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The SWð3=2; 2Þ current algebras come in two discrete series indexed by central charge, with the chiral
algebra of a supersymmetric sigma model on a Spin(7) manifold as a special case. The unitary
representations of these algebras were classified by Gepner and Noyvert, and we use their results to
perform an analysis of null descendants and compute the characters for every representation. We obtain
threshold relations between the characters of discrete representations and those with continuous conformal
weights. Modular transformations are discussed, and we show that the continuous characters can be written
as bilinear combinations of characters for consecutive minimal models.
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I. INTRODUCTION

String theory has illuminated many fascinating connec-
tions between physics and mathematics. One class of
examples that motivates this work comes from compacti-
fications of strings on special holonomy manifolds. The
most familiar examples are Calabi-Yau manifolds with
holonomy SUðnÞ. The world-sheet theory of a string1

moving in such a background includes a sigma model
with the Calabi-Yau target space. The SUðnÞ holonomy
ensures that there are additional conserved currents in the
world-sheet theory. The Kähler form leads to an extra spin
one current that enhances the world-sheet supersymmetry
from (1, 1) to (2, 2), while the holomorphic n-form adds an
additional spin n=2 current that relates to spectral flow [1].
In the Calabi-Yau case the connections between the

geometry, the world-sheet theory, and the effective theory
have been well explored. The multiplicities of discrete
representations in the superconformal sigma model are
determined by the Hodge numbers of the Calabi-Yau and
give rise to the Bogomolny-Prasad-Sommerfield (BPS)
states in the spectrum of the effective theory. The spectrum
of continuous representations is related to the spectra of
Laplace-type operators on the manifold, and to massive
states in the effective theory, while operator product
expansion (OPE) coefficients in the sigma model relate
to couplings in the effective theory and, in some cases, to
intersection numbers on the Calabi-Yau.

These connections are much less well-studied for the
cases of exceptional holonomy manifolds, where the holo-
nomy group is either G2 in seven dimensions or Spin(7) in
eight dimensions. In particular, Shatashvili and Vafa [2]
observed that superconformal sigma models with excep-
tional holonomy target spaces would have their chiral
algebras enhanced by additional higher spin currents. In
the G2 case one obtains an SWð3=2; 3=2; 2Þ theory with
central charge c ¼ 21=2, and in the Spin(7) case one obtains
an SWð3=2; 2Þ theory with central charge c ¼ 12. In both
cases these algebras are particular members of infinite
discrete families with different central charges [3–6].
For the c ¼ 21=2 and c ¼ 12 cases, one can again find

correspondences between discrete representations of the
conformal field theory (CFT), topological invariants of the
manifold, and BPS states in the effective theory [2], and
one expects that in principle the other data of the CFT will
correspond to geometric information, and will map to
effective theory data, in ways that are analogous to the
Calabi-Yau case, though the details have not been exten-
sively explored.
A preliminary step toward studying these issues is to

elucidate the representation theory of these chiral algebras.
A very large step in that direction was taken by Gepner and
Noyvert in [6], where they classified the unitary represen-
tations for all members of the discrete SWð3=2; 2Þ family
of theories, with a similar classification undertaken by
Noyvert [7] for the case of the SWð3=2; 3=2; 2Þ theories.
These works found the representations but did not compute
their characters. For the c ¼ 12 theory that is relevant for
Spin(7) compactifications, expressions for the continuous
characters were found in [8] and expressions for all the
c ¼ 12 characters were conjectured (with much evidence
presented) in [9]. Other somewhat recent work on these
algebras include [10–14].
What about the other members of the discrete families?

Very few examples of constructed theories with these
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1We have in mind a type II superstring whose basic definition
includes (1, 1) supersymmetry on the world sheet, but heterotic
strings also furnish interesting examples.
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algebras are known (see [15] for a suggestion on coset
constructions for the lower series models), but it is tempting
to speculate that one could engineer instances of them and
potentially use them as building blocks to give new,
nonperturbative constructions of G2 or Spin(7) string
compactifications, in analogy with the Gepner models
[16], which build Calabi-Yau compactifications as orbi-
folds of products of N ¼ 2 minimal models.2 However,
before we can realize such hopes, we need more examples
of these theories and a better understanding of their
structure, such as their spectra and OPE coefficients.
Absent other explicit constructions, one approach for
bounding, or perhaps even isolating, these theories is via
bootstrap methods. The modular bootstrap [19], specifi-
cally an approach along the lines of [20] or [21], might be
able to give us useful information about such CFTs.
The current paper is a first step toward implementing

such a program for the other members of the SWð3=2; 2Þ
family of theories. We will work to construct the characters
for the unitary representations that were found by [6]. By
using an embedding diagram formalism, we will obtain
explicit expressions for these characters in both the
continuous and the discrete representations. As in [9],

we do not rigorously prove that we are correctly accounting
for all relations among singular states, so our expressions
are still, in some sense, conjectural. However, we will show
that they pass several consistency checks. In the case of the
continuous representations we have an alternative approach
to obtaining the characters by appealing to modular
invariance and the role played by consecutive pairs of
unitary minimal models. Namely we find that besides the
manifest appearance of a unitary bosonic minimal model in
the structure of each SWð3=2; 2Þ algebra (the minimal
model Virasoro algebra appears as a subalgebra of the
theory’s chiral algebra), the massive characters also carry
the structure of a second bosonic minimal model with a
consecutive index. For example, the c ¼ 12 theory has an
Ising model Virasoro subalgebra (c ¼ 1

2
), but the massive

characters can also be decomposed as representations of the
tricritical Ising model (c ¼ 7

10
).

For ease of reference, we include the full expressions for
the characters in Tables I and II. Table I contains the
expressions for the upper series. For the continuous
representations, in either the Neveu-Schwarz (NS) or
Ramond (R) sectors, they are most conveniently written
as a bilinear combination of minimal model characters,
whose expressions are given in (2.7). For the discrete
characters we have a general template as a sum over k∈Z,
where the summand is a universal piece q

1
2
pðpþ2Þk2 times a

TABLE I. Characters for representations of the upper series. Here p, a, b, n, andm are integers, and x is a positive
real number.

Upper series, c ¼ 6þ 18
p , p ≥ 3

Continuous reps: χ½UðpÞ
a;b;x�ðqÞ ¼ qx−ya;b

ηðqÞ
Pp

k¼1 χ
ðpþ1Þ
k;a ðqÞχðpÞb;k ðqÞ, 1 ≤ a ≤ pþ 1; 1 ≤ b ≤ p − 1; x > 0,

ya;b ¼ ðpþ2−2aÞ2
8pðpþ2Þ þ δa;1þδa;pþ1

p .

Discrete reps: ξk

NS, χ ¼ PNSðqÞqh− c
24

P
k∈Z q

1
2
pðpþ2Þk2ξk

A qðpþ1Þk−1
2

1þqpk−
1
2

− qðpþ1Þkþ1
2

1þqpkþ
3
2

Bn 1 ≤ n ≤ p−2
2

qððpþ2Þnþpþ1Þk

1þqpkþn−1
2

− qððpþ2Þnþpþ1Þkþ1

1þqpkþnþ3
2

Cn;m 1 ≤ n ≤ p − 2; nþ 1 ≤ m ≤ pþn
2

qðpm−ðpþ1ÞnÞk

1þqpkþm−n−1
2

− qðpmþnÞkþ1
2
nð2m−nÞ

1þqpkþm−1
2

Dn;m 2 ≤ n ≤ p − 1; n
2
≤ m ≤ n − 1 qððpþ1Þn−pmÞk

1þqpkþn−m−1
2

− qðpmþnþpÞkþ1
2
ðnþ1Þð2m−nþ1Þ

1þqpkþm−1
2

R, χ ¼ PRðqÞqh− c
24

P
k∈Z q

1
2
pðpþ2Þk2ξk

E q
1
2
ð3pþ4Þk

1þqpk
− q

1
2
ð3pþ4Þkþ1

1þqpkþ2

Fn 1 ≤ n ≤ p − 1 q
1
2
ð2nþpÞk

1þqpk − qððpþ1Þnþp
2
Þkþ1

2
nðnþ1Þ

1þqpkþn

Gn;m 1 ≤ n ≤ p − 3; nþ 1 ≤ m ≤ p−1þn
2

qðpm−ðpþ1Þnþp
2
Þk

1þqpkþm−n − qðpmþnþp
2
Þkþ1

2
nð2m−nþ1Þ

1þqpkþm

Hn;m 1 ≤ n ≤ p − 3; nþ 2 ≤ m ≤ pþ1þn
2

qðpm−ðpþ1Þnþp
2
Þk

1þqpkþm−n−1 − qðpmþnþp
2
Þkþ1

2
nð2m−nþ1Þ

1þqpkþm−1

In 2 ≤ n ≤ p−1
2

qððpþ2Þnþp
2
Þk

1þqpkþn−1 − qððpþ2Þnþp
2
Þkþ1

1þqpkþnþ1

2For related work constructing G2 holonomy theories as
orbifolds of N ¼ 2 Gepner models, see, e.g., [17,18].
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representation-dependent piece ξk which is listed for each
case below. The prefactors PNS or PR are the contributions
for descendants of a free algebra and are given in (5.12) and
(5.23). For more details of the various representations,
including their weights and charges, the reader should
consult Sec. III.
The paper is organized as follows. In Sec. II we briefly

review the structure of the SWð3=2; 2Þ algebras and
Gepner and Noyvert’s classification of the possible unitary
realizations, and in Sec. III we review their classification of
representations. Section IV establishes our approach to the
embedding formalism. Section V computes the characters
for the continuous representations using the embedding
formalism. We then also conjecture a rewriting of the
characters (which we can check numerically to high order
in q) as bilinear products of characters from pth and
(pþ 1)th minimal models, and show that the results have
surprisingly nice modular properties that essentially fix
them uniquely. Section VI takes a detour to discuss the
threshold relations that describe how the continuous (mas-
sive) representations decompose into discrete representa-
tions. These relations will provide powerful checks on our
results. Section VII then computes the discrete characters
using the embedding formalism. As one last check,
Sec. VIII compares our expressions for c ¼ 3=2 with the
corresponding expressions for the supersymmetric free
boson and related theories.

II. THE ALGEBRAS

As pointed out in [5], the superconformal algebra that
appears for an N ¼ 1 superconformal sigma model whose

target space has Spin(7) holonomy is just one example of a
family of algebras labeled by the central charge c. This
family is denoted (in the conventions of [22]) SWð3=2; 2Þ.
Each member of the family includes the stress tensor TðzÞ
and the supersymmetry generator GðzÞ, with conformal
weights h ¼ 2 and h ¼ 3=2, respectively, along with two
more chiral operators,3 a bosonic operator AðzÞ with
conformal weight h ¼ 2 and a fermionic operator MðzÞ
with weight h ¼ 5=2.
Performing a standard mode expansion,

TðzÞ ¼
X
m∈Z

Lmz−m−2; GðzÞ ¼
X

r∈Zþν

Grz−r−
3
2;

AðzÞ ¼
X
m∈Z

Amz−m−2; MðzÞ ¼
X

r∈Zþν

Mrz−r−
5
2; ð2:2Þ

where ν ¼ 0 in the NS sector and ν ¼ 1
2
in the R sector, and

then the mode algebra for these operators is given in
Appendix A.

TABLE II. Characters for representations of the lower series. Here p, a, b, n, andm are integers, and x is a positive
real number.

Lower series, c ¼ 6 − 18
pþ1

, p ≥ 3 ξk

Continuous reps: χ½ŨðpÞ
a;b;x�ðqÞ ¼ q

x−y0
a;b

ηðqÞ
Pp−1

k¼1 χ
ðp−1Þ
b;k ðqÞχðpÞk;a ðqÞ, 1 ≤ a ≤ p; 1 ≤ b ≤ p − 2; x > 0, y0a;b ¼ ðp−1−2bÞ2

8ðp−1Þðpþ1Þ.

Discrete reps: ξk

NS, χ ¼ PNSðqÞqh− c
24

P
k∈Z q

1
2
ðp−1Þðpþ1Þk2ξk

Ãn;m 1 ≤ m ≤ p − 1; m ≤ n ≤ p−1þm
2

qððpþ1Þn−pmÞk

1þqðpþ1Þkþn−mþ1
2

− qððpþ1Þn−mÞkþ1
2
mð2n−mÞ

1þqðpþ1Þkþnþ1
2

B̃n;m 1 ≤ m ≤ p − 2; mþ 1 ≤ n ≤ pþm
2

qððpþ1Þn−pmÞk

1þqðpþ1Þkþn−m−1
2

− qððpþ1Þn−mÞkþ1
2
mð2n−mÞ

1þqðpþ1Þkþn−1
2

R, χ ¼ PRðqÞqh− c
24

P
k∈Z q

1
2
ðp−1Þðpþ1Þk2ξk

C̃n 1 ≤ n ≤ p − 1 qðnþ
pþ1
2

Þk

1þqðpþ1Þk − qðpnþ
pþ1
2

Þkþ1
2
nðnþ1Þ

1þqðpþ1Þkþn

D̃n;m 1 ≤ m ≤ p − 3; mþ 1 ≤ n ≤ p−1þm
2 qððpþ1Þn−pmþpþ1

2
Þk

1þqðpþ1Þkþn−m −

qððpþ1Þn−mþpþ1
2

Þkþ1
2
mð2n−mþ1Þ

1þqðpþ1Þkþn

Ẽn;m 1 ≤ m ≤ p − 2; mþ 1 ≤ n ≤ pþm
2 qððpþ1Þn−pm−pþ1

2
Þk

1þqðpþ1Þkþn−m −

qððpþ1Þn−m−pþ1
2

Þkþ1
2
mð2n−m−1Þ

1þqðpþ1Þkþn

3We mostly follow the conventions of [6], but we have
redefined the weight 5=2 operator. Our MðzÞ relates to their
UðzÞ by

MðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið15 − cÞð21þ 4cÞp

3ð12þ cÞ UðzÞ þ 15 − c
6ð12þ cÞ ∂GðzÞ: ð2:1Þ

Note that this means that for c ¼ 12, our MðzÞ is not the same as
the MðzÞ used in [9]. The relation is Mhere ¼ Mthere=8, just as
Ahere ¼ Xthere=8.
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A. Classification

From the commutation relation (A5), we see that the Am
modes generate a Virasoro subalgebra with central charge4

cA ¼ cð15 − cÞ
3ð12þ cÞ ¼ 1 −

ðc − 6Þ2
3ð12þ cÞ : ð2:3Þ

For a unitary theory, we must, of course, have c ≥ 0 to
ensure that none of the Virasoro descendants of the vacuum
have a negative norm. Identical arguments show that we
must also have cA ≥ 0, so that none of the A-descendants of
the vacuum have a negative norm.
If c ¼ 6, then we have cA ¼ 1. It would be very

interesting to analyze this case in more detail, but we
leave that to future work. Here we will focus on the
alternative situation in which cA < 1, and hence if our
theory is unitary, then A must generate a unitary Virasoro
minimal model algebra. This means that

cA ¼ 1 −
6

pðpþ 1Þ ; p ¼ 3; 4;…: ð2:4Þ

For instance, p ¼ 3 corresponds to the critical Ising model,
p ¼ 4 to the tricritical Ising model, p ¼ 5 to the 3-state
Potts model, and so on. For each choice of p, there are then
two distinct choices for c, either

cð1Þp ¼ 6þ 18

p
; cð2Þp ¼ 6 −

18

pþ 1
: ð2:5Þ

We will refer to the series of algebras with c > 6 as the
upper series and with c < 6 as the lower series.

B. Minimal model conventions

The Am modes generate a subalgebra that is isomorphic
to the Virasoro algebra for the pth unitary minimal model.
Since ½A0; L0� ¼ 0, we can label all of the states in our
theory by their L0 eigenvalue h and their A0 eigenvalue a,
i.e., by their conformal weight and their minimal model
weight.
The pth unitary minimal model has only a finite number

of lowest weight representations, with weights

hðpÞn;m ¼ððpþ1Þn−pmÞ2−1

4pðpþ1Þ ; 1≤m≤ n<p: ð2:6Þ

The characters for the associated minimal model repre-
sentations are then given by

χðpÞn;mðqÞ ¼ 1

ηðqÞ
�X
k∈Z

qpðpþ1Þðkþðpþ1Þn−pm
2pðpþ1Þ Þ2

−
X
k∈Z

qpðpþ1Þðkþðpþ1Þnþpm
2pðpþ1Þ Þ2

�
; ð2:7Þ

where

ηðqÞ ¼ q
1
24

Y∞
n¼1

ð1 − qnÞ ð2:8Þ

is the usual Dedekind eta function.
It will often be useful for us to use the formula above for

integersm and n, which do not lie in the given range. In that
case we have relations

hðpÞn;m ¼ hðpÞnþpk;mþðpþ1Þk ¼ hðpÞ−n;−m; ð2:9Þ

for arbitrary k∈Z. These relations also apply to the
characters.

III. THE UNITARY REPRESENTATIONS

For all of these SWð3=2; 2Þ algebras, the unitary
representations were classified by Gepner and Noyvert
[6]. We review their classification here, adding some extra
notation so that we can refer to the representations through
the rest of the paper. Later, in Sec. V C, we will give an
alternative description of the continuous representations
that unifies the several different classes in each case below
into a single family.

A. Upper series

1. Continuous representations

In the NS sector they found three classes of continuous
representations (sometimes also called massive represen-
tations) for the upper series, which we will label X, Y, and
Z. In each of the cases listed below, x can be any positive
real number. In the limit x → 0, the continuous represen-
tation will split into a sum of discrete representations
according to threshold relations, which we will elaborate
in Sec. VI.

(i) In class X, we have aðXðpÞ
x Þ ¼ 0 ¼ hðpÞ1;1 and

hðXðpÞ
x Þ ¼ x.

(ii) In class Y, for each 2 ≤ n ≤ p=2, we have

aðYðpÞ
n;x Þ ¼ ðpðn − 1Þ þ 2n − 1Þ2 − 1

4pðpþ 1Þ ¼ hðpÞ2n−1;n;

hðYðpÞ
n;x Þ ¼ ðn − 1Þðpðn − 1Þ þ 2nÞ

2p
þ x: ð3:1Þ

(iii) In class Z, for each 1≤n≤p−2 and nþ 1 ≤
m ≤ pþn

2
, we have

4Note that AðzÞ is not a Virasoro primary with respect to TðzÞ.
Rather, we can write TðzÞ ¼ AðzÞ þ BðzÞ, with A and B gen-
erating commuting Virasoro algebras with central charges cA and
cB ¼ c − cA.
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aðZðpÞ
n;m;xÞ ¼ ðpm − ðpþ 1ÞnÞ2 − 1

4pðpþ 1Þ
¼ hðpÞp−n;p−mþ1; ð3:2Þ

hðZðpÞ
n;m;xÞ ¼ pðm− nÞ2 − ðm− nÞð2m− 1Þ þmþ 1

2p

þ x: ð3:3Þ

In the R sector there were two more classes,5 V and W,
and in each case there is a twofold degeneracy in the lowest
weight state in the representation.

(i) In class V, for each n in the range 1 ≤ n ≤ p−1
2
, the

lowest weight states both have

hðVðpÞ
n;xÞ¼ ð2n−1Þð2nþ1−pÞþ2pn2

4p
þx; ð3:4Þ

and they have distinct values for a,

aþðVðpÞ
n;x Þ ¼ hðpÞ2n;n; a−ðVðpÞ

n;xÞ ¼ hðpÞ2n;nþ1: ð3:5Þ

(ii) In class W, we have

aþðWðpÞ
n;m;xÞ¼ hðpÞp−n;p−m; a−ðWðpÞ

n;m;xÞ¼ hðpÞp−n;pþ1−m;

hðWðpÞ
n;m;xÞ¼ 2pðm−nÞ2−4mðm−nÞþ2pðm−nÞþpþ3

4p
þx; ð3:6Þ

where the integers n and m satisfy either 1 ≤ n ≤
p − 3, nþ 1 ≤ m ≤ p−1þn

2
, or 1 ≤ n ¼ m ≤ p

2
. In the

latter case the usual labeling convention for minimal
model weights suggests that we should rewrite a−
as a−ðWðpÞ

n;n;xÞ¼hðpÞn;n , leaving aþ as aþðWðpÞ
n;n;xÞ ¼

hðpÞp−n;p−n. Note also that in the case of p even and
n ¼ m ¼ p

2
, then we have aþ ¼ a−, and the two

ground states have completely degenerate quantum
numbers.

2. Discrete representations

Gepner and Noyvert also tell us the discrete representa-
tions of our algebras. For the upper series, they tell us there
are four classes of discrete NS representations:

(i) Class A (the vacuum), has aðAðpÞÞ ¼ hðpÞ1;1 ¼ 0,
hðAðpÞÞ ¼ 0.

(ii) Class B, labeled by 1 ≤ n ≤ p
2
− 1, with

aðBðpÞ
n Þ ¼ hðpÞ2nþ1;n;

hðBðpÞ
n Þ ¼ pðnþ 1Þ2 þ 2nðnþ 1Þ − 2p

2p
: ð3:7Þ

(iii) Class C, labeled by 1 ≤ n ≤ p − 2 and
nþ 1 ≤ m ≤ pþn

2
, with

aðCðpÞ
n;mÞ ¼ hðpÞp−n;pþ1−m;

hðCðpÞ
n;mÞ ¼ pðm − nÞ2 − ðm − nÞð2m − 1Þ þmþ 1

2p
:

ð3:8Þ

(iv) Class D, labeled by 2 ≤ n ≤ p − 1 and n
2
≤ m ≤

n − 1, with

aðDðpÞ
n;mÞ¼ hðpÞn;m;

hðDðpÞ
n;mÞ¼pðn−mÞ2þðn−mÞð2mþ1Þ−mþ1

2p
:

ð3:9Þ

In the R sector we have five more. The first two classes,
which are Ramond ground states with h ¼ cð1Þp =24, do not
have the lowest weight degeneracy we have mentioned
previously (since they are annihilated by both G0 and M0),
while the last three do.

(i) Class E, with aðEðpÞÞ ¼ pþ3
4p ¼ hðpÞ2;1 and hðEðpÞÞ ¼

aðEðpÞÞ.
5This corrects a couple of typos in the corresponding table in

Appendix B.2 of [6].
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(ii) Class F, labeled by 1 ≤ n ≤ p − 1. These all have

hðFðpÞ
n Þ ¼ pþ3

4p (the same as the E state) and

aðFðpÞ
n Þ ¼ n2 − 1

4pðpþ 1Þ ¼ hðpÞn;n: ð3:10Þ

(iii) Class G, labeled a pair of integers with 1 ≤ n ≤
p − 3 and nþ 1 ≤ m ≤ p−1þn

2
. There are two ground

states which both have

hðGðpÞ
n;mÞ

¼ 2pðm−nÞ2−4mðm−nÞþ2pðm−nÞþpþ3

4p
;

ð3:11Þ

and have distinct minimal model weights

aþðGðpÞ
n;mÞ ¼ hðpÞp−n;p−m;

a−ðGðpÞ
n;mÞ ¼ hðpÞp−n;pþ1−m: ð3:12Þ

(iv) Class H, labeled by 1 ≤ n ≤ p − 3, nþ 2 ≤ m ≤ pþ1þn
2

, has

aþðHðpÞ
n;mÞ ¼ hðpÞp−n;p−m; a−ðHðpÞ

n;mÞ ¼ hðpÞp−n;pþ1−m;

hðHðpÞ
n;mÞ ¼ 2pðm − nÞ2 þ 4ðm − 1Þð1 −mþ nÞ þ 2pðm − nÞ − 3ðp − 1Þ

4p
: ð3:13Þ

(v) Finally, there is a class I of discrete states, labeled by
2 ≤ n ≤ p−1

2
, which were missed by [6] in their

Appendix B.2. The discrepancy only appears for
p ≥ 5. There are three related arguments for why
these states must be included. First, we expect that
there should be the same number of discrete states in
both the NS and the R sectors (this is already true for
the continuous representations). Second is the re-
lated observation that we have a spectral flow type
operation coming from tensoring states with the
class E Ramond ground state. Applying this to B
states produces the I representations. And finally,
the threshold relations (discussed in more detail in
Sec. VI) require the In representations as well. These
states have

aþðIðpÞn Þ ¼ hðpÞ2n;n−1;

a−ðIðpÞn Þ ¼ hðpÞ2n;n;

hðIðpÞn Þ ¼ pð2n2 þ 2n − 3Þ þ 4n2 − 1

4p
: ð3:14Þ

B. Lower series

1. Continuous representations

For c ¼ 6 − 18
pþ1

, we have only one NS sector class.
(i) Class X̃ (the tilde is to distinguish it from the upper

series classes), labeled by 1 ≤ m ≤ p − 2 and
m ≤ n ≤ p−2þm

2
, with

aðX̃ðpÞ
n;m;xÞ ¼ ððpþ 1Þn − pmÞ2 − 1

4pðpþ 1Þ ¼ hðpÞn;m; ð3:15Þ

hðX̃ðpÞ
n;m;xÞ ¼ pðn −mÞ2 þ ð3n −m − 1Þðn −mþ 1Þ −m

2ðpþ 1Þ þ x: ð3:16Þ

Similarly, in the R sector we have one class,
(i) Class Ṽ, with

aþðṼðpÞ
n;m;xÞ ¼ hðpÞn;m; a−ðṼðpÞ

n;m;xÞ ¼ hðpÞn−1;m;

hðṼðpÞ
n;m;xÞ ¼ 2pðn −mÞ2 − 2ðn −mÞð1þm − 3nÞ − 2pðn −mÞ þ p − 2

4ðpþ 1Þ þ x; ð3:17Þ
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where either we have 1 ≤ m ≤ p − 3 and mþ 1 ≤
n ≤ p−1þm

2
or we have 2 ≤ n ¼ m ≤ pþ1

2
. In the latter

case we should rewrite a− as a−ðṼðpÞ
n;n;xÞ ¼

hðpÞpþ1−n;pþ1−n. If p is odd, then there is one particular

state, with n ¼ m ¼ pþ1
2
, for which aþ ¼ a−.

2. Discrete representations

In this case there are two classes of discrete representa-
tions in the NS sector,

(i) Class Ã, labeled by 1 ≤ m ≤ p − 1 and
m ≤ n ≤ pþm−1

2
, with

aðÃðpÞ
n;mÞ¼hðpÞn;m;

hðÃðpÞ
n;mÞ¼pðn−mÞ2þð3n−m−1Þðn−mþ1Þ−m

2ðpþ1Þ :

ð3:18Þ

(ii) Class B̃, labeled by 1 ≤ m ≤ p − 2 and mþ 1 ≤
n ≤ pþm

2
, with

aðB̃ðpÞ
n;mÞ¼hðpÞn;m;

hðB̃ðpÞ
n;mÞ¼pðn−mÞ2þð3n−mþ1Þðn−m−1Þþm

2ðpþ1Þ :

ð3:19Þ

In the R sector we have three classes of representations.

The first, with h ¼ cð2Þp =24, is a nondegenerate ground
state, while the other two have a pair of degenerate lowest
weight states.

(i) Class C̃, labeled by an integer m with 1 ≤ m ≤
p − 1 and

aðC̃ðpÞ
m Þ ¼ hðpÞm;m; hðC̃ðpÞ

m Þ ¼ p − 2

4ðpþ 1Þ : ð3:20Þ

(ii) Class D̃, labeled by 1 ≤ m ≤ p − 3 and mþ 1 ≤
n ≤ p−1þm

2
with

aþðD̃ðpÞ
n;mÞ ¼ hðpÞnþ1;m; a−ðD̃ðpÞ

n;mÞ ¼ hðpÞn;m; ð3:21Þ

and

hðD̃ðpÞ
n;mÞ ¼ pðn −mÞ2 þ ðn −mÞð1 −mþ 3nÞ þ pðn −mÞ þ p

2
− 1

2ðpþ 1Þ : ð3:22Þ

(iii) Class Ẽ, labeled by 1 ≤ m ≤ p − 2 and mþ 1 ≤ n ≤ pþm
2

with

aþðẼðpÞ
n;mÞ ¼ hðpÞn;m; a−ðẼðpÞ

n;mÞ ¼ hðpÞn−1;m; ð3:23Þ

and

hðẼðpÞ
n;mÞ ¼ pðn −mÞ2 − ðn −mÞð1þm − 3nÞ − pðn −mÞ þ p

2
− 1

2ðpþ 1Þ : ð3:24Þ

IV. CHARACTER PRELIMINARIES

A. Kac determinant results

In the process of their classification, Gepner and Noyvert
[6] analyzed the Kac determinant for these theories. They
found three classes of potential singular (and hence null)
descendants for the given lowest weight state, labeled fm;n,
gj;k, or dl. Gepner and Noyvert give the conditions for the
existence of these states in terms of h and a of the lowest
weight states, but we will find it more convenient to

introduce new quantities Φ and Λ, in terms of which the
conditions are more easily stated. We will use shorthand
jΦ;Λi for a state with the given quantum numbers, and
we’ll present the results for each of the two series and for
each sector (NS and R).
In the following sections, we will construct embedding

diagrams in the ΦΛ-plane using the results from the
descendants, and by making some assumptions about
multiplicities, we will deduce characters for each type of
representation.
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1. Upper series, NS sector

Consider the upper series, with c ¼ cð1Þp ¼ 6þ 18=p.
We first redefine the quantum numbers of any state by

Φ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pðpþ 1Þaþ 1

p
;

Λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ 4Þ2 þ 16pðpþ 1Þa − 8pðpþ 2Þh

q
: ð4:1Þ

The quantity under the square root in the expression forΛ can
be negative, but only for continuous representations with
sufficiently large h, and in those cases Λ will not play a role,
so we can assume the quantity is positive. We will always
take the positive branch of the square roots so that bothΦ and
Λ are assumed to be positive. Note that for a primary field

with a ¼ hðpÞn;m, thenΦ ¼ 2jðpþ 1Þn − pmj∈ 2Z. Also, the
inverse relations are

a ¼ Φ2 − 4

16pðpþ 1Þ ; h ¼ Φ2 − Λ2

8pðpþ 2Þ þ
pþ 6

8p
: ð4:2Þ

Contours of constant h are hyperbolas in the ΦΛ-plane.
Now, the results of [6] can be summarized as follows.

For each pair of integers ðn;mÞ satisfying

ðpþ2Þm−pn¼Φ; or

ðpþ2Þm−pn¼−Φ; m;n> 0; mþn∈2Z; ð4:3Þ

the state jΦ;Λi has a level mn=2 singular descendant,
called an f-descendant and labeled by fn;m acting on the
original state, with

fn;mjΦ;Λi ¼ jΦ0;Λi; ð4:4Þ

where the descendant has the same Λ as the parent state and
a new value

Φ0 ¼ ðpþ 2Þmþ pn: ð4:5Þ

Similarly, a gj;k-descendant (at level jk) corresponds to a
solution of

Λ ¼ 2ðpþ 2Þjþ pk; j; k > 0 ð4:6Þ

(so in particular we at least need Λ ≥ 3pþ 4), and has

gj;kjΦ;Λi ¼ jΦ;Λ0i; ð4:7Þ

where Φ is unchanged and

Λ0 ¼ j2ðpþ 2Þj − pkj: ð4:8Þ

Finally, a dl-descendant happens each time we have a
choice of signs η1 and η2 such that

l ¼ η1Φþ η2Λ
pþ 2

ð4:9Þ

is a positive odd integer. Then

dljΦ;Λi ¼ jΦ0;Λ0i; ð4:10Þ

with

Φ0 ¼ jΦþ 2η1pj; Λ0 ¼ jΛ − 2η2pj: ð4:11Þ

This descendant is level l=2.
In terms of a diagram in the ΦΛ-plane, an f-descendant

always lies to the right of its parent, a g-descendant always
lies below its parent, while d-descendants lie along diago-
nal lines6 with slope �1. For slope −1, the descendants
always lie down and to the right, while for slope þ1 they
can lie either up and to the right, if the source state has
Φ > Λ, or down and to the left, if the source state has
Φ < Λ (so that in both cases the weight h increases).

2. Upper series, R sector

By inspecting the Ramond sector representations in
Sec. III A, one sees that either each representation has a
single lowest weight state with a given a and h ¼
ðpþ 3Þ=4p or there are a pair of lowest weight states
with the same h > ðpþ 3Þ=4p but (possibly) different aþ
and a−, with aþ ≥ a−. In the latter case, we will define

Φ¼4ðpþ1Þðaþ−a−Þ;
Λ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pðpþ1Þðaþþa−Þ−8pðpþ2Þhþp2þ10pþ16

q
;

ð4:12Þ

and then the inverse relations are (note that aþ and a− are
not independent)

a� ¼ ðΦ�pÞ2−4

16pðpþ1Þ ; h¼ Φ2−Λ2

8pðpþ2Þþ
pþ3

4p
: ð4:13Þ

In this case we can think of the two states as forming a two-
component vector

jΦ;Λi ¼
�
aþ; h

a−; h

�
: ð4:14Þ

The classification of singular descendants is very similar
to the NS sector, with a couple of minor differences. Given
any positive integers m and n, with mþ n∈ 2Zþ 1 and
satisfying

6Note that because we take absolute values to restrict to the
upper-right quadrant of the ΦΛ-plane, the lines can “reflect” off
the axes. See Fig. 2, for example.
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jðpþ 2Þm − pnj ¼ Φ; ð4:15Þ

we have a level mn=2-descendant

fn;mjΦ;Λi ¼ jΦ0;Λi; Φ0 ¼ ðpþ 2Þmþ pn: ð4:16Þ
Given any positive integers j and k with

2ðpþ 2Þjþ pk ¼ Λ; ð4:17Þ
we have a level jk-descendant

gj;kjΦ;Λi ¼ jΦ;Λ0i; Λ0 ¼ j2ðpþ 2Þj − pkj: ð4:18Þ

And finally, if there is a choice of signs η1 and η2
such that

l ¼ η1Φþ η2Λ
pþ 2

ð4:19Þ

is a positive even integer, then there is a level
l=2-descendant

dljΦ;Λi¼ jΦ0;Λ0i; Φ0 ¼ jΦþ2η1pj; Λ0 ¼ jΛ−2η2pj:
ð4:20Þ

For the degenerate cases with h ¼ ðpþ 3Þ=4p, there is
only one ground state. Here we have two choices for the
corresponding Φ and Λ,

Φ ¼ j � pþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4pðpþ 1Þa

p
j; Λ ¼ Φ; ð4:21Þ

so

a ¼ ðΦ ∓ pÞ2 − 4

16pðpþ 1Þ ; h ¼ pþ 3

4p
: ð4:22Þ

These states always have d0-descendants, removing the
other state in the doublet from the representation and the
character. The fact that there are two options may seem like
an ambiguity, but one can check that making either choice
leads to a set of states in the representation with exactly the
same a and h quantum numbers.

3. Lower series, NS sector

The situation is very similar to the upper series. We
define Φ as before in (4.1), while Λ gets modified to

Λ̃¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp−3Þ2þ16pðpþ1Þa−8ðp−1Þðpþ1Þh

q
: ð4:23Þ

For each pair of integers n and m satisfying

ðpþ 1Þn − ðp − 1Þm ¼ �Φ; m; n > 0; mþ n∈ 2Z;

ð4:24Þ

we have an f-descendant

fn;mjΦ; Λ̃i ¼ jΦ0; Λ̃i;
Φ0 ¼ ðpþ 1Þnþ ðp − 1Þm: ð4:25Þ

For each j and k satisfying

2ðp − 1Þjþ ðpþ 1Þk ¼ Λ̃; j; k > 0; ð4:26Þ

we have a g-descendant

gj;kjΦ; Λ̃i ¼ jΦ; Λ̃0i;
Λ̃0 ¼ j2ðp − 1Þj − ðpþ 1Þkj: ð4:27Þ

And last, there is a d-descendant if we can find a choice
of signs η1 and η2, and a positive odd integer l, such that

l ¼ η1Φþ η2Λ̃
p − 1

; ð4:28Þ

in which case

dljΦ; Λ̃i ¼ jΦ0; Λ̃0i; Φ0 ¼ jΦþ 2η1ðpþ 1Þj;
Λ̃0 ¼ jΛ̃ − 2η2ðpþ 1Þj: ð4:29Þ

4. Lower series, R sector

Briefly, for the lower series R sector, each representation
has a single lowest weight state if h ¼ ðp − 2Þ=4ðpþ 1Þ or
a pair of degenerate lowest weight states if h > ðp − 2Þ=
4ðpþ 1Þ. In the latter case we define

Φ¼4pðaþ−a−Þ;
Λ̃¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pðpþ1Þðaþþa−Þ−8ðp−1Þðpþ1Þhþp2−8pþ7

q
;

ð4:30Þ

or

a� ¼ ðΦ� ðpþ 1ÞÞ2 − 4

16pðpþ 1Þ ;

h ¼ Φ2 − Λ̃2

8ðp − 1Þðpþ 1Þ þ
p − 2

4ðpþ 1Þ : ð4:31Þ

In this case the states form a two-component vector

jΦ; Λ̃i ¼
�
aþ; h

a−; h

�
: ð4:32Þ

For these representations, given any positive integers m
and n with mþ n∈ 2Zþ 1 and satisfying
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jðp − 1Þm − ðpþ 1Þnj ¼ Φ; ð4:33Þ

we have a level nm=2-descendant

fn;mjΦ;Λ̃i¼ jΦ0;Λ̃i; Φ0 ¼ ðp−1Þmþðpþ1Þn: ð4:34Þ

Given positive integers j and k obeying

2ðp − 1Þjþ ðpþ 1Þk ¼ Λ̃; ð4:35Þ

there is a level jk-descendant

gj;kjΦ;Λ̃i¼ jΦ;Λ̃0i; Λ̃0 ¼ j2ðp−1Þj−ðpþ1Þkj: ð4:36Þ

And then there is a level l=2-descendant dl provided
there is a choice of signs η1 and η2 so that

l ¼ η1Φþ η2Λ̃
p − 1

ð4:37Þ

is positive and even, in which case

dljΦ; Λ̃i ¼ jΦ0; Λ̃0i; Φ0 ¼ jΦþ 2η1ðpþ 1Þj;
Λ̃0 ¼ jΛ̃ − 2η2ðpþ 1Þj: ð4:38Þ

For the degenerate case h ¼ ðp − 2Þ=4ðpþ 1Þ, there is
only one ground state. We can take

Φ ¼ pþ 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4pðpþ 1Þa

p
; Λ̃ ¼ Φ; ð4:39Þ

and proceed as before. These states always have
d0-descendants.

V. CONTINUOUS REPRESENTATION
CHARACTERS

A. Embedding diagrams

We will run through our procedure for the NS sector of
the upper series in some detail. For the other cases we will
be more terse.
As reviewed in Sec. III A 1, three classes of continuous

representations were found. In class X, there is a unique
possibility that has aðXxÞ ¼ 0, and henceΦðXxÞ ¼ 2, while
hðXxÞ¼x>0 so ΛðXxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ 4Þ2 − 8pðpþ 2Þx

p
. We

write jXxi ¼ j2;ΛðXxÞi, or simply j2;Λi. Searching first for
f-descendants, we look for solutions to the equations

ðpþ2Þm−pn¼�2; n;m> 0; nþm∈2Z: ð5:1Þ

For the plus sign, the most general solution is n ¼
1þ ðpþ 2Þk, m ¼ 1þ pk, where k ≥ 0. For the minus
sign the solutions are n ¼ pþ 1þ ðpþ 2Þk, m ¼
p − 1þ pk, where again k ≥ 0. There are no g-descendants,
since Λ is too small (when it is even real). To have any
d-descendants for x > 0, we would need ΛðXxÞ ¼ p, which

happens only at the isolated point x ¼ 1=p. Wewill treat this
special case below and continue for now with the case of
generic x.
What about descendants of singular vectors? The

fn;m-descendants constructed above will be

f1þðpþ2Þk;1þpkj2;Λi ¼ j2pþ 2þ 2pðpþ 2Þk;Λi; ð5:2Þ

fpþ1þðpþ2Þk;p−1þpkj2;Λi
¼ j2p2 þ 2p − 2þ 2pðpþ 2Þk;Λi: ð5:3Þ

Since these have the same Λ value, they, of course, still
have no g-descendants, and one can check that for generic x
(i.e., x > 0, x ≠ 1=p) there are no d-descendants either.
They do have further fn;m-descendants, however. For
j2pþ 2þ 2pðpþ 2Þk;Λi we have

fpþ1þðpþ2Þj;pþ1þpð2kþjÞj2pþ 2þ 2pðpþ 2Þk;Λi
¼ j2þ 2pðpþ 2Þðkþ jþ 1Þ;Λi; ð5:4Þ

fpþ3þðpþ2Þð2kþjÞ;p−1þpjj2pþ 2þ 2pðpþ 2Þk;Λi
¼ j2p2 þ 4p − 2þ 2pðpþ 2Þðkþ jÞ;Λi; ð5:5Þ

where j ≥ 0, while for j2p2 þ 2p − 2þ 2pðpþ 2Þk;Λi
we have

f1þðpþ2Þj;2p−1þpð2kþjÞj2p2 þ 2p − 2þ 2pðpþ 2Þk;Λi
¼ j2p2 þ 4p − 2þ 2pðpþ 2Þðkþ jÞ;Λi; ð5:6Þ

f2pþ3þðpþ2Þð2kþjÞ;1þpjj2p2 þ 2p − 2þ 2pðpþ 2Þk;Λi
¼ j2þ 2pðpþ 2Þðkþ jþ 1Þ;Λi; ð5:7Þ

where again j ≥ 0. In both cases the products fall into the
same sequences. We have states of the form j2þ 2pðpþ
2Þk;Λi (which includes our original state j2;Λi) which
again have no g or d-descendants and have (j ≥ 0)

f1þðpþ2Þj;1þpð2kþjÞj2þ 2pðpþ 2Þk;Λi
¼ j2pþ 2þ 2pðpþ 2Þðkþ jÞ;Λi; ð5:8Þ

fpþ1þðpþ2Þð2kþjÞ;p−1þpjj2þ 2pðpþ 2Þk;Λi
¼ j2p2 þ 2p − 2þ 2pðpþ 2Þðkþ jÞ;Λi; ð5:9Þ

and states j2p2 þ 4p − 2þ 2pðpþ 2Þk;Λi with

fpþ1þðpþ2Þj;3p−1þpð2kþjÞj2p2 þ 4p − 2þ 2pðpþ 2Þk;Λi
¼ j2p2 þ 2p − 2þ 2pðpþ 2Þðkþ jþ 1Þ;Λi; ð5:10Þ

f2pþ5þðpþ2Þð2kþjÞ;1þpjj2p2 þ 4p − 2þ 2pðpþ 2Þk;Λi
¼ j2pþ 2þ 2pðpþ 2Þðkþ jþ 1Þ;Λi: ð5:11Þ

At this point we are not introducing any new states.
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The structure of descendants can be summarized in a
diagram, as shown in Fig. 1. The black circle on the left is the
original primary state j2;Λi. All of its descendants, j2pþ
2þ 2pðpþ 2Þk;Λi and j2p2 þ 2p − 2þ 2pðpþ 2Þk;Λi,
are represented as red diamonds. The other black circles
represent the states j2þ 2pðpþ 2Þk;Λi and j2p2 þ 4p−
2þ 2pðpþ 2Þki. Each red diamond is an f-descendant of
every black circle to its left, and has every black circle to its
right as a descendant. Similarly, each black circle is a
descendant of every red diamond to its left, and has every
red diamond to its right as a descendant.
Our notation here glosses over an important subtlety. We

are treating each jΦ;Λi as a unique state. In fact, it can
happen that there are several states with the same quantum
numbers Φ and Λ. We currently have no definitive way of
evaluating this possibility in general. At very low levels one
can explicitly compute the singular descendants and
compare, but this quickly becomes impractical, even by
computer. Instead, in this paper we shall make assumptions
about the multiplicities and overlaps (i.e., when a given set
of quantum numbers are obtained as a descendant in
different ways), and then run as many checks as possible
(e.g., all coefficients are non-negative integers, threshold
relations are obeyed) to confirm our hypotheses. Obviously,
it would be desirable to fill in these gaps.
From the embedding diagram (and the assumptions

about multiplicities) we can construct the characters. For
each state we need to include all of its possible descendants
built using L−n, A−n, G−r, andM−r oscillators. This means
that with a state jΦ;Λi we associate a contribution
PNSðτÞqh− c

24, where

PNSðτÞ ¼
Y∞
n¼1

ð1þ qn−
1
2Þ2

ð1 − qnÞ2 ;

h ¼ Φ2 − Λ2 þ ðpþ 6Þðpþ 2Þ
8pðpþ 2Þ : ð5:12Þ

To build the character, we start with this contribution for the
original state. Then, moving to the right in the diagram, we

know that each node represents a singular vector: a null
state whose contribution needs to be removed. So for the
first two diamonds, since they have each been added as part
of the descendants of the primary, we must subtract their
contribution (to signify this we have colored them red in the
diagram). For the next pair of black dots, they have three
antecedents—the primary and each of the two red dia-
monds (we assume that the same state is a descendant of
each of the red diamond states, i.e., that the multiplicity of
the subsingular state with these quantum numbers is one).
Thus they have been added once and subtracted twice, and
to get them to zero we must add them back in. We color
them black to indicate this. Similarly, each of the next pair
of diamonds has been added three times and subtracted
twice, and so we must subtract them. Proceeding in this
way, we build the entire character,

χ½XðpÞ
x �ðqÞ ¼ PNSðτÞqx−

1
4
− 3
4p

X∞
k¼0

q
1
2
pðpþ2Þk2 ½qk − qðpþ1Þkþ1

2

− qðp2þp−1Þkþ1
2
ðp2−1Þ þ qðp2þ2p−1Þkþ1

2
ðp2þ2p−2Þ�:

ð5:13Þ

This result matches the p ¼ 3 result of [9] and also, by
comparing q-expansions to very high order, the result
of [8].
The expression can be compressed a little bit by

rewriting the sum to run over all integers instead of non-
negative integers,

χ½XðpÞ
x �ðqÞ ¼ PNSðτÞqx−

1
4
− 3
4p

X∞
k∈Z

q
1
2
pðpþ2Þk2 ½qk − qðpþ1Þkþ1

2�:

ð5:14Þ

Similar calculations work for the other classes of
continuous representations. For the Y series we find
states

j2ðn − 1Þpþ 4n − 2þ 2pðpþ 2Þk;Λi and

j2p2 − 2ðn − 3Þp − 4nþ 2þ 2pðpþ 2Þk;Λi ð5:15Þ

that contribute with a positive sign, and

j2npþ 4n − 2þ 2pðpþ 2Þk;Λi and

j2p2 − 2ðn − 2Þp − 4nþ 2þ 2pðpþ 2Þk;Λi; ð5:16Þ

which get a negative sign, leading to

FIG. 1. The ΦΛ embedding diagram for the p ¼ 3 X series
continuous representation. Black nodes contribute to the char-
acter with a plus sign, and red nodes with a negative sign.

CHARACTERS AND RELATIONS AMONG SWð3=2; 2Þ … PHYS. REV. D 109, 085004 (2024)

085004-11



χ½YðpÞ
n;x �ðqÞ ¼ PNSðτÞqxþ

ðn−1Þðpðn−1Þþ2nÞ
2p −1

4
− 3
4p

X∞
k¼0

q
1
2
pðpþ2Þk2 ½qððn−1Þpþ2n−1Þk − qðnpþ2n−1Þkþ1

2
ð2n−1Þ

− qðp2−ðn−2Þp−2nþ1Þkþ1
2
ðp2−2ðn−1Þp−2nþ1Þ þ qðp2−ðn−3Þp−2nþ1Þkþ1

2
ðp2−2ðn−2Þp−4nþ2Þ�

¼ PNSðτÞqxþ
ðn−1Þðpðn−1Þþ2nÞ

2p −1
4
− 3
4p

X∞
k∈Z

q
1
2
pðpþ2Þk2 ½qððn−1Þpþ2n−1Þk − qðnpþ2n−1Þkþ1

2
ð2n−1Þ�: ð5:17Þ

And for the Z series,

j2pm − 2ðpþ 1Þnþ 2pðpþ 2Þk;Λi and j2p2 þ 4p − 2pmþ 2ðpþ 1Þnþ 2pðpþ 2Þk;Λi ð5:18Þ

with a positive sign and

j2pmþ 2nþ 2pðpþ 2Þk;Λi and j2p2 þ 4p − 2pm − 2nþ 2pðpþ 2Þk;Λi ð5:19Þ

with a negative sign, leading to characters

χ½ZðpÞ
n;m;x�ðqÞ ¼ PNSðτÞqxþ

pðm−nÞ2−ðm−nÞð2m−1Þþmþ1

2p −1
4
− 3
4p

X∞
k¼0

q
1
2
pðpþ2Þk2 ½qðpm−ðpþ1ÞnÞk − qðpmþnÞkþ1

2
nð2m−nÞ

− qðp2þ2p−pm−nÞkþ1
2
ðp−nÞðpþ2−2mþnÞ þ qðp2þ2p−pmþðpþ1ÞnÞkþ1

2
ðp2þ2p−2pmþ2ðpþ1ÞnÞ�

¼ PNSðτÞqxþ
pðm−nÞ2−ðm−nÞð2m−1Þþmþ1

2p −1
4
− 3
4p

X∞
k∈Z

q
1
2
pðpþ2Þk2 ½qðpm−ðpþ1ÞnÞk − qðpmþnÞkþ1

2
nð2m−nÞ�: ð5:20Þ

Again these agree perfectly with the results from the literature for p ¼ 3.
Similarly for the Ramond sector continuous representations we find

χ½VðpÞ
n;x �ðqÞ ¼ PRðτÞqxþ

ð2n−1Þð2nþ1−pÞþ2pn2

4p −1
4
− 3
4p

X∞
k¼0

q
1
2
pðpþ2Þk2 ½qððpþ2Þn−p

2
Þk − qððpþ2Þnþp

2
Þkþn − qðp2þ3p

2
−ðpþ2ÞnÞkþ1

2
ðpþ1Þðp−2nÞ

þ qðp2þ5p
2
−ðpþ2ÞnÞkþ1

2
ðpþ3Þðp−2nÞþn�

¼ PRðτÞqxþ
ð2n−1Þð2nþ1−pÞþ2pn2

4p −1
4
− 3
4p

X∞
k∈Z

q
1
2
pðpþ2Þk2 ½qððpþ2Þn−p

2
Þk − qððpþ2Þnþp

2
Þkþn�; ð5:21Þ

χ½WðpÞ
n;m;x�ðqÞ ¼ PRðτÞqxþ

2pðm−nÞ2−4mðm−nÞþ2pðm−nÞþpþ3

4p −1
4
− 3
4p

X∞
k¼0

q
1
2
pðpþ2Þk2 ½qðpm−ðpþ1Þnþp

2
Þk − qðp2þ3p

2
−n−pmÞkþ1

2
ðp−nÞðpþ1þn−2mÞ

− qð
p
2
þnþpmÞkþ1

2
nð2m−nþ1Þ þ qðp2þ3p

2
þðpþ1Þn−pmÞkþ1

2
nð2pþ3−2mþnÞþ1

2
ðp−nÞðpþ4n−2mÞ�

¼ PRðτÞqxþ
2pðm−nÞ2−4mðm−nÞþ2pðm−nÞþpþ3

4p −1
4
− 3
4p

X∞
k∈Z

q
1
2
pðpþ2Þk2 ½qðpm−ðpþ1Þnþp

2
Þk − qðpmþnþp

2
Þkþ1

2
nð2m−nþ1Þ�; ð5:22Þ

where

PRðτÞ ¼ 2
Y∞
n¼1

ð1þ qnÞ2
ð1 − qnÞ2 : ð5:23Þ
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B. Special case of x= 1=p

Let us revisit the X representation character at the special
value of x ¼ 1=p, so the lowest weight state is
jΦ;ΛðX1=pÞi ¼ j2; pi. In this case the primary has a d-
descendant,

d1j2; pi ¼ j2pþ 2; pi: ð5:24Þ

There is also an f-descendant, f1;1j2; pi, but it is not
distinct from the d-descendant. Indeed, one can do an
explicit computation in this case and show that there is only
one singular vector at level-1=2, and so both descendants
must coincide with it,

d1j2; pi ¼ f1;1j2; pi
¼ N ½ðp − 2ÞG−1=2 þ 4ðpþ 1ÞM−1=2�j2; pi
¼ j2pþ 2; pi; ð5:25Þ

where N is a normalization constant.
In fact, all of the f-descendants themselves have

d-descendants,

d1þ2pkj2þ 2pðpþ 2Þk; pi ¼ j2pþ 2þ 2pðpþ 2Þk; pi;
ð5:26Þ

d1þ2pkj2pþ 2þ 2pðpþ 2Þk; pi
¼ j4pþ 2þ 2pðpþ 2Þk; 3pi; ð5:27Þ

d2p−1þ2pkj2p2 þ 2p − 2þ 2pðpþ 2Þk; pi
¼ j2p2 þ 4p − 2þ 2pðpþ 2Þk; pi; ð5:28Þ

d2p−1þ2pkj2p2 þ 4p − 2þ 2pðpþ 2Þk; pi
¼ j2p2 þ 6p − 2þ 2pðpþ 2Þk; 3pi: ð5:29Þ

The new states withΛ ¼ 3p also have f- and d-descendants,
and so on, all of which can be summarized in a diagram,
shown in Fig. 2.
Starting with the black circle at the bottom left, repre-

senting the primary, the next two states on the same row are
singular and must be subtracted, so they are colored red.
The first state on the next row has two antecedents, one red
and one black. Thus it has already been added once and
subtracted once and has the correct coefficient of zero, so
we color it blue to indicate no explicit contribution to the
character. As you continue to move up and to the right,
every state has equal numbers of red and black antecedants,
and so gets colored blue, indicating no explicit term in the
character. Only the states on the first row contribute, and
their contribution is exactly the same as for the generic
(x ≠ 1=p) continuous representation. So the character ends
up the same as before, which is consistent with the analysis
of [6]. Note that in the third row, each state has two
d-descendants. These states also have the property that
every state on this row is an f-descendant of each state to its
left and has every state to its right as an f-descendant (we
denote them with squares rather than circles or diamonds to
indicate this fact). In the figure there are no g-descendants,
which would be represented by vertical lines, but this is
only because we have not made the diagram large enough.
Eventually, as we move to the right on any given row, the
states will be g-descendants of states above them, but again
this will not change our conclusion or our expression for
the character.
The Y series representations are very similar, with a

nongeneric point at x ¼ 1=p, but where the final result is
the same character as at the generic point. The Z series
never has any d- or g-descendants.

C. Alternative expressions

Now we will give an alternative representation for these
continuous representation characters. The equivalence is

FIG. 2. The ΦΛ embedding diagram for the p ¼ 3 X series continuous representation at the special value x ¼ 1=3. Black
nodes contribute to the character with a plus sign, red nodes with a negative sign, while blue nodes do not contribute to the
character.
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conjectural, but we have verified it to very high order in
powers of q.
Consider two integers a and b satisfying 1 ≤ a ≤ pþ 1,

1 ≤ b ≤ p − 1. Then define

χ½UðpÞ
a;b;x�ðqÞ ¼

qx−ya;b

ηðqÞ
Xp
k¼1

χðpþ1Þ
k;a ðqÞχðpÞb;kðqÞ; ð5:30Þ

where

ya;b ¼
ðpþ 2 − 2aÞ2
8pðpþ 2Þ þ δa;1 þ δa;pþ1

p
; ð5:31Þ

and where we use the equivalences

χðpþ1Þ
k;a ðqÞ ¼ χðpþ1Þ

pþ1−k;pþ2−aðqÞ;
χðpÞb;kðqÞ ¼ χðpÞp−b;pþ1−kðqÞ; ð5:32Þ

to ensure that the first index is always greater than or equal
to the second index on the minimal model characters.
We conjecture that these characters are equivalent to the

continuous upper series characters we obtained above using
the embedding formalism. For aþ b even they correspond
to NS sector characters, while for aþ b odd they corre-
spond to the R sector. The explicit correspondence to the
labeling of representations above into the classes of [6] is

XðpÞ
x ¼ UðpÞ

1;1;x; ð5:33Þ
YðpÞ
n;x ¼ UðpÞ

1;2n−1;x; ð5:34Þ

ZðpÞ
n;m;x ¼ UðpÞ

2m−n;n;x; ð5:35Þ

VðpÞ
n;x ¼ UðpÞ

1;2n;x; ð5:36Þ
WðpÞ

n;m;x ¼ UðpÞ
2m−nþ1;n;x: ð5:37Þ

Note that there is a redundancy in the labeling,

χ½UðpÞ
a;b;x�ðqÞ ¼ χ½UðpÞ

pþ2−a;p−b;x�ðqÞ: ð5:38Þ

Because of this equivalence, there are a total of ðp2 − 1Þ=2
distinct representations for p odd, and p2=2 for p even (in
the latter case, there is one self-dual representation in the R

sector, with a ¼ 1þ p=2, b ¼ p=2). For all p, half of the
representations are NS and half are R.
Since we have

hðpþ1Þ
k;a þ hðpÞb;k ¼ 1

2

�
k −

aþ b
2

�
2

þ ðpa − ðpþ 2ÞbÞ2 − 4

8pðpþ 2Þ ;

ð5:39Þ
then for NS the lowest weight state in the representation
comes from the k ¼ aþb

2
term, while for R we have two

lowest weight states, from the terms with k ¼ aþb�1
2

. For
NS, the lowest weight state has

a¼ hðpÞ
b;aþb

2

;

h¼ xþða− bÞ2pþ 4þ 4a− 2a2 þ 2b2 − 8δa;1 − 8δa;pþ1

8p
;

ð5:40Þ
and for R they have

a� ¼ hðpÞ
b;aþb�1

2

;

h¼ xþða−bÞ2pþ 4þ 4a− 2a2þ 2b2− 8δa;1− 8δa;pþ1

8p

þ 1

8
: ð5:41Þ

D. Modular properties

The characters of the pth minimal model, labeled by
1 ≤ m ≤ n < p transform among themselves under the
S-transformation (τ → −1=τ) of the modular group accord-
ing to the matrix

SðpÞn;m;N;M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8

pðpþ 1Þ

s
ð−1ÞðnþmÞðNþMÞ

× sin

�
π
nN
p

�
sin

�
π

mM
pþ 1

�
: ð5:42Þ

We can thus use this result to check the transformations
of the χðpþ1ÞχðpÞ pieces of χ½UðpÞ

a;b;x�. We find

Xp
k¼1

χðpþ1Þ
k;a χðpÞb;k →

Xp
k¼1

Xp
N¼1

XN
M¼1

Xp−1
n¼1

Xn
m¼1

Sðpþ1Þ
k;a;N;MS

ðpÞ
b;k;n;mχ

ðpþ1Þ
N;M χðpÞn;m

¼ 1

4

Xp
k¼1

Xp
N¼1

Xpþ1

M¼1

Xp−1
n¼1

Xp
m¼1

Sðpþ1Þ
k;a;N;MS

ðpÞ
b;k;n;mχ

ðpþ1Þ
N;M χðpÞn;m

¼ 2

ðpþ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðpþ 2Þp Xp

k¼1

Xp
N¼1

Xpþ1

M¼1

Xp−1
n¼1

Xp
m¼1

ð−1ÞðNþMÞðaþkÞþðnþmÞðbþkÞ

× sin

�
πNk
pþ 1

�
sin

�
πMa
pþ 2

�
sin

�
πnb
p

�
sin

�
πmk
pþ 1

�
χðpþ1Þ
N;M χðpÞn;m: ð5:43Þ
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Next we will use the result that

Xp
k¼1

ð−1ÞðnþmþNþMÞk sin
�
πNk
pþ 1

�
sin

�
πmk
pþ 1

�
¼
� pþ1

2
δN;m; N þM þ nþm even;

− pþ1
2
δN;pþ1−m; N þM þ nþm odd:

ð5:44Þ

This converts the sums in (5.43) to

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðpþ 2Þp Xpþ1

M¼1

Xp−1
n¼1

Xp
m¼1

sin

�
πMa
pþ 2

�
sin

�
πnb
p

�

×

�
1þ ð−1ÞMþn

2
ð−1ÞaMþbnþðaþbÞmχðpþ1Þ

m;M χðpÞn;m −
1þ ð−1ÞMþnþp

2
ð−1Þaðpþ1−MÞþbnþðaþbÞmχðpþ1Þ

pþ1−m;Mχ
ðpÞ
n;m

�
: ð5:45Þ

Let us focus separately on the case where aþ b is even (NS sector) or odd (R sector). In the NS sector, this becomes

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðpþ 2Þp Xpþ1

A¼1

Xp−1
B¼1

Xp
k¼1

sin

�
πAa
pþ 2

�
sin

�
πBb
p

�

×

�
1þ ð−1ÞAþB

2
ð−1ÞaAþbBχðpþ1Þ

k;A χðpÞB;k −
1þ ð−1Þðpþ2−AÞþB

2
ð−1Þaðpþ1þAÞþbBχðpþ1Þ

k;pþ2−Aχ
ðpÞ
B;k

�

¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðpþ 2Þp Xpþ1

A¼1

Xp−1
B¼1

1þ ð−1ÞAþB

2
sin

�
πAa
pþ 2

�
sin

�
πBb
p

�Xp
k¼1

χðpþ1Þ
k;A χðpÞB;k: ð5:46Þ

In particular, we see that the NS sector closes on itself under S-transformations. As an example, for p ¼ 3, we can take a
basis a ¼ b ¼ 1 and a ¼ b ¼ 2 for the NS states, and then the S-matrix is (keeping in mind an extra factor of 2 because the
sum is over the doubled set of states)

S ¼ 4ffiffiffiffiffi
15

p
�

sin
	
π
5



sin
	
π
3



sin
	
2π
5



sin
	
2π
3



sin
	
2π
5



sin
	
2π
3



sin
	
4π
5



sin
	
4π
3


� ¼
 2ffiffi

5
p ξ 1

2
ξ−1

1
2
ξ−1 − 2ffiffi

5
p ξ

!
; ð5:47Þ

where

ξ ¼ sin

�
π

5

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 −

ffiffiffi
5

pp
2
ffiffiffi
2

p : ð5:48Þ

For p ¼ 4 we can take a basis fða; bÞg ¼ fð1; 1Þ; ð1; 3Þ; ð2; 2Þ; ð3; 1Þg, and the S-matrix becomes

S ¼

0
BBBBBB@

1

2
ffiffi
3

p 1

2
ffiffi
3

p 1ffiffi
2

p 1ffiffi
3

p

1

2
ffiffi
3

p 1

2
ffiffi
3

p − 1ffiffi
2

p 1ffiffi
3

p

1ffiffi
2

p − 1ffiffi
2

p 0 0

1ffiffi
3

p 1ffiffi
3

p 0 − 1ffiffi
3

p

1
CCCCCCA
: ð5:49Þ

If we instead start with a R sector state, we get a similar answer,

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðpþ 2Þp Xpþ1

A¼1

Xp−1
B¼1

1þ ð−1ÞAþB

2
ð−1ÞA sin

�
πAa
pþ 2

�
sin

�
πBb
p

�Xp
k¼1

ð−1Þkχðpþ1Þ
k;A χðpÞB;k: ð5:50Þ

The result only involves states where Aþ B is even, i.e., only NS sector states, but it is not quite the characters themselves;
there is an extra ð−1Þk in the sum. This is consistent with the fact that the R sector partition function is expected, under the S-
transformation, to map into the NS sector partition function with an insertion of ð−1ÞF.
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E. Lower series characters

Because it is so difficult to find simple (i.e., with non-
negative integer coefficients) combinations of minimal
model characters which are closed under S-transformations,
we conjecture that nearly the same expressions will apply
for the massive characters of the c < 6 series. In particular,
we conjecture

χ½ŨðpÞ
a;b;x�ðqÞ ¼

qx−y
0
a;b

ηðqÞ
Xp−1
k¼1

χðp−1Þb;k ðqÞχðpÞk;aðqÞ; ð5:51Þ

where

1≤a≤p; 1≤b≤p−2; y0a;b¼
ðp−1−2bÞ2

8ðp−1Þðpþ1Þ; ð5:52Þ

and

χ½ŨðpÞ
a;b;x�ðqÞ ¼ χ½ŨðpÞ

pþ1−a;p−1−b;x�ðqÞ: ð5:53Þ

VI. THRESHOLD RELATIONS

For each of the continuous representations, if we approach
the lower limit of the h range by sending x → 0, then some
descendant states become null. Equivalently, we can say that
certain states in the representation space are no longer
descendants of the primary state; the representation splits
into smaller ones. This decomposition is called a threshold
relation.
In terms of characters, it means that the x → 0 limit of

the continuous character is equal to a sum of other
characters. The leading (i.e., lowest weight) term in this
sum must be a discrete representation character, while
subleading terms can a priori be either continuous (but at
specific values of x) or discrete. For example, the standard
Virasoro algebra with c > 1 has a continuous family of
representations with h ¼ x > 0 and characters χVirx ¼
η−1qh−

c−1
24 , and a single discrete representation with h ¼ 0

and character χVirvac ¼ η−1q−
c−1
24 ð1 − qÞ. In that case we have

lim
x→0

χVirx ðτÞ ¼ χVirvacðτÞ þ χVir1 ðτÞ: ð6:1Þ

For the algebras studied in this paper, we find (or
conjecture) that the threshold relations always have the
form of a continuous representation decomposing into a
pair of discrete representations (unlike the Virasoro case
above).
For each of the continuous representations, we know that

the first term in the threshold relation must be the uniquely
determined discrete representation with the appropriate
quantum numbers. We conjecture that the only additional
term in the threshold relation will be the discrete

representations corresponding to the first d-descendant
of the lowest weight state.
For the upper series NS sector, this procedure gives

lim
x→0

χ½XðpÞ
x � ¼ lim

x→0
χ½UðpÞ

1;1;x� ¼ χ½AðpÞ� þ χ½CðpÞ
1;2 �; ð6:2Þ

lim
x→0

χ½YðpÞ
n;x � ¼ lim

x→0
χ½UðpÞ

1;2n−1;x� ¼ χ½DðpÞ
2n−1;n�þχ½BðpÞ

n−1�; ð6:3Þ

lim
x→0

χ½ZðpÞ
n;m;x� ¼ lim

x→0
χ½UðpÞ

2m−n;n;x�

¼ χ½CðpÞ
n;m� þ χ½DðpÞ

p−n;p−m�: ð6:4Þ

The lower series NS sector has the simple relation

lim
x→0

χ½X̃ðpÞ
n;m� ¼ lim

x→0
χ½ŨðpÞ

m;2n−m;x� ¼ χ½Ãn;m�þχ½B̃nþ1;m�: ð6:5Þ

In the R sector, for the upper series we have

lim
x→0

χ½VðpÞ
1;x � ¼ lim

x→0
χ½UðpÞ

1;2;x� ¼ χ½EðpÞ� þ χ½FðpÞ
2 �; ð6:6Þ

lim
x→0

χ½VðpÞ
n;x � ¼ lim

x→0
χ½UðpÞ

1;2n;x� ¼ χ½HðpÞ
p−2n;p−n�þχ½IðpÞn �; ð6:7Þ

lim
x→0

χ½WðpÞ
n;n;x� ¼ lim

x→0
χ½UðpÞ

nþ1;n;x� ¼ χ½FðpÞ
n � þ χ½FðpÞ

p−n�; ð6:8Þ

lim
x→0

χ½WðpÞ
n;m;x� ¼ lim

x→0
χ½UðpÞ

2m−nþ1;n;x�

¼ χ½GðpÞ
n;m� þ χ½HðpÞ

n;mþ1�; ð6:9Þ

while the lower series satisfies

lim
x→0

χ½ṼðpÞ
n;n;x� ¼ lim

x→0
χ½ŨðpÞ

n;n−1;x�

¼ χ½C̃ðpÞ
n � þ χ½C̃ðpÞ

pþ1−n�; ð6:10Þ

lim
x→0

χ½ṼðpÞ
n;m;x� ¼ lim

x→0
χ½ŨðpÞ

m;n−m−1;x�

¼ χ½ẼðpÞ
n;m� þ χ½D̃ðpÞ

n;m�: ð6:11Þ

VII. DISCRETE REPRESENTATION
CHARACTERS

A. Upper series D class characters

Now let us apply this formalism to the discrete repre-
sentations. We will only work in detail for the upper series
NS sector, and then simply present the results for the other
cases. Let us start with just the D class. Because of the
threshold relations, if we can successfully construct the
characters for the D representations, then we can obtain all
other characters by combining this information with the
continuous representation characters derived above.
Specifically, we would have
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χ½CðpÞ
n;m� ¼ χ½UðpÞ

2m−n;n;0� − χ½DðpÞ
p−n;p−m�; ð7:1Þ

χ½BðpÞ
n � ¼ χ½UðpÞ

1;2nþ1;0� − χ½DðpÞ
2nþ1;nþ1�; ð7:2Þ

χ½AðpÞ� ¼ χ½UðpÞ
1;1;0� − χ½UðpÞ

3;1;0� þ χ½DðpÞ
p−1;p−2�: ð7:3Þ

Of course, as cross-checks we can try to compute the left-
hand sides directly, and we can also try to check that the
results are sensible, for instance, that they have only
positive coefficients in their q-expansions.
The DðpÞ

n;m series representations are labeled by a pair of
integers,

2 ≤ n ≤ p − 1;
n
2
≤ m ≤ n − 1: ð7:4Þ

Taking aðDðpÞ
n;mÞ and hðDðpÞ

n;mÞ from (3.9), we can translate
into Φ and Λ,

Φ0 ¼ 2ðpþ1Þn−2pm; Λ0 ¼ 4m−2nþpþ2: ð7:5Þ

It will turn out that for certain values of the combination
2m − n, which lies in the range

0 ≤ 2m − n ≤ p − 3; ð7:6Þ

there will be extra descendants which need to be consid-
ered (this will be analogous to the situation with x ¼ 1=p
in the continuous representations). So to start, we will
assume that 2m − n does not take on any of the values
0; 1; 2; pþ2

2
, pþ6

2
. We will argue that, as in the x ¼ 1=p case,

the results we obtain are also applicable to these spe-
cial cases.
First, we look for the f-descendants of the primary state.

This generates two infinite sequences of descendants,

j2pðpþ 2Þjþ 2nþ 2pm;Λ0i;
j2pðpþ 2Þðjþ 1Þ − 2n − 2pm;Λ0i; j ≥ 0: ð7:7Þ

Let us introduce some shorthand notation, defining

Φk;a;b;c ¼ 2pðpþ 2Þkþ 2anþ 2bmþ 2c;

Λj ¼ jΛ0 þ 2pjj; ð7:8Þ

so, for instance, Φ0 ¼ Φ0;pþ1;−p;0, and the descendants
above are

jΦj;1;p;0;Λ0i; jΦjþ1;−1;−p;0;Λ0i: ð7:9Þ

Each of these states in turn has an infinite set of
f-descendants,

jΦj;pþ1;−p;0;Λ0i; jΦjþ1;−p−1;p;0;Λ0i; j≥ 0: ð7:10Þ

Note that for the first of these, j ¼ 0 represents the primary
state itself. In the ΦΛ-plane, these states all lie on the
horizontal line extending rightwards from the primary.
Each of the states so far has a d-descendant (and by our

genericity restriction, only a single d-descendant):

d2pjþ2mþ1jΦj;1;p;0;Λ0i ¼ jΦk;1;p;p;Λ−1i; ð7:11Þ

d2pj−2mþ2p−1jΦjþ1;−1;−p;0;Λ0i¼jΦjþ1;−1;−p;p;Λ1i; ð7:12Þ

d2pjþ2n−2m−1jΦj;pþ1;−p;0;Λ0i ¼ jΦj;pþ1;−p;p;Λ1i; ð7:13Þ

d2pj−2nþ2mþ2pþ1jΦjþ1;−p−1;p;0;Λ0i ¼ jΦjþ1;−p−1;p;p;Λ−1i:
ð7:14Þ

These new states in turn generate new f-descendants. Some
of these are among the d-descendants already enumerated,
and some are new:

jΦj;1;p;−p;Λ1i; jΦjþ1;−p−1;p;−p;Λ1i; j ≥ 0; ð7:15Þ

jΦjþ2;−1;−p;−p;Λ−1i; jΦjþ1;pþ1;−p;−p;Λ−1i; j ≥ 0:

ð7:16Þ

And each state also has one d-descendant. For the states
that were already obtained as d-descendants themselves,
their descendants will lie further along the same diagonal
line. For the new states the d-descendant diagonals head in
the opposite direction, back toward the primary state’s
horizontal line. And we could continue in this way, with
new d-descendants generating new rows and corresponding
f-descendants ad infinitum.
Note that we have not said anything yet about

g-descendants. In fact, we are going to make the
assumption, which we will attempt to justify a posteriori,
that g-descendants do not need to be accounted for when
computing these genericD series characters. This could be,
for instance, if the g-descendants were not actually linearly
independent of the f- and d-descendant nodes with the
same Φ and Λ (it would be interesting to attempt to verify
this conjecture by explicit computations). The other issue
with g-descendants is that they seem to have significantly
more sensitivity to the specific values of p, n, andm, and if
their contribution did need to be included, it is unlikely that
there would be nice expressions for whole families of
characters of the type that we will present below.
We plot the embedding diagram for this representation in

Fig. 3(a). It remains to determine how each of these states
contribute to the character, i.e., to determine the color
assignments in the diagram with black nodes representing a
plus contribution, red nodes a minus contribution, and blue
nodes no contribution (i.e., a coefficient of zero).
For example, the furthest left node, labeled 1, represents

the primary state, and is, of course, colored black.
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Correspondingly, the leading term in the character would be
PNSðτÞqh− c

24, accounting for the primary and all its descend-
ants. Its d-descendant is the diamond up and right from the
primary, labeled node 2. Since this is a null state, it should
not be counted by the character, but it was included in the
primary’s contribution [from expanding the PNSðτÞ factor],
so we need to subtract it off with −PNSðτÞqh0− c

24, where h0 is
the weight of this descendant. To indicate this, we color the
node red. The d-descendant of this state, node 3, is not
actually a descendant of the primary, because successive
d-descendants are nilpotent. So it has been subtracted from
the last contribution and currently appears with a negative
sign in the character. Sowe need to add it back in, and hence
color it black. This pattern continues up the diagonal, with
alternating black circles and red diamonds.
Consider node 4, to the right of node 2. As with all the

nodes in the diagram, it is a null state and should not appear
in the character. Fortunately, it was already included in the
contribution from the primary, node 1, with a plus sign, and
in the contribution from node 2, with a minus sign. Thus, it
has already been correctly removed and gets colored blue.
The diamond immediately to the right of the primary,

node 5, needs to be subtracted off and becomes red. Its d-
descendant, node 6, has been added once, from the node 1
contribution, and subtracted twice, as a descendant of

nodes 2 and 5. So we need to add it back in, and thus
color it black. A similar pattern continues up the diagonal
with alternating red and black.
As a couple of final examples, consider nodes 7 and 8.

Node 7 is an f-descendant of node 1 and a d-descendant of
node 4, which in turn was an f-descendant of node 2. Since
node 1 is black, node 4 is blue, and node 2 is red, we have a
net zero contribution, and node 7 gets colored blue. Note
that node 7 is not a descendant of node 5, since they are
both diamonds. Now for node 8, it is a d-descendant of
node 7, which is an f-descendant of node 1. We do not
count it as being a descendant of nodes 4 or 2 because the
route from 4 to 8 involves taking a d-descendant twice,
which is disallowed (since d-descendants correspond to
fermionic operators). Thus, we only have to consider the
contributions of nodes 7 (blue) and 1 (black), and to cancel
these, node 8 must be colored red.
Proceeding in the same manner allows us to fill in all of

the colors in Fig. 3(a). From here it is straightforward to
write down the corresponding character itself. We can
organize the nodes in the diagram by diagonals. Each
diagonal eventually alternates between red and black as it
moves to the right, possibly after an initial phase of blue.
Each diagonal contributes to the character as a geometric
series, and the net expression is

χ½DðpÞ
n;m�ðqÞ ¼ PNSðτÞq

pn2−2ðp−1Þnmþðp−2Þm2þn−2mþ1

2p −1
4
− 3
4p

X∞
k¼0

q
1
2
pðpþ2Þk2

�
q½ðpþ1Þn−pm�k

1þ qpkþn−m−1
2

−
q½pðpþ2Þ−n−pm�kþ1

2
½pðpþ2Þ−2n−2pm−n2þ2nm�

1þ qpkþp−m−1
2

−
q½nþpmþp�kþ1

2
½1þ2m−n2þ2nm�

1þ qpkþmþ1
2

þ q½pðpþ3Þ−ðpþ1Þnþpm�kþ1
2
½p2þ4pþ1−2ðpþ2Þnþ2ðpþ1Þm�

1þ qpkþp−nþmþ1
2

�
: ð7:17Þ

FIG. 3. The ΦΛ embedding diagrams for generic D-series and C-series characters (we have stretched the vertical axis by a factor of 2

to make the diagram more legible). Specifically, (a) is for Dð6Þ
5;4, and (b) is for Cð6Þ

1;2. The shapes (circles and diamonds) allow us to keep
track of direct descendants; all direct descendants of a circle node are diamonds, and vice versa. The color scheme is to keep track of
contributions to the character; black nodes contribute with a plus sign, red nodes contribute with a minus sign, and blue nodes do not
contribute to the character. Note that if we superpose the two diagrams together, then everything above the bottom row cancels, leaving
us precisely with a continuous representation diagram as in Fig. 1, consistent with the threshold relation (6.4).
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The factor outside the sum is simply qh−
c
24PNSðτÞ, repre-

senting the primary and all its conformal descendants. The
first term inside the sum, which starts at 1 when k ¼ 0,
accounts for all diagonals whose alternation starts with a
black circle on the same row as the primary [node 1 in
Fig. 3(a)]. The next term represents the diagonals that start
at a red diamond in the same row (such as node 5). The
third term represents the diagonals which start at red circles

on the row below the primary (node 8 is an example). And
finally the last term in the sum accounts for diagonals
starting at a black diamond in that same row (as the node
immediately to the right of node 8).
In fact, there is a nice way of rewriting this result so that

the sums run over all integers rather than just non-negative
ones. We can combine the two positive terms together and
the two negative terms together to obtain

χ½DðpÞ
n;m�ðqÞ ¼ PNSðτÞq

pn2−2ðp−1Þnmþðp−2Þm2þn−2mþ1

2p −1
4
− 3
4p

X
k∈Z

q
1
2
pðpþ2Þk2

�
q½ðpþ1Þn−pm�k

1þ qpkþn−m−1
2

−
q½pþnþpm�kþ1

2
½1þ2m−n2þ2nm�

1þ qpkþmþ1
2

�
: ð7:18Þ

We should stress at this point that this character can really
only be considered conjectural at this point. As mentioned
above, we have not considered the g-descendants at all, and
we have also implicitly been assuming that there is a single
state corresponding to each node in our diagram, regardless
of the path taken to that node, even though it is easy to check
that there can be high dimensional spaces of states with the
same Φ and Λ quantum numbers. In the next subsection
we will present what evidence we have that these characters
are correct.
Before we do that, however, we are going to extend our

conjecture even further, and make the guess that, even
though we only worked through our derivation for what
we called “generic”D class characters, the final result holds
even in the nongeneric cases. For example, the unique D

character for p ¼ 3, Dð3Þ
2;1 would be given under this

assumption by

χ½Dð3Þ
2;1�ðqÞ ¼ q

1
2PNSðτÞ

X∞
k∈Z

q
15
2
k2
�

q5k

1þ q3kþ1
2

−
q8kþ3

2

1þ q3kþ3
2

�
:

ð7:19Þ

This agrees with the results of [9], who computed the
characters for the c ¼ 12 theory by similar methods, which
lends support to our claim that (7.17) is more broadly
applicable to all D series characters.
We have also checked several nongeneric cases by hand

and recovered the same result, for instance, the p ¼ 5
characters computed in Appendix B; see in particu-
lar Fig. 4.

B. Other upper series NS characters

From inserting (7.17) and (5.30) into the threshold
relations (7.1), (7.2), (7.3) we obtain

χ½CðpÞ
n;m� ¼ PNSðqÞq

pn2−2ðp−1Þnmþðp−2Þm2þ2m−nþ1

2p −1
4
− 3
4p

X
k∈Z

q
1
2
pðpþ2Þk2

�
q½−ðpþ1Þnþpm�k

1þ qpk−nþm−1
2

−
q½nþpm�kþ1

2
½−n2þ2nm�

1þ qpkþm−1
2

�
; ð7:20Þ

χ½BðpÞ
n � ¼ PNSðqÞq

ðpþ2Þn2þ2ðpþ1Þn−p
2p −1

4
− 3
4p

X
k∈Z

q
1
2
pðpþ2Þk2

�
q½ðpþ2Þnþpþ1�k

1þ qpkþn−1
2

−
q½ðpþ2Þnþpþ1�kþ1

1þ qpkþnþ3
2

�
; ð7:21Þ

χ½AðpÞ� ¼ PNSðqÞq−
1
4
− 3
4p

X
k∈Z

q
1
2
pðpþ2Þk2

�
q½pþ1�k−1

2

1þ qpk−
1
2

−
q½pþ1�kþ1

2

1þ qpkþ3
2

�
: ð7:22Þ

Although we again emphasize that these expressions
have not been rigorously derived and should be treated as
conjectural, there are a number of checks that can be done
to build our confidence in them.
First of all, we can repeat the direct exercise we did for

the D characters in the case of “generic” C characters as
well. The corresponding ΦΛ-plane embedding diagram is
illustrated in Fig. 3(b). The result agrees with that obtained
from the threshold relation and our previous expression for
the continuous spectrum characters. Similar exercises for

the other characters also match the results above, for
instance, see the p ¼ 5 diagrams in Fig. 4 in
Appendix B. Note that we can no longer ignore the g-
descendants completely; rather our refined conjecture is
that the only time g-descendants must be taken into account
is when the primary state itself has a g-descendant. An

example of this is the Bð5Þ
1 representation, whose diagram is

shown in Fig. 4(b).
Secondly, in the p ¼ 3 case the expressions are in perfect

agreement with the results of [9].
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FIG. 4. Embedding diagrams for the NS sector discrete characters of the c ¼ 48=5 (upper series, p ¼ 5) theory.
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Finally, one can check that in the full expressions
only non-negative integer coefficients appear, at
least up to very high orders in an expansion in powers
of q.

C. Upper series R sector

Repeating the procedure for the R sector of the upper
series, we can recover characters for the discrete
representations:

χ½EðpÞ� ¼ PRðqÞ
X
k∈Z

q
1
2
pðpþ2Þk2

�
q

1
2
ð3pþ4Þk

1þ qpk
−
q

1
2
ð3pþ4Þkþ1

1þ qpkþ2

�
; ð7:23Þ

χ½FðpÞ
n � ¼ PRðqÞ

X
k∈Z

q
1
2
pðpþ2Þk2

�
q

1
2
ð2nþpÞk

1þ qpk
−
qððpþ1Þnþp

2
Þkþ1

2
nðnþ1Þ

1þ qpkþn

�
; ð7:24Þ

χ½GðpÞ
n;m� ¼ PRðqÞq

2pðm−nÞ2−4mðm−nÞþ2pðm−nÞ
4p

X
k∈Z

q
1
2
pðpþ2Þk2

�
qðpm−ðpþ1Þnþp

2
Þk

1þ qpkþm−n −
qðpmþnþp

2
Þkþ1

2
nð2m−nþ1Þ

1þ qpkþm

�
; ð7:25Þ

χ½HðpÞ
n;m� ¼ PRðqÞq

2pðm−nÞ2þ4ðm−1Þð1−mþnÞþ2pðm−nÞ−4p
4p

X
k∈Z

q
1
2
pðpþ2Þk2

�
qðpm−ðpþ1Þnþp

2
Þk

1þ qpkþm−n−1 −
qðpmþnþp

2
Þkþ1

2
nð2m−nþ1Þ

1þ qpkþm−1

�
; ð7:26Þ

χ½IðpÞn � ¼ PRðqÞq
pð2n2þ2n−4Þþ4n2−4

4p

X
k∈Z

q
1
2
pðpþ2Þk2

�
qððpþ2Þnþp

2
Þk

1þ qpkþn−1 −
qððpþ2Þnþp

2
Þkþ1

1þ qpkþnþ1

�
: ð7:27Þ

A few examples for p ¼ 5 are shown in Fig. 5 in
Appendix B. A novel feature that occurs in this case
deserves some comment. For the representations with only
a single ground state, there are actually two starting points
one can take for the construction of the embedding
diagram; corresponding to which direction one moves on
the central Φ ¼ Λ diagonal when taking d0-descendants.
The choices produce seeming distinct diagrams (though
they agree on the black and red nodes strictly below the
diagonal), but the characters are in fact equal, providing a
solid check on our procedure. In Appendix B, we include,
for the p ¼ 5 case, these alternative diagrams for the five
cases of such representations in Fig. 6. As in the NS sector
case, some of the primaries have g-descendants; in

particular for p ¼ 5 one can look at the representations

Ið5Þ2 in Fig. 5(j), or one of the two possible diagrams for Eð5Þ

in Fig. 6(a).
Again, the embedding diagram calculations are in full

agreement with the threshold relations, as well as the p ¼ 3
calculations of [9], and again the check that only non-
negative coefficients appear in the full characters is another
check that our results are sensible.

D. Lower series discrete characters

Repeating the same procedures once more results in
the following characters for the lower series discrete
representations:

χ½ÃðpÞ
n;m� ¼ PNSðqÞq

pðn−mÞ2þð3n−m−1Þðn−mþ1Þ−m
2ðpþ1Þ −1

4
þ 3

4ðpþ1Þ
X
k∈Z

q
1
2
ðp−1Þðpþ1Þk2

�
q½ðpþ1Þn−pm�k

1þ qðpþ1Þkþn−mþ1
2

−
q½ðpþ1Þn−m�kþ1

2
mð2n−mÞ

1þ qðpþ1Þkþnþ1
2

�
; ð7:28Þ

χ½B̃ðpÞ
n;m� ¼ PNSðqÞq

pðn−mÞ2þð3n−mþ1Þðn−m−1Þþm
2ðpþ1Þ −1

4
þ 3

4ðpþ1Þ
X
k∈Z

q
1
2
ðp−1Þðpþ1Þk2

�
q½ðpþ1Þn−pm�k

1þ qðpþ1Þkþn−m−1
2

−
q½ðpþ1Þn−m�kþ1

2
mð2n−mÞ

1þ qðpþ1Þkþn−1
2

�
; ð7:29Þ

χ½C̃ðpÞ
n � ¼ PRðqÞ

X
k∈Z

q
1
2
ðp−1Þðpþ1Þk2

�
q½nþ

pþ1
2
�k

1þ qðpþ1Þk −
q½pnþ

pþ1
2
�kþ1

2
nðnþ1Þ

1þ qðpþ1Þkþn

�
; ð7:30Þ

χ½D̃ðpÞ
n;m� ¼ PRðqÞq

pðn−mÞ2þðn−mÞð1−mþ3nÞþpðn−mÞ
2ðpþ1Þ

X
k∈Z

q
1
2
ðp−1Þðpþ1Þk2

�
q½ðpþ1Þn−pmþpþ1

2
�k

1þ qðpþ1Þkþn−m −
q½ðpþ1Þn−mþpþ1

2
�kþ1

2
mð2n−mþ1Þ

1þ qðpþ1Þkþn

�
; ð7:31Þ
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FIG. 5. Embedding diagrams for the R sector discrete characters of the c ¼ 48=5 (upper series, p ¼ 5) theory.
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χ½ẼðpÞ
n;m� ¼ PRðqÞq

pðn−mÞ2−ðn−mÞð1þm−3nÞ−pðn−mÞ
2ðpþ1Þ

X
k∈Z

q
1
2
ðp−1Þðpþ1Þk2

�
q½ðpþ1Þn−pm−pþ1

2
�k

1þ qðpþ1Þkþn−m −
q½ðpþ1Þn−m−pþ1

2
�kþ1

2
mð2n−m−1Þ

1þ qðpþ1Þkþn

�
: ð7:32Þ

These characters, derived from the embedding diagram
formalism, once more satisfy the threshold relations and
exhibit only non-negative coefficients in the full q expan-
sion. One more set of checks is done in the next section,
where the p ¼ 3 results are compared to characters for the
supersymmetric free boson and related theories at c ¼ 3=2.

VIII. c= 3=2 AND THE SUPERSYMMETRIC
FREE BOSON

The simplest nontrivial case is c ¼ 3=2. Here our system
essentially corresponds to a supersymmetric boson X with
modes αk and its fermionic partner ψ with modes ψ r. AðzÞ
is simply the stress tensor in the ψ sector, AðzÞ ¼
− 1

2
∶ψðzÞ∂ψðzÞ∶, with GðzÞ ¼ ffiffiffi

2
p

i∂XðzÞψðzÞ, and TðzÞ ¼
AðzÞ þ BðzÞ, where BðzÞ ¼ −∶∂XðzÞ∂XðxÞ∶ is the stress
tensor for X (we take α0 ¼ 1 here).

In [6], the different representations were identified.
Consider first the NS sector. The vacuum is, of course,
the Ãð3Þ

1;1 representation. To build descendants of the vacuum
we cannot use modes of ∂XðzÞ or ψðzÞ by themselves, but
we can use GðzÞ where every αk mode is paired with a ψ r
mode, or we can use AðzÞ and BðzÞ which involve pairs of
ψ r or αk modes, respectively. For modes built with αk’s, the
free boson includes a family of Virasoro representations Vn

with weights h ¼ n2 for n ¼ 0; 1;…, and their correspond-
ing characters are

χðXÞVn
ðzÞ ¼ qn

2 − qðnþ1Þ2

ηðqÞ ; ð8:1Þ

where the states with even n involve even numbers of α−k
oscillators, while the states with odd n involve odd numbers
of α−k oscillators. This means that the even n states must be

FIG. 6. Equivalent alternative embedding diagrams for the R ground state characters of the c ¼ 48=5 (upper series, p ¼ 5) theory.
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paired with χð3Þ1;1ðqÞ from the ψ sector (which includes all
NS sector states built from even numbers of ψ r oscillators),

while the odd n states must be paired with χð3Þ2;1ðqÞ (built
from odd numbers of ψ r oscillators). Schematically,
we have states ðPn even VnÞ1þ ðPn odd VnÞψ , and the
character is

χ1ðqÞ¼
X
n even

qn
2 −qðnþ1Þ2

ηðqÞ χð3Þ1;1ðqÞþ
X
n odd

qn
2 −qðnþ1Þ2

ηðqÞ χð3Þ2;1ðqÞ

¼
�X∞

n¼0

ð−1Þnqn2
ηðqÞ

�
χð3Þ1;1ðqÞ

þ
�X∞

n¼1

ð−1Þnþ1qn
2

ηðqÞ
�
χð3Þ2;1ðqÞ; ð8:2Þ

Similarly, the operator ψðzÞ (or the state ψ−1
2
j0i) should

correspond to the state B̃ð3Þ
2;1. Following the same reasoning

as above, we find ðPn even VnÞψ þ ðPn odd VnÞ1 with
character

χψ ðqÞ¼
X
n even

qn
2 −qðnþ1Þ2

ηðqÞ χð3Þ2;1ðqÞþ
X
n odd

qn
2 −qðnþ1Þ2

ηðqÞ χð3Þ1;1ðqÞ

¼
�X∞

n¼0

ð−1Þnqn2
ηðqÞ

�
χð3Þ2;1ðqÞ

þ
�X∞

n¼1

ð−1Þnþ1qn
2

ηðqÞ
�
χð3Þ1;1ðqÞ: ð8:3Þ

Next, the state Ãð3Þ
2;2 is meant to correspond to the operator

σðzÞsðzÞ, where σðzÞ and sðzÞ are twist fields for the boson
and fermion, respectively, which both have h ¼ 1

16
. So this

state is in the R sector of ψ and in a sector where the boson
has antiperiodic boundary conditions. We can act on this
state with half-integer moded α−r raising operators, or with
integer moded ψ−n operators. The parity of the two is again
correlated (i.e., we can act with an even number of α’s and
an even number of ψ ’s, or with odd numbers of both), but
that just means that we get only one lowest-weight state
instead of two. The character becomes

χσsðqÞ ¼
q

1
48Q∞

n¼1 ð1 − qn−
1
2Þ χ

ð3Þ
2;2ðqÞ:

The NS sector is then rounded out by the bosonic
exponentials ∶eipXðzÞ∶, corresponding to the continuous

family of representations X̃ð3Þ
1;1;p

2

4

. Since the exponential can

“soak up” the action of αk modes, modes of GðzÞ can
behave as ψ r modes. Thus, we have characters

χeipXðqÞ ¼
q

p2

4

ηðqÞ ðχ
ð3Þ
1;1ðqÞ þ χð3Þ2;1ðqÞÞ: ð8:4Þ

Comparing to our derived expressions, we find agree-
ment

χ1ðqÞ ¼ χ½Ãð3Þ
1;1�ðqÞ; χψðqÞ ¼ χ½B̃ð3Þ

2;1�ðqÞ;
χσsðqÞ ¼ χ½Ãð3Þ

2;2�ðqÞ; χeipXðqÞ ¼ χ½X̃ð3Þ
1;1;p

2

4

�ðqÞ: ð8:5Þ

We have not actually proven that these relations are correct,
but we have checked by computer that the series agree up to
order q500. Note also that it is easy to check that the
threshold relation holds exactly in the form

lim
p→0

χeipXðqÞ ¼ χ1ðqÞ þ χψðqÞ: ð8:6Þ

Proceeding similarly in the Ramond sector, Gepner and
Noyvert identify three more discrete representations and
one continuous representation in terms of free supersym-
metric boson constructions. It will be useful to refer to
additional twist fields τðzÞ and μðzÞ which appear in the
OPEs

∂XðzÞσðwÞ ∼ τðwÞ
ðz − wÞ12 þ � � � ; ð8:7Þ

ψðzÞsðwÞ ∼ μðwÞ
ðz − wÞ12 þ � � � ; ð8:8Þ

and where τðzÞ and μðzÞ have weights h ¼ 9
16

and h ¼ 1
16
,

respectively.
The representation C̃ð3Þ

1 corresponds to the bosonic twist
field σðzÞ. The descendant states come from acting with α−r
and ψ−s operators, both half-integer moded, with matching
parities. This leads to a character

χσðqÞ ¼
1

2
q

1
48

�
1Q∞

n¼1 ð1−qn−
1
2Þþ

1Q∞
n¼1 ð1þqn−

1
2Þ

�
χð3Þ1;1ðqÞ

þ 1

2
q

1
48

�
1Q∞

n¼1 ð1−qn−
1
2Þ−

1Q∞
n¼1 ð1þqn−

1
2Þ

�
χð3Þ2;1ðqÞ

¼ 1

2
q

1
48

�
χð3Þ1;1ðqÞþ χð3Þ2;1ðqÞQ∞

n¼1 ð1−qn−
1
2Þ þ

χð3Þ1;1ðqÞ− χð3Þ2;1ðqÞQ∞
n¼1 ð1þqn−

1
2Þ

�
: ð8:9Þ

Next up is C̃ð3Þ
2 corresponding to the fermionic twist

field sðzÞ. In this case we schematically end up with
ðPn even VnÞsþ ðPn odd VnÞμ, and the character is
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χsðqÞ¼
X
n even

qn
2 −qðnþ1Þ2

ηðqÞ χð3Þ2;2ðqÞþ
X
n odd

qn
2 −qðnþ1Þ2

ηðqÞ χð3Þ2;2ðqÞ

¼ 1

ηðqÞχ
ð3Þ
2;2ðqÞ: ð8:10Þ

The third discrete representation in the R sector is Ẽð3Þ
2;1. This is a doublet state whose components are τðzÞ and σðzÞψðzÞ,

both with h ¼ 9
16
. The corresponding character is similar to χσ ,

χð τ

σψ
ÞðqÞ ¼

1

2
q

1
48

�
1Q∞

n¼1 ð1 − qn−
1
2Þ −

1Q∞
n¼1 ð1þ qn−

1
2Þ

�
χð3Þ1;1ðqÞ þ

1

2
q

1
48

�
1Q∞

n¼1 ð1 − qn−
1
2Þ þ

1Q∞
n¼1 ð1þ qn−

1
2Þ

�
χð3Þ2;1ðqÞ

¼ 1

2
q

1
48

�
χð3Þ1;1ðqÞ þ χð3Þ2;1ðqÞQ∞

n¼1 ð1 − qn−
1
2Þ −

χð3Þ1;1ðqÞ − χð3Þ2;1ðqÞQ∞
n¼1 ð1þ qn−

1
2Þ

�
: ð8:11Þ

Finally, the continuous representation Ṽð3Þ
2;2;p

2

4

is also iden-

tified as the doublet with components ∶sðzÞeipXðzÞ∶ and
∶μðzÞeipXðzÞ∶, and character

χðseipXμeipXÞ
ðqÞ ¼ 2

q
p2

4

ηðqÞ χ
ð3Þ
2;2ðqÞ: ð8:12Þ

Again the threshold relation works precisely, with

lim
p→0

χðseipXμeipXÞ
ðqÞ ¼ 2χsðzÞ: ð8:13Þ

As in the NS sector, we have confirmed numerically that
these characters agree with our expressions up to order q500.
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APPENDIX A: MODE ALGEBRA

The chiral algebra of an SWð3=2; 2Þ algebra is generated
by spin-two bosonic currents T and A, and fermionic
currents G and M of spin three-halves and five-halves,
respectively. Performing a standard mode expansion, the
algebra is given by

½Lm; Ln� ¼
c
12

mðm − 1Þðmþ 1Þδmþn

þ ðm − nÞLmþn; ðA1Þ

½Lm;Gr� ¼
�
m
2
− r

�
Gmþr; ðA2Þ

fGr;Gsg ¼ c
3

�
r −

1

2

��
rþ 1

2

�
δrþs þ 2Lrþs; ðA3Þ

½Lm; An� ¼
cð15 − cÞ
36ð12þ cÞmðm − 1Þðmþ 1Þδmþn

þ ðm − nÞAmþn; ðA4Þ

½Am;Gr� ¼ −
15 − c

2ð12þ cÞ
�
rþ 1

2

�
Gmþr −Mmþr; ðA5Þ

½Am; An� ¼
cð15 − cÞ
36ð12þ cÞmðm − 1Þðmþ 1Þδmþn

þ ðm − nÞAmþn; ðA6Þ

½Lm;Mr� ¼
15 − c

4ð12þ cÞmðmþ 1ÞGmþr þ
�
3m
2

− r

�
Mmþr;

ðA7Þ

fGr;Msg¼
cð15−cÞ
18ð12þcÞ

�
rþ1

2

��
r−

1

2

��
r−

3

2

�
δrþs

−
15−c
12þc

�
rþ1

2

�
Lrþsþð3r− sÞArþs; ðA8Þ

½Am;Mr� ¼
15 − c

4ð12þ cÞ2
�
3ð3þ cÞðmþ 1Þ

�
rþ 3

2

�

þð15 − cÞ
�
mþ rþ 5

2

��
mþ rþ 3

2

��
Gmþr

þ
�
ðmþ 1Þ þ 15 − c

2ð12þ cÞ
�
mþ rþ 5

2

��
Mmþr

−
18

12þ c
∶AG∶mþr; ðA9Þ
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fMr;Msg ¼ −
cð15 − cÞ
36ð12þ cÞ

�
rþ 3

2

��
rþ 1

2

��
r −

1

2

��
r −

3

2

�
δrþs

þ ð15 − cÞð3þ cÞ
2ð12þ cÞ2

�
3

�
rþ 3

2

��
sþ 3

2

�
− ðrþ sþ 3Þðrþ sþ 2ÞLrþs

�

þ
�
2

�
rþ 3

2

��
sþ 3

2

�
−

3þ c
2ð12þ cÞ ðrþ sþ 3Þðrþ sþ 2Þ

�
Arþs

−
36

12þ c
∶TA∶rþs þ

18

12þ c
∶GM∶rþs; ðA10Þ

where m and n are integers, and r and s are either integers,
in the Ramond sector, or integers plus a half, in the Neveu-
Schwarz sector.
We have used the definition

∶PQ∶n ¼
X

m≤−hP

PmQn−m

þ ð−1ÞPQ
X

m≥−hPþ1

Qn−mPm; ðA11Þ

which works for all cases except ∶GM∶rþs in the Ramond
sector, where we have (translating results from Appendix C
of [6] into our conventions)

∶GM∶Rn ¼
X
m≤−1

GmMn−m−
X
m≥0

Mn−mGmþ 5cð15−cÞ
384ð12þcÞδn;0

þ3þn
2

An−
15−c

8ð12þcÞLn: ðA12Þ

The Hermitian conjugates for L, G, and A are standard,

ðLnÞ† ¼L−n; ðGrÞ†¼G−r; ðAnÞ†¼A−n; ðA13Þ

while

ðMrÞ† ¼ −M−r −
15 − c

2ð12þ cÞG−r: ðA14Þ

APPENDIX B: EMBEDDING DIAGRAMS
FOR c= 48=5

In this appendix we present embedding diagrams for all of
the discrete representations of the upper series with p ¼ 5.
This case has a central charge of c ¼ 48=5 and has 20
discrete representations, 10 in each of the NS and R sectors.
The 10 representations in theNS sector are shown inFig. 4. In
these diagrams we indicate all f-descendants by horizontal
lines, all g-descendants by vertical lines, and all d-descend-
ants by diagonal lines.We use dashed lines for lines that have
“reflected” off the Λ ¼ 0 axis (in order to make the images
slightly more visually coherent). The coloring of nodes
indicates their contribution to the character: black nodes
must be added in, red nodes need to be subtracted out, and
blue nodes do not need to be adjusted.
Similarly, Fig. 5 shows the R sector representations. Five

of the ten are Ramond sector ground states (with h ¼ 2=5
in this case). For these five, one can give an alternate
presentation of the embedding diagram, shown in Fig. 6,
but these can be checked to lead to the same expressions for
the characters.
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