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We examine the implications of the weak gravity conjecture for the mechanisms for discharging
cosmological constant via membrane nucleations. Once screening fluxes and membranes which source
them enter, and weak gravity bounds are enforced, a generic de Sitter space must be unstable. We show that
when all the flux terms which screen and discharge the cosmological constant are dominated by quadratic
and higher order terms, the bounds from weak gravity conjecture and naturalness lead toward anthropic
outcomes. In contrast, when the flux sectors are dominated by linear flux terms, anthropics may be avoided,
and the cosmological constant may naturally decay toward smallest possible values.
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I. INTRODUCTION

In the recent sequence of papers [1–5], we have
initiated a novel program for addressing the cosmological
constant problem and de Sitter space decay by using the
discharge of 4-form fluxes which screen and then relax the
total cosmological constant. As a result de Sitter space in
this approach is intrinsically unstable. It decays into a
fractal-like patchwork of regions of ever smaller constant
curvature. In its simplest incarnation, our approach is a
generalization of the idea pioneered in [6,7] about
discharging a cosmological constant by nonperturbative
membrane nucleation processes, and it also benefits from
results of [8–12].
Let us briefly summarize the main features of the

“mechanics” of flux discharge here. Regardless of the
details of the flux sector, when the cosmological constant
is very large, larger than a certain scale Λ� set by the
membrane quantum numbers, the discharge proceeds
by the nucleation of membranes whose size is comparable
to the environment curvature radius—i.e., the horizon
size. During this “boiling” stage, the discharge is
essentially unsuppressed. One could try a quick estimate

Sbounce ≃ − 12π2M4
PlΔΛ

ΛoutΛin
, which is Oð1Þ at the cutoff [1–3]

and resembles the Hawking-Moss instanton action [13],

which supports that nucleation rates are not suppressed. A
more incisive analysis of Sbounce actually shows that Λ →
∞ and Λ ¼ 0 are branch points of Sbounce as opposed to
poles, and so the limits are more delicate. We will show
here that when Λ → ∞, Sbounce → 0, and so in this
regime, the decay rate is

Γ → 1; ð1Þ

which indicates barrierless tunneling in the Euclidean
theory. This could happen in the limits of the well-known
analyses of [14,15], for very fast bubble nucleations
[16–18]. In the thin wall limit of tunneling between a
false and a true vacuum for a scalar field, the wall tension
measures the barrier area, which controls the tunneling
rate. Hence, when the cosmological constant dominates
over the tension terms, the barrier is negligible, which
yields an unsuppressed nucleation rate.
Even more accurately, the rapid decay during this stage is

moderated by a small bounce action, which eventually

gradually increases toward Sbounce ≃þ 24π2M4
Pl

Λout
as the initial

cosmological constant decreases. The resulting decay rate
disfavors the largest possible values of the cosmological
constant and favors the smallest ones as the terminal
outcome, because the more curved backgrounds are more
unstable. To be relevant, this regime must involve the
cosmological constant values below the cutoff; otherwise, it
is excluded from the effective theory description. When this
holds, the cosmological constant will discharge to the
smallest values achievable, for as long as the rate remains
nonzero. Due to the increase of the bounce action with the
decrease of Λ, the resulting distribution of cosmological
constant values is skewed toward the smallest possible
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values that can be reached given a set of membrane charges.
This stage is important for populating the de Sitter land-
scape in ways that reach the smallest values of the terminal
cosmological constant.
Once Λ decreases to below the critical scale, the

discharge rate dramatically slows down. There are impor-
tant quantitative differences between the dynamics depend-
ing on whether discharge processes are controlled by linear
4-form flux terms, or by quadratic and higher power ones.
If linear flux terms dominate discharge processes, as in
[1–5], the discharge channels shut off faster, since the rates
strongly depend on the initial cosmological constant. As
noted above, for these processes the decay rate asymptotes
toward an essential singularity as Λ → 0þ,

Γ → exp

�
−
24π2M4

Pl

Λout

�
; ð2Þ

where M2
Pl ¼ 1=8πGN . This “braking” stage protects the

tiniest values of cosmological constant by making those
geometries most stable. Together with the faster discharge,
the “boiling” regime preceding it, the overall dynamics
favors de Sitter spaces with the smallest attainable cosmo-
logical constant [1–5]. This occurs for all generic, natural
values of the initial cosmological constant near and below
the cutoff of the theory, at a scale MUV ≤ MPl.
This is in contrast to previous works [6,7,9–12], where

the flux sector does not include linear 4-form terms but
starts with F2. Then, whenever the initial cosmological
constant is not fine tuned, but starts near the cutoff value
Λ ∼M4

UV ≲M4
Pl, the terms that control the transitions

select decay channels which have a broad regime with
rates without accumulation points, which asymptote to a
constant value that depends on the difference of the
cosmological constants in the parent and descendant
bubbles, and not the individual values, so

Γ ≃ exp

�
−
27π2

2

T 4

ðΔΛÞ3
�

→ exp

�
−
27π2

2

T 4

ð2ΛQFTÞ3=2Q3

�
:

ð3Þ

Here, ΛQFT is the cosmological constant from the field
theory sector, which is being neutralized, and T and Q
membrane tension and charge, respectively. In such cases,
one finds that the terminal distribution of cosmological
constant values can be uniform if the phase space of
possible values were equiprobable, and if the preceding
“boiling” stage was not long (or completely excluded). In
this case, one can select the final value by resorting to the
anthropic principle.
The “boundary” between the “boiling” and “braking”

stages is controlled by the ratio of the cosmological
constant before a transition and, in general, the tension
and charge of the membrane, in the units of Planck scale.

The precise value of the critical value Λ�, where the
transition happens, is detail dependent (and actually can
be quite broad), and we will outline the possibilities below.
We stress this presupposes that both the “boiling” and
“braking” stages are below the cutoff, within the realm of
effective theory. This is not automatic for the “boil-
ing” stage.
This argument indicates that together, naturalness in the

QFT sense and any constraints on membrane charges and
tensions relative to the cutoff impose restrictions on the
cosmological constant cancellation via screening and
membrane discharge. Staying below the cutoff is not only
an issue of reliability but of caution born of necessity:
above the cutoff lurks the wormhole regime, which is
notoriously unreliable [19–22]. So the “brute force”
tuning and retuning of parameters in the equations which
arise in the semiclassical limit may not be arbitrarily done
to evade those restrictions. In this paper, we explore these
restrictions and the model-building requirements they
impose. Specifically, we deploy the bounds on the
membrane dynamics that arise from the weak gravity
conjecture (WGC) [23] and apply them to the generic
natural boroughs of the landscape, where the field theory
contribution to the vacuum energy is technically natural,
of an order ΛQFT ≲M4

UV.
It should be immediately clear that the WGC bounds

affect the nature of de Sitter space fundamentally once we
introduce the flux screening and discharge mechanisms.
Once the cosmological constant receives the contributions
from fluxes, and charged tensional membranes are
included, so that fluxes can change by membrane nucle-
ation, the WGC bounds immediately imply that there is no
absolutely stable de Sitter space. The reason is simple: to
stop the quantum mechanically induced discharges, mem-
branes must be decoupled, which means, the tension of all
the membranes that can change the cosmological constant
must go to, formally, infinity—or in practice, above the
cutoff. This is precisely the limit prohibited by WGC [23].
Even if we do not violate WGC, this limit indicates that the
WGC bounds, which constrain the ratios of charges,
tensions, and the cutoff, will affect the specific details of
discharge dynamics.
We find that when the 4-form sector is dominated by

quadratic and higher powers of fluxes, the natural dis-
charges by membranes that obey the WGC are mediated by
the same types of instantons as in [6,7], which admit a
broad regime with the asymptotic decay rate given by (3).
The “boiling” regime is pushed out of the range of the
effective theory, and the initial vacuum energy to be
canceled, near the QFT cutoff, is already at the edge of
the “braking” regime. Such setups can therefore be natu-
rally used to provide a framework for anthropic selection of
the terminal cosmological constant, as in [11].
If we chose to violate WGC for all charged membranes

in the theory, the low scale attractor (2) will appear, and the
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“boiling” stage may reappear below the cutoff. However,
the WGC violations required to make the setup natural are
quite severe because the charges of affected membranes
become very small, and restoring WGC by adding mem-
branes that satisfy the bounds can also restore channels for
dominantly uniform discharge, that bring back anthropics,
or force more fine tuning.
In contrast, when the linear flux terms are present, and

when they dominate over higher powers in the effective
action, the dynamics change significantly [1–5]. When the
fluxes are natural, of the order of the cutoff-scale QFT
vacuum energy ΛQFT ≃M4

UV, and they satisfy WGC, both
the “boiling” and “braking” stages are below the cutoff, and
they, together, favor the nucleation of a sequence of bubbles
ending with the smallest possible terminal cosmological
constant. Hence, in this case, the universes with tiny
cosmological constant could arise naturally, without invok-
ing anthropic reasoning. We also note, that even if some of
the membranes involved are discharged by processes
dominated by quadratic flux terms, the outcome may
remain unaffected as long as there are many decay channels
dominated by linear flux terms. A more detailed inves-
tigation of the evolution, which involves a variety of decay
channels, of both types mentioned here and with a range of
charges and tensions, is therefore warranted.
The paper is organized as follows: in the next section, we

review WGC, starting with point particles and then provide
a general set of inequalities for charged membranes in four
dimensions. Next, in Sec. III. we discuss the effective
action for fluxes and charged tensional membranes using
magnetic duals of 4-forms, and revisit the mechanics of flux
discharges of [1–5]. In Sec. IV, we turn to the implications
of WGC and naturalness for flux discharge processes and
explain the limitations, which arise for effective theory
description of de Sitter decay. We give a summary of the
results and discuss open questions in the last section.

II. WGC IN A NUTSHELL: A LIGHTNING REVIEW

If objects supporting event horizons were really forever,
the retrieval of information about the material that went into
them may be impossible. In quantum physics, this suggests
that event horizons may catalyze unitarity loss, and hence,
endanger and obstruct quantum mechanics itself [24].
Preempting this implies subtle consistency conditions on
the models of matter coupled to quantum gravity. A specific
application concerns charged black holes. As is well
known, generic black holes are actually not black since
they radiate like black bodies at Hawking temperature. To
ensure that they radiate out the charge that went in with the
material that formed a black hole, it is necessary that there
are sufficiently light charged particles that can stream
outside. This imposes a condition on charge per unit mass
[23], which is now called the electric WGC: for each
conserved gauge charge, there must be a sufficiently light
charge carrier, such that

e
m

≥
ffiffiffiffiffiffiffi
GN

p
; ð4Þ

where e and m are the carrier charge and mass. This can be
deduced very simply from conservation laws [25,26]:
consider a black hole of mass M with charge Q, where
by conservation of mass and charge M ≥

P
i mi (as we

allow for energy contribution from neutral sources) and
Q ¼ P

i ei. Thus,

M
Q

¼ 1

Q

X
mi¼

1

Q

Xmi

ei
ei ≥

1

Q

�
m
e

�
min

X
ei¼

�
m
e

�
min

:

ð5Þ

Applying this to extremal black holesM ¼ Q=
ffiffiffiffiffiffiffi
GN

p
, which

have the largest ratio Q=M due to the horizon regularity
constraints yields the strongest bound: Eq. (4), precisely.
However, many charged black holes can become ultra-

cold in the extremal limit and cease to emit Hawking
radiation. If they were to last forever, they would cause
problems behaving as troublesome remnants [27]. Yet even
if Hawking radiation ceases, there are nonperturbative,
nonthermal processes, which lend to black hole discharge
[28]. Essentially, these are variants of Schwinger charged
particle production in background electric fields [29]. This
decay channel arises thanks to the Heisenberg uncertainty
principle, whereby a particle-antiparticle pair emerges in an
external electric field E. The field accelerates virtual
particles in the pair away from each other and transfers
enough energy to them that they can get on shell instead of
annihilating away.
A very nice intuitive argument is given in [30], building

on the work of [31], which we revisit here. We will model
the pair creation and their separation due to the work of the
background field as the process of initially accelerating a
negative energy “virtual” particle, which gains enough
energy due to the acceleration to become a positive energy
particle that propagates away, leaving behind a “hole”—a
positive energy antiparticle after charge conjugation—that
propagates away in the opposite direction. Working in the
rest frame of one of the pair, which is also initially the rest
frame of the pair, the dispersion relation after a small
displacement δz is ðεþ eEδzÞ2 − p⃗2 ¼ m2. Solving for pz,
with the initial condition ε ¼ −m at δz ¼ 0 (recall that
c ¼ ℏ ¼ kB ¼ 1),

pz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−mþeEδzÞ2−m2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eEδzðeEδz−2mÞ

p
: ð6Þ

Clearly, the square root vanishes at δz ¼ 0 and
δz ¼ 2m=eE. In between these two locations, the square
root is imaginary, and so the Euclidean momentum πz ¼
−ipz is real, πz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eEδzð2m − eEδzÞp

. In this regime, the
particle is “virtual”, with imaginary momentum, being
accelerated by the electric field E toward positive energies.
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Since the mass shells are tilted by the electric field potential
energy, the particle can tunnel from the negative mass shell
to the positive one, and subsequently, propagate out to
infinity [30]. This occurs when the Euclidean momentum
vanishes at δz ¼ 2m=eE, which can be understood as the
instant where the particle gains enough energy through
the work of the electric field. Indeed, since δW ≃ eEδz,
δW ≃ 2m implies that enough energy is transferred at
δz ≃ 2m=eE.
We can estimate the particle production rate to the

leading order by employing thr WKB approximation and
computing the Euclidean action by integrating over the
region where pz is imaginary (the “barrier”),

SE ¼
Z

2m=eE

0

dzπz ¼
π

2

m2

eE
; ð7Þ

to get the tunneling wave function Ψ ¼ e−SE . The rate is
given by Γ ∼ jΨj2; hence,

Γ ≃ e−πm
2=eE: ð8Þ

In weak electric fields E → 0, the rate goes to zero, while
for strong fields E > πm2=e, the exponential suppression
disappears, and the rate is polynomially fast.
Applying this formula to a charged black hole, and

taking the strongest electric field available just outside of
the outer event horizon, yields E ¼ Q=r2þ, where Q is the
black hole charge and rþ ¼ GNM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

NM
2 −GNQ2

p
,

where M is the black hole mass, Q its charge, and GN
Newton’s constant. Therefore,

Γ ≃ e−πm
2r2þ=eQ: ð9Þ

It turns out that, despite technical subtleties, this equation
gives the correct leading order decay rate describing black
hole discharge due to nonperturbative quantum effects
[28,30]. Note, that these processes do not cease in the
extremal limit, and that discharge continues even when
M ¼ Q=

ffiffiffiffiffiffiffi
GN

p
. Further note, that while these processes are

slow for large black holes, they speed up as the mass
decreases. They can also be augmented by spurts of
Hawking radiation that can restart the charge loss by light
particle emission, and go faster when charge carriers are
light, m ≪ MPl. But at least in principle, as long as the
Euclidean action SE can continuously decrease to ≤ 1, the
discharge can proceed—and speed up near the end—with
the black hole disappearing. As shown in [25], reaching
m2r2þ=eQ < 1 is inevitable as long as Eq. (4) holds. To
see this, substitute rþ ¼ GNM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

NM
2 −GNQ2

p
into

m2r2þ=eQ < 1. The resulting inequality after squaring it up
and manipulating terms as in [25] becomes

Q2 þ eQ
GNm2

≥ 2
M
m

ffiffiffiffiffiffiffi
eQ

p
: ð10Þ

Next, demand M ≥ Qm=e to ensure that kinematical
constraints can be met, for simplicity define Q ¼ ζ2 and
divide everything by ζ2 [25]; this maps (10) to

fðζÞ ≥ 0; fðζÞ ¼ 1þ e
GNm2ζ2

−
2ffiffiffi
e

p
ζ
: ð11Þ

The function fðζÞ has two zeros, one at ζ ¼ 0 and the
other away, at a location approximately determined by
ζ0 ≃ e3=2=2GNm2. In between these two values, f is
negative, and so the inequality cannot be satisfied there.
To satisfy the inequality, ζ must exceed ζ0. However, as the
black hole charge ζ ¼ Q2 decreases from some large initial
value, the root ζ0 must approach the origin, which means
that at fixed e, the mass m must be dialed up to satisfy
f ≥ 0—eventually running afoul of Eq. (4). The fastest
way for this to occur is along the parameter space
curve extremizing f in the ζ direction, which implies
ζmax ¼ e3=2GNm2. Hence, the strongest bound comes from
imposing (10) at this value of ζ. Substituting in (10), we
find that f ≥ 0 implies

fðζmaxÞ ¼ 1 −
GNm2

e2
≥ 0 ⇒

ffiffiffiffiffiffiffi
GN

p
m

e
≤ 1; ð12Þ

which is precisely the same as the bound of Eqs. (4), (5).
This implies that as long as there are light particles
carrying charge e which obey (4), charged black holes
cannot linger forever. Both perturbative and nonperturba-
tive particle production processes can discharge them.
Conversely, if (4) does not hold for any charged species,
neither discharge channel will be generally accessible, and
remnants, and perhaps other problems, would seem to be
difficult to avoid [23,25]. Equation (4) provides protection
from such problems.
There is also a magnetic variant of WGC, which deals

with the interplay of magnetic solitons with gravity [23]
(see also [32]). An issue here is that in the weak coupling
regime of gauge theory magnetic monopoles are very
heavy, with the massmmonopole ∼MUV=e2, whereMUV is
the UV cutoff of the theory. Combining this with the WGC
bound mmonopole ≤ emagnetic

ffiffiffiffiffiffiffi
GN

p
≃

ffiffiffiffiffiffiffi
GN

p
=e yields

MUV ≤ e
ffiffiffiffiffiffiffi
GN

p
; ð13Þ

which means that the cutoff of a weakly coupled gauge
theory must be below the Planck scale. This ensures that
the monopole is not a black hole: combining mmonopole ∼
MUV=e2 with the size of the monopole core Rmonopole ∼
1=MUV yields immediately mmonopole ≤ GNRmonopole

[23], violating the hoop conjecture, which black holes
satisfy.
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The WGC bounds discussed here for point particles can
be generalized for extended objects. Specifically, we will be
interested in the implications of charged tensional mem-
branes in four dimensions. For them, the electric weak
gravity bound generalizes to

Q
T

≥
ffiffiffiffiffiffiffi
GN

p
: ð14Þ

The statement of WGC then is that in the spectrum of the
theory, which includes charged membranes, for each type
of charge there must be at least one membrane, which
satisfies the inequality (14). The magnetic form of the
bound is a bit more subtle, having been deduced [32] to be
the bound on the cutoff of the theory,

MUV ≤
Q1=3

G1=6
N

; ð15Þ

found by estimating the membrane tension in more than 4D
by the energy stored in the field sourced by Q, using the
expected scaling of the gravitational radius with the higher-
dimensional gravitational constant, requiring that there
exists a magnetic membrane without the horizon, and then
dimensionally reducing the result to 4D. The inequalities
(14), (15) will play important role in our arguments in what
follows.

III. DISCHARGES WITH LINEAR AND
QUADRATIC FLUX TERMS

General theories of 4-forms coupled to gravity and
sourced by charged tensional membranes were examined
in [4,5]. They split into two qualitatively different classes,
depending on whether the linear 4-form flux terms are
present and dominant in the action, or not. For this reason,
we will focus here on the more special limiting forms,
comprised of only linear and quadratic terms, which
simplifies the discussion without any loss of generality.
Further, the technical analysis simplifies by replacing the
4-form with its magnetic dual, F ↔ �λ, and replacing the
4-form Lagrangian LðF Þ with its Legendre transform LðλÞ
[33,34]. As explained in [4], this amounts to the Routhian
transformation of the theory. Concretely, we start with

S ¼
Z

d4x

� ffiffiffi
g

p �
M2

Pl

2
R − LQFT −

1

48
F 2

μνλσ

�

−
α

24
ϵμνλσF μνλσ

�
; ð16Þ

motivated by, e.g., [35], where α is a fixed 4-form
theory coupling parameter induced by nontrivial
CP-breaking effects [35]. We then add the boundary
term

R
d4x 1

3
ϵμνλσ∂μðλAνλσÞ to (16), define the new variable

F̃ μνλσ ¼ F μνλσ − ð2λ − αÞ ffiffiffi
g

p
ϵμνλσ , and integrate F̃ out.

The resulting “bulk” action is [4]

S ¼
Z

d4x

� ffiffiffi
g

p �
M2

Pl

2
R − LQFT − 2

�
λ −

α

2

�
2
�

þ 1

3
ϵμνλσ∂μðλÞAνλσ

�
: ð17Þ

We next expand 2ðλ − α
2
Þ2 ¼ 2λ2 − 2αλþ α2=2 and absorb

the flux-independent term α2=2 into the QFT vacuum
energy, LQFT þ α2=2 → LQFT. Further, since 4-form should
be viewed as a higher rank gauge theory, we add to (17) the
gauge field charges—the charged tensional membranes—
and boundary terms required to properly provide junction
conditions across the membrane walls. This is motivated by
the general lore that quantum gravity does not coexist with
global symmetries [36,37], and without charges, the 4-form
theory would in fact admit generalized higher-form sym-
metries. When charges are present, those are broken by
gauge currents [38,39].
Finally, we parametrize 2α ¼ c1M2

UV and note that the
value of c1 controls how close this term is to the cutoff.
Such terms arise naturally in axion physics, when the CP-
violating effects in some nontrivial gauge theory max out
[35]. We could even imagine that such a theory has an axion
with a very large decay constant f ≳MPl and the quantum
gravity effects break shift symmetry very strongly. In any
case, the final effective action for a single gauge sector
coupled to gravity, which we will use in what follows, is

S¼
Z

d4x

� ffiffiffi
g

p �
M2

Pl

2
R−LQFTþc1M2

UVλ−2λ2
�

þ1

3
ϵμνλσ∂μðλÞAνλσ

�

−
Z

d3ξ
ffiffiffi
γ

p
M2

Pl½K�−T A

Z
d3ξ

ffiffiffi
γ

p
A−QA

Z
A; ð18Þ

where T A and QA are the membrane tension and charge,
respectively, the term ∝ K is the Israel-Gibbons-Hawking
term for gravity which encodes boundary conditions
across membrane walls, and ½…� is the jump across a
membrane. The coordinates ξ are coordinates along a
membrane world volume, embedding it in spacetime.
The charge terms are

Z
A ¼ 1

6

Z
d3ξAμνλ

∂xμ

∂ξα
∂xν

∂ξβ
∂xλ

∂ξγ
ϵαβγ: ð19Þ

We take T A > 0 to avoid problems with ghosts and
negative energies. This is a special case of actions discussed
in [4], which suffices for our purposes here.
To study the discharge processes, we Wick rotate the

action (18) to Euclidean time. This Euclidean action
controls the nucleation rates Γ ∼ e−SE [14]. The analysis
is given in detail in [1–4], and we just summarize it here. To
transition to a Euclidean picture, we replace t ¼ −ix0E,
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which gives −i
R
d4x

ffiffiffi
g

p
LQFT ¼ −

R
d4xE

ffiffiffi
g

p
LE
QFT; with the standard conventions, A0jk¼AE

0jk, Ajkl¼AE
jkl we get F μνλσ¼

FE
μνλσ, and ϵ0ijk ¼ ϵE0ijk, ϵ

0ijk ¼ −ϵ0ijkE . The membrane source terms transform to −iT A

R
d3ξ

ffiffiffi
γ

p ¼ −T A

R
d3ξE

ffiffiffi
γ

p
and

iQA

R
Ai ¼ −QA

R
Ai. The Euclidean action by iS ¼ −SE is (below we drop the subscript E)

SE ¼
Z

d4xE

� ffiffiffi
g

p �
−
M2

Pl

2
REþLðλÞþΛQFT−c1M2

UVλþ2λ2
�
þ1

3
ϵμνλσE ∂μðλÞAE

νλσ

�

þ
Z

d3ξ
ffiffiffi
γ

p
M2

Pl½KE�þT A

Z
d3ξE

ffiffiffi
γ

p
A−

QA

6

Z
d3ξEAE

μνλ

∂xμ

∂ξα
∂xν

∂ξβ
∂xλ

∂ξγ
ϵαβγE : ð20Þ

In the action, we set hLE
QFTi ¼ ΛQFT, with ΛQFT the

regulated matter sector vacuum energy to an arbitrary loop
order, since we consider transitions on backgrounds with
local Oð4Þ symmetry that have minimal Euclidean action
and dominate the evolution [14,15]. When the QFT
vacuum energy is natural, QFT/gravity couplings imply
ΛQFT ¼ M4

UV þ…≡M2
PlλQFT, whereM

4
UV is the QFT UV

cutoff and ellipsis denote subleading terms [40,41]. Hence,
the total cosmological constant in any bulk patch is

Λtotal ¼ ΛQFT − c1M2
UVλþ 2λ2; ð21Þ

where λ can vary from patch to patch across mem-
brane walls.
A nucleation of a membrane changes the flux of λ inside

it, and hence, the total cosmological constant in the interior.
The resulting geometry comprises of two de Sitter patches
glued along the membrane, with tension and charge
controlling the membrane-sourced discontinuity. Away
from the membrane, de Sitter patches are described with
the metrics,

ds2E ¼ dr2 þ a2ðrÞdΩ3; ð22Þ

where dΩ3 is the line element on a unit S3. The warp factor
a is the solution of the Euclidean “Friedmann equation”,

3M2
Pl

��
a0

a

�
2

−
1

a2

�
¼ −Λtotal: ð23Þ

The prime designates an r derivative. From here on, we
will drop the subscript “total”. The boundary conditions
induced on a membrane for gauge fields and gravity
are [1–3]

aout ¼ ain; λout − λin ¼
QA

2
;

M2
Pl

�
a0out
a

−
a0in
a

�
¼ −

T A

2
; ð24Þ

in the coordinate system, where the outward membrane
normal vector is oriented in the direction of the radial
coordinate; r measures the distance in this direction.
Subscripts “out” and “in” refer to the membrane’s exterior
(“parent de Sitter“) and interior (“descendant de Sitter”),
respectively. The discontinuities in λ and a0 follow since a
membrane is aDirac δ-function source of charge and tension.

We proceed by solving (23) for a0 ¼ ζj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λa2

3M2
Pl

q
, where

ζj ¼ �1 designate the two possible branches of the square
root. Using this and the junction conditions for the
magnetic fluxes (24), the value of ΛQFT cancels out, and
we obtain [1–5]

ζout

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λouta2

3M2
Pl

s
¼ −

T A

4M2
Pl

�
1þ 2M2

PlM
2
UVQA

3T 2
A

�
c1 − 4

λ

M2
UV

��
a;

ζin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λina2

3M2
Pl

s
¼ T A

4M2
Pl

�
1 −

2M2
PlM

2
UVQA

3T 2
A

�
c1 − 4

λ

M2
UV

��
a; ð25Þ

where we take the flux to be made up of a large number of
charge units, λ ≫ QA. If this were not so, we would replace
λ → λout −QA=4 in (25) (in the large flux case, the
distinction between the “in” and “out” fluxes in these
equations is irrelevant).
The Eqs. (25) play a crucial role, since they select the

membrane discharge channel, which relaxes the vacuum

energy, and control relaxation dynamics. The point is, that
the right-hand side (rhs) of (25) can be written as
∓ T A

4M2
Pl
ð1� qÞ, where

q ¼ 2M2
PlM

2
UVQA

3T 2
A

�
c1 − 4

λ

M2
UV

�
: ð26Þ
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Thus, when jqj < 1, the terms in the parenthesis on the rhs
of (25) keep the same sign, and Eqs. (25) only have
solutions when ðζout; ζinÞ ¼ ð−;þÞ. Conversely, when
jqj > 1, the solutions describing dS → dS transitions can
only be found when ðζout; ζinÞ ¼ ðþ;þÞ or ð−;−Þ. Of the
latter two cases, ðζout; ζinÞ ¼ ðþ;þÞ dominates over
ðζout; ζinÞ ¼ ð−;−Þ because it has a smaller Euclidean
action. The instantons mediating ð−;þÞ and ðþ;þÞ proc-
esses are given in Fig. 1.
Which of the two channels is selected by the boundary

conditions has a dramatic effect on the discharge dynamics.
The bounce action is [1,2,7]

Sbounce ¼ Sout − Sin − π2a3T A; ð27Þ

with (where k∈ fout; ing)

Sk ¼ 18π2
M4

Pl

Λk

�
2

3
− ζk

�
1 −

Λka2

3M2
Pl

�
1=2

þ ζk
3

�
1 −

Λka2

3M2
Pl

�
3=2

�
: ð28Þ

Its value depends on the membrane radius at nucleation a,
which in turn depends on the microscopic parameters andΛ
according to

1

a2
¼ Λout

3M2
Pl

þ
�

T A

4M2
Pl

�
2

ð1þ qÞ2

¼ Λin

3M2
Pl

þ
�

T A

4M2
Pl

�
2

ð1 − qÞ2: ð29Þ

From this formula, we deduce there are two regimes of
bubble nucleation for a fixed set of parameters, depend-
ing on which term on the rhs of (29) the dominant
contribution to the membrane radius comes from. The
boundary between the two regimes is controlled by the

critical value of the cosmological constant, roughly set
by Λ� ≃ 3ð T A

4MPl
Þ2ð1þ qÞ2.

To infer a more precise description, we can rewrite the
bounce action (27) in terms of the out cosmological
constant, membrane charge and tension, and the cutoff
scale MUV. First, we can evaluate (28) by eliminating the
square root terms on the rhs using the junction conditions
(25). Next, we express Λin in terms of Λout and membrane
charge Q using (21) and the second of (24). Finally, we
eliminate powers of the membrane radius at nucleation a
using Eq. (29). Then we can consider specific limits of this
action, e.g., fixing the tension T and varying Q and Λout
relative to it to explore the possible tunneling regimes
mediated by the instantons of Fig. 1.
It is tempting to take a shortcut and merely focus on the

leading order terms in this panoply of pieces in the limits
Λ → ∞ and Λ → 0 to get the essential behavior of the
bounce action (27) while skipping the algebraic tedium.
This actually works in the limit Λ → 0. However, the limit
Λ → ∞ is more delicate. The reason is that the aðΛÞ
dependence in (29) and the terms ∝ T Aa, which the
bounce action (27) depends on after the square roots in
(28) are evaluated using (25), show that Λ → ∞ and Λ ¼ 0
are branch points of the bounce action viewed as a function
of Λ (this can also be seen in scalar field tunneling in, e.g.,
[15]). In particular, although aðΛÞ vanishes as Λ → ∞ in
(29), the terms ∝ T Aa in the expression for the bounce
action get multiplied by positive powers of Λ and hence,
may not be negligible. Thus, it is prudent to determine the
exact form of Sbounce before taking the limits.
The calculation is straightforward albeit tedious; a

simplifying step is to write the terms ζk
3
ð1 − Λka2

3M2
Pl
Þ3=2 ¼

∓ T A

4M2
Pl
ð1� qÞð1 − Λka2

3M2
Pl
Þ, where the upper sign on the rhs

corresponds to k ¼ out and the lower sign to k ¼ in,
respectively, given our conventions and definitions here.
This gives, after straightforward steps,

Sbounce ¼ 12π2
M4

Pl

Λout

�
1þ T Aa

4M2
Pl

ð1þ qÞ
�

− 12π2
M4

Pl

Λin

�
1 −

T Aa
4M2

Pl

ð1 − qÞ
�
;

T Aa
4M2

Pl

¼

0
B@ 3

Λout

�
T A
4MPl

�
2

1þ 3
Λout

�
T A
4MPl

�
2ð1þ qÞ2

1
CA

1=2

;

Λin ¼ Λout þ
3T 2

A

4M2
Pl

q: ð30Þ

Here, of course, q < 0 since we are focusing on transitions
which reduce Λout. It is now clear that Λout → ∞ and
Λout ¼ 0 are branch points. To take the limits, it is further
convenient to factorize this equation as a product of
poles and functions which only include the branch points.

FIG. 1. (a) a jqj < 1 instanton mediating dS → dS with
ðζout; ζinÞ ¼ ð−;þÞ. (b) a large flux, jqj > 1 instanton mediating
dS → dS with ðζout; ζinÞ ¼ ðþ;þÞ.
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A shortcut is to bring (30) under a common denominator, substitute Λout ¼ ΛoutðaÞ, which turns the numerator into a
polynomial in a, and factorize the polynomial. We obtain

Sbounce ¼ 18π2M4
PlT A

ΛoutΛina

�
1þ T Aa

4M2
Pl

ð1þ qÞ
��

1 −
T Aa
4M2

Pl

ð1 − qÞ
�
;

T Aa
4M2

Pl

¼

0
B@ 3

Λout

�
T A
4MPl

�
2

1þ 3
Λout

�
T A
4MPl

�
2ð1þ qÞ2

1
CA

1=2

; Λin ¼ Λout þ
3T 2

A

4M2
Pl

q: ð31Þ

Lastly, we can eliminate Λout;Λin using Eq. (29), where we obtain

Λout ¼
3M2

Pl

a2

�
1 −

�
T Aa
4M2

Pl

�
ð1þ qÞ

��
1þ

�
T Aa
4M2

Pl

�
ð1þ qÞ

�
;

Λin ¼
3M2

Pl

a2

�
1 −

�
T Aa
4M2

Pl

�
ð1 − qÞ

��
1þ

�
T Aa
4M2

Pl

�
ð1 − qÞ

�
; ð32Þ

after factorizing the squares. Substituting these into (31),
we finally find

Sbounce ¼ 2π2a3T A

ð1 − T Aa
4M2

Pl
ð1þ qÞÞð1þ T Aa

4M2
Pl
ð1 − qÞÞ ;

T Aa
4M2

Pl

¼

0
B@ 3

Λout

�
T A
4MPl

�
2

1þ 3
Λout

�
T A
4MPl

�
2ð1þ qÞ2

1
CA

1=2

: ð33Þ

It is now clear that for the dS → dS transitions, the
bounce action (31) remains nonnegative. Given the pos-
itivity of the cosmological constants and the tension, and
q < 0, the only way it could ever be negative is if the last
factor is negative, or alternatively, if T Aa

4M2
Pl
ð1þ qÞ > 1. But

given the definition of T Aa
4M2

Pl
in (33), we see that this can not

happen,

T Aa
4M2

Pl

ð1þ qÞ ¼

0
B@ 3

Λout

�
T A
4MPl

�
2

1
ð1þqÞ2 þ 3

Λout

�
T A
4MPl

�
2

1
CA

1=2

≤ 1: ð34Þ

Using these equations we also see that if the cosmological
constant dependent term dominates the rhs of (29)—i.e.,
in the limit Λout → ∞—the membrane’s radius at nuclea-

tion is a ≃
ffiffi
3

p
MPlffiffiffiffiffiffi
Λout

p and T Aa
4M2

Pl
ð1þ qÞ ≃ T A

4M2
Pl

ffiffi
3

p
MPlffiffiffiffiffiffi
Λout

p ð1þ qÞ < 1.

Thus,

Sbounce ≃ 2π2a3T A ≃
6

ffiffiffi
3

p
π2M3

PlT A

ðΛoutÞ3=2
: ð35Þ

When T A < M3
UV and Λout ≃M4

UV ≃M4
Pl, this gives1

Sbounce ≃
T A

M3
Pl
< 1. This is the initial regime which we

model build to be in,2 since in this regime an initial de Sitter
space with a large cosmological constant “boils” the
bubbles of the smaller cosmological constant that can start
populating the landscape. As we noted in the Introduction,
this is the regime of barrierless tunneling, where dS → dS
decays are unsuppressed. Also, (35) grows bigger as Λout
decreases, which means that de Sitter spaces with the
largest Λ decay faster than those with a smaller Λ. This
shows the trend of evolution: fast decay of the large Λ’s and
increased stability of subsequent lower Λ spaces. Clearly, if
for any reason the “boiling” stage is pushed above the
cutoff, the theory would not be under control in that regime,
and this regime could not be invoked to set an initial
population of Λ’s. If this were realized, the landscape can
turn into a desert.
This regime ends when the total cosmological constant

discharges enough so that the second term in (29) domi-
nates. For jqj < 1, that occurs when Λ < Λ� ¼ 3ð T A

4MPl
Þ2.

The discharge proceeds by the jqj < 1 instanton in Fig. (1),
for which ðζout; ζinÞ ¼ ð−;þÞ. The action (27) gradually
asymptotes to

Sbounce ≃
24π2M4

Pl

Λout

�
1 −

8

3

M2
PlΛout

T 2
A

�
; ð36Þ

1The factor of 6
ffiffiffi
3

p
π2 can be easily compensated initially by

picking the scale μ ¼ T 1=3
A < MUV=5. This may require appro-

priately reducing charges to keep jqj < 1; we will return to the
precise details in later work.

2Or to never be in this regime, if we prefer to eventually rely on
anthropics, see the discussion later on.
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in this limit, with Sbounce > 0 because Λ < 3M2
Plð T A

4M2
Pl
Þ2.

This action asymptotes to a pole at Λout ¼ 0, and leads to
the decay rate of Eq. (2), Γ ≃ expð−24π2M4

Pl=ΛoutÞ. Just
like the discharges are rapid when Λ > 3ð T A

4MPl
Þ2, they are

very slow when Λ < 3ð T A
4MPl

Þ2. As a result, the total
evolution, which results from combining the stages con-
trolled by (35) and (36), if both can be fit below the cutoff
in the same effective theory, would favor the smallest
values of Λterminal. The “boiling” stage is setting up the
distribution and the “braking” stage preserving it, and
therefore, in tandem, they provide a framework for natu-
rally solving the cosmological constant problem. On the
other hand, if the “boiling” regime were completely
excised, being pushed above the cutoff, the resulting
landscape could be very desolate with a naturally large
initial Λ. In this case, the decay of the cosmological
constant may be very slow, and if the membrane charges
are small, it would need to go through many steps until
reaching the terminalΛ values near zero. At practical times,
the distribution of Λ would be biased toward larger values,
and the prospect of an ultimately empty universe [42]
would loom large.
In the other case, when jqj > 1, the “braking” regime

starts when Λ <
M6

PlQ
2
A

12T 2
A
, or when Λ <

4M2
Plλ

2Q2
A

3T 2
A

, depending

on whether linear or quadratic terms dominate q. The
discharges are mediated by the jqj > 1 instanton in Fig. 1,
for which ðζout; ζinÞ ¼ ðþ;þÞ. For this instanton, in the
bounce action (27), (28), the leading terms in (28) cancel
out completely for both “in” and “out” contributions, and
the subleading terms converge to (see, e.g., [1,2,6,7,14])

Sbounce ≃
27π2

2

T 4
A

ðΔΛÞ3 : ð37Þ

In this regime, the decay rate saturates for a broad range of
Λ as the cosmological constant decreases. When the
quadratic flux terms dominate in q, the relative stability
of de Sitter spaces with small cosmological constant is set
by the ratio3 T 4

A=ðΔΛÞ3 ≃ T 4
A=ð2ΛQFTÞ3=2Q3

A, with the
decay rate approaching (3). For a natural value of the
screened initial vacuum energy ΛQFT ≃M4

UV, this immedi-
ately shows that we need, somewhat loosely,

T 4
A > ð2ΛQFTÞ3=2Q3

A; ð38Þ

to have a chance for sufficient longevity of de Sitter regions
with small cosmological constant, necessary to fit a realistic
late universe cosmology. If the tension were too low, the
small curvature de Sitter spaces could decay too fast.

However, since the rate is approximately constant, when
(38) holds, and if the “boiling” regime (35) is not too long,
the discharges can produce a multiverse with all values of
Λterminal approximately equally likely, and long-lived. If
this happens, then invoking anthropics can be used to
address the observed smallness of the cosmological con-
stant. As we will see below, this can naturally occur when
all flux discharge processes are dominated by quadratic or
higher order flux terms.

IV. WGC VERSUS DISCHARGES

We now impose the WGC bounds of Sec. II on the
discharge dynamics of the previous section. We will
normalize the inequalities (14), (15) using the Planck scale
instead of Newton’s constant, ignoring the numerical
factor of

ffiffiffiffiffiffi
8π

p
≃ 5, thus working with the original nor-

malizations introduced in [23]. The Oð1Þ numerical
factors will be of little consequence in this work, although
in general one should be careful with their accounting
since they can affect normalization of some physical
parameters, as for example the overall normalization of
the bounce action, the duration of slow roll inflation, and
so on [43,44]. In any case, the electric and magnetic weak
gravity bounds that we will use are

MPl
Q
T

≥ 1; ð39Þ

and

QMPl ≥ M3
UV: ð40Þ

In addition, following the approach of [5], we will
impose a bound on the flux variation for each type of flux
involved in screening and discharge. The reason for this is
that in hindsight, when the 4-forms are generalized by
adding a dynamical longitudinal mode and a mass term,
which arises naturally whenever the 4-forms realize mono-
dromy field theories in 4D, as in [45–56], in the axial gauge
the longitudinal modes are monodromy-spanning “axions”,
whose total range must be limited by at least the require-
ment that their energy density does not exceed the
Planckian energy, so the effective theory with gravity
remains under control. Depending on the specifics of the
theory, the bounds could be even tighter. Here, imagining
that the effective theory enjoys protection from the gauge
symmetries of the 4-form sectors, both continuous and
discrete, we will require that it remains below the cutoff
scale,

jjTμ
νð4 − formÞjj≲M4

UV ≲M4
Pl; ð41Þ

where by jjTμ
νð4 − formÞjj, we mean the operatorial norm

of the stress energy tensor of the 4-form sector, i.e., its
largest eigenvalue. With this in place, we are ready to find

3The appearance of ΛQFT follows from requiring natural
screening of vacuum energy by fluxes [5,11]. If the linear flux
terms dominate, we would find T 4

A > M6
PlQ

3
A instead of (38).
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the implications of these bounds on the dynamics of
screening and discharge. Conveniently, the technical
aspects of this analysis are simplified by separately con-
sidering the purely quadratic flux case, as an avatar of
frameworks where the linear flux term is subleading, and
purely linear term, without any loss of generality.

A. Quadratic flux dominance

We will explicitly work with a single species of mem-
branes for the most part, since the nucleations proceed one
bubble at a time. However, we bear in mind that, to be able
to approach the observably allowed values of the terminal
cosmological constant, we need a multiplicity of different
membranes once we impose the field theory cutoff on the
flux range [5,11]. This means that in the formulas below we
should really replace expressions like N2

AQ
2
A by

P
i N

2
iQ

2
i

etc. This in turn means, that in our comparison of the
cosmological constant to be canceled and the cutoff, there
is an in-principle multiplicative species factor, counting
each flux that contributes to Λtotal. Since it is ≲Oð100Þ,
we will ignore it in what follows. When the screening terms
in Λtotal are dominated by the quadratic flux contribu-
tions, such that

Λtotal ¼ ΛQFT þ 2
X

λ2i þ… ≃ −jΛQFTj þ 2
X
i

λ2i ;

ð42Þ

we must take ΛQFT < 0 to have a chance to cancel it
[6,7,11]. Then, for a natural value of ΛQFT ∼M4

UV ∼M4
Pl,

the dynamics of discharge produces a nested system of
bubbles bounded by membranes. Nucleation processes are
controlled by Eqs. (25)–(29), and, crucially, by the value of
q. In the limit when quadratic terms dominate, q is given by

qi ¼
8

3

M2
PlλiQi

T 2
i

; ð43Þ

for each individual flux λi. The parameter qi is proportional
to the slope of the tangent to the “spectral parabola” as
depicted in Fig. 2.
Since fluxes are quantized, λi ¼ 1

2
NiQi (1=2 comes

from our normalization of λ). Then, plugging this into

the formula for qi yields qi ¼ 4
3
Ni

M2
PlQ

2
i

T 2
i
, or, using

γWGC ¼ MPlQi=T i,

qi ¼
4

3
Niγ

2
WGC; ð44Þ

where γWGC is precisely the ratio of charge to tension in
Planck units, which is subject to the electric weak gravity
bound (39). Thus, if WGC is obeyed by a membrane “i”,
γWGC > 1, and since we must screen a natural vacuum
energy ΛQFT with multiple units of flux, Ni > 1. Therefore,

q > 1 for any type of membrane obeying WGC, for all
transitions which occur until Λ reaches its smallest positive
value. As a result, the discharge processes of the natural
vacuum energy by emission of these membranes can only
proceed by the instanton with jqj > 1 of Fig. 1. This means
the bounce action for these processes generically asymp-
totically approaches Eq. (37) as the cosmological constant
diminishes, which remains a good approximation for much
of the discharge sequence.
The relevant inequalities to check further are (38)

and (40). In fact, we can rewrite all three of these
inequalities in terms of dimensionless ratios, as follows
(for ΛQFT ∼M4

UV):�
T i

M3
Pl

�
4

>

�
MUV

MPl

�
6
�
Qi

M2
Pl

�
3

; stability;

�
Qi

M2
Pl

�
≥
�
T i

M3
Pl

�
; electric WGC;

�
Qi

M2
Pl

�
≥
�
MUV

MPl

�
3

; magnetic WGC: ð45Þ

Furthermore, since the membrane charge and tension are
distributed quantities, we should require that they are below
the cutoff scale, Qi < M2

UV and T i < M3
UV, so that they

can be reliably included in the sub-cutoff effective descrip-
tion based on the low energy actions which we deploy here.
In fact, these bounds are redundant: the electric WGC
bound in (45) follows from the magnetic WGC bound and
T i < M3

UV. However, we will retain the electric WGC
bound for convenience with calculations below. We note
that all of these inequalities can be satisfied simultaneously
for some MUV ≲MPl. On the other hand, model building
“economics” suggests that MUV is to be looked for not too
far below MPl in order to be able to use as few fluxes as

FIG. 2. Λ-parabola, depicting the spectrum of Λ as a function of
the screening flux. In the full multidimensional flux space, Λ is a
paraboloid, and here, we depict its projection to a single
coordinate plane. The gold lines are tangents to the parabola
whose slope is q, which controls the discharge process. The
discrete points are the actual values of the quantized fluxes and
the corresponding cosmological constant of the Λ-discretuum.
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possible [11]. Add to this the argument of the previous
section about the existence of the “boiling” stage, which
further reaffirms this expectation.
Finally, we note that, for as long as jqj > 1, the scale that

separates the “boiling” from the “braking” stage for
quadratic flux is given by

Λ� ≃
4

3

λ2M2
PlQ

2
i

T 2
i

≃
2

3
γ2WGCM4

UV: ð46Þ

When γWGC > 1, the critical value Λ� is above the cutoff,
and the “boiling” stage is effectively excised out of the
quadratic flux effective theory, and so essentially for values
of Λ≲M4

UV ∼M4
Pl, the discharges occur near the edge

or during the “braking” stage (with the decay rate reduc-
tion being progressively more efficient as Λ decreases),
with the bounce action asymptotically approaching the

formula given in Eq. (37), Sbounce ≃ 27π2

2

T 4
i

ðΔΛÞ3. Since

ΔΛ ¼ 2λΔλ, and initially, λ ≃
ffiffiffiffi
Λ

p ≳ ffiffiffiffiffiffiffiffiffiffi
ΛQFT

p
, the initial

bounce action will start smaller than the asymptotic value

Sbounce ≃ 27π2

2

T 4
i

ð2ΛQFTÞ3=2Q3
i
, which may permit discharges at

an approximately uniform rate, independent of initial and
final cosmological constant values. The discharges will
cease once the flux becomes small enough to obey the
stability bound (38). Thus, the theory where flux contri-
butions to the cosmological constant are dominated by
quadratic terms may provide an arena where invoking the
anthropic principle can be used to address the observed
smallness of the cosmological constant, as in [11].
Higher powers of flux do not affect this conclusion

much. If, e.g., 2λ2 is replaced by LðλÞ ¼ 2λ2ð1þ
c3λ=M2

UV þ …Þ, as in the examples of [4], and higher
order terms are suppressed by the cutoff, or by MPl, these
terms will be subleading in the effective theory. If, on the
other hand, the suppression is weaker for any single one of
them, that term might compete with the quadratic flux term
at large flux, and perhaps even produce novel regimes with
tiny total cosmological constant, rearranging the effective
theory near them but behaving similarly to when the
quadratic dominates [4].
Thus, the bottom line is that these processes can

discharge the cosmological constant at a nearly constant
rate from one value to another before the discharges stop
completely, setting essentially an approximately uniform
distribution of values at late times, without automatically
favoring any particular value of Λ, including the smallest
ones. This sets the stage for invoking anthropic principle.
In contrast, in [1–5], we have been pursuing a framework

where the dominant flux terms are linear, and the instan-
tons, which discharge the cosmological constant, have
jqj < 1, so that their bounce action asymptotes to a pole
at a tiny value of Λ, which, as we argued, can favor the
smallest Λ without anthropics. As we noted in the

Introduction, one might try to adopt similar processes to
the cases when higher powers of the flux dominate, and the
linear term is absent. One might think that by arbitrarily
reducing the membrane charge, this might make q smaller
than unity, so that the jqj < 1 instantons of Fig. 1 take over
the discharges. If this had been possible, the spectrum of Λ
as a function of the fluxes would have been altered, looking
like Fig. 3, where for small parentΛ the slope of the tangent
to the parabola would have been below unity. However,
there are problems with this approach.
Seeing the problem is straightforward. To get jqj < 1, so

that the corresponding instantons are activated, formula (44)
shows that we must violate the electric weak gravity bound
considerably: solving (44) for Ni,

Ni ¼
3

4

qi
γ2WGC

; ð47Þ

and so if jqij < 1 and γWGC > 1, we find Ni < 0.75—which
completely excludes the possibility of screening any value
of field theory vacuum energy by quantized fluxes. Indeed,
to have a chance to screen a natural field theory vacuum
energy λQFT ≃M4

UV and then relax the total by subsequent
membrane nucleations, we need multiple units of flux:
Ni ≫ 1. Hence, we need a serious violation of the electric
weak gravity bound: jqij < 1 implies

γWGC <

ffiffiffiffiffiffiffiffi
3

4Ni

s
; ð48Þ

and so if Ni ≫ 1, we find γWGC ≪ 1. Next, we can ignore
the stability bound of Eqs. (45), since the bounce action
in the “braking” stage for this case is not (37), but (36), and
so the stability is enforced by the Λ → 0 pole.

FIG. 3. Λ-parabola, depicting the spectrum of Λ as a function of
the screening flux, but for smaller values ofQi than in Fig. 2. As a
result, the slope of the tangent as measured by q becomes smaller,
and if jqj < 1, discharges would be mediated by the jqj < 1
instanton of Fig. 1. We show in the text that this is unfounded
when quadratic flux terms dominate.
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However, if we rewrite Λ� for the case jqj < 1 as

Λ� ¼
3

16

T 2
i

M2
Pl

¼ 3

16

Q2
i

γ2WGC
; ð49Þ

we see that γWGC ≪ 1 implies that charges are very small:
Qi ≃ 4ffiffi

3
p γWGC

ffiffiffiffiffiffi
Λ�

p
≪ 4ffiffi

3
p ffiffiffiffiffiffi

Λ�
p

. From Eqs. (21) and the

second of (24), it then follows that

ΔΛ≃2λΔλ¼ λQi≃
4ffiffiffi
3

p γWGC
ffiffiffiffiffiffiffiffiffiffi
ΛQFT

p ffiffiffiffiffiffi
Λ�

p
≪

4ffiffiffi
3

p M2
UV

ffiffiffiffiffiffi
Λ�

p

≃
M2

UV

MPl
T i: ð50Þ

Thus, sinceMUV ∼MPl and T i < M3
UV, in this regime, the

individual discharges change the cosmological constant by
a tiny amount, ΔΛ=Λ ≪ T i=M3

UV. Thus, to relax it to
nearly zero, we need many subsequent transitions during
the “braking” stage, which will be ever more slow due to
the attractor behavior of (36). Such a slow discharge
sequence practically stabilizes the de Sitter background,
and it could bring back the specter of the empty universe
problem [42], since many small slow steps could result in
difficult reheating.4

The empty universe problem could be averted by
adding a single membrane with tension and charge that
satisfy WGC bounds. This would maintain the option of
UV completing the theory, and it would mediate faster
nucleations in the “braking” stage, by using the jqj > 1
nucleation processes with the bounce action (37). Even if
those satisfy the stability bound (38), the transitions
would be generically faster than the ones mediating
(50). Discharges mediated by such a membrane (or
membranes) can overtake the processes which have the
attractor behavior and avert the empty universe. However,
since the decay rate in this case may be uniform, this
channel could usher the anthropics back. This is the
obstacle to some of the proposals in [58], in using jqj <
1 instantons when quadratic (and higher power) fluxes
dominate. The point is not that those small values of Λ are
not populated but how they are populated. Indeed, on
general grounds the whole landscape will be populated
[59], but the details of the landscape “demographics”must
be looked at on a case to case basis.

B. Linear flux dominance

We have already extensively discussed aspects of Λ
discharge when linear flux terms dominate in [1–5]. Here,
we will revisit some of those results with particular
attention given to the role of WGC bounds. First off,

the screened total cosmological constant, as, e.g., exam-
ined in [5], is

Λtotal ¼ ΛQFT − c1M2
UVλþ 2λ2

¼ ΛQFT −
c21
2
M4

UV þ 2

�
λ −

c1
4
M2

UV

�
2

; ð51Þ

where we implicitly take the linear term to dominate over
the quadratic one and complete the squares in the second
line for the sake of convenience. In the case of multiple
fluxes, we can rewrite this as

Λeff ¼ 2
X
i

�
λi −

c1i
4
M2

UV

�
2

;

Λeff ¼ Λtotal − ΛQFT þ
X
i

c21i
2
M4

UV: ð52Þ

The spectrum of values of Λ is depicted in Fig. 4. Note
that in this case it does not matter if ΛQFT is positive or
negative (it had to be negative when quadratic fluxes
dominate for screening to work). Due to the fact that linear
fluxes dominate, they can screen ΛQFT of either sign.
In this limit, the slope parameter is

qi ¼
2c1i
3

M2
PlM

2
UVQi

T 2
i

¼ 2c1i
3

MPlM2
UV

T i
γWGC

¼ 2c1i
3

M2
UV

Qi
γ2WGC: ð53Þ

The equation for Λ� is still given by the expression (49),
Λ� ¼ 3

16
T 2

i =M
2
Pl ¼ 3

16
Q2

i =γ
2
WGC. The important point is that

now the parameter qi is completely independent of the units
of flux Ni—which can be as large as one wishes while qi is

FIG. 4. Almost-linear spectrum of Λ as a function of the
screening flux, projected onto a single coordinate plane. The
slope of the tangent is practically a constant, and when jqj < 1 the
membrane discharges are mediated by the jqj < 1 instantons of
Fig. 1.

4Dynamics of stable bubbles and domain walls with small
tensions and charges can also be constrained by cosmology [57],
although such bounds are not very practical in an empty universe.
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still fixed. We can keep the charge near the cutoff,
Qi ∼M2

UV, and γWGC ≲ 1, but close to the bound, and
ensure that jqij < 1 by choosing c1i < 1. When γWGC ≲ 1,
Λ� might thus be mere few units of charge above zero, but
faster discharges during the “boiling” regime could dis-
charge it to near zero.
Then, to satisfy WGC, we in principle need to have only

one charge per gauge group, which satisfies the electric
bound. Saturating the bound is acceptable, when the charge
is light enough. So for each gauge group, we need one of
the membranes to obey γWGC ≃ 1. From Eq. (53), for
membranes with γWGC ≃ 1, we need 2c1iM2

UV < 3Qi to
get jqij < 1. This together with Qi ≤ M2

UV constrains the
charge to 2c1iM2

UV=3 < Qi ≤ M2
UV, which can be met by

c1i ≤ 1. Meeting these bounds may be easiest done near the
Planckian cutoff, c1iMPl ∼MUV, which can also keep
T i < M3

UV and so retain an episode of “boiling” in the
theory below the cutoff. So a membrane with a charge of
order of the cutoff and tension somewhat smaller could also
yield jqij≲ 1, while marginally satisfying WGC bounds.
For other membranes which carry the gauge charge of the
same group, we can then violate the electric weak gravity
bound, that will make achieving jqij < 1 much easier. This
can happen if, for example, those membranes are domain
walls separating multiple vacua after a symmetry breaking
at low energies, which could be viewed analogously to
particles with fractional charges in QFT.
Alternatively, we may even allow a membrane whose

charge to tension ratio obeys the electric weak gravity
bound to participate in the discharge of Λ even if it has
jqij≳ 1, as long as there are other species of membranes
with jqij < 1 (which may violate the WGC bounds). The
reason is that although the processes for this one specific
discharge channel are mediated by the jqj≳ 1 instanton,
which uniformizes the distribution of the Λ values which
are linked by these transitions, there are many more
channels that proceed via the jqj < 1 instantons. Those
can still bias the overall distributions of Λ towards the
smallest possible values and have larger charges that
require fewer steps to get the cosmological constant close
to zero. Once near zero, those small values remain
extremely stable. If a jqj ≳ 1 channel is present, those
values might not be absolutely stable: they could decay,
for example, to regions Λ < 0 eventually. But as we have
seen, once a region of the universe ends up in the
“braking” regime of either jqj < 1 or jqj≳ 1 instanton
discharge, it is very stable and very long-lived. Yet, when
the terminal distribution of Λ is biased towards smallest
possible values, we may still avoid invoking the
anthropic arguments to explain why the cosmological
constant is not huge. Exactly how close to zero it can be
is controlled by the model building aspects of the theory,
which we described in some detail in [1–5]. We direct an
interested reader to those references for additional
information.

V. SUMMARY

In this paper, we have examined in detail implications of
the weak gravity conjecture for the mechanisms for
discharging cosmological constant via membrane nucle-
ations. This is a natural and interesting question, given the
role which the WGC bounds play in blocking the existence
of eternal event horizons in gravity theories in order to
protect unitarity. In the frameworks where the cosmological
constant is screened by 4-form fluxes, and then the total
background value of Λ is discharged away by the nucle-
ation of membranes, stable eternal de Sitter spaces do not
even exist. In fact, starting with a theory which has fluxes
and membranes, the only way to recover an eternal de Sitter
is to decouple all of the membranes in the theory by, e.g.,
sending their tensions to infinity. But this would violate the
WGC bounds completely; compliance with the conjecture
rules out eternal de Sitter just like the WGC bounds applied
to charged particles rules out eternal extremal black holes
[23]. Conversely, in the example where quadratic flux terms
control the discharge processes, we saw that if the WGC
bounds are violated, de Sitter space will not reach near-
Minkowski limit unless the theory is fine tuned. From this
point of view, an eternal de Sitter geometry is really
analogous to a remnant, with regions forever removed
from a dweller in the space.
The details of the WGC bounds, when combined with

naturalness of the initial, maximal cosmological constant,
place limits on the decay processes of de Sitter space and
the cosmological constant that sources it. The possible
outcomes fall in two different classes. When the flux terms
which control the screening and discharge of the cosmo-
logical constant are dominated by quadratic and higher
order terms, the bounds from weak gravity conjecture and
naturalness point toward anthropic scenarios. Interestingly,
even if the WGC bounds are deliberately violated, the
discharge rates still do not easily pick a small Λ. On the
other hand, if the theory involves linear flux terms, which
dominate below the cutoff, anthropics could be avoided,
because a large cosmological constant naturally decays
toward smaller values, with nonuniform decay rates.
This is because the evolution is comprised of two

discharge regimes: the “boiling” stage, followed by a
“braking” stage. For the cases when the linear fluxes are
present and dominant, with WGC-compliant branes, the
narrower “boiling” stage processes have fast discharge
rates, which generate the descendant regions with curva-
tures biased towards the smallest possible values of
Λ > 0. The subsequent “braking” stage in turn slows
down the most the decay rates of regions with smallest
positive Λ after “boiling” has ended. Together, these
stages produce a distribution of Λ, which is biased
towards the smallest values.
Conversely, if the controlling fluxes are dominated by

quadratic or higher order terms, purposefully violating the
WGC bounds may reproduce the enhanced “braking” at
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small values of Λ, making de Sitter patches with small Λ
more stable than the strongly curved ones. However, the
price to pay is that charges must be very small if the
screening and discharge adjustment are to be natural. This
affects the “boiling” stage, which could resurrect the empty
universe problem. Further, by current lore, UV completing
the theory needs the means to maintain WGC. This can be
done by adding a membrane which satisfies the electric
WGC bound, charged under the same gauge group as the
membranes that are adjusting Λ, one per gauge group. If
gravity is universal, these membranes should also partake
in the cosmological constant adjustment. If they obeyWGC
bounds, their vacuum energy would be dominated by
quadratic flux terms, and so they would yield discharge
processes which would be uniform, since it would be
mediated by the ðþ;þÞ instanton. These processes can be
faster than the discharges usingWGC-violating membranes
and flatten the distribution of terminal Λ at the small Λ end.
This would usher back the anthropics.
Note that our investigation of the discharges was con-

sistently carried out below the cutoff of the effective theory,
which avoids the direct confrontation with quandary that is
the wormhole regime [19–22]. In this sense, the WGC
limits are useful, since they “regulate” the boundary
conditions which quantum gravity imposes on the low

energy effective theory, with some confidence that the
phenomena retained because they obey the WGC bounds
are meaningfully accounted for.
Regarding the final numerical values of Λ, precisely how

small those can be depends on the model building details,
as noted in previous work [1–5]. More precise model
building is required to give a more specific answer. Finally,
note that even if the various regimes occur concurrently,
i.e., if the discharge processes are more diversified,
involving both processes mediated by jqj > 1 and jqj <
1 instantons, as long as at least some channels are
dominated by linear fluxes, the spectrum of Λ will be
skewed toward the smallest values. A more detailed
investigation to explore phenomenologically viable scenar-
ios is therefore warranted.
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