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The quantization of a massive spin-1=2 field that satisfies the Klein-Gordon equation is studied. The
framework is consistent, provided it is formulated as a pseudo-Hermitian quantum field theory by the
redefinition of the dual field and the identification of an operator that modifies the inner product of states in
Hilbert space to preserve a real energy spectrum and unitary evolution. Since the fermion field has mass
dimension one, the theory admits renormalizable fermion self-interactions.
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In this paper, we introduce a consistent pseudo-
Hermitian quantum field theory for second-order massive
fermions ψ transforming under the ð1

2
; 0Þ ⊕ ð0; 1

2
Þ repre-

sentation of the restricted Lorentz group (RLG). LeClair
and Neubert [1] presented the first successful second order
formalism describing the dynamics of N-component com-
plex fermions in a pseudo-Hermitian framework. In that
work, the authors studied two cases: (1) If the fields
transform as scalars in the (0,0) representation of the
RLG, the theory is automatically Lorentz invariant and
the usual spin-statistics connection is evaded, yielding a
free theory of scalar fermions obeying the Klein-Gordon
equation; (2) Insisting that the fields are spin-1=2 fermions
and therefore preserving the usual spin-statistics connec-
tion, there is a subgroup SO(3) of the full global symplectic
Spð2NÞ group, displayed by the theory, that can be
identified with the rotational symmetry that defines spin

1=2 particles in a nonrelativistic setup. However, due to the
Lorentz group not being a subgroup of Spð2NÞ, the model
in [1] fails to manifest full Lorentz invariance. Here, we
build an authentic Lorentz invariant theory for spin-1=2
fermions with a kinetic term that is second order in
derivatives with real energy spectrum and unitary time
evolution.
A pseudo-Hermitian Lagrangian satisfies

L# ≡ η−1L†η ¼ L: ð1Þ

This generalization of Hermiticity was proposed in [2,3]
extending the results of PT-symmetric quantum mechanics
introduced in [4], and has two important features; (1) the
energy spectrum of the theory is real and (2) time evolution
is unitary upon the definition of a suitable internal product
of states with the aid of the η operator.
The Lagrangian for the ψ field is given by

L ¼ ∂
μψ̂∂μψ −m2ψ̂ψ ; ð2Þ

where ψ̂ is not the Dirac adjoint of ψ , but instead a
redefinition of its dual that renders the theory pseudo-
Hermitian. This redefinition also eliminates the presence of
negative norm states in the spectrum [5], which appear
when the standard Dirac adjoint is used in this Lagrangian.
The first observation we can make about this theory is

that the conjugate momenta are πψ ¼ ˙̂ψ , πψ̂ ¼ ψ̇ , where the
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dot denotes the derivative with respect to time. Without
imposing further constraints, this formalism involves a
spinor with four complex (eight real) components, and the
phase space is parametrized by both ψ and ˙̂ψ , yielding 16
real components. Thus, the second-order formalism
describes a field with eight degrees of freedom. In contrast,
the momentum conjugate associated to a four component
Dirac spinor χ is iχ†, and therefore, the whole phase space
is parametrized by the eight real components of χ, giving a
total number of four real degrees of freedom for the Dirac
field. A second observation about the second-order for-
malism is that the field ψ has mass dimension one, in sharp

contrast with Dirac spinors, which have mass dimen-
sion 3=2.
It can be shown that the most general solution to the

Klein-Gordon equation for spin-1=2 fields can be written in
terms of two solutions to the Dirac equation χ1 and χ2 of the
form [6]

ψ ¼ 1ffiffiffiffiffiffiffi
2m

p ðχ1 þ γ5χ2Þ: ð3Þ

The plane wave expansions of ψ and ψ̂ are

ψðxÞ ¼
Z

d3p
ð2πÞ32 ffiffiffiffiffiffiffiffiffiffimωp

p
X
s

n
½uspa1sp þ γ5uspa2sp �e−ip·x þ ½vspb1s†p þ γ5vspb

2s†
p �eip·x

o
;

ψ̂ðxÞ ¼
Z

d3p
ð2πÞ32 ffiffiffiffiffiffiffiffiffiffimωp

p
X
s

n
½ūspa1s†p þ ūspγ5a

2s†
p �eip·x þ ½v̄spb1sp þ v̄spγ5b2sp �e−ip·x

o
; ð4Þ

with ωp ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2

p
, pμ ¼ ðωp;pÞ, usp, vsp as the

positive and negative energy solutions of the Dirac free
equation, and s ¼ � 1

2
. The theory is by construction

explicitly Lorentz invariant.
The pseudo-Hermitian nature of the formalism emerges

from the introduction of a linear and invertible operator η
defined by the following relations [1]:

η−1ajsp η ¼ ð−1Þj−1ajsp ; η−1bjs†p η ¼ ð−1Þj−1bjs†p ; ð5Þ

where j ¼ 1, 2. Notice that the difference between the new
dual ψ̂ and the Dirac adjoint ψ̄ is the sign of the modes
involving γ5 in Eq. (4). The dual field in terms of η, is given
by ψ̂ ¼ η−1ψ̄η. Assuming that the operator η is Hermitian
implies that η−1ðψ̂ψÞ†η ¼ ψ̂ψ , fulfilling the pseudo-
Hermiticity of the free Lagrangian in Eq. (2), as prescribed
in Eq. (1). If the following anticommutation relations for
the momentum-space field operators hold:

fajsp ; akr†p0 g ¼ ð2πÞ3δjkδrsδð3Þðp − p0Þ;
fbjsp ; bkr†p0 g ¼ ð2πÞ3δjkδrsδð3Þðp − p0Þ; ð6Þ

with all other anticommutators vanishing, an explicit
solution for the operator η is given by

η ¼ exp

�
iπ

Z
d3p
ð2πÞ3

X
s

ða2s†p a2sp þ b2s†p b2sp Þ
�
: ð7Þ

This operator satisfies η ¼ η−1 ¼ η†, meaning that it is
simultaneously Hermitian and unitary, yielding η2 ¼ 1.
The dynamics of the pseudo-Hermitian quantum theory

with H# ¼ η−1H†η ¼ H is guaranteed to be unitary if

the inner product between two states is defined as
hajbiη ≡ hajηjbi. In this way, probability amplitudes are
preserved under time evolution and the energy spectrum is
real. The conjugate momenta satisfy the time canonical
anticommutation relations,

fψαðx; tÞ; πψβðx0; tÞg ¼ −fψ̂αðx; tÞ; πψ̂ βðx0; tÞg
¼ iδαβδð3Þðx − x0Þ: ð8Þ

Due to the redefinition of the dual implemented by the η
operator, these anticommutation relations lead to the
standard nonvanishing canonical relations for the momen-
tum space operators in Eq. (6). Additionally, it can be
shown that the fields display the correct properties under
microcausality. In particular, we have

fψαðxÞ;ψβðyÞg ¼ fψ̂αðxÞ; ψ̂ βðyÞg ¼ 0; ð9Þ
and

fψαðxÞ; ψ̂βðyÞg≡ Δðx − yÞδαβ
¼

Z
d3p

ð2πÞ32ωp
fe−ip·ðx−yÞ − eip·ðx−yÞgδαβ;

ð10Þ
where Δðx − yÞ is the well-known Lorentz invariant and
causal Schwinger’s Green function. The Hamiltonian and
the momentum operator are given by

H≕
Z

d3xf ˙̂ψ ψ̇ þ∇ψ̂ · ∇ψ þm2ψ̂ψg∶;

P≕ −
Z

d3xf ˙̂ψ∇ψ þ∇ψ̂ ψ̇g∶; ð11Þ
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where ∷ stands for normal ordering. In terms of the
momentum space operators, the generators of space-time
translations Pμ ¼ ðH;PÞ read

Pμ ¼
Z

d3p
ð2πÞ3 p

μ
X
j;s

fajs†p ajsp þ bjs†p bjsp g: ð12Þ

Furthermore, defining the vacuum j0i as the state annihi-
lated by ajsp and bjsp , we can conclude that all states have
positive energy.
The spin of the field is

S≕ − i
Z

d3xf ˙̂ψJψ − ψ̂Jψ̇g∶; ð13Þ

where the components of J are given by Jk ¼ 1
2
ϵijkMij,

where Mμν ¼ i
4
½γμ; γν� are the Lorentz generators of the

ð1
2
; 0Þ ⊕ ð0; 1

2
Þ representation. To show that the field con-

tains particles of spin-1=2, one can evaluate the action of
the operator S3 on one-particle states with zero momentum
in the chiral representation of the Dirac matrices. The
resulting relations are

S3ajs†0 j0i ¼ sajs†0 j0i; S3bjs†0 j0i ¼ sbjs†0 j0i: ð14Þ

The free theory of second-order fermions in Eq. (2) is
invariant under the phase transformation,

ψ → ψ 0 ¼ eiθψ ; ψ̂ → ψ̂ 0 ¼ ψ̂e−iθ; ð15Þ

where θ is a constant real parameter. The conserved charge
associated to this U(1) global symmetry is

Q≕ i
Z

d3xfψ̂ ψ̇ − ˙̂ψψg∶

¼
Z

d3p
ð2πÞ3

X
j;s

fajs†p ajsp − bjs†p bjsp g: ð16Þ

From the commutation relation of this operator with the
creation and annihilation operators, one can conclude that
ajs†p and bjsp have charge þ1, whereas ajsp and bjs†p have
charge −1. Labeling the one-particle states with this
eigenvalue, one can show that they are eightfold degenerate

Hajs†p j0i ∝ Hjp;þ; j; si ¼ ωpjp;þ; j; si;
Hbjs†p j0i ∝ Hjp;−; j; si ¼ ωpjp;−; j; si: ð17Þ

The free theory displays a larger symmetry. Since the
field ψ and its dual anticommute fψαðxÞ; ψ̂βðxÞg ¼ 0, we
can write Eq. (2) as

L ¼ 1

2
∂
μΨTΩ∂μΨ −

m2

2
ΨTΩΨ; ð18Þ

where Ψ is a column matrix defined as

ΨðxÞ ¼
�
ψ̂TðxÞ
ψðxÞ

�
; ð19Þ

and Ω is the 8 × 8 symplectic matrix, written in 4 × 4
blocks as

Ω ¼
�

04×4 14×4

−14×4 04×4

�
: ð20Þ

Thus, Eq. (18) is symmetric under the global transforma-
tions Ψ → Ψ0 ¼ SΨ with STΩS ¼ Ω. This is the defining
relation for an element of the symplectic group Spð8;CÞ,
whose algebra has 36 generators.
The second-order theory is invariant under parity (P),

Charge conjugation (C) and time reversal (T), and therefore
under CPT. We define the discrete transformations of the ψ
field through their action on the creation operators as
follows:

Pajs†p P−1 ¼−ið−1Þj−1ajs†−p ; Pbjs†p P−1 ¼−ið−1Þj−1bjs†−p ;

Cajs†p C−1 ¼ bjs†p ; Cbjs†p C−1 ¼ ajs†p ;

Tajs†p T−1 ¼ 2sajð−sÞ†−p ; Tbis†p T−1 ¼ 2sbið−sÞ†−p : ð21Þ
With this choice, the discrete transformations have the
familiar representations,

PψðxÞP−1 ¼ iγ0ψðPxÞ; Pψ̂ðxÞP−1 ¼−iψ̂ðPxÞγ0;
CψðxÞC−1 ¼ Cψ̂T; Cψ̂C−1 ¼ ψTC;

TψðxÞT−1 ¼ Cγ5ψðT xÞ; Tψ̂T−1 ¼−ψ̂ðT xÞγ5C; ð22Þ

where we have defined P ¼ diagð1;−1;−1;−1Þ, T ¼
diagð−1; 1; 1; 1Þ, and C ¼ −iγ2γ0 in the chiral representa-
tion. The simplest C, P and T invariant pseudo-Hermitian
interactions that can be introduced in this framework are
4-fermion self-interactions represented by a dimension-
four renormalizable operator,

Lint ¼
λ1
2
ðψ̂ψÞ2 þ λ2

2
ðψ̂γ5ψÞðψ̂γ5ψÞ

þ λ3
2
ðψ̂MμνψÞðψ̂MμνψÞ: ð23Þ

Other self-interactions are not independent since they arise
in terms of these three through a Fierz transformation. In
particular, taking λ2 ¼ λ3 ¼ 0, we get the simplest model of
self-interacting fermions that at one-loop has vanishing
beta function βλ1 ¼ 0. The authors of [7] obtained this
result in the context of the naive Hermitian second-order
theory. All the results contained in [7] and its non-Abelian
generalization [8] can be readily applied to the non-
Hermitian version of the theory presented here.
Recently, it has been shown in [9] that under the helicity-

amplitude formalism the mass dimension for an operator
with four massless external legs must be six, which may
seem to contradict the results in this paper. Nevertheless, as
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can be seen from the mode expansion, our theory is only
valid for m ≠ 0, so it is not possible to have massless
fermions with a second-order Lagrangian, leaving room for
consistency with the helicity-amplitude formalism.
Summarizing, in this work, we have studied the quan-

tization of the massive field transforming in the ð1
2
; 0Þ ⊕

ð0; 1
2
Þ representation of the RLG that satisfies the Klein-

Gordon equation. We have shown that the canonical
quantization is free from negative norm states by the
redefinition of the field dual and the introduction of a
unitary and Hermitian operator η that renders the free
Lagrangian pseudo-Hermitian according to Eq. (1). The
resulting canonical quantization of the theory is consistent
with microcausality, and the Hamiltonian is bounded from
below with real eigenvalues, as expected for a pseudo-
Hermitian approach. For consistency, we have verified that
the fields have spin-1=2, and we have identified the global
and discrete symmetries of the theory. Finally, we have
sketched the possible interactions for a theory of second-
order fermions, including a novel class of renormalizable
fermion self-interactions.
To conclude, we remark that this new field would couple

with the Higgs field H through a quartic dimensionless
coupling

LψH ¼ λH
2
ðψ̂ψÞH†H: ð24Þ

Furthermore, since ψ has nothing to decay in, it is stable
and could play the role of dark matter (DM). From Eq. (24),
the DM, in this case, has a Higgs portal, and the dark matter

phenomenology is determined by the mass of the
Fermion and its coupling with the Higgs in a similar
way as for the scalar dark matter [10,11]. The same
interaction contributes to the running of the Higgs mass
in the same way an extra scalar does, and since the sign
of λH is undetermined, we can choose it in such a way as
to cancel the top-quark contribution. This phenomenol-
ogy and further consequences will be the subject of
another article. Finally, we express our gratitude to the
referee for bringing our attention to Ref. [12], where the
Poincaré algebra is extended to include non-Hermitian
generators. In particular, our dual field is compatible with
the most general definition identified in [12] that trans-
forms as the dual representation of the full proper
Poincaré group.
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