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The SW(3/2,2) current algebras come in two discrete series indexed by central charge, with the chiral
algebra of a supersymmetric sigma model on a Spin(7) manifold as a special case. The unitary
representations of these algebras were classified by Gepner and Noyvert, and we use their results to
perform an analysis of null descendants and compute the characters for every representation. We obtain
threshold relations between the characters of discrete representations and those with continuous conformal
weights. Modular transformations are discussed, and we show that the continuous characters can be written
as bilinear combinations of characters for consecutive minimal models.
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I. INTRODUCTION

String theory has illuminated many fascinating connec-
tions between physics and mathematics. One class of
examples that motivates this work comes from compacti-
fications of strings on special holonomy manifolds. The
most familiar examples are Calabi-Yau manifolds with
holonomy SU(n). The world-sheet theory of a string'
moving in such a background includes a sigma model
with the Calabi-Yau target space. The SU(n) holonomy
ensures that there are additional conserved currents in the
world-sheet theory. The Kéhler form leads to an extra spin
one current that enhances the world-sheet supersymmetry
from (1, 1) to (2, 2), while the holomorphic n-form adds an
additional spin n/2 current that relates to spectral flow [1].

In the Calabi-Yau case the connections between the
geometry, the world-sheet theory, and the effective theory
have been well explored. The multiplicities of discrete
representations in the superconformal sigma model are
determined by the Hodge numbers of the Calabi-Yau and
give rise to the Bogomolny-Prasad-Sommerfield (BPS)
states in the spectrum of the effective theory. The spectrum
of continuous representations is related to the spectra of
Laplace-type operators on the manifold, and to massive
states in the effective theory, while operator product
expansion (OPE) coefficients in the sigma model relate
to couplings in the effective theory and, in some cases, to
intersection numbers on the Calabi-Yau.

'We have in mind a type I superstring whose basic definition
includes (1, 1) supersymmetry on the world sheet, but heterotic
strings also furnish interesting examples.
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These connections are much less well-studied for the
cases of exceptional holonomy manifolds, where the holo-
nomy group is either G, in seven dimensions or Spin(7) in
eight dimensions. In particular, Shatashvili and Vafa [2]
observed that superconformal sigma models with excep-
tional holonomy target spaces would have their chiral
algebras enhanced by additional higher spin currents. In
the G, case one obtains an SW(3/2,3/2,2) theory with
central charge ¢ = 21/2, and in the Spin(7) case one obtains
an SW(3/2,2) theory with central charge ¢ = 12. In both
cases these algebras are particular members of infinite
discrete families with different central charges [3—6].

For the ¢ = 21/2 and ¢ = 12 cases, one can again find
correspondences between discrete representations of the
conformal field theory (CFT), topological invariants of the
manifold, and BPS states in the effective theory [2], and
one expects that in principle the other data of the CFT will
correspond to geometric information, and will map to
effective theory data, in ways that are analogous to the
Calabi-Yau case, though the details have not been exten-
sively explored.

A preliminary step toward studying these issues is to
elucidate the representation theory of these chiral algebras.
A very large step in that direction was taken by Gepner and
Noyvert in [6], where they classified the unitary represen-
tations for all members of the discrete SW(3/2,2) family
of theories, with a similar classification undertaken by
Noyvert [7] for the case of the SW(3/2,3/2,2) theories.
These works found the representations but did not compute
their characters. For the ¢ = 12 theory that is relevant for
Spin(7) compactifications, expressions for the continuous
characters were found in [8] and expressions for all the
¢ = 12 characters were conjectured (with much evidence
presented) in [9]. Other somewhat recent work on these
algebras include [10-14].

What about the other members of the discrete families?
Very few examples of constructed theories with these
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TABLE I.
real number.

Characters for representations of the upper series. Here p, a, b, n, and m are integers, and x is a positive

Upper series, ¢ = 6 + %, p=>3

. X =Ya, 1
Continuous reps: 7[UY),1(q) = L2550 A0 ()1

(p

(@, 1<a<p+1,1<b<p-1,x>0,

_ (p+2-2a)* | Sa1+8upsi
Yab = gptpa2) T 5
Discrete reps: &
_ h—% ip(p+2)k?
NS, ¥ = Pxs(9)q" 5 Y rez PP,
A q(/1+1)1<—% q(IH»I)H»%
T — 3
14+¢"72 14472
B, 1<n< p=2 Gtk (P2t Dk
2 1+qpk+n7% 1+q[1k7!77%
Cn.m 1<n< p— 2.n+1<m< P;ﬂ q(,,m,(pﬂ),,),j B q(pm%»n)kv%n(lr;iﬂl)
1+q/)1\+mfn7§ 1+q/11\+mfi
Dn " 2<n < p - l,% <m<n- 1 g((p+1n=pm)k q(rier"*ri)H%(nJr')(ZM*"H)
1+qpk-/l—m—% - 1+qpk\m—%
1 2
R, 1 = Pr(9)q" 5 Yyez ¢"7INE
kez 4 k
E q%(3]7+4)k 1ap+a)k+1
1+q/71< - 1+qﬁk+2
Fn 1<n< p— 1 Jentp)k q(([H»l)rH»g)ld»%u(rH»l)
l+qpk - l+qpk+/l
G p—l+n (pm—(p+1)n+L)k (pm+n+2)k+dn(2m—n+1)
nm I1<n<p-3n+l<m<b=H= q 2 gt
1+qpk+ntﬂl ]+qpk+m
Hn.m 1 <n< p— 3’ n4+2 <m< p+l4n (pm—(p+l)n+%)k q(p/n+u+§)k+%u(2m—u+])
2 1+q[7k+mfnfl - |+q])k+mfl
1, 2<n< p=1 q((p+2)n+§)k q((/HZM%MH
- = 2 1+qPFrmT - T +gPFnT

algebras are known (see [15] for a suggestion on coset
constructions for the lower series models), but it is tempting
to speculate that one could engineer instances of them and
potentially use them as building blocks to give new,
nonperturbative constructions of G, or Spin(7) string
compactifications, in analogy with the Gepner models
[16], which build Calabi-Yau compactifications as orbi-
folds of products of A/ =2 minimal models.” However,
before we can realize such hopes, we need more examples
of these theories and a better understanding of their
structure, such as their spectra and OPE coefficients.
Absent other explicit constructions, one approach for
bounding, or perhaps even isolating, these theories is via
bootstrap methods. The modular bootstrap [19], specifi-
cally an approach along the lines of [20] or [21], might be
able to give us useful information about such CFTs.

The current paper is a first step toward implementing
such a program for the other members of the SW(3/2,2)
family of theories. We will work to construct the characters
for the unitary representations that were found by [6]. By
using an embedding diagram formalism, we will obtain
explicit expressions for these characters in both the
continuous and the discrete representations. As in [9],

*For related work constructing G, holonomy theories as
orbifolds of N' = 2 Gepner models, see, e.g., [17,18].

we do not rigorously prove that we are correctly accounting
for all relations among singular states, so our expressions
are still, in some sense, conjectural. However, we will show
that they pass several consistency checks. In the case of the
continuous representations we have an alternative approach
to obtaining the characters by appealing to modular
invariance and the role played by consecutive pairs of
unitary minimal models. Namely we find that besides the
manifest appearance of a unitary bosonic minimal model in
the structure of each SW(3/2,2) algebra (the minimal
model Virasoro algebra appears as a subalgebra of the
theory’s chiral algebra), the massive characters also carry
the structure of a second bosonic minimal model with a
consecutive index. For example, the ¢ = 12 theory has an
Ising model Virasoro subalgebra (¢ = %), but the massive
characters can also be decomposed as representations of the
tricritical Ising model (¢ = 75).

For ease of reference, we include the full expressions for
the characters in Tables I and II. Table I contains the
expressions for the upper series. For the continuous
representations, in either the Neveu-Schwarz (NS) or
Ramond (R) sectors, they are most conveniently written
as a bilinear combination of minimal model characters,
whose expressions are given in (2.7). For the discrete
characters we have a general template as a sum over k € Z,
where the summand is a universal piece ¢2P(P*2% times a
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TABLEII. Characters for representations of the lower series. Here p, a, b, n, and m are integers, and x is a positive
real number.
Lower series, ¢ = 6 — m, p=>3 &
Continuous reps: [UU]()*"i"bZ pl)() )()1<a< 1<b<p=2.x>0,y,, = Lo=20"
DS XY abix k= lek A a\d) L sasp, 1L sbsp—2, »Yap = §(p=1)(p+1)°
Discrete reps: &
_ h—% Hp=1)(p+1)k?
NS, ¥ = Pxs(q)q" 5 Yy ez 2PN TIRE,
A'n’m 1<m< p—- 17 m<n< p—12+m g +Dn=pm _ q((P+|)n m)k+-3m(2n=m)
1+qp}]k\n m42 1+4 p}lk\/!\z
Bn ” 1<m< p— 2m+1<n< Perm grm=pmk q((p\ Dn=m)k+-Lm(2n-m)
1+q(]7+1)k+nfmf% Hq(pﬂ)un%
_ h—% L p=1)(p+1)k?
R,y =Pr(9)q" %Y ez ‘12<p Pk g,
Cn l1<n<p-1 (2 (pn+ 2 ket n(nt 1)
1+q(/)+ l+q (p+1)k+n
[)nm 1<m<p-3.m+1<n< p=l+m i 25
’ 2 g
oo -t 2 ke km2n-m1)
1+q(P Dk
E, l<m<p-2m+1<n<i™ gp+in-pm=Lie

1+q([7+1 Yern—m

e yn-m-LE et Im(zn-m-1)

1+ g HDken

representation-dependent piece &, which is listed for each
case below. The prefactors Pyg or Py are the contributions
for descendants of a free algebra and are given in (5.12) and
(5.23). For more details of the various representations,
including their weights and charges, the reader should
consult Sec. III.

The paper is organized as follows. In Sec. II we briefly
review the structure of the SW(3/2,2) algebras and
Gepner and Noyvert’s classification of the possible unitary
realizations, and in Sec. III we review their classification of
representations. Section IV establishes our approach to the
embedding formalism. Section V computes the characters
for the continuous representations using the embedding
formalism. We then also conjecture a rewriting of the
characters (which we can check numerically to high order
in g) as bilinear products of characters from pth and
(p + 1)th minimal models, and show that the results have
surprisingly nice modular properties that essentially fix
them uniquely. Section VI takes a detour to discuss the
threshold relations that describe how the continuous (mas-
sive) representations decompose into discrete representa-
tions. These relations will provide powerful checks on our
results. Section VII then computes the discrete characters
using the embedding formalism. As one last check,
Sec. VIII compares our expressions for ¢ = 3/2 with the
corresponding expressions for the supersymmetric free
boson and related theories.

II. THE ALGEBRAS

As pointed out in [5], the superconformal algebra that
appears for an N' = 1 superconformal sigma model whose

target space has Spin(7) holonomy is just one example of a
family of algebras labeled by the central charge c. This
family is denoted (in the conventions of [22]) SW(3/2,2).
Each member of the family includes the stress tensor 7'(z)
and the supersymmetry generator G(z), with conformal
weights 7 =2 and h = 3/2, respectively, along with two
more chiral operators,” a bosonic operator A(z) with
conformal weight 7 =2 and a fermionic operator M(z)
with weight & = 5/2.
Performing a standard mode expansion,

= ZLmz"”‘2, G(z) = Z G,z
mezZ reZ+v

= > A2 > Mz (22)
mezZ reZ+v

where v = 0 in the NS sector and v = % in the R sector, and
then the mode algebra for these operators is given in
Appendix A.

SWe mostly follow the conventions of [6], but we have
redefined the weight 5/2 operator. Our M(z) relates to their

U(z) by

(15— ¢)(21 + 4¢) 15 -

3210 Y@ty

M(Z) = TH

0G(z). (2.1)

Note that this means that for ¢ = 12, our M(z) is not the same as
the M(z) used in [9]. The relation is Myee = Mipere/8, just as

Apere = Xthere/&
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A. Classification

From the commutation relation (A5), we see that the A,,
modes generate a Virasoro subalgebra with central charge’

c(15-c¢)
3(12+¢)

(c=6)°

S 3(12+4¢) 23)

Ca =

For a unitary theory, we must, of course, have ¢ > 0 to
ensure that none of the Virasoro descendants of the vacuum
have a negative norm. Identical arguments show that we
must also have ¢, > 0, so that none of the A-descendants of
the vacuum have a negative norm.

If ¢=6, then we have c, = 1. It would be very
interesting to analyze this case in more detail, but we
leave that to future work. Here we will focus on the
alternative situation in which ¢4 < 1, and hence if our
theory is unitary, then A must generate a unitary Virasoro
minimal model algebra. This means that

6

=1
A p(p+1)

p=34 .. (2.4)

For instance, p = 3 corresponds to the critical Ising model,
p =4 to the tricritical Ising model, p =5 to the 3-state
Potts model, and so on. For each choice of p, there are then
two distinct choices for c, either

(1) 18 @) 18
cp) =6+—, cpy =6 ———. 2.5

P D P b+ (2.5)
We will refer to the series of algebras with ¢ > 6 as the
upper series and with ¢ < 6 as the lower series.

B. Minimal model conventions

The A,, modes generate a subalgebra that is isomorphic
to the Virasoro algebra for the pth unitary minimal model.
Since [Ag, Lo] =0, we can label all of the states in our
theory by their L, eigenvalue / and their A, eigenvalue a,
i.e., by their conformal weight and their minimal model
weight.

The pth unitary minimal model has only a finite number
of lowest weight representations, with weights

((p+1)n—pm)*—1

()
hnm
4p(p+1)

, 1<m<n<p. (2.6)

The characters for the associated minimal model repre-
sentations are then given by

*Note that A(z) is not a Virasoro primary with respect to 7'(z).
Rather, we can write 7(z) = A(z) + B(z), with A and B gen-
erating commuting Virasoro algebras with central charges ¢, and
Cp = C —Cy.

+ln n
i = L[ o

keZ
-y qp<p+1><k+‘”;‘&$’;’">z}, (2.7)
kezZ
where
(q) = qﬁ H (1 - q") (28)
n=1

is the usual Dedekind eta function.

It will often be useful for us to use the formula above for
integers m and n, which do not lie in the given range. In that
case we have relations

hn[,’m — h(p) = h(—I:B,—m,

n+pk,m+(p+1)k (29)

for arbitrary k€ Z. These relations also apply to the
characters.

III. THE UNITARY REPRESENTATIONS

For all of these SW(3/2,2) algebras, the unitary
representations were classified by Gepner and Noyvert
[6]. We review their classification here, adding some extra
notation so that we can refer to the representations through
the rest of the paper. Later, in Sec. V C, we will give an
alternative description of the continuous representations
that unifies the several different classes in each case below
into a single family.

A. Upper series

1. Continuous representations

In the NS sector they found three classes of continuous
representations (sometimes also called massive represen-
tations) for the upper series, which we will label X, Y, and
Z. In each of the cases listed below, x can be any positive
real number. In the limit x — 0, the continuous represen-
tation will split into a sum of discrete representations
according to threshold relations, which we will elaborate
in Sec. VL

(i) In class X, we have a(Xip)) =0= h(lf’l) and

h(Xip ) ) =x.

(i1) In class Y, for each 2 < n < p/2, we have

(P(n=D+2n—12-1_ )
4p(p+1)
) 1)(p(;p_ D2

a(Y\)) =

(3.1)

(iii) In class Z, for each 1<n<p-2 and n+1<

m < ”;", we have
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- Hn)? -1
() = PP D)
4p(p+1)
- hﬁvp—)n,p—er]’ (32)
h(Z(p) ) :p(m—n)z—(m—n)(Zm— )+m+1

2p
(3.3)

In the R sector there were two more classes,” V and W,
and in each case there is a twofold degeneracy in the lowest
weight state in the representation.

(i) In class W, we have

(1) In class V, for each n in the range 1 < n < pT_l, the
lowest weight states both have

(2n—=1)(2n+1-p)+2pn?

h(Vitl) = i
P

+x, (34

and they have distinct values for a,

where the integers n and m satisfy either 1 <n <
p—3,n—|—1§m§w,0rl <n=m <% Inthe
latter case the usual labeling convention for minimal
model weights suggests that we should rewrite a_
as a_(Wihh) =hi,
h;f’)n,p_,,. Note also that in the case of p even and
n=m= g, then we have a, =a_, and the two
ground states have completely degenerate quantum
numbers.

leaving a, as a+(Wfq,,3;x) =

2. Discrete representations

Gepner and Noyvert also tell us the discrete representa-
tions of our algebras. For the upper series, they tell us there
are four classes of discrete NS representations:

(i) Class A (the vacuum), has a(A?) = hgp 1) =0,

h(AP)) = 0.
(ii) Class B, labeled by 1 <n < % — 1, with

a(B’(lp)) = hgfz)ﬂ,n’
1242 1)-2
AP AURRD SR CR R Ik JE Y

2p

>This corrects a couple of typos in the corresponding table in
Appendix B.2 of [6].

a (Vi) =h) a (ViE) =g (35)
|
a_ (W) =h, 1 e
:2p(m—n)2—4m(m—n)+2p(m—n)+p+3+ ’ (3.6)
4p
|
(iii) Class C, labeled by 1<n<p-2 and

n—|—1§m§p7+”,with

a(CSf,L) = hgyp—)n,erl—m’
h(ngprL) :p(m—n)z—(m—n)(Zm—l)—i—m—f—l.

2p
(3.8)

(iv) Class D, labeled by 2<n<p-1and <m<
n — 1, with

oyl
—
S
=
S—
|

(3.9)

In the R sector we have five more. The first two classes,
which are Ramond ground states with 7 = c(pl) /24, do not
have the lowest weight degeneracy we have mentioned
previously (since they are annihilated by both G, and M),
while the last three do.

(i) Class E, with a(E®)) = 52 = nf} and h(E®)) =

a(EWP).
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(ii) Class F, labeled by 1 <n < p — 1. These all have h(GSlprL)
(P)y _ p+3 ’
h(Fy") = 7> (the same as the E state) and 2p(m—n)2—4m(m—n)+2p(m—n)+ p+3
= 1 ,
2_ (3.11)
a(FP) = "( =V WP (3.10)
pP\p
and have distinct minimal model weights
(iii) Class G, labeled a pair of integers with 1 <n < a. (GEh) = ', o,
p—=3andn+1<m< # There are two ground » ()
states which both have a(Gim) = hyypi1om (3.12)
|
(iv) Class H, labeled by 1 <n < p—3,n+2 <m <25 has
a+(H}('Lpn)1) == h(pp—)n,p—m, a_(Hfll,’rL) == hﬁ,p_)n’erl_m,
2 —n)?+4(m-1)(1- 2 —n)-=3(p-1
4p
(v) Finally, there is a class I of discrete states, labeled by a,( ]gll’)) _ h(ZP) L
2<n SPT_], which were missed by [6] in their ) (p;
Appendix B.2. The discrepancy only appears for a_(I;") = Ry
p = 5. There are three related arguments for why ) p(2n® 4+2n=3) +4n> -1
these states must be included. First, we expect that h(1y") = 4p . (3.14)
there should be the same number of discrete states in
both the NS and the R sectors (this is already true for
the continuous representations). Second is the re- B. Lower series
lated observation that we have a spectral flow type ’
operation coming from tensoring states with the 1. Continuous representations
class £ Ramond ground state. Applying this to B 18
For ¢ = 6 — =5, we have only one NS sector class.

states produces the I representations. And finally,
the threshold relations (discussed in more detail in
Sec. VI) require the /,, representations as well. These
states have

_ ptl
(1) Class X (the tilde is to distinguish it from the upper
series classes), labeled by 1 <m<p—-2 and

mSnsp_z%,with

((p+ Dn—pm)> =1 _ )

a(Xn’.jm;X) = nns 3.15
' 4p(p+1) (3.15)
2
- - +@Bn-m—-1)(n-m+1)—-m

h(R)) = P =m) +x. 3.16
(%) ST x (3.16)

Similarly, ip the R sector we have one class,

(i) Class V, with
a+(‘7n{;m;x) = hgll,)r)na a—(‘?z(frzl;x) = hfip_)l‘m,
- 2 -—m)?=2(n- 1 —3n)—-2 — -2
(@) = 2P mm)” = 2= m)(1 £ m=3n) =2p(n=—m)+p=2 (3.17)
4p+1)
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where either we have 1 <m < p—-3and m+ 1<
n S”_l%orwehaveZ <n=m SPTH.Inthelatter

case we should rewrite a_ as a_(VS,f’,z;x) =

(p)
hp+l—n,p+l—n'

state, with n = m = ”TH, for which a, = a_.

If p is odd, then there is one particular

2. Discrete representations

In this case there are two classes of discrete representa-
tions in the NS~sector,
(i) Class A, labeled by

mSns%’_], with

I1<m<p-1 and

p(n=m)?+Bn-m—-1)(n—-m+1)—m
2(p+1) '

(3.18)

(i) Class B, labeled by 1<m<p-2and m+1<
n< ’”Tm, with

and

h(Di) =

_p(n—m)2+(n—m)(l—m+3n)+p(n—m)+§—l.

p(n—m)*+(Bn—-m+1)(n—m—1)+m
2(p+1) '

(3.19)

In the R sector we have three classes of representations.

The first, with h = cfpz) /24, is a nondegenerate ground
state, while the other two have a pair of degenerate lowest
weight states.
() Class C, labeled by an integer m with 1 <m <
p—1 and

(i) Class D, labeled by 1 <m<p-3 and m+1<
n < 2= with

a_ (D)) = hik), (3.21)

(iii) Class E, labeled byl<m<p-2andm+1<n SHT”’ with

and

3.22

2(p+1) -

a (ED) =W a (EWh) =hP,,. (3:23)
pn=m)? = (n—m)(1+m=3n) = pn—m)+5-1 (3.24)

IV. CHARACTER PRELIMINARIES

A. Kac determinant results

In the process of their classification, Gepner and Noyvert
[6] analyzed the Kac determinant for these theories. They
found three classes of potential singular (and hence null)
descendants for the given lowest weight state, labeled f,, ,,,
gj x> or dy. Gepner and Noyvert give the conditions for the
existence of these states in terms of 4 and a of the lowest
weight states, but we will find it more convenient to

2(p+1)

introduce new quantities ® and A, in terms of which the
conditions are more easily stated. We will use shorthand
|®, A) for a state with the given quantum numbers, and
we’ll present the results for each of the two series and for
each sector (NS and R).

In the following sections, we will construct embedding
diagrams in the ®A-plane using the results from the
descendants, and by making some assumptions about
multiplicities, we will deduce characters for each type of
representation.
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1. Upper series, NS sector

Consider the upper series, with ¢ = cf,,l) =6+ 18/p.
We first redefine the quantum numbers of any state by

A=1/(p+4) +16p(p + a—8p(p +2)h. (4.1)

The quantity under the square root in the expression for A can
be negative, but only for continuous representations with
sufficiently large £, and in those cases A will not play a role,
so we can assume the quantity is positive. We will always
take the positive branch of the square roots so that both @ and
A are assumed to be positive. Note that for a primary field
with @ = A/, then ® = 2|(p + 1)n — pm| €2Z. Also, the
inverse relations are

P2 —4

O — A2 p+6
a=— )
16p(p+1)

“8p(p+2)  8p

(4.2)

Contours of constant & are hyperbolas in the ®A-plane.
Now, the results of [6] can be summarized as follows.
For each pair of integers (n,m) satisfying

(p+2)m—pn==®, or

(p+2)m—pn=-®, mn>0, m+ne22”Z, (4.3)
the state |®,A) has a level mn/2 singular descendant,
called an f-descendant and labeled by f,,, acting on the
original state, with
fn,m|q)7 A> = |(I)/’ A>’ (44)
where the descendant has the same A as the parent state and
a new value
D = (p+2)m+ pn. (4.5)
Similarly, a g; ,-descendant (at level jk) corresponds to a
solution of
A=2(p+2)j+ pk,

Jj. k>0 (4.6)

(so in particular we at least need A > 3p + 4), and has

gixl @A) = |@.N'), (4.7)
where @ is unchanged and
N = 2(p +2)j — pk|. (4.8)

Finally, a d,-descendant happens each time we have a
choice of signs #; and 5, such that

D + A
= % (4.9)
is a positive odd integer. Then
ds|®,A) = |D',N), (4.10)
with
O =|®+2pp, AN =[A-2mp| (4.11)

This descendant is level £/2.

In terms of a diagram in the ®A-plane, an f-descendant
always lies to the right of its parent, a g-descendant always
lies below its parent, while d-descendants lie along diago-
nal lines® with slope +1. For slope —1, the descendants
always lie down and to the right, while for slope +1 they
can lie either up and to the right, if the source state has
® > A, or down and to the left, if the source state has
® < A (so that in both cases the weight & increases).

2. Upper series, R sector

By inspecting the Ramond sector representations in
Sec. IIT A, one sees that either each representation has a
single lowest weight state with a given a and h =
(p+3)/4p or there are a pair of lowest weight states
with the same & > (p + 3)/4p but (possibly) different a_.
and a_, with a, > a_. In the latter case, we will define

®=4(p+1)(ay—a.),

A=\/8p(p+1)(a; +a_)=8p(p+2)h-+p*+10p+16.
(4.12)

and then the inverse relations are (note that a, and a_ are
not independent)

; :((D:I:p)z—4
T 16p(p+1)°

_ ®>2—-A> p+3
8p(p+2) 4p

(4.13)

In this case we can think of the two states as forming a two-
component vector

a,,h
|, A) = ( - ) .

a_,h
The classification of singular descendants is very similar
to the NS sector, with a couple of minor differences. Given

any positive integers m and n, with m +n€27 + 1 and
satisfying

(4.14)

®Note that because we take absolute values to restrict to the
upper-right quadrant of the ®A-plane, the lines can “reflect” off
the axes. See Fig. 2, for example.
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[(p +2)m — pn| = @, (4.15)
we have a level mn/2-descendant
Fum|®@,A) =|D', A), @ =(p+2)m+pn. (4.16)
Given any positive integers j and k with
2(p+2)j+ pk=A, (4.17)
we have a level jk-descendant
gkl ®.A) =@, N), N =[2(p+2)j—pk|. (4.18)

And finally, if there is a choice of signs x; and 7,
such that

0] A
g — MO T mA (4.19)
p+2
is a positive even integer, then there is a level
¢ /2-descendant
de|®,A) =D N), @' =|D+2np|, AN=[A=2n,p|.
(4.20)

For the degenerate cases with h = (p + 3)/4p, there is
only one ground state. Here we have two choices for the
corresponding @ and A,

O=|+tp+2/1+4p(p+ 1), A=®, (4.21)
S0
®F p)l—4
a:%, poPt3 (4.22)
16p(p+1) 4p

These states always have dj-descendants, removing the
other state in the doublet from the representation and the
character. The fact that there are two options may seem like
an ambiguity, but one can check that making either choice
leads to a set of states in the representation with exactly the
same a and h quantum numbers.

3. Lower series, NS sector

The situation is very similar to the upper series. We
define @ as before in (4.1), while A gets modified to

R=\/(p=372+16p(p+1)a=8(p—1)(p+1)h. (4.23)
For each pair of integers n and m satisfying

(p+n—(p—-1)m==+d, m,n>0,m+ne2zZ,

(4.24)

we have an f-descendant

Faml®.A) = @A),

O =(p+ln+(p—-1)m.  (4.25)
For each j and k satisfying
2p-1)j+(p+Dk=A,  jk>0, (4.26)
we have a g-descendant
6,49 K) = [@. &),
R=P(p-1)j-(p+ k. (4.27)

And last, there is a d-descendant if we can find a choice
of signs 7, and 7, and a positive odd integer £, such that

_ m® +mA

4 , 428
P (4.28)
in which case
d,|®,A) = |, A'), ' =D+ 2 (p+1),
N =|A=2m(p+ 1) (4.29)

4. Lower series, R sector

Briefly, for the lower series R sector, each representation
has a single lowest weight state if h = (p —2)/4(p + 1) or
a pair of degenerate lowest weight states if # > (p —2)/
4(p + 1). In the latter case we define

®=4p(a;—a_),

R=\/8p(p+)(a. +a ) =8(p=1)(p+ D+ p>=8p+7.

(4.30)
_(@E(p+1)) -4
T T ep(p+ 1)
B ®? — A? p—2
sy Ay Y

In this case the states form a two-component vector

- a,,h
|, A) = < " >
a_,h
For these representations, given any positive integers m
and n with m +n€2Z + 1 and satisfying

(4.32)
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[(p=1)m=(p+1)n| =@, (4.33)
we have a level nm/2-descendant
Fanl®A)=[®.R), &' =(p=1)m+(p+1)n. (434
Given positive integers j and k obeying
20p-1)j+(p+Dk=A, (4.35)
there is a level jk-descendant
giAl®.A) = [0.A), K =2(p=1)j-(p+1)k. (4.36)

And then there is a level #/2-descendant d, provided
there is a choice of signs 7; and #, so that

i) A
= me +mh (4.37)
p—1
is positive and even, in which case
d|®,A) = |® A), @ =|D+2(p+1),
N =|A=2m(p+1). (4.38)

For the degenerate case h = (p —2)/4(p + 1), there is
only one ground state. We can take

O®=p+1+2y/1+4p(p+1)a,

and proceed as before.
dy-descendants.

A=o, (4.39)

These states always have

V. CONTINUOUS REPRESENTATION
CHARACTERS

A. Embedding diagrams

We will run through our procedure for the NS sector of
the upper series in some detail. For the other cases we will
be more terse.

As reviewed in Sec. III A 1, three classes of continuous
representations were found. In class X, there is a unique
possibility that has a(X,) = 0, and hence ®(X,) = 2, while
h(X,)=x>0 so A(X,) =+/(p+4)?-8p(p+2)x. We
write |X,) = |2, A(X,)), or simply |2, A). Searching first for
f-descendants, we look for solutions to the equations

(p+2)m—pn==42, n.m>0, n+me2Z. (5.1)
For the plus sign, the most general solution is n =
1+ (p+2)k, m =1+ pk, where k > 0. For the minus
sign the solutions are n=p+1+(p+2)k, m=
p — 1 + pk, where again k > 0. There are no g-descendants,
since A is too small (when it is even real). To have any

d-descendants for x > 0, we would need A(X,) = p, which

happens only at the isolated point x = 1/ p. We will treat this
special case below and continue for now with the case of
generic x.

What about descendants of singular vectors? The
fn.m-descendants constructed above will be

Frearaipl2A) = 2p +2+2p(p + 2)k, A), - (5.2)
fp+l+(p+2)k,p—l+pk|2’ A>
=12p*+2p-2+2p(p+2)k.A).  (5.3)

Since these have the same A value, they, of course, still
have no g-descendants, and one can check that for generic x
(i.e., x > 0, x # 1/p) there are no d-descendants either.
They do have further f,,-descendants, however. For
2p +2+2p(p +2)k,A) we have

fpii(p42)jp14pie 2P +2+2p(p + 2)k, A)

=[2+2p(p+2)(k+j+1).A). (5.4)
f p43+(p42)2k4j).p-14pj|2P + 2+ 2p(p + 2)k, A)
=2p* +4p -2+ 2p(p+2)(k+ ). A), (5.5)

where j >0, while for [2p% +2p —2+2p(p +2)k, A)
we have
Fra(2)i2p14pkip) 20> +2p =24 2p(p + 2)k, A)

=[2p*+4p—=2+2p(p +2)(k+j),A), 5.6)

(5.
Fopi3t(pr2) @bt ipil2P* + 2P =2+ 2p(p + 2)k, A)

=24+2p(p+2)(k+j+1),A), (5.7)
where again j > 0. In both cases the products fall into the
same sequences. We have states of the form |2 4+ 2p(p +
2)k, A) (which includes our original state |2, A)) which
again have no g or d-descendants and have (j > 0)

Fia(pa2)ji+preyl2 +2p(p +2)k, A)

=12p+2+2p(p+2)(k+j),A), (5.8)
f p14(p42) k). p—14pj12 + 2P(p + 2)k, A)
=[2p?+2p-2+2p(p+2)(k+j).A). (59)

and states [2p? +4p —2 +2p(p + 2)k, A) with

Fot14(p42)j3p-14pke) 1207 +4p =2+ 2p(p + 2)k, A)
=2p* +2p=2+2p(p+2)(k+j+1),A), (510)

Fapisi(pa2) ki) ipil20® +4p =2+ 2p(p + 2)k, A)
=2p+2+4+2p(p+2)(k+j+1),A). (5.11)

At this point we are not introducing any new states.
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A

‘ P

FIG. 1. The ®A embedding diagram for the p = 3 X series
continuous representation. Black nodes contribute to the char-
acter with a plus sign, and red nodes with a negative sign.

The structure of descendants can be summarized in a
diagram, as shown in Fig. 1. The black circle on the left is the
original primary state |2, A). All of its descendants, [2p +
2+2p(p +2)k,A)and [2p® +2p =2+ 2p(p + 2)k, A),
are represented as red diamonds. The other black circles
represent the states |2+ 2p(p + 2)k, A) and [2p? + 4p —
2+ 2p(p + 2)k). Each red diamond is an f-descendant of
every black circle to its left, and has every black circle to its
right as a descendant. Similarly, each black circle is a
descendant of every red diamond to its left, and has every
red diamond to its right as a descendant.

Our notation here glosses over an important subtlety. We
are treating each |®, A) as a unique state. In fact, it can
happen that there are several states with the same quantum
numbers ® and A. We currently have no definitive way of
evaluating this possibility in general. At very low levels one
can explicitly compute the singular descendants and
compare, but this quickly becomes impractical, even by
computer. Instead, in this paper we shall make assumptions
about the multiplicities and overlaps (i.e., when a given set
of quantum numbers are obtained as a descendant in
different ways), and then run as many checks as possible
(e.g., all coefficients are non-negative integers, threshold
relations are obeyed) to confirm our hypotheses. Obviously,
it would be desirable to fill in these gaps.

From the embedding diagram (and the assumptions
about multiplicities) we can construct the characters. For
each state we need to include all of its possible descendants
built using L_,,, A_,, G_,, and M_, oscillators. This means
that with a state |®,A) we associate a contribution
Pns(7)q" 3, where

1\2

Pas(e) = [[ 520

n—1 <1_qn>
P -AN+(p+6)(p+2)
h = ) (5.12)

To build the character, we start with this contribution for the
original state. Then, moving to the right in the diagram, we

know that each node represents a singular vector: a null
state whose contribution needs to be removed. So for the
first two diamonds, since they have each been added as part
of the descendants of the primary, we must subtract their
contribution (to signify this we have colored them red in the
diagram). For the next pair of black dots, they have three
antecedents—the primary and each of the two red dia-
monds (we assume that the same state is a descendant of
each of the red diamond states, i.e., that the multiplicity of
the subsingular state with these quantum numbers is one).
Thus they have been added once and subtracted twice, and
to get them to zero we must add them back in. We color
them black to indicate this. Similarly, each of the next pair
of diamonds has been added three times and subtracted
twice, and so we must subtract them. Proceeding in this
way, we build the entire character,

2X)(q) = Pas(e)q ™75y gl iR gk — gl Dih
k=0
— g =Dk =) 4 (PP +2p=Dky(p?+2p=2))

(5.13)

This result matches the p = 3 result of [9] and also, by
comparing g-expansions to very high order, the result
of [8].

The expression can be compressed a little bit by
rewriting the sum to run over all integers instead of non-
negative integers,

(5]

2X)(q) = Prs(z)g Y g gk — gD,
kez

(5.14)

Similar calculations work for the other classes of
continuous representations. For the Y series we find
states

2(n—=1)p+4n—-2+2p(p+2)k,A) and

2p?> =2(n=3)p—4n+2+2p(p +2)k, A)  (5.15)
that contribute with a positive sign, and

|2np +4n—-2+2p(p +2)k,A) and

2p? =2(n=2)p—4n+2+2p(p +2)k,A), (5.16)

which get a negative sign, leading to
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(n=D)(p(n=1)+2n) 1_3
2V (q) = Pas(2)g™ % :

> (np+2n-1)k+4(2n-1)

i

TTMS

(p+2) k2 (n—1)p+2n—1)k
qu p ) )k _ q

2—(n=2)p=2n+1)k-+i(p>-2

—

_ q(p n— 1)p—2n+1) + q(p —(n—3)p—2n+1)k+%(p2—2(n—2)p—4n+2)]

(n=1)(p(n=1)+2n) | ) 1
— el 1 E (p+2) k (n=1)p+2n—1)k np-+2n—1)k+3(2n—1
g PNS(T)q 2p 4 4p qu P )p ) J— q( 4 ) 2( )]‘
kez

And for the Z series,
2pm =2(p+ D)n+2p(p+2)k,A) and [2p>+4p —2pm+2(p+ 1)n+2p(p +2)k,A)
with a positive sign and
|2pm +2n+2p(p+2)k,A) and |2p*>+4p—2pm—2n+2p(p+2)k,A)

with a negative sign, leading to characters

0

; p(m— rl)2 (m n)(2m—1)+m
(21l(a) = Pusle)g =Y o glonlp ik ooy

_ q(p2+2p—pm—n>k+§(n—n>(n+2—2m+n) g7’ +2p—pm+<p+1)n)k+%(p2+2p—2pm+2(n+1>n)]

o0
p(m—n)z—(m—n)(2m—l)+m+l 1 3

= Pys(7)g" 2 T Z g2P (PR [g(pm=(p+)mk _ g (pmetn)kin(2m=n)]

kezZ

Again these agree perfectly with the results from the literature for p = 3.
Similarly for the Ramond sector continuous representations we find

(211—1)(2n+1—p)+2[))12 1

2IVP(g) = Pr(1)q" En 7 Z g PR [g(p+2n=B)k _ g(p+2n+Ben _ g (p*+F=(p=2)m)+3(p+1) (p=2n)

k=0
+ q(p2+57p—(p+2)n)k+%(p+3)(p—2n)+n]

L 2n=1)2n+1=p)+2pn® |

= Pr(7)q"" En i E g (P+2) kz g((P+2n=—Dk _ q((P+2)”+%)k+’l],
kez
, 2p(m=n)2=4m(m=n)+2p(m=n)+p+3 3

)([ngpr)n_x](q> _ PR(,[)qxw p(n—n) m(m4z) plmon)tptd | = E q%p(p+2)k2 [q(pm—(p+1)n+§)k _ q(pz-s—%—n—pm)k—&-%(p—n)(p+1+n—2m)

k=0
_ q(§+n+pn1)k+%n(2m—n+1) + q(p2+%+(p+1)n—pm)k+%n(2p+3—2m+n)+%(p—n)(p+4n—2m)]
_ PR (T)qx } 2p(m—n)? 4m(n142)+217(m n)+p+3 1 3 Z q7p ])+2)k2 [q<pm (p+l)n+ ) _ q(pm+n+p)k+2 (zm n+1)]

kezZ

where

zﬁﬂ,

n:l
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B. Special case of x=1/p

Let us revisit the X representation character at the special
value of x=1/p, so the lowest weight state is
|®, A(X;,,)) = |2, p). In this case the primary has a d-
descendant,

di[2,p) = 2p +2.p). (5.24)

There is also an f-descendant, f; |2, p), but it is not
distinct from the d-descendant. Indeed, one can do an
explicit computation in this case and show that there is only
one singular vector at level-1/2, and so both descendants
must coincide with it,

d,

2’p> :fl,l 27p>
=N(p-2)G_1p +4(p+1)M_, )]
=2p+2,p),

2,p)
(5.25)

where A is a normalization constant.
In fact, all of the f-descendants themselves have
d-descendants,

diyapkl2 +2p(p 4+ 2)k, p) = 2p + 24 2p(p + 2)k. p).

(5.26)
diopk|2p +2+2p(p +2)k, p)
= [4p +2+2p(p +2)k,3p), (5.27)
dap-142pk|2P* +2p =2+ 2p(p + 2)k, p)
= 2p® +4p =24 2p(p +2)k, p), (5.28)
dop-142pk2P% +4p =2+ 2p(p +2)k, p)
=[2p*+6p—2+2p(p+2)k3p). (5.29)

The new states with A = 3 p also have f- and d-descendants,
and so on, all of which can be summarized in a diagram,
shown in Fig. 2.

Starting with the black circle at the bottom left, repre-
senting the primary, the next two states on the same row are
singular and must be subtracted, so they are colored red.
The first state on the next row has two antecedents, one red
and one black. Thus it has already been added once and
subtracted once and has the correct coefficient of zero, so
we color it blue to indicate no explicit contribution to the
character. As you continue to move up and to the right,
every state has equal numbers of red and black antecedants,
and so gets colored blue, indicating no explicit term in the
character. Only the states on the first row contribute, and
their contribution is exactly the same as for the generic
(x # 1/ p) continuous representation. So the character ends
up the same as before, which is consistent with the analysis
of [6]. Note that in the third row, each state has two
d-descendants. These states also have the property that
every state on this row is an f-descendant of each state to its
left and has every state to its right as an f-descendant (we
denote them with squares rather than circles or diamonds to
indicate this fact). In the figure there are no g-descendants,
which would be represented by vertical lines, but this is
only because we have not made the diagram large enough.
Eventually, as we move to the right on any given row, the
states will be g-descendants of states above them, but again
this will not change our conclusion or our expression for
the character.

The Y series representations are very similar, with a
nongeneric point at x = 1/p, but where the final result is
the same character as at the generic point. The Z series
never has any d- or g-descendants.

C. Alternative expressions

Now we will give an alternative representation for these
continuous representation characters. The equivalence is

7
s

)

FIG. 2. The ®A embedding diagram for the p =3 X series continuous representation at the special value x = 1/3. Black
nodes contribute to the character with a plus sign, red nodes with a negative sign, while blue nodes do not contribute to the

character.
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conjectural, but we have verified it to very high order in
powers of q.

Consider two integers a and b satisfying 1 <a < p + 1,
1 <b < p—1. Then define

qx_ya.b P 1
20 1(q) = Sl @), (5.30)

n(q) =

(p+2-2a)? 641+ 64p11
8p(p +2) p

and where we use the equivalences

25 (q) =

27q)

Yab = s (531)

+1
)(Evpﬂ )k pr2-al4)

=0 pi14(0); (5.32)

to ensure that the first index is always greater than or equal
to the second index on the minimal model characters.
We conjecture that these characters are equivalent to the
continuous upper series characters we obtained above using
the embedding formalism. For a + b even they correspond
to NS sector characters, while for a 4+ b odd they corre-
spond to the R sector. The explicit correspondence to the
labeling of representations above into the classes of [6] is

x =ul (5.33)
anx = U(I{)Z)n—l X (534)
Zhhe =UL) (5.35)
vitl=ul,.. (5.36)
Wi(zl,)m;x = Ug[r)n)—n—s-l,n;x' (537)
Note that there is a redundancy in the labeling,
20N @) =20 @) (5.38)

Because of this equivalence, there are a total of (p*> —1)/2
distinct representations for p odd, and p?/2 for p even (in
the latter case, there is one self-dual representation in the R

sector, with a = 1 + p/2, b = p/2). For all p, half of the
representations are NS and half are R.

Since we have
a-+b\?
2

then for NS the lowest weight state in the representation
comes from the k = # term, while for R we have two

(pa—(p+2)b)* -4
8p(p +2)

El

1
) =5 (k-

(5.39)

lowest weight states, from the terms with k = % For
NS, the lowest weight state has
_ 3P
a= hb,ﬂzﬁ’
Byt (a=b)p+4+4da—2a°>+2b* - 8641 =884 p11
8p ’
(5.40)
and for R they have
ay = h(p btls
bath
et (a—b)*p+4+4a—2a>+2b> -85, -85, 11
8p
1
+ 3 (5.41)

D. Modular properties

The characters of the pth minimal model, labeled by
1 <m < n< p transform among themselves under the
S-transformation (z — —1/7) of the modular group accord-
ing to the matrix

_ 8
p(p+1)

XSm{xz— |)SIn|\ 7 .
p p+1

We can thus use this result to check the transformations
of the y(P+1)y(P) pieces Of)([Ul(sz] We find

(_1)(n+m)(N+M)

(5.42)

S A A = 333 S S S St A

. (mnb\ . (mmk\ (i1 (p
sm< » )sm<p+1>;(NM Kiim-

P
Z (_1)(N+M)(a+k)+(n+m)(b+k)
M=1 n=1 m=1

(5.43)
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Next we will use the result that

p Nk k LAY - N+ M + n+ m even,
D (1) lmeN Mk sin(” >sin<”m ) - { 2o (5.44)
k=1 p+1 p+1 —%51\/.[)_’_1_”1, N+M+n+m0dd

This converts the sums in (5.43) to
1

=1
1M+n 1+ _1 M+n+p
% { (2 ) (= 1)aM-+bn+(a+b) Zf,fH)ZEz ’21 %( 1)alp+i= M)+bn+(a+b)m)(;i+l'_>m MXSI,L} (5.45)

+1

)
bS]

<

n

Let us focus separately on the case where a + b is even (NS sector) or odd (R sector). In the NS sector, this becomes

e T () ()
JFZ) A=l B=1 =1 p
14 (=1) . ] 1+(_1)(p+2_A)+B . '
« {f< 1) A+b3)(](({7A+ ))(g_]/)( _ 5 (-1) (p+1+A)+thl<fp++2)_AZgl)(

p+l p—1 A+B P

1 -1 A Bb
* _ ) sin< r “2) sin <”—> Sl e (5.46)
Vr(p+ 2 ) 4= 5= p+ P /i3

In particular, we see that the NS sector closes on itself under S-transformations. As an example, for p = 3, we can take a
basisa = b = 1 and a = b = 2 for the NS states, and then the S-matrix is (keeping in mind an extra factor of 2 because the

sum is over the doubled set of states)

S_L<Sin(;’)sin(§) sin(%) sin <4;>>_<7¥ 2% ) (5.47)

V15 \sin(Z) sin(%)  sin(%) sin (%) 36 —%¢
where
p/1 5-— \/§
= Sin — = ——:Q 548
: <5> 2v2 (348)
For p = 4 we can take a basis {(a,b)} = {(1,1),(1,3),(2,2),(3,1)}, and the S-matrix becomes
0 B L 1
2V3  2V3 V2 V3
1 1 _ 1 1
s=|27 o (5.49)
s o~ 00
I T
Vi V3 V3

If we instead start with a R sector state, we get a similar answer,

ptl p-l1 A+B P
1+(1 .<zzAa>.(zsz> (+1) (p)
(=1)Asin sin| — Dkl 5.50
TH;Z Psin( =5 ) sin( 7 ) 30 (DA (5.50)

B=1 k=1

The result only involves states where A + B is even, i.e., only NS sector states, but it is not quite the characters themselves;
there is an extra (—1)¥ in the sum. This is consistent with the fact that the R sector partition function is expected, under the S-

transformation, to map into the NS sector partition function with an insertion of (—1).
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E. Lower series characters

Because it is so difficult to find simple (i.e., with non-
negative integer coefficients) combinations of minimal
model characters which are closed under S-transformations,
we conjecture that nearly the same expressions will apply
for the massive characters of the ¢ < 6 series. In particular,
we conjecture

) 1) = L S 20 (g ss|
XY apx\4) = Tor  (@Dxia(q), (5.51)

n(q) =
where
1<agp, 15b<p-2. =g P2 (s
Sasp, = P=4 Y > .

" 8(p-1)(p+1)

and

200 0(@) =210V oipl (@), (5.53)

VI. THRESHOLD RELATIONS

For each of the continuous representations, if we approach
the lower limit of the % range by sending x — 0, then some
descendant states become null. Equivalently, we can say that
certain states in the representation space are no longer
descendants of the primary state; the representation splits
into smaller ones. This decomposition is called a threshold
relation.

In terms of characters, it means that the x — O limit of
the continuous character is equal to a sum of other
characters. The leading (i.e., lowest weight) term in this
sum must be a discrete representation character, while
subleading terms can a priori be either continuous (but at
specific values of x) or discrete. For example, the standard
Virasoro algebra with ¢ > 1 has a continuous family of
representatlons with h =x >0 and characters yY' =
nlq" 24, and a single discrete representation with 7 =0
and character yYi' = 57'¢~% (1 — ¢). In that case we have

Vir

limy(2) = jvae(e) + 21" (). (6.1)

For the algebras studied in this paper, we find (or
conjecture) that the threshold relations always have the
form of a continuous representation decomposing into a
pair of discrete representations (unlike the Virasoro case
above).

For each of the continuous representations, we know that
the first term in the threshold relation must be the uniquely
determined discrete representation with the appropriate
quantum numbers. We conjecture that the only additional
term in the threshold relation will be the discrete

representations corresponding to the first d-descendant
of the lowest weight state.
For the upper series NS sector, this procedure gives

= 7[AP)] + 4[C)), (6.2)

hmo;(
hmo;(
hmo;(

= hmo)(
xl_l;n()){[ 1,2n—1;x] )([ 2n—1.n] +)({ n—l}’ ( . )

= 111’110){ U2m n,n; x}

= ¥[CEN] + 21DV o). (6.4)

The lower series NS sector has the simple relation

limy (X160 = linng (00}, ) = A ) + 2B ). (6.5)
In the R sector, for the upper series we have
limy (V1) —1@0;([U<P> =y[EP]+4F). (6.6)
11m(f( —11m0;( = [HY,, L) (6.7)
limy (W] = }gncg[vffﬁl,w] = 1[FP) +2[FP), (68)
limy[ Wi = limy LA
T St (6.9)
while the lower series satisfies
hmo;( 2,2)6 —hm(f( M 1x
= [C] +x[c;£1 Jo (610)
hmo;( = hmo;( mn i lx
AED) +2Di). (611

VIL. DISCRETE REPRESENTATION
CHARACTERS

A. Upper series D class characters

Now let us apply this formalism to the discrete repre-
sentations. We will only work in detail for the upper series
NS sector, and then simply present the results for the other
cases. Let us start with just the D class. Because of the
threshold relations, if we can successfully construct the
characters for the D representations, then we can obtain all
other characters by combining this information with the
continuous representation characters derived above.
Specifically, we would have
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)([CSLP,),L] = Z[Ugn)—n,n;()] _)([D‘E?p—)n,p—m] s (7.1)
2B = A UP, ol = DY ) (72)
1AW = )([U(IPI)O] - )([Ug[,gl);o] + )([ngp—)l,p—ﬂ‘ (7.3)

Of course, as cross-checks we can try to compute the left-
hand sides directly, and we can also try to check that the
results are sensible, for instance, that they have only
positive coefficients in their g-expansions.
The fo ,2, series representations are labeled by a pair of
integers,
2<n<p-1,

<m<n-1. (7.4)

Taking a(D,(f ,L) and h(fo,7 ,,)1) from (3.9), we can translate
into ® and A,
®,=2(p+1)n-2pm, Ag=4m-2n+p+2. (7.5)
It will turn out that for certain values of the combination
2m — n, which lies in the range
0<2m-n<p-3, (7.6)
there will be extra descendants which need to be consid-
ered (this will be analogous to the situation with x = 1/p
in the continuous representations). So to start, we will
assume that 2m — n does not take on any of the values

0,1,2, pTﬂ, PT%. We will argue that, as in the x = 1/p case,
the results we obtain are also applicable to these spe-
cial cases.

First, we look for the f-descendants of the primary state.

This generates two infinite sequences of descendants,

2p(p +2)j +2n+2pm, Ay),

2p(p+2)(j+1)—2n—=2pm,Ag).  j=0. (7.7
Let us introduce some shorthand notation, defining
Dpupe =2p(p+2)k +2an + 2bm + 2c,

Ay = Ao + 2pj) (7.8)

so, for instance, ®y, = @y, _, 0, and the descendants
above are

|q)j;l.p,0’A0>’

[Pt 1:-1—p.0s No)- (7.9)

Each of these states in turn has an infinite set of
f-descendants,
1D pi1.—p.0:Ao)s j>0.

| D41 po1.p.05No)s (7.10)

Note that for the first of these, j = 0 represents the primary
state itself. In the ®A-plane, these states all lie on the
horizontal line extending rightwards from the primary.
Each of the states so far has a d-descendant (and by our
genericity restriction, only a single d-descendant):

d2pj+2m+1 |q)j;1,p.Ov AO> = |q)k;l,p,p’ A—1>7 (711)

d2pj—2m+2p—l |CI)_/'+1;—1,—17,0’A0> = |¢)j+1;—1,—p,p’A1 >v (712)

dapjian-om-t|Pjpi1.-p0s No) = |Pjipi1—pps A1)y (7.13)
dypjoniami2pr1|Pjr1=p—1.p.05 Do) = Pt poi pps Aci)-
(7.14)

These new states in turn generate new f-descendants. Some
of these are among the d-descendants already enumerated,
and some are new:

D1 p—ps A1) @jsti-p-tp—pr M)y J 20, (7.15)
|cDj+2;—1,—p,—p’A—l>’ |¢j+l;p+],—p,—paA—]>a JZ 0
(7.16)

And each state also has one d-descendant. For the states
that were already obtained as d-descendants themselves,
their descendants will lie further along the same diagonal
line. For the new states the d-descendant diagonals head in
the opposite direction, back toward the primary state’s
horizontal line. And we could continue in this way, with
new d-descendants generating new rows and corresponding
f-descendants ad infinitum.

Note that we have not said anything yet about
g-descendants. In fact, we are going to make the
assumption, which we will attempt to justify a posteriori,
that g-descendants do not need to be accounted for when
computing these generic D series characters. This could be,
for instance, if the g-descendants were not actually linearly
independent of the f- and d-descendant nodes with the
same ® and A (it would be interesting to attempt to verify
this conjecture by explicit computations). The other issue
with g-descendants is that they seem to have significantly
more sensitivity to the specific values of p, n, and m, and if
their contribution did need to be included, it is unlikely that
there would be nice expressions for whole families of
characters of the type that we will present below.

We plot the embedding diagram for this representation in
Fig. 3(a). It remains to determine how each of these states
contribute to the character, i.e., to determine the color
assignments in the diagram with black nodes representing a
plus contribution, red nodes a minus contribution, and blue
nodes no contribution (i.e., a coefficient of zero).

For example, the furthest left node, labeled 1, represents
the primary state, and is, of course, colored black.
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0.9 VARV

FIG. 3.

to make the diagram more legible). Specifically, (a) is for Dg’j, and (b) is for C 562) The shapes (circles and diamonds) allow us to keep
track of direct descendants; all direct descendants of a circle node are diamonds, and vice versa. The color scheme is to keep track of
contributions to the character; black nodes contribute with a plus sign, red nodes contribute with a minus sign, and blue nodes do not
contribute to the character. Note that if we superpose the two diagrams together, then everything above the bottom row cancels, leaving

The ®A embedding diagrams for generic D-series and C-series characters (we have stretched the vertical axis by a factor of 2

us precisely with a continuous representation diagram as in Fig. 1, consistent with the threshold relation (6.4).

Correspondingly, the leading term in the character would be
Pys (7)1, accounting for the primary and all its descend-
ants. Its d-descendant is the diamond up and right from the
primary, labeled node 2. Since this is a null state, it should
not be counted by the character, but it was included in the
primary’s contribution [from expanding the Pyg(7) factor],
so we need to subtract it off with —Pys(7)¢" 3, where 4’ is
the weight of this descendant. To indicate this, we color the
node red. The d-descendant of this state, node 3, is not
actually a descendant of the primary, because successive
d-descendants are nilpotent. So it has been subtracted from
the last contribution and currently appears with a negative
sign in the character. So we need to add it back in, and hence
color it black. This pattern continues up the diagonal, with
alternating black circles and red diamonds.

Consider node 4, to the right of node 2. As with all the
nodes in the diagram, it is a null state and should not appear
in the character. Fortunately, it was already included in the
contribution from the primary, node 1, with a plus sign, and
in the contribution from node 2, with a minus sign. Thus, it
has already been correctly removed and gets colored blue.

The diamond immediately to the right of the primary,
node 5, needs to be subtracted off and becomes red. Its d-
descendant, node 6, has been added once, from the node 1
contribution, and subtracted twice, as a descendant of
|

prl2 —2([)—l)nm+(p—2)mz+n—2m+l

nodes 2 and 5. So we need to add it back in, and thus
color it black. A similar pattern continues up the diagonal
with alternating red and black.

As a couple of final examples, consider nodes 7 and 8.
Node 7 is an f-descendant of node 1 and a d-descendant of
node 4, which in turn was an f-descendant of node 2. Since
node 1 is black, node 4 is blue, and node 2 is red, we have a
net zero contribution, and node 7 gets colored blue. Note
that node 7 is not a descendant of node 5, since they are
both diamonds. Now for node 8, it is a d-descendant of
node 7, which is an f-descendant of node 1. We do not
count it as being a descendant of nodes 4 or 2 because the
route from 4 to 8 involves taking a d-descendant twice,
which is disallowed (since d-descendants correspond to
fermionic operators). Thus, we only have to consider the
contributions of nodes 7 (blue) and 1 (black), and to cancel
these, node 8 must be colored red.

Proceeding in the same manner allows us to fill in all of
the colors in Fig. 3(a). From here it is straightforward to
write down the corresponding character itself. We can
organize the nodes in the diagram by diagonals. Each
diagonal eventually alternates between red and black as it
moves to the right, possibly after an initial phase of blue.
Each diagonal contributes to the character as a geometric
series, and the net expression is

oo q[(p+1)t1—pn1]k

2DV (9) = Pxs()g

~ q[p

(p+2)—n—pmlk+i[p(p+2)—2n—2pm—n>+2nm|

i o) 1
Ey ;QZ 1+ qpk+n—m——é

q [n+pm+plk+3{14+2m—n>+2nm]

1+ qpk—}—p—m—%
q[[?(p+3)—(p+l)n+pm]k+%[p2+4p+l =2(p4+2)n+2(p+1)m|

1 4 qpk+m+%

_l_

1+ q]?kJrﬂ—nerJr%

}. (7.17)
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The factor outside the sum is simply ¢"=3Pyg(7), repre-
senting the primary and all its conformal descendants. The
first term inside the sum, which starts at 1 when k = 0,
accounts for all diagonals whose alternation starts with a
black circle on the same row as the primary [node 1 in
Fig. 3(a)]. The next term represents the diagonals that start
at a red diamond in the same row (such as node 5). The
third term represents the diagonals which start at red circles

|

)I‘l2* p—1)nm+(p—. mz+n—2m
2IDDN(g) = Prs()g™ T S g2

kez

We should stress at this point that this character can really
only be considered conjectural at this point. As mentioned
above, we have not considered the g-descendants at all, and
we have also implicitly been assuming that there is a single
state corresponding to each node in our diagram, regardless
of the path taken to that node, even though it is easy to check
that there can be high dimensional spaces of states with the
same @ and A quantum numbers. In the next subsection
we will present what evidence we have that these characters
are correct.

Before we do that, however, we are going to extend our
conjecture even further, and make the guess that, even
though we only worked through our derivation for what
we called “generic” D class characters, the final result holds
even in the nongeneric cases. For example, the unique D
character for p =3, D?l)
assumption by

would be given under this

on the row below the primary (node 8 is an example). And
finally the last term in the sum accounts for diagonals
starting at a black diamond in that same row (as the node
immediately to the right of node 8).

In fact, there is a nice way of rewriting this result so that
the sums run over all integers rather than just non-negative
ones. We can combine the two positive terms together and
the two negative terms together to obtain

q[ p+1)n—pmlk q[p+i1+])m]k+%[1+2m—n2+2nm]
- . A
{1 + qpk+n m—% 1+ qpk+m+% } (7 8)
[
o el 8k+3
G) 5 g%
D, = P .
x[D5,1](q) = ¢2Pns( ;ez: q* {1 I q3k+2 1+ q3k+g}

(7.19)

This agrees with the results of [9], who computed the
characters for the ¢ = 12 theory by similar methods, which
lends support to our claim that (7.17) is more broadly
applicable to all D series characters.

We have also checked several nongeneric cases by hand
and recovered the same result, for instance, the p =5
characters computed in Appendix B; see in particu-
lar Fig. 4.

B. Other upper series NS characters

From inserting (7.17) and (5.30) into the threshold
relations (7.1), (7.2), (7.3) we obtain

o k [n+pm]k+i[—n?+2nm]
1 _ pn2=2(p=1)nm+(p=2)m% +2m—n+1 (p+2)k [ (p+1)n+pm] : q ol
Z[Cn,m] - PNS (Q)q > 4 4pkezzqu g 1+ qpk—n+m—— 1+ qu+n —% ’ (720)
2 e glpt2ntptile  Gl(p+2)ntptilitl
)([Bglm] = Pxs(q)q - +2 = ]_h_pzqu Pk = i (0 (7.21)
= 1 + qpk+n—— 1+ qpk+n+’§
[er]]k—l [p+1]k+1
q 2
){A(p) = P 4 4[1 zp 17+2 { } 722

Although we again emphasize that these expressions
have not been rigorously derived and should be treated as
conjectural, there are a number of checks that can be done
to build our confidence in them.

First of all, we can repeat the direct exercise we did for
the D characters in the case of “generic” C characters as
well. The corresponding ®A-plane embedding diagram is
illustrated in Fig. 3(b). The result agrees with that obtained
from the threshold relation and our previous expression for
the continuous spectrum characters. Similar exercises for

I

the other characters also match the results above, for
instance, see the p =15 diagrams in Fig. 4 in
Appendix B. Note that we can no longer ignore the g-
descendants completely; rather our refined conjecture is
that the only time g-descendants must be taken into account

is when the primary state itself has a g-descendant. An

example of this is the BES>

shown in Fig. 4(b).
Secondly, in the p = 3 case the expressions are in perfect
agreement with the results of [9].

representation, whose diagram is
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FIG. 4. Embedding diagrams for the NS sector discrete characters of the ¢ = 48/5 (upper series, p = 5) theory.
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Finally, one can check that in the full expressions
only non-negative integer coefficients appear, at
least up to very high orders in an expansion in powers
of g.

C. Upper series R sector

Repeating the procedure for the R sector of the upper
series, we can recover characters for the discrete
representations:

1(3p+4)k 1Bp+4)k+1

1 q? q:

AIEP] = PR(q)k;qu(M) { T q,,m} (7.23)
Q@ntp)k L ((p+1)n+5)k+n(n+1)
2)k q
XIF kezzqzl’ p+2) {1+q17k - 1+ gPkin }, (7.24)
m=(p+1)n+5)k (pm+n+2)k+in(2m—n+1)
(P) - 2p(m—n) 4m(r:x n)+2p(m—n) +2 q 5 !

)([Gnm] = PR(Q)q 4 keZZC]zp p 1 T qpk+m n 1+ qpk+m s (725)

2
(F) 2p(m—n)=+4(m—1)(1=m+n)+2p(m—n)—4p 1 ) k2
x[Hwn] = Pr(q)q w > gt

kez

Z[[;p)] _ PR( p(2n2 +2r;—: )+4n2 _AZCIZP p+2)k

kez

A few examples for p =5 are shown in Fig. 5 in
Appendix B. A novel feature that occurs in this case
deserves some comment. For the representations with only
a single ground state, there are actually two starting points
one can take for the construction of the embedding
diagram; corresponding to which direction one moves on
the central ® = A diagonal when taking d,-descendants.
The choices produce seeming distinct diagrams (though
they agree on the black and red nodes strictly below the
diagonal), but the characters are in fact equal, providing a
solid check on our procedure. In Appendix B, we include,
for the p =5 case, these alternative diagrams for the five
cases of such representations in Fig. 6. As in the NS sector
case, some of the primaries have g-descendants; in

|

- p(n=m)%+(Bn=m—1)(n=m+1)—

ZA) = Pys(a)q e Sy gk
kez
”—nlz n—m: n—m— m
ABIN = Pas(q)g™ T > gl

keZ

xIC (9)> gt

~ pln=m)2+(n=m)(1=m+3n)+p(n-m)
21D = Pr(q)q e D ek
kez

)(p+1)k —
1+ q(p+l)k+n—m—%

q(pm—(p+1)n+§)k q(prn+z1+§)k+%n(2m—n+1)
{1 + qpk+m—n—1 - 1+ qpk+m—1

}, (7.26)

(7.27)

{ ((p+2)n+ﬁ)k

q((p+2)n+§)k+1
1+qpk+n 1

1+ qpk+n+1

I

particular for p =5 one can look at the representations
1 f) in Fig. 5(j), or one of the two possible diagrams for E®)
in Fig. 6(a).

Again, the embedding diagram calculations are in full
agreement with the threshold relations, as well as the p = 3
calculations of [9], and again the check that only non-
negative coefficients appear in the full characters is another
check that our results are sensible.

D. Lower series discrete characters

Repeating the same procedures once more results in
the following characters for the lower series discrete
representations:

{ q[(!’*l)”_Pm]k q[(erl)n—m]kJr%m(Zn—m)

}, (7.28)

| 4 gP+Dktn—mt} - 1+q(p+l)k+n+%

q[(p+1)n—pm]k q[(p+1)n—m]k+%m(2n—m)

b o)

1+ q(p+1)k+n—%

q[n+%]k

)(p+1)k {
kez

1+ q(p+1)k -

q[pnwLpTH]kwL%n(nJr 1)
}, (7.30)

1+ q(p+1)k+n

p+1

(gl pDn=pm B3k gl - e m a1

1+ q(p+l)k+n—m

- } (7.31)

1+ q(p+l)k+n
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FIG. 5. Embedding diagrams for the R sector discrete characters of the ¢ = 48/5 (upper series, p = 5) theory.
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A

FIG. 6. Equivalent alternative embedding diagrams for the R ground state characters of the ¢ = 48/5 (upper series, p = 5) theory.

Z[E‘Sf;}j] _ PR (q) qﬁ(n—m)‘—(ll—r;le()ljlqz—Sn)—l)(n—m) Z q%(p—l)(PJfl)kz

kez

These characters, derived from the embedding diagram
formalism, once more satisfy the threshold relations and
exhibit only non-negative coefficients in the full ¢ expan-
sion. One more set of checks is done in the next section,
where the p = 3 results are compared to characters for the
supersymmetric free boson and related theories at ¢ = 3/2.

VIIL. ¢=3/2 AND THE SUPERSYMMETRIC
FREE BOSON

The simplest nontrivial case is ¢ = 3/2. Here our system
essentially corresponds to a supersymmetric boson X with
modes a; and its fermionic partner y with modes . A(z)
is simply the stress tensor in the y sector, A(z) =
—Ly(2)oy(z):, with G(z) = V2idX(2)y(z), and T(z) =
A(z) + B(z), where B(z) = —:0X(z)0X(x): is the stress
tensor for X (we take o = 1 here).

q[(p+1)n—pm—%]k

q[(p+1)n—m—%]k+%m(2n—m—l)
} (7.32)

1 + glpHDken—m 1+ g+ Dktn

In [6], the different representations were identified.
Consider first the NS sector. The vacuum is, of course,
the 21531) representation. To build descendants of the vacuum
we cannot use modes of dX(z) or y(z) by themselves, but
we can use G(z) where every a;, mode is paired with a v,
mode, or we can use A(z) and B(z) which involve pairs of
v, or a; modes, respectively. For modes built with «;’s, the
free boson includes a family of Virasoro representations V,
with weights & = n?forn=0,]1,..., and their correspond-
ing characters are

_ q(n+1)2

n(g) (8.1)

where the states with even n involve even numbers of a_;
oscillators, while the states with odd » involve odd numbers
of a_; oscillators. This means that the even n states must be
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paired with )((131) (g) from the y sector (which includes all

NS sector states built from even numbers of y, oscillators)
while the odd n states must be paired with )(2 1( ) (built
from odd numbers of w, oscillators). Schematically,

we have states (D, cven V)l + (O, 0aa Va)w, and the
character is

q _ q n+1 3 q n+1 3)
n;n )( ’; ’1(6] ————1.1(9)
= (i(_;();)qn 2(@)
n=0
0 n+l n
() 82)

Similarly, the operator y(z) (or the state y_[0)) should

correspond to the state Bff . Following the same reasoning

as above, we find (3, cven V)W + (O, 0aa V)1 with
character

q" —q
n(q) ' —

n? (n+1)? n?
w@)=) ——F~—

neven

- (iﬂ)xﬁf (@)

—~ n(q)

o (_1)n+1qn2 3)
+<n§=:17’7(‘1) >)(1,1(4)-

Next, the state A(;% is meant to correspond to the operator
0(z)s(z), where o(z) and s(z) are twist fields for the boson
and fermion, respectively, which both have 7 = 117)' So this
state is in the R sector of y and in a sector where the boson
has antiperiodic boundary conditions. We can act on this
state with half-integer moded a_, raising operators, or with
integer moded y_, operators. The parity of the two is again
correlated (i.e., we can act with an even number of a’s and
an even number of y’s, or with odd numbers of both), but
that just means that we get only one lowest-weight state
instead of two. The character becomes

1

qﬁ

3)
o 1(1 _ %)IZ,Z(Q)'

Xos(q) =

The NS sector is then rounded out by the bosonic

exponentials :ePX(z):, corresponding to the continuous

family of representations X ) L

,. Since the exponential can
T
“soak up” the action of a; modes, modes of G(z) can

behave as y, modes. Thus, we have characters

ment

(8.5)

We have not actually proven that these relations are correct,
but we have checked by computer that the series agree up to
order ¢°. Note also that it is easy to check that the
threshold relation holds exactly in the form

() +xy(q)- (8.6)

hmo;( wx(q) = x1

Proceeding similarly in the Ramond sector, Gepner and
Noyvert identify three more discrete representations and
one continuous representation in terms of free supersym-
metric boson constructions. It will be useful to refer to
additional twist fields 7(z) and u(z) which appear in the
OPEs

0X(z)a(w) ~ o) TR (8.7)
(z—w)?
wst) ~ e sy
(z—w):
and where 7(z) and p(z) have weights h = ;% and h = ;%

respectively.

The representation C 3) corresponds to the bosonic twist
field 6(z). The descendant states come from acting with a_,
and y_, operators, both half-integer moded, with matching
parities. This leads to a character

L ! ! ()
X5(q) =54 [Hﬁol (1 —q”_%) = (1 +q”_’)])(l 1(q)
LS ! 1 o)
21 [HZ"I(I—Q”‘%) oy (1+g" ")]){21( )
1, 200(a) +25)(q) )(1,1(61) —751(q)
2 [Hfl(l—Q”‘%) 2°_1(1+q”‘%)]' 5

Next up is C‘f)

field s(z). In this case we schematically end up with
(O neven Va)s + (O, oad V)i, and the character is

corresponding to the fermionic twist
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n+1

ZCI —61

neven

3)

(n+1)?

Zq ‘q 259(a)

nodd

(8.10)

The third discrete representation in the R sector is E3 ;. This is a doublet state whose components are 7(z) and o(z)y(z),

both with h = %. The corresponding character is similar to y,,
1 1 1 (3) | 1 1 (3)
VAN )(‘1) __‘]48[ - PR E— ] ])(11@)""‘]48 n__ 1 231(q)
oy 2 2 (1=g"2) TI (1+¢") 2 e (1= ) e (1+4"72)
3 3 3
_Lla [xl (@) +50 ) @) -1 3(61)] (8.11)
20 T (=g TI (1 +492)

Finally, the continuous representation V'’ , is also iden-

3)
22;
tified as the doublet with components :s(z)e’?X(z): and
:u(z)ePX(z):, and character

(8.12)

Again the threshold relation works precisely, with

llm /7X
e

As in the NS sector, we have confirmed numerically that
these characters agree with our expressions up to order g>%.

= 2x,(2). (8.13)
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APPENDIX A: MODE ALGEBRA

The chiral algebra of an SW(3/2, 2) algebra is generated
by spin-two bosonic currents 7 and A, and fermionic
currents G and M of spin three-halves and five-halves,
respectively. Performing a standard mode expansion, the
algebra is given by

[L,.L,] = m(m— ) (m+1)8,,4,
+ (m - n)Lern’ (Al)
[Lm’ Gr} = (% - r> Gm+r’ (AZ)

1 1
{Grv Gs} = % <r - E) (r ""_5) Orps T 2L, 45, (AS)

c(15-c¢)
L, A,] = mm(m —(m+1)8,.n
+ (m=n)A, i, (A4)
15-¢ 1
[Amv Gr] = _m <r+2> Gm+r - Mm+rv (AS)
~c(I5-¢)
A,,A,] = mm(m - 1)(m+1)8,,n
+ (m - n>Am+n’ (A6)
15-c¢ 3m
[Lm’Mr] = mm(m + 1)Gm-ﬁ—r + (7 - r>Mm+rv

(A7)

o))

_15—c(r+1) A Gr—9A... (A8

12+c¢ 2

+(15—c)(m+ r+§) (m—}—r—f—%)]GmH

mr )+ 27 (g ra 2| m
m — |\ m+r+=
2(12 +¢) 2)

18
124c¢

G: m+r» (A9)

085004-25



DANIEL ROBBINS and CHRIS SIMMONS

PHYS. REV. D 109, 085004 (2024)

{MrvMs} =

2

2(12+¢)?

S
+(15—c)(3+c) [3<r+3

)3

3
s+§> —(r+s+3)(r+s+2)Lr+s]

+ {Z(r—i—%) <S+%>—%(r+s+3)(r+s+2)}Ar+s

36 . . 18
12+¢" T2 4+ ¢

where m and n are integers, and r and s are either integers,
in the Ramond sector, or integers plus a half, in the Neveu-
Schwarz sector.

We have used the definition

PO, = Z PuQnm

m<—hp

+(_1)PQ Z Qn—umv

m>—hp+1

(A11)

which works for all cases except :GM : ., ; in the Ramond
sector, where we have (translating results from Appendix C
of [6] into our conventions)

5¢(15-c¢)
GMf = GmMn—m - Mn—me + n,0
mSZ_l mzzo 384(12+c¢)
3 15—
+nAn_ c L, (A12)
2 8(12+c¢)

The Hermitian conjugates for L, G, and A are standard,

(L)"=L.,. (G)'=G.. (A,) =4, (Al3)

GM:, .,

(A10)

while
15-¢

(M,)" = 2240

-M_, - G_,. (A14)

APPENDIX B: EMBEDDING DIAGRAMS
FOR c=48/5

In this appendix we present embedding diagrams for all of
the discrete representations of the upper series with p = 5.
This case has a central charge of ¢ =48/5 and has 20
discrete representations, 10 in each of the NS and R sectors.
The 10 representations in the NS sector are shown in Fig. 4. In
these diagrams we indicate all f-descendants by horizontal
lines, all g-descendants by vertical lines, and all d-descend-
ants by diagonal lines. We use dashed lines for lines that have
“reflected” off the A = 0 axis (in order to make the images
slightly more visually coherent). The coloring of nodes
indicates their contribution to the character: black nodes
must be added in, red nodes need to be subtracted out, and
blue nodes do not need to be adjusted.

Similarly, Fig. 5 shows the R sector representations. Five
of the ten are Ramond sector ground states (with & = 2/5
in this case). For these five, one can give an alternate
presentation of the embedding diagram, shown in Fig. 6,
but these can be checked to lead to the same expressions for
the characters.
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