoothness
issues with massless representations.
A representation of G on the vector bundle E naturally

induces a vector space representation of G on the infinite-
dimensional vector space ΓðEÞ of smooth sections of E. We
refer to this as the sectional representation.
Proposition 38. A G-equivariant vector bundle ðE;ΣÞ

induces a vector space representation of G on ΓðEÞ. Given
g∈G and a section ψ∶ M → E, g is represented by Σs

g,
defined by

½Σs
gψ �ðmÞ ¼ Σg½ψðΣ̃g−1ðmÞÞ�: ð166Þ

Proof. The linearity of the action in ΓðEÞ follows from
the fact that Σg is a bundle map. That the identity e∈G acts
trivially on ΓðEÞ follows from Σe ¼ I. If g1; g2 ∈G, then

½Σs
g1g2ψ �ðmÞ ¼ Σg1g2 ½ψðΣ̃ðg1g2Þ−1mÞ�

¼ Σg1Σg2 ½ψðΣ̃g−1
2
Σ̃g−1

1
ðmÞÞ�

¼ Σg1 ½ðΣs
g2ψÞðΣ̃g−1

1
ðmÞÞ�

¼ ½Σs
g1ðΣs

g2ψÞ�ðmÞ; ð167Þ
showing that Σs

g1g2 ¼ Σs
g1Σ

s
g2 . Lastly, Σ

s
gψ is smooth since

Σg, Σg−1 , and ψ are smooth. ▪
As an example which will be used in Sec. V C, the ISO

(2) little group action on γ has a corresponding sectional
representation on ΓðγÞ, which can be simply expressed due
to the splitting γ ¼ γþ ⊕ γ−. A section EðkÞ∈ΓðγÞ can be
uniquely written in terms of sections E� of γ�:

EðkÞ ¼ EþðkÞ þ E−ðkÞ: ð168Þ
That is, there are unique projections P�∶ ΓðγÞ → Γðγ�Þ.
Theorem 39. Let E∈ΓðγÞ. The sectional representation

corresponding to the canonical ISO(2)-little group repre-
sentation on γ is given by

ðθ; α; βÞE ¼ eiχθE ¼ eþiθEþ þ e−iθE−: ð169Þ

Since the translations α, β act trivially, the little group
action can be considered as an SOð2Þ ≅ S1 action:

θE ¼ eiχθE ¼ eþiθEþ þ e−iθE−: ð170Þ
Proof. Since little group elements act trivially on k, the

sectional action defined in Eq. (166) is given by

½ðθ; α; βÞE�ðkÞ ¼ fððθ; α; βÞ; kÞ½EðkÞ� ¼ eiχθEðkÞ ð171Þ

¼ eþiθEþ þ e−iθE−: ð172Þ

▪

Ideally, if Σ is unitary, then the sectional representation
Σs on ΓðEÞ would also be unitary. However, this would
imply that the Hermitian structure on E induces a Hermitian
product on ΓðEÞ, which is not generally true. Suppose then
that one additionally specifies a G-invariant volume form
dξ on the base manifold M, and denote by ΓðE; dξÞ the
smooth sections which are L2 normalizable with respect to
the volume form dξ. Then there is an induced Hermitian
structure on ΓðE; dξÞ:

hψ1;ψ2i ¼
Z
M
hψ1ðmÞ;ψ2ðmÞidξ: ð173Þ

In the present case, the photon bundle has the light cone as
its base manifold which has a canonical Lorentz invariant
volume form dξ ¼ d3k

jkj . We will assume this volume form

whenever the base manifold of E is Lþ.
Proposition 40. Suppose π∶ E → M is a G-equivariant

vector bundle and dξ is a G-invariant volume form onM. If
the bundle representation is unitary on E, then the sectional
representation on ΓðE; dξÞ is unitary with respect to the
induced Hermitian product (173).
Proof. For ψ1;ψ2 ∈ΓðEÞ and g∈G, we have

hΣs
gψ1;Σs

gψ2i ¼
Z
M
hðΣs

gψ1ÞðkÞ; ðΣs
gψ2ÞðkÞidξ

¼
Z
M
hΣg½ψ1ðg−1kÞ�;Σg½ψ2ðg−1kÞ�idξ

¼
Z
M
hψ1ðg−1kÞ;ψ2ðg−1kÞidξ

¼
Z
M
hψ1ðkÞ;ψ2ðkÞig�ðdξÞ

¼ hψ1;ψ2i; ð174Þ
where g�ðdξÞ ¼ dξ follows from the G invariance
of dξ. ▪
ΓðE; dξÞ is not a Hilbert space but rather a pre-Hilbert

space since it is not complete. In particular, a sequence of
smooth sections can converge in the norm to a discontinuous
section. This issue is typical fo L2 spaces, and to remedy it,
one can work with the Hilbert space completion of ΓðE; dξÞ,
denoted byL2ðE; dξÞ, which is the closure of ΓðE; dξÞ in the
norm. A unitary sectional action Σs on ΓðE; dξÞ extends to a
Hilbert space action on L2ðE; dξÞ in the following way. If
g∈G andψ ∈L2ðE; dξÞ, then there is a Cauchy sequenceψ j

in ΓðE; dξÞ with ψ j → ψ . Since ΣsðgÞ acts unitarily on
ΓðE; dξÞ, ΣsðgÞψ j is also Cauchy in ΓðE; dξÞ, and thus
converges in L2ðE; dξÞ. We can then define

ΣsðgÞψ ≐ lim
j→∞

ΣsðgÞψ j: ð175Þ

Proposition 38 shows this representation is smooth since it
maps smooth sections to smooth sections. We have thus
proved the following:
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Theorem 41. A unitary G-equivariant vector bundle
π∶ E → M equipped with a G-invariant volume form dξ
on M induces a smooth unitary representation on
L2ðE; dξÞ. In particular, the sectional representations of
IOþð3; 1Þ on L2ðγ; dξÞ and ISOþð3; 1Þ on L2ðγ�; ξÞ are
unitary.
The massless representations constructed in the standard

little group representations are representations on the space
ofC-valued L2 functions overLþ which is equivalent to the
space of sections of the trivial line bundle on Lþ. This leads
to nonsmooth representations when h ≠ 0. By considering
representations on sections of nontrivial bundles, one can
obtain smooth massless representations.
To complete this picture and prove that massless unitary

irreducible bundle representations of ISOþð3; 1Þ are par-
ticles, it is necessary to show that the corresponding
sectional representations are also irreducible:
Theorem 42. Suppose Σ is an irreducible unitary bundle

representation of ISOþð3; 1Þ on π∶ E → Lþ such that a
spacetime translation by a∈R4 acts on a vector ðk; vÞ∈Ek

by Σaðk; vÞ ¼ ðk; eikμaμvÞ. Then the induced Hilbert space
representation Σs on L2ðE; dξÞ is irreducible.
This is harder to prove than the previous results in this

section since it depends on specific properties on the
Poincaré group. Indeed, it not generally true that unitary
irreducible bundle representations of an arbitrary Lie group
G generate irreducible sectional representations. A counter-
example can be found in elementary quantum mechanics.
Consider the trivial line bundle E ¼ S2 × C over S2 with
generic element ðk̂; cÞ∈E and with the irreducible SO(3)
action which acts by rotations on k and trivially on the fiber:

Rðk̂; cÞ ¼ ðRk̂; cÞ: ð176Þ

The sections ΓðEÞ are justC-valued functions on S2, and the
sectional representation is

ðRfÞðk̂Þ ¼ fðR−1k̂Þ: ð177Þ

This is the standard action of SO(3) on functions onS2, and is
reducible using spherical harmonics. For example, the
constant functions are a one-dimensional subrepresentation.
In fact, the sectional representation will always be reducible
whenG is compact. This is because L2ðE; dξÞ is an infinite-
dimensional vector space; meanwhile any unitary irreduc-
ible representation of a compact group is finite dimensional
([51], Theorem 3.9). However, this does not apply to non-
compact groups, such as ISOþð3; 1Þ.
We first prove a simplified version of Theorem 42

assuming a smoothness condition. This allows for a more
transparent proof and motivates the measure theoretic
techniques used in the general proof. Given a representation
of ISOþð3; 1Þ on L2ðE; dξÞ, one can decompose it into
irreducible Hilbert subrepresentations Ha:

L2ðE; dξÞ ¼ ⨁
a
Ha: ð178Þ

It is not clear a priori that anyHa contains a smooth section
other than the zero section; that is, there is the possibility
that every nonzero smooth section is a linear combination
of nonsmooth elements from the Ha. We call the repre-
sentation normal if at least one of theHa contains a smooth
section which is not identically zero.
Theorem 43. Theorem 42 holds under the additional

hypothesis that the sectional representation Σs is normal.
Proof. By assumption, L2ðE; dξÞ has an irreducible

subrepresentation H which contains a smooth section ψ0

which is not the zero section. We will prove that
L2ðE; dξÞ ¼ H. Consider the vector space V generated
by the orbit of ψ0:

V ¼
�Xn

i¼1

ci½ΣsðΛiÞψ0�ðkÞjci∈C;Λi∈ ISOþð3;1Þ;n∈N

	
:

ð179Þ
V ⊆ H since H is invariant under the ISOþð3; 1Þ action.
The closure of V in L2ðE; ξÞ, denoted by V̄, is a
closed subspace of L2ðE; ξÞ and thus a Hilbert space.
Furthermore, V̄ ⊆ H since H is complete. V̄ is also a
representation of ISOþð3; 1Þ since if Pnj

i¼1 cijΣsðΛijÞψ0 →
ψ̄0 and L∈ ISOþð3; 1Þ, then

Pnj
i¼1 cijΣsðLΛijÞψ0 →

ΣsðLÞψ̄0 because the action Σ is continuous. Since H is
irreducible by assumption,H ¼ V̄.DecomposeL2ðE; dξÞ as

L2ðE; dξÞ ¼ V̄ ⊕ ðV̄Þ⊥ ð180Þ
where ðV̄Þ⊥ is the orthogonal compliment of V̄. The proof is
complete ifwe show that ðV̄Þ⊥ ¼ f0g. Ifψ⊥ðkÞ∈ ðV̄Þ⊥, then

hψ⊥;ΣsðΛÞψ0i ¼
Z

ψ⊥ðk0Þ� · ½ðΣsðΛÞψ0�ðk0Þ
jk0j dk0 ¼ 0

ð181Þ

for every Λ∈ ISOþð3; 1Þ. As ψ0ðkÞ is smooth and not the
zero section, there is some small ball U∈Lþ containing
a point k0 on which ψ0 is nonvanishing. For each fixed
k∈Lþ, choose a homogeneous Lorentz transformation
Lk ∈SOþð3; 1Þ such thatLkk0 ¼ k. Note that no continuous
choice of Lk exists, but this is irrelevant to the current
argument. Consider the action of a ∘Lk where a denotes an
arbitrary spacetime translation in only the spatial dimensions
a ¼ ð0; aÞ:

F kðaÞ ≐
1

ð2πÞ3 hψ
⊥;Σsða ∘LkÞψ0i

¼ 1

ð2πÞ3
Z

eik
0·a ψ

⊥ðk0Þ� · ½ΣsðLkÞψ0�ðk0Þ
jk0j dk0

¼ 0: ð182Þ
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F kðaÞ is the 3D Fourier transform of the function

Fkðk0Þ ≐
ψ⊥ðk0Þ� · ψkðk0Þ

jk0j ; ð183Þ

where

ψk ≐ ΣsðLkÞψ0: ð184Þ
Since F kðaÞ ¼ 0 for all a∈R3, and since the Fourier
transform is an isomorphism, Fkðk0Þ ¼ 0 almost every-
where. E is irreducible and therefore a rank-1 vector bundle
by Theorem 34. Thus, if Fkðk0Þ ¼ 0 for some k0, either
ψ⊥ðk0Þ ¼ 0 or ψkðk0Þ ¼ 0. By construction, ψkðk0Þ is non-
zero for k0 in a neighborhood of k, and so ψ⊥ must vanish
almost everywhere in that neighborhood. By varying k, we
obtain thatψ⊥ vanishes almost everywhere, and in particular
is the zero sectionofL2ðE; dξÞ sinceL2 space is definedup to
equivalence almost everywhere. Thus, ðV̄Þ⊥ ¼ f0g and
L2ðE; dξÞ ¼ V̄ ¼ H is irreducible. ▪
While the assumption that the sectional representation is

normal in Theorem 43 appears reasonable, it is known that
mathematical pathologies are common in quantum
mechanics [23,52]. It is thus important to show that the
theorem holds in the absence of this smoothness condition.
Without assuming the representation is normal, ψ0

cannot necessarily be chosen to be smooth. However, L2

functions are, by definition, measurable [53], and we will
use measurability as a substitute for smoothness. We will
borrow standard results from measure theory and the theory
of Hilbert spaces; references for these topics are [53–55].
Let ξ be the measure on the L ≅ R3nf0g associated to the
Lorentz invariant volume form dξ ¼ dk

jkj. That is, if A ⊆
R3nf0g is (Lebesgue) measurable, then

ξðAÞ ¼
Z
A
dξ: ð185Þ

ξ can be extended to a measure on all of R3 by assigning
ξðf0gÞ ¼ 0, which is consistent with Eq. (185) since

ξðf0gÞ ¼ lim
r→0

ξðBrð0ÞÞ ¼ lim
r→0

Z
Brð0Þ

dk
jkj ¼ 0: ð186Þ

Note that if λ denotes the standard Lebesgue measure on
R3, then ξðAÞ ¼ 0 if and only if λðAÞ ¼ 0, and we can refer
unambiguously to such sets as measure 0.
We will use a technical result of Buczolich [56], for

which we recall a few definitions. k∈R3 is a point of
Lebesgue density of the measurable set A ⊆ R3 if

lim
r→0

λðBrðkÞ ∩ AÞ
λðBrðkÞÞ

¼ 1: ð187Þ

A function f∶ A → B between two subsets of R3 is bi-
Lipschitz if it is invertible and if both f and f−1 are
Lipschitz.

Lemma 44 (Buczolich [56], Theorem 1). Suppose that A
and B are measurable subsets of R3 and f∶ A → B is bi-
Lipschitz. Then f maps points of Lebesgue density of A
into points of Lebesgue density of B.
Corollary 45. Suppose A is a measurable subset of Lþ ≅

R3nf0g and consider Λ∈ ISOþð3; 1Þ as a function on Lþ.
Then Λ maps points of Lebesgue density of A to points of
Lebesgue density of ΛðAÞ.
Proof. By the lemma, it suffices to show that the action

ofΛ is bi-Lipschitz. Furthermore, one can consider only the
cases when Λ is a pure translation, rotation, or boost. The
first two are obviously bi-Lipschitz. For the latter case,
without loss of generality, suppose that Λ is a boost by
velocity vk̂x. Λ acts on k ¼ ðkx; ky; kzÞ by

ΛðkÞ ¼ ðγLorðkx − vjkjÞ; ky; kzÞ; ð188Þ

so the Jacobian of the transformation is

jDΛjðkÞ ¼ γLor

�
1 −

vkx
jkj

�
≤ γLorð1þ jvjÞ: ð189Þ

Since the differential has a uniform bound for all k, Λ is
Lipschitz. Λ−1 is a boost by −vk̂x, and thus jDðΛ−1Þj is also
bounded above by γLorð1þ jvjÞ, so Λ−1 is Lipschitz. Thus,
Λ is bi-Lipschitz. ▪
With these results in place, we can adapt the proof

Theorem 43 to prove Theorem 42.
Proof of Theorem 42. Let H be an irreducible sub-

representation of L2ðE; dξÞ, and fix some section ψ0 ∈H
which is not identically 0, and define V as the vector space
generated by its orbit as in Eq. (179). Again let V̄ be the
Hilbert space completion of V, ðV̄Þ⊥ be its orthogonal
complement, and ψ⊥ ∈ ðV̄Þ⊥. V̄ is a subrepresentation of
L2ðE; ξÞ contained inH, so V̄ ¼ H. The strategy is again to
show that ðV̄Þ⊥ contains only the zero section. Fix some
k0 ∈Lþ which will be specified later. For each k∈Lþ,
choose a homogeneous Lorentz transformation Lk such that
Lkk0 ¼ k. By precisely the same argument as in the proof
of Theorem 43, for each fixed k, at almost every k0 either

ψ⊥ðk0Þ ¼ 0 or ψkðk0Þ ¼ 0 ð190Þ

where

ψk ≐ ΣsðLkÞψ0: ð191Þ

Define the subsets

R0 ≐ fk0 ∈Lþ; jψ0ðk0Þj ≠ 0g ð192Þ

Rk ≐ fk0 ∈Lþ; jψkðk0Þj ≠ 0g ¼ LkR0 ð193Þ

R⊥ ≐ fk0 ∈Lþ; jψ⊥ðk0Þj ≠ 0g; ð194Þ
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where jψ0j,jψkj and jψ⊥j are L2ðdξÞ functions and thus
measurable, so the sets R0, Rk and R⊥ are measurable.
Equation (190) says that Rk and R⊥ are almost disjoint for
every k:

λðR⊥ ∩ RkÞ ¼ 0: ð195Þ

Let Q0, Qk, and Q⊥ be the sets of points of Lebesgue
density of R0, Rk, and R⊥. By the Lebesgue density
theorem ([53], Corollary 1.5), a measurable set and its
set of points of Lebesgue density differ at most by a set of
measure 0, so

λðR0Þ ¼ λðQ0Þ ð196Þ

λðRkÞ ¼ λðQkÞ ð197Þ

λðR⊥Þ ¼ λðQ⊥Þ: ð198Þ

By assumption, ψ0 is not the zero section in L2ðE; dξÞ, so
R0 has nonzero measure, and therefore so does Q0. We
have not yet specified how k0 was chosen; choose k0 ∈Q0.
Then k∈Qk by Eq. (193) and Corollary 45.
We next establish that

Q⊥ ∩ Qk ¼ ∅ ð199Þ

for every k. Indeed, if k0 ∈Q⊥ ∩ Qk, by the definition of
Lebesgue density in Eq. (187), there would exist a δ > 0
such that

1

2
λðBδðk0ÞÞ < λðBδðk0Þ ∩ R⊥Þ;

1

2
λðBδðk0ÞÞ < λðBδðk0Þ ∩ RkÞ: ð200Þ

By Eq. (195), the intersection of Bδðk0Þ ∩ R⊥ and Bδðk0Þ ∩
Rk has measure 0. One would then obtain the contradiction

λðBδðk0ÞÞ ≥ λðBδðk0Þ ∩ ðR⊥ ∪ RkÞÞ
¼ λðBδðk0Þ ∩ R⊥Þ þ λðBδðk0Þ ∩ RkÞ
> λðBδðk0ÞÞ; ð201Þ

establishing Eq. (199). Thus, k ∉ Q⊥ since k∈Qk. This
holds for every k∈Lþ, soQ⊥ ¼ ∅, and therefore λðR⊥Þ ¼
0 by Eq. (198). Thus, ψ⊥ is only nonzero on a set of
measure 0, and is therefore equal to the zero section in
L2ðE; dξÞ. Then, ðV̄Þ⊥ ¼ f0g, and

L2ðE; dξÞ ¼ V̄ ¼ H ð202Þ

is irreducible. ▪

V. APPLICATIONS

In this section we discuss additional applications of
the vector bundle description of photons. In particular, we
discuss applications to the spin Chern number of light,
the quantization of the electromagnetic field, and the spin-
orbital decomposition of photon angular momentum.

A. Geometry of the spin Chern number

Theorem 37 shows that the splitting γ ¼ γþ ⊕ γ− makes
sense geometrically as well as topologically. Another way to
see the geometry inherent in γ� is to note that these bundles
are also induced by the Berry curvature, another geometric
structure. In particular, it has been shown that the R- and
L-polarization states diagonalize the Berry curvature [17].
The geometric nature of γ� is important for under-

standing the so-called spin Chern number of light. The
Chern classes cj are the characteristic classes of complex
vector bundles, and as such, are topological invariants.
Integrals of the Chern classes define the Chern numbers Cj

which are also topological invariants and commonly used
in physics. Although the Chern numbers are typically
calculated using a connection, which is a geometric
quantity, they are true topological invariants and indepen-
dent of the choice of connection [18]. We have shown that
C1ðγÞ ¼ 0 and C1ðγ�Þ ¼ ∓2. In addition to the usual
Chern number, a more mysterious quantity has been
defined for light, the so-called spin Chern number which
is physically related to the quantum spin Hall effect [17].
Letting h� ¼ �1 denote the helicities of γ�, the spin Chern
number of light has been defined as

Cspin ¼ hþC1ðγþÞ þ h−C1ðγ−Þ ¼ 4: ð203Þ

However, this definition clearly depends on decomposition
γ ¼ γþ ⊕ γ− of the total photon bundle. From a topological
standpoint, we showed in Theorem 22 that there are an
infinite number of possible splittings γ ¼ lj ⊕ l−j. The γ�
decomposition is only preferred when one considers the
geometry of γ either via Poincaré symmetry or the Berry
connection. Furthermore, the definition of Cspin explicitly
involves helicity, which is a geometric quantity. Thus, the
spin Chern number is not a purely topological quantity,
instead reflecting both topological and geometric properties
of the bundle γ. As such, the spin Chern number of light
may not be as robust as the Chern number against
perturbations to the underlying Maxwell system, particu-
larly if those perturbations alter the geometric properties of
the system.

B. Quantization via projection operators

We return to the problem of quantizing the vector
potential in the Coulomb gauge. If one uses the expansion
(14) for A, we argued that the polarization vectors ϵjðkÞ
cannot be linear. Since we showed that γ is trivial and
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decomposes into two trivial bundles γ ¼ τ1 ⊕ τ2, it is
possible to take ϵj to be global nonvanishing sections of τj,
thus giving a smooth global choice of polarization vectors.
However, there are issues with using the trivial bundles τj
since they are not Lorentz invariant, that is, they are not
representations of the Lorentz group. The splitting that
makes sense both geometrically and topologically is
γ ¼ γþ ⊕ γ−. Indeed, the helicity labels two different types
of photons, and from a technical standpoint R and L
photons are different particles, although it is conventional
to call them both photons [49]. Thus, the ϵjðkÞ would
ideally be chosen to be R and L polarizations. The issue
again though is that γ� are nontrivial and thus no consistent
choice of such ϵj exists. However, since γ� are well-defined
vector bundles, the splitting γ ¼ γþ ⊕ γ− allows a section
AðkÞ∈ΓðγÞ to be uniquely written in terms of sections A�
of γ�:

AðkÞ ¼ AþðkÞ þ A−ðkÞ: ð204Þ

That is, there are unique projections P�∶ ΓðγÞ → Γðγ�Þ.
Thus, instead of expanding the vector potential in a basis,
we write it in terms of projections:

AðxÞ ¼
Z X

σ¼�

1ffiffiffiffiffiffiffiffi
2jkjp ½e−ikμxμAσðkÞ þ eikμx

μ
A�
σðkÞ�

d3k
ð2πÞ3 :

ð205Þ

In this form all quantities are well defined and smooth. We
can then quantize the field via the usual scheme [14], by
promoting the AσðkÞ� and AσðkÞ to creation and annihila-
tion operators:

½Aσðk1Þ; Aηðk2Þ� ¼ ½A�
σðk1Þ; A�

ηðk2Þ� ¼ 0 ð206Þ

½Aσðk1Þ; A�
ηðk2Þ� ¼ ð2πÞ3δσηδð3Þðk1 − k2Þ: ð207Þ

Thus, by using projection operators instead of vector
expansion, it is possible to quantize the electromagnetic
field and obtain the standard QED theory without invoking
discontinuous bases as in the standard approach.
Note that since the Coulomb gauge itself is not Lorentz

invariant, the bundle AðkÞ is equal to the γ bundle only in
the chosen frame where the Coulomb gauge is imposed. To
make the quantization Lorentz invariant, the two-dimen-
sional bundles AðkÞ in other frames need to be determined
by the requirement of Lorentz invariance.

C. Spin and orbital angular momenta of light

The last application of our vector bundle methods is to an
extended debate about the possibility of splitting photon
angular momentum into spin and orbital parts [17,24–30]:

J ¼ Js þ Jo: ð208Þ

Note that while photons are massless and thus technically
possess helicity not spin, we use the established term spin
angular momentum. We work in the sectional representa-
tion of the Poincaré group so that the angular momentum J
is represented as an operator on the vector space ΓðγÞ. We
will show that Js and Jo do not satisfy soð3Þ commutation
relations, and thus cannot properly be considered angular
momentum operators. These nonstandard commutation
relations have been found by others, although there is no
consensus on the implications of them [25,26,30]. We will
use the vector bundle formalism to help explain the
meaning of these peculiar commutation relations.
The angular momentum operator J for a section of the

photon bundle is determined according to the fact that EðkÞ
transforms as a three-vector when x rotates in R3, as stated
in Theorem 25. Direct calculation shows

J ¼ Sþ L ð209Þ

Sa ≐ −iϵabc ð210Þ

L ≐ −iðk × ∂kÞ; ð211Þ

where S is a three-vector of rank two tensors. Here, J and L
resemble expressions of the total angular momentum and
orbital angular momentum for a massive particle, and S
assumes the form of the spin-1 operator [26]. If J and S
were well-defined operators on the vector space ΓðγÞ, then
Eq. (209) would furnish a split of the angular momentum
into spin and orbital parts. The advantage of this decom-
position is that L and S satisfy soð3Þ commutation
relations, and thus generate rotations as angular momentum
operators should. The fundamental issue is that they are ill
defined for photons. The operators should act on sections
EðkÞ of the photon bundle where E is embedded in C3.
However, L and S generally give EðkÞ a nonzero compo-
nent in the k direction, violating the transversality condition
imposed by Gauss’s law. That is to say, LðEÞ and SðEÞ are
not sections of γ. To see the origin of this issue, we start
from the derivation of J for a representation of SO(3) on 3D
vector fields ψðkÞ subject to no constraints. The action of a
rotation R∈SOð3Þ is given by

½Rψ�ðkÞ ¼ R½ψðR−1kÞ� ≐ ðFR ∘ F̃R−1ψÞðkÞ; ð212Þ

where F and F̃ are operators on vectors and functions,
respectively:

FRv ¼ Rv ð213Þ

ðF̃RfÞðkÞ ¼ fðRkÞ: ð214Þ

Let RaðθÞ be a rotation by θ about the a axis. The angular
momentum operators Ja are defined by the infinitesimal
action of these rotations, and by the chain rule, split into
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two parts:

½Jaψ�ðkÞ ¼
d
dθ

����
θ¼0

½RaðθÞψ�ðkÞ ð215Þ

¼
�
d
dθ

����
θ¼0

FRaðθÞ

�
ψðkÞ þ

�
d
dθ

����
θ¼0

F̃R−1
a ðθÞ

�
ψðkÞ

ð216Þ

≐ SaψðkÞ þ LaψðkÞ: ð217Þ

We see that the spin angular momentum, the SaψðkÞ
term on right-hand-side of Eq. (217), is associated with
internal rotations, which only change the direction of ψ
without acting on the momentum. It is inherently associated
with a finite-dimensional representation as it arises from an
action of SO(3) on R3. On the other hand, orbital angular
momentum, the LaψðkÞ term, is associated with an action
on functions, and is thus associated with an infinite-
dimensional representation of SO(3). The issue in applying
this to the photon bundle is that due to the transversality
condition, neither F nor F̃ are well defined as operators on
sections of γ; only the composite action in Eq. (212) is well
defined. That is, if EðkÞ∈ΓðγÞ, neither R½EðkÞ� nor EðRkÞ
are generally in ΓðγÞ. As such, the split of angular
momentum into spin and orbital parts as suggested by
Eq. (217) does not apply for ψ ∈ΓðγÞ. However, Eq. (217)
itself is still valid for ψ ∈ΓðγÞ, when the right-hand side is
viewed as a single operator.
The failure of splitting angular momentum into spin and

orbital parts for photons, however, motivates another
potential splitting. In the massive case, we saw that the
spin angular momentum is associated with the symmetry
group which does not change the momentum k. This is
precisely how the little group is defined—it is the subset of
the Poincaré group which preserves the momentum. In the
massless case, this produces the helicity operator χ ¼ J · k̂.
The helicity is the k̂ component of the angular momentum
J, so it appears reasonable to define

Js ¼ ðJ · k̂Þk̂ ¼ χk̂; ð218Þ

Jo ¼ J⊥ ¼ J − χk̂: ð219Þ

These are indeed well-defined vector operators since

½Ja; Js;b� ¼ iϵabcJs;c; ð220Þ

½Ja; Jo;b� ¼ iϵabcJo;c ð221Þ

as one can show from Eqs. (97)–(100). In the literature, Js
and Jo are referred to as “spin angular momentum” and
“orbital angular momentum,” respectively. This splitting of
the photon angular momentum has been proposed based on

a number of different arguments [25–27]. The issue with
this splitting is that the Js and Jo satisfy the peculiar
commutation relations

½Js;a; Js;b� ¼ 0; ð222Þ
½Jo;a; Js;b� ¼ iϵabcJs;c; ð223Þ
½Jo;a; Jo;b� ¼ iϵabcðJo;c − Js;cÞ: ð224Þ

In particular, these are not soð3Þ commutation relations,
meaning they do not generate rotations. Thus, Js and Jo
cannot be considered angular momenta in the usual sense.
This conclusion was also reached by van Enk and Nienhuis
[25] and Leader and Lorcé [30]. However, if these operators
do not generate rotations, what do they generate? One can
explicitly check from the commutation relations that the Js;i
and Jo;i satisfy the Jacobi identity, and therefore form a
well-defined Lie algebra g.
We examine first the fact that the Js;i commute. There is

a notable difference between the helicity χ ¼ J · k̂ and the
operator Js ¼ χk̂. Per Theorem 39, the helicity is associated
with the little group action of SO(2) on ΓðγÞ:

θEðkÞ ¼ eiχθEðkÞ ¼ eiθEþðkÞ þ e−iθE−ðkÞ: ð225Þ

In contrast, the “spin angular momentum” Js is associated
with an R3 action. If v∈R3, then

vEðkÞ ≐ eiχðk̂·vÞEðkÞ ¼ eiðk̂·vÞEþðkÞ þ e−iðk̂·vÞE−ðkÞ: ð226Þ

Thus, the Js;i are associated with a translational symmetry
of γ, explaining why they form a three-dimensional
commuting Lie subalgebra of g. On the other hand, the
Jo do not form a Lie subalgebra as seen by Eq. (224). Thus,
Jo is not associated with any symmetry of the photon
bundle. Since neither Jo nor Js are related to rotational
symmetries of the Maxwell system, they do not achieve a
spin-orbital decomposition of the angular momentum. This
traces back to the fact that photons are massless, and thus
have helicity rather than spin. Indeed, it can be said that the
“spin angular momentum” Js is neither spin nor angular
momentum. Instead, we have seen that Js is associated with
a helicity-induced translational symmetry of the photon
system. We emphasize that even though Js and Jo are not
truly angular momenta, the splitting is well defined and has
proved useful in experimental optics; see Bliokh et al. [57]
and references therein. Thus, a proper understanding of the
operators Js and Jo is of both theoretical and experimental
import in various applications [58–63].
We note that discontinuous polarization bases have

appeared in some treatments of the photon angular momen-
tum. Bliokh et al. [26] write the electric field in the
helicity basis

e�ðkÞ ¼ e�imϕðeθðkÞ � ieϕðkÞÞ; ð227Þ
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where eθ and eϕ are the usual polar unit vectors andm is an
integer. This basis, however, has singularities at the poles,
and is thus not globally well defined. Similarly, I.
Bialynicki-Birula and Z. Bialynicki-Birula [27] incorrectly
assume that global polarization vectors for the R and L
polarizations exist. An advantage of using the equivariant
bundle formalism to discuss photon angular momentum is
that there is no need to invoke discontinuous polarization
bases. As shown in Eq. (168), every photon wave function
can be uniquely decomposed into the R and L components
through the projection operators.

VI. CONCLUSION

Despite the simplicity of the Maxwell system, it exhibits
surprisingly rich and subtle topological behavior. While the
total photon bundle is trivial, it has important topologically
nontrivial subbundles such as the R and L bundles. This
nontrivial topology traces back to the hole in momentum
space at k ¼ 0, accounting for the fact that photons are
massless and have no rest frame. This nontrivial topology
frequently obstructs the smoothness of constructions that

work in topologically trivial cases, such as the little group
construction on Hilbert space representations and the
quantization via expansion in a polarization basis. We
showed that vector bundle methods can be used to avoid
these continuity issues. In particular, equivariant vector
bundles have precisely the right structure to simultaneously
study the topology and symmetry of waves. In the present
case of photons, this formalism allows for versions of the
little group construction and quantization of the electro-
magnetic field without encountering discontinuities. It also
elucidated the symmetry issues that occur in attempts to
separate photon angular momentum into spin and orbital
parts. The equivariant bundle formalism is very general,
and can be applied to any waves with arbitrary symmetry
groups. As such, we believe that it could be a useful
framework for the general study of topological properties
of waves.
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