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We calculate the effective mass of gravitational perturbations induced by the interaction of the classical
gravitational field with quantum matter in the background of the Poincaré patch of de Sitter space. Using the
Schwinger-Keldysh diagrammatic technique, the one-loop effective action is calculated, and it is shown that
the graviton does not acquire mass for the most symmetric Bunch-Davies state. However, we have shown that
even in this case, there is a nontrivial modification of the theory at one loop in the scalar sector of gravity.
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I. INTRODUCTION

Quantum field theory in curved space-time is one of the
directions of modern theoretical physics, which possibly
can shed light on the problems of the cosmological constant
and the evolution of the early Universe. De Sitter space is a
convenient example for investigating these questions due to
the high number of symmetries, but there are still many
subtleties that have not been studied so far in sufficient
details, such as IR divergences in loop corrections [1–3],
vacuum instabilities [1,4–6], and the behavior of light
fields [2]. One way to explore the behavior of the system
and the response of quantum matter to external conditions
is to find the effective action for small perturbations of the
external field. This paper’s main objective is to study the
effective mass term for the graviton, which it may acquire
in the one-loop effective action in de Sitter (dS) and anti–
de Sitter (AdS) space-times. The motivation for this
question comes from the natural Gibbons-Hawking temper-
ature in dS [7,8], which suggests that photon and graviton
can acquire a nonzero mass as it happens in the physics of
plasma. Our work is inspired by the paper [7], where it is
shown that despite the fact that an observer would detect
some sort of thermal equilibrium with the canonical
temperature TdS ¼ H

2π (H is the Hubble constant here),
there is no effective Debye mass for photon for the most
symmetric Bunch-Davies state of the matter. We extend this
discussion onto the case of the gravitational mass. The
graviton field itself is considered at the classical level as a
perturbation of the dS metric, and we consider free scalar

field theory as the quantum matter. It is worth noting that
perturbation of the metric in an external field has several
physical modes that can exhibit different behavior in the
effective theory. Consideration of these cosmological
perturbations is important for understanding the propaga-
tion of gravitational waves and density fluctuations of
matter in the early Universe [9]. In addition, an important
point in this work is that we restrict ourselves only to the
Poincaré patch of dS. This is because in global dS the
isometry group is broken due to divergent IR behavior of
the one-loop corrections at past infinity [1,10], making one
to introduce a Cauchy surface at finite time—this can
obviously affect the effective theory at large distances and
requires separate study.
There are two well-studied types of massive terms [11,12]

that can be added to the gravity action,

Smass ¼
Z

dDx
ffiffiffiffiffi
jgj

p
½ϵghh2 þm2

gðhμνhμν − h2Þ�; ð1:1Þ

which break diffeomorphism invariance. The second one is
called Fierz-Pauli massive term, and it is known to bring
noghostlike degrees of freedom to the linearizedgravity,while
the first one is associated to the so-called “scalar ghost” and
leads to Ostrogradsky’s instability [12]. In our work, we
attribute the emergence ofmass to the appearance of terms like
(1.1), if any, in the long-wave expansionof the effective action,
which in turn does respect gauge invariance. For instance,
given the Minkowski background, we have for Ricci scalar R
in the linear and second orders,

Rð1Þ∼k2
�
gμν−

kμkν
k2

�
hμν;� ffiffiffiffiffi

jgj
p

R
�ð2Þ

∼k2ðhμνhμν−h2Þþ2kμkνgαβðhμνhαβ−hμαhνβÞ:
ð1:2Þ
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Therefore, small and slowly changing perturbations of metric
acquire a mass if the effective action contains such covariant
contributions as

ΔΓeff ¼
Z

dDx
ffiffiffiffiffi
jgj

p �
ϵghR

1

□2
Rþm2

g
1

□
R

�
: ð1:3Þ

In general, the situation is much more intricate due to
ultraviolet effects, renormalizations of cosmological con-
stant, conformal anomalies, and other factors. For example,
one of the primary contributions to induced gravity in two-
dimensional space is the Mabuchi action [13,14], which
originates from the integral of the Green function for the
covariant Laplacian taken at coincident points.
We have not been able to solve all the puzzles that arise

in this way up to this point. However, we define and
analyze the quantity of effective mass as a measure of the
backreaction of quantum matter immersed in the strong
gravitational background for the simplest case of Bunch-
Davies state in Poincaré patch of dS. As long as we treat the
gravitational sector at the classical level, the notion of
induced mass should not be referred to as some mass of the
particle graviton but must be considered as a characteristic
of matter’s behavior in the given state. For example, in the
case of large positive masses, gravitational interaction is
screened, and a negative squared mass corresponds to the
decay of the initial external background. In particular, in
the presence of classical stress-energy tensor, a negative
squared mass for thermal state of matter leads to the
well-known Jeans’ instability [9,15,16]. At the same time,
taking into account such loop effects as secularly growing
corrections [1,17–21], the stability of dS is a separate
interesting question with many unresolved problems,
because these contributions can drastically affect the
tree-level situation for different types of quantum fields
and various initial states. This is why we believe that more
approaches are needed to treat this issue.
Another curious aspect of the appearance of the gauge

field’s mass is the connection with the Higgs mechanism.
We expect that the field of spin-s swallows the Goldstone
boson of spin-(s − 1) to acquire a mass. In Minkowski
space with λϕ4 potential, there are two diagrams, local and
nonlocal, which combine into a transverse structure and
shift the pole of the gauge field's propagator (see Fig. 1),
where crosses represent the vacuum expectation of the
Higgs field, and the pole at k2 ¼ 0 indicates the exchange

of the massless boson. If there is no potential with
spontaneous symmetry breaking mechanism and our pho-
ton or graviton interacts with free field theory, we have
bubble and tadpole diagrams instead of the contributions
of Fig. 1. For example, in the case of the graviton, the
analogue of the Higgs mechanism will occur if a pole
corresponding to the Goldstone vector appears in the
nonlocal part of the graviton’s self-energy. This is the case
when the state produced by the matter stress-energy tensor
TμνðxÞj0i has a nonzero overlap with the state of Goldstone
vector, which can be easily seen if one inserts the sum
over all states into the nonlocal part of the self-energy
Σμνjαβ ∼

P
stateh0jTμνjstateihstatejTαβj0i. As long as the

stress-energy tensor is quadratic in fields, the Higgs
mechanism requires the appearance of the Goldstone
vector in the tensor product of states in the matter spectrum,
which is a sum of infinite-dimensional positive-weight
unitary irreducible representations of the isometry group
of the space under consideration [22–24]. Although it is
difficult to imagine that the stress-energy tensor of a free
field theory can create a Goldstone vector as a bound state,
this actually happens under certain conditions in AdS: e.g.,
the presence of the Goldstone vector in the bubble diagram
is shown in [24,25] using the expansion of propagators at
large distances.
In dS, the spectrum of states is different [26], and we do

not expect the same phenomena to occur. Moreover, the
analysis in dS should be more careful as it is a nonsta-
tionary background, so one has to adopt the Schwinger-
Keldysh diagrammatic technique. In particular, it was
shown in [7] that Debye and magnetic masses of the
photon in dS are zero in the maximally symmetric and
analytic Bunch-Davies state. In this paper, we show that
the effective mass of the tensor mode of the graviton is
also zero up to a subtraction of UV divergent contact
terms, which are present in Minkowsky space as well.
Specifically, in Sec. II, we describe the particular model in
question and provide Schwinger-Keldysh diagrammatic
technique for it. In Sec. III, we derive the expression for
gravity’s induced action in terms of loop integrals and then
use it in Sec. IV to calculate the massmg of the tensor mode
of the graviton. We give a definition to this quantity in a
manner of nonequilibrium condensed matter physics [27].
Finally, in Sec. V, we discuss some features that arise in the
scalar sector of gravity in the effective action. First, for
space-time dimensionD > 2, the loop integral for the mass

FIG. 1. Higgs mechanism in Standard Model.
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of the scalar mode diverges, requiring a more careful
regularization procedure that preserves the symmetries of
the problem for further analysis. Second, in dS space, this
mass already has a nonzero value at the classical level,
with both the massive and kinetic terms entering the
action with the wrong sign. This is not a problem in
classical theory since scalar modes do not propagate in it.
Third, we claim that divergent terms appear in a nonsta-
tionary gravitational background that are absent in the flat
case. This feature should be related to a deficiency in
defining effective mass as a term in the expansion of the
effective action into a series and should be eliminated
after resummation, so more detailed analysis needs to be
carried out in subsequent studies. We separately consid-
ered the case of two-dimensional spacetime, where
integrals converge and found that in dS, the effective
mass of the scalar mode differs significantly from its
formal value in flat space for light matter fields, indicat-
ing a significantly different response to external back-
ground in these two situations. Additionally, in
Appendix E, we show the presence of Goldstone scalar
and mass of a photon in one-loop photon’s self-energy in
AdS4 following the spirit of work [24] to establish
differences between field theories in AdS and dS.

II. PRELIMINARIES AND DEFINITIONS

Consider the action for gravity coupled to the real
massive scalar field in D ¼ dþ 1 dimensions,

S½gμν;ϕ� ¼ −
1

16πG

Z
dDx

ffiffiffiffiffi
jgj

p
½Rþ 2Λ�

þ 1

2

Z
dDx

ffiffiffiffiffi
jgj

p
½gμν∂μϕ∂νϕ −M2ϕ2�; ð2:1Þ

where the Λ term is defined by the Hubble constant H as

Λ ¼ ðD−1ÞðD−2Þ
2

H2,G is a Newton’s constant, and below we
use the dimensionless mass parameterm ¼ M

H. We will split
the metric into the background in the Poincaré patch of
dS and small perturbation, hμν, over it,

gμν¼ ĝμνþhμν; ĝμν¼
1

H2η2
diagð1;−1;…;−1Þ; ð2:2Þ

where η is the conformal time, which is related to the
inertial observer time coordinate as η ¼ 1

H e−Ht. Below we
will also use the perturbation with raised indices

hμν¼defĝμαĝνβhαβ and the rescaled field hμν ¼ H2η2hμν, such
that gμν ¼ 1

H2η2
½γμν þhμν�, γμν ¼ diagð1;−1;…;−1Þ. The

field hμν is a more appropriate variable for the problem in
question, e.g., the equations of motion for the naive
linearized massive gravity take the form of the usual
Klein-Gordon equation for the fields, obtained from the
components of hμν by means of linear operations [28].

We consider gravity as classical and quantize only the
scalar field.

A. The quantization of the scalar field

We quantize the scalar field in the standard way using the
creation and annihilation operators with the canonical
commutation relations,

ϕðη;xÞ ¼
Z

dD−1p
ð2πÞD−1 ½âpfpðηÞeipx þ â†pf�pðηÞe−ipx�;

½âp; â†q� ¼ ð2πÞD−1δðp − qÞ;
fpðηÞ ¼ H

D−2
2 η

D−1
2 hνðpηÞ; p≡ jpj: ð2:3Þ

Here, hνðpηÞ can be expressed in terms of the Hankel

function of the first kind Hð1Þ
ν ðzÞ for complementary

ðm < D−1
2
Þ and principle ðm > D−1

2
Þ series as follows:

hνðpηÞ ¼
ffiffiffi
π

p
2

e−
π
2
νHð1Þ

iν ðpηÞ;

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −

ðD − 1Þ2
4

r
ðprincipal seriesÞ;

hνðpηÞ ¼
ffiffiffi
π

p
2

Hð1Þ
ν ðpηÞ;

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 1Þ2

4
−m2

r
ðcomplementary seriesÞ;

ð2:4Þ

so that the mode functions fpðηÞ obey the equation,

∇η∂ηfpðηÞ þ
�
p2 þm2

η2

�
fpðηÞ ¼ 0; ∇η ≡ ∂η −

D− 2

η
:

ð2:5Þ

Note, that by choosing the harmonics in the form (2.4) and
by the condition âpjBDi ¼ 0, we specify the Bunch-Davies
state of the scalar field theory in the Poincaré patch of
dSD—wewill stick to this initial state throughout this paper
as it preserves the highest number of symmetries in loop
calculations [21], while the effects of various nontrivial
initial states will be considered elsewhere. Next, in order to
construct the Schwinger-Keldysh diagrammatic technique,
it is appropriate to introduce the fields after the Keldysh
rotation,

ϕcl ¼
ϕþ þ ϕ−

2
; ϕq ¼ ϕþ − ϕ−;

hμνcl ¼
hμνþ þ hμν−

2
; hμνq ¼ hμνþ − hμν− : ð2:6Þ

Here, “þ”- and “−”-parts are attributed to the upper and
lower branches of the Keldysh contour C on t-plane,
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The corresponding propagators of the scalar field in
these notations have the form (T C is the ordering operator
along the contour C on the Fig. 2),

Gðx; x0Þ ¼ hT CφðxÞφðx0Þi

¼ Fðx; x0Þ − i
2
signCðη − η0Þρðx; x0Þ;

hϕclðxÞϕclðyÞi ¼ Fðx; yÞ; hϕqðxÞϕclðyÞi
¼ iθðη − η0Þρðx; yÞ;

hϕclðxÞϕqðyÞi ¼ −iθðη0 − ηÞρðx; yÞ;
hϕqðxÞϕqðyÞi ¼ 0; ð2:7Þ

where the sign function signC is implemented along
the contour C, Fðx; yÞ ¼ 1

2
hfϕðxÞ;ϕðyÞgi and ρðx; yÞ ¼

ih½ϕðxÞ;ϕðyÞ�i are the Keldysh and spectral functions,
respectively [29]. The state that we consider is spatially
homogeneous, which implies that the spatially Fouriér-
transformed propagators depend on one momentum k and
two times η and η0,

Fðkjη; η0Þ ¼
Z

ddxFðη; η0; jx − yjÞe−ikðx−yÞ

¼ ReffkðηÞf�kðη0Þg;

ρðkjη; η0Þ ¼
Z

ddxρðη; η0; jx − yjÞe−ikðx−yÞ

¼ −2ImffkðηÞf�kðη0Þg; ð2:8Þ

where we express the propagators in momentum space via
the mode functions (2.3). Also it is worth noting here that
the commutation relation ½ϕðxÞ; πðyÞ� ¼ iδðdÞðx − yÞ with
the canonical momentum πðx; tÞ ¼ ffiffiffiffiffijgjp

g00ðtÞ∂tϕðx; tÞ
implies the following property of the spectral function:

∂ηρðkjη; η0Þjη¼η0 ¼ −HD−2ηD−2;

∂η0ρðkjη; η0Þjη¼η0 ¼ HD−2ηD−2; ð2:9Þ

while the causality requires ρðkjη; ηÞ ¼ ∂η∂η0ρ×
ðkjη; η0Þjη¼η0 ¼ 0.

B. Effective equation of motion

The propagators (2.7) allow us to find perturbatively the
Keldysh effective action Γeff ½hcl; hq�, which is a powerful
tool to study dynamics of nonequilibrium systems [30–33].
To accomplish this, we extend the integration in (2.1) onto
the contour C, change the fields according to (2.6), expand
the functional integral over the matter fields in powers of
hμν and calculate loop integrals using the propagators (2.7).
The contributions we are interested in are as follows (see
Fig. 3). As we will see, all the diagrams on the Fig. 3 are
important for the effective action to be gauge invariant in
the order under consideration. Also there can be some
additional counterterms δrenΓ needed to cure the UV
divergences in these loops—we will discuss them in the
next section and show, that the first diagram on the Fig. 3
can be subtracted by the term δΛΓeff , which renormalizes
the cosmological constant.
The graviton equation of motion (EOM) follows from

the effective action Γeff ½hcl; hq� as
δ

δhq
Γeff ½hcl; hq�jhq¼0 ¼ 0: ð2:10Þ

To derive these equations, we need the following interact-
ing parts in the action (2.1):

ΔS ¼ −
Z

dDx
ffiffiffiffiffi
jĝj

p
hμνcl T

cl−q
μν −

1

2

Z
dDx

ffiffiffiffiffi
jĝj

p
hμνq Tcl−cl

μν

þ
Z

dDx
ffiffiffiffiffi
jĝj

p
hμνclΓμνjαβh

αβ
q ; ð2:11Þ

where

Tcl−q
μν ¼ −

1

2
ĝμνðĝλω∂λϕcl

∂ωϕ
q −m2ϕclϕqÞ þ ∂μϕ

cl
∂νϕ

q;

ð2:12Þ

Γμνjαβ ¼
1

8
ðĝαβĝμν − 2ĝμαĝνβÞ½ĝλω∂λϕcl

∂ωϕ
cl −m2ϕcl2�

−
1

2
ĝαβ∂μϕcl

∂νϕ
cl þ 1

2
ĝμα∂βϕcl

∂νϕ
cl; ð2:13Þ

and the same for Tcl−cl
μν replacing q → cl in (2.12). Note

that the bare correlation functions (2.7) contain theta

FIG. 2. Keldysh contour on t- and η-plane.
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functions, while the bubble diagram on the Fig. 3 has
derivatives over time in the vertices as they appear in the
stress-energy tensor (2.12). Hence, there can be delta
functions in the bubble diagram,1 so we will collect these
local contributions ΔΠloc

μνjαβ to the total polarization oper-
ator along with the tadpole diagram into the one expression

Πloc
μνjαβ in what follows, while we will denote by Πbub

μνjαβ the
nonlocal contributions, where all the derivatives in vertices
act only on the Keldysh and spectral functions of the
propagators (2.7) in this diagram. Then the effective EOM
in the momentum space over the d space-coordinates has
the form,

1

16πG
dEOMμνjαβhμνðk; ηÞ −

1

2

Z
∞

η

dη0

HDη0D
Πbub

μνjαβðkjη0; ηÞhμνðk; η0Þ þ Πloc
μνjαβðηÞhμνðk; ηÞ ¼

1

2
hTcl−cl

αβ i; ð2:14Þ

where the “source” term on the rhs corresponds to the first
tadpole diagram on the Fig. 3 and

Πloc
μνjαβðηÞ ¼ −

1

2
ΔΠloc

μνjαβðηÞ þ Πtad
μνjαβðηÞ; ð2:15Þ

Πbub
μνjαβ þ ΔΠloc

μνjαβ ¼
	
Tcl−q
μν þ Tcl−q

νμ

2
Tcl−cl
μν



: ð2:16Þ

The operator dEOMμνjαβ in the Eq. (2.14) appears due to
the Einstein-Hilbert part of the action (2.1). Namely,

following [9,16], we split the metric perturbation into
helicity components,

h00¼2Φ;

h0k¼ ikkZþZT
k ;

hkl¼−2Ψδkl−2kkklEþ iðkkWT
j þklWT

i ÞþhTT
kl ; ð2:17Þ

where kkZT
k ¼ kkWT

k ¼ kkhTT
kl ¼ 0 and hTT

kk ¼ 0. We will
work in the gauge h0k ¼ 0. In this gauge, the linearized

Einsein’s tensorGð1Þ
μν ¼ Rð1Þ

μν − 1
2
ĝμνRð1Þ þ ðD − 1ÞH2hμν in

arbitrary dimension has the form,

Gð1Þ
00 ¼ −

ðD − 1ÞðD − 2Þ
2η2

h00 þ
D − 2

2η
∂ηhkk þ

1

2
∂
2
lhkk −

1

2
∂l∂khkl;

Gð1Þ
0i ¼ −

D − 2

2η
∂ih00 −

1

2
∂η∂khki þ

1

2
∂η∂ihkk;

Gð1Þ
ij ¼ −

1

2
∂i∂jh00 þ

1

2
∂i∂jhkk −

1

2
∂
2
ηhij þ

D − 2

2η
∂ηhij þ

1

2
∂
2
khij −

1

2
ð∂i∂khkj þ ∂j∂khkiÞ

þ δij

�ðD − 1ÞðD − 2Þ
2η2

h00 −
D − 2

2η
∂ηh00 þ

1

2
∂
2
kh00 þ

1

2
∂
2
ηhkk −

D − 2

2η
∂ηhkk −

1

2
∂
2
lhkk þ

1

2
∂l∂khkl

�
: ð2:18Þ

Note that (2.18) can be written as the action of linear
differential operator on the metric perturbation hμν ≡
1

H2η2
hμν: G

ð1Þ
αβ ¼ dEOMμνjαβhμν. In momentum space spatial

derivatives ∂i in (2.18) must be identified with iki, which
defines the action of the operator dEOMμνjαβ in the first line
of (2.14). We will use the Eqs. (2.14)–(2.18) to properly
define the notion of the induced mass in the following
sections.

C. Implications of de Sitter isometries

In Bunch-Davies state, after the subtraction of the
Λ-renormalization counterterm δΛΓeff from Γeff , we are
left with the equation of motion of the form (2.14), but with

FIG. 3. Effective action.

1Note, that in the operator formalism time derivatives do not
commute with the time-ordering operator: hT ∂tÂðtÞB̂ðt0Þi ≠
∂thT ÂðtÞB̂ðt0Þi. However, if time derivatives appear in vertices,
there additional noncovariant terms emerge in the interaction
Hamiltonian, which restore the accordance with the functional-
integral approach, where one can carry the time derivatives
through the functional integral [34].
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no “source” term on the rhs and with renormalized local
part of the polarizatrion operator. This equation is invariant
under the gauge transformation in the zeroth order in

the metric perturbations δξhμν ¼ −ĝμλb∇λξ
ν − ĝνλb∇λξ

μ. In
order to obtain a general form of the linear equation
D̂μνjαβhαβ ¼ 0, which respects both the dS isometry group
SOð1; DÞ and gauge invariance, we will use the
Lichnerowicz operator ΔL. It acts on the tensor, vector
and scalar fields in the following way:

ΔLhμν ¼ −b□hμν − 2R̂μανβhαβ þ R̂α
μhνα þ R̂α

νhμα;

ΔLVμ ¼
�
−b□ −

2Λ
D − 2

�
Vμ;

ΔLφ ¼ −b□φ; ð2:19Þ

where R̂μανβ, R̂μν and b□ are Riemann tensor, Ricci tensor,
and the covariant Laplacian on the dS background corre-
spondingly. The action of ΔL in dS commutes with the
covariant derivatives, as explained, e.g., in [24,35,36]. Then
we can seek for the operator D̂μνjαβ in the explicitly dS
invariant form,

D̂μνjαβhαβ ¼ AðΔLÞhμν þ
1

2
BðΔLÞ½b∇μ

b∇λhνλ þ b∇ν
b∇λhμλ�

þ CðΔLÞb∇μ
b∇ν
b∇αb∇βhαβ

þDðΔLÞb∇μ
b∇νhαα þ EðΔLÞĝμνhαα

þ FðΔLÞĝμνb∇αb∇βhαβ; ð2:20Þ

where A;B;C;D; E; F are integro-differential operators,
which can be expressed in terms of ΔL and its Green
functions. Also, we set D ¼ F immediately due to the
required symmetry under the switching of the pairs of
indices ðμνÞ ↔ ðαβÞ.
Below we show that the invariant one-loop corrected

effective equation of motion can include only two indepen-
dent operators, which we denote as P̂tt

μνjαβ, P̂
s
μνjαβ. They are

associated with the projectors onto the transverse traceless
part of the graviton and onto the scalar mode of the graviton
correspondingly. Namely, one can verify, using the explicit
expressions given below in (2.24) and (2.25), that the

operator dEOMμνjαβ from (2.14) can be written as

dEOMμνjαβ ¼ ðΔL þ 2ðD − 1ÞH2Þ
�
P̂tt

μνjαβ −
D − 2

D − 1

ðΔL þ ðD − 1ÞH2Þ2
ðΔL þDH2ÞðΔL þ 2ðD − 1ÞH2Þ P̂

s
μνjαβ

�
; ð2:21Þ

so that the effective linear EOM of the form D̂μνjαβhαβ ¼ 0
is as follows:

dEOMμνjαβhαβ þ AðΔLÞP̂tt
μνjαβh

αβ þ EðΔLÞP̂s
μνjαβh

αβ ¼ 0:

ð2:22Þ

Indeed, although we have five independent coefficients
in (2.20), the requirement of gauge invariance implies three
more constraints,8>>>>><>>>>>:

2A −
�
ΔL þ 4Λ

D−2

�
B ¼ 0;

Bþ 2D − 2C
�
ΔL þ 2Λ

D−2

�
¼ 0;

E −D
�
ΔL þ 2Λ

D−2

�
¼ 0;

ð2:23Þ

so we are left with two independent coefficients and,
therefore, two independent dS invariant and gauge invariant
tensor structures, which act on the hμν. The first structure
for the projection onto the transverse traceless part of the
graviton httμν ¼ P̂tt

μνjαβh
αβ can be fixed by the two additional

conditions A ¼ 1 and ĝμνhttμν ¼ ĝμνP̂tt
μνjαβh

αβ ¼ 0. These
additional constraints lead to the following set of the

coefficients for this projector (we express the cosmological
constant through the Hubble parameter):

B ¼ 2

ΔL þ 2ðD − 1ÞH2
;

C ¼
D−2
D−1

ðΔL þDH2ÞðΔL þ 2ðD − 1ÞH2Þ ;

F ¼ −
1

D − 1

1

ΔL þDH2
;

E ¼ −
1

D − 1

ΔL þ ðD − 1ÞH2

ΔL þDH2
: ð2:24Þ

The second independent operator P̂s
μνjαβ can be written in

the following simple form:

P̂s
μνjαβ ¼

�
ĝμν −

b∇μ
b∇ν

−ΔL − ðD − 1ÞH2

�
×

�
ĝαβ −

b∇α
b∇β

−ΔL − ðD − 1ÞH2

�
: ð2:25Þ

With the use of an intuition of flat space where ΔL ∼ k2, we
can observe that the IR behavior of AðΔLÞ and EðΔLÞ
provides us with the coefficientsmg and ϵgh in (1.1). Hence,
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when all the symmetries are respected during our oper-
ations, it suffices to calculate the effective mass, e.g., only
for the sector of gravitational perturbations hTT

μν to restore
the whole “Fierz-Pauli term” in the induced gravity at large
distances. Finally, the statements of this subsection are
strictly working well exclusively for Bunch-Davies initial
state of the matter and for Poincaré patch of dS, because in
global dS the isometries are broken at the loop-level [1,10].

III. EFFECTIVE ACTION

In this section, we find the expression for the effective
action Γeff . The analysis of the nonlocal part Πbub

μνjαβ is given
in the Appendix A.
In order to obtain the expression for the tadpole diagram

we average the second-order term (2.13) over the rotation-
ally invariant state and get

Πtad
00j00 ¼

1

H2η2
1

2

Z
p
∂η∂η0Fjη0¼η −

1

8H4η4
hLðηÞi≕ 1

H2η2
π1ðηÞ;

Πtad
00j0k ¼ Πtad

0ijkl ¼ 0;

Πtad
00jkl ¼ −

1

8H4η4
hLðηÞiδkl þ

1

4H2η2

Z
p

�
∂η∂η0Fjη0¼η −

1

D − 1
p2F

�
δkl ≕

1

H2η2
π2ðηÞδkl;

Πtad
0ij0l ¼ −

1

H2η2
π2ðηÞδil;

Πtad
ijjkl ¼

1

8

�
1

H4η4
hLðηÞi þ 1

H2η2
4

D − 1

Z
p
p2F

�
× ðδijδkl − δikδjl − δilδjkÞ≕

1

H2η2
π3ðηÞðδijδkl − δikδjl − δilδjkÞ; ð3:1Þ

where
R
p ¼ R dD−1p

ð2πÞD−1, the Keldysh function Fðpjη; η0Þ (for brevity we drop the arguments in the expressions above under the

integrals) is included in (3.1) at coincident time points η ¼ η0 as there is only one internal point in the tadpole diagram—we
comment on the UV divergences in these expressions below. In addition, we have introduced the averaged Lagrangian,

hLðηÞi ¼ H2η2
Z
p

�
∂η∂η0Fjη0¼η −

�
p2 þm2

η2

�
Fðpjη; ηÞ

�
: ð3:2Þ

Now, considering the terms, which arise from (2.16) when time derivatives act on the theta functions of the
propagators (2.7), we obtain

ΔΠloc
00j00ðηÞ ¼

1

2

1

H2η2

Z
p
∂η∂η0Fjη0¼η; ΔΠloc

00j0kðηÞ ¼ ΔΠloc
0ijklðηÞ ¼ 0;

ΔΠloc
0ij0kðηÞ ¼

1

H2η2
1

2ðD − 1Þ δik
Z
p
p2Fðpjη; ηÞ; ΔΠloc

00jklðηÞ ¼
1

2

1

H2η2
δkl

Z
p
∂η∂η0Fjη0¼η;

ΔΠloc
ijjklðηÞ ¼

1

2

1

H2η2
δijδkl

Z
p
∂η∂η0Fjη0¼η: ð3:3Þ

Finally, summing up all the local contributions (3.1) and (3.3), we find from (2.15)

Πloc
00j00ðηÞ ¼

1

H2η2
1

4
hTcl−cl

00 i; Πloc
ijj00ðηÞ ¼ −

1

H2η2
1

4
hTcl−cl

ij i; Πloc
0ij0lðηÞ ¼ −

1

H2η2
1

4
hTcl−cl

00 iδil;

Πloc
ijjklðηÞ ¼

1

H2η2

�
π3ðηÞðδijδkl − δikδjl − δilδjkÞ −

1

4

Z
p
∂η∂η0Fjη0¼ηδijδkl

�
: ð3:4Þ

Having the explicit expressions for all important parts of the effective action, we can write it down as follows (we omit the
Einstein-Hilbert part):

Γeff ¼ −
1

2

Z
dDx
HDηD

hαβq hTcl−cl
αβ i − 1

2

Z
∞

0

dη
HDηD

Z
∞

η

dη0

HDη0D

Z
k
hμνcl ðη0;kÞΠbub

μνjαβð−kjη0; ηÞhαβq ðη;−kÞ

þ
Z

∞

0

dη
HDηD

Z
k
hμνcl ðη;kÞΠloc

μνjαβðηÞhαβq ðη;−kÞ: ð3:5Þ
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Let us emphasize at this point that all the local contributions
(2.15) and averaged Lagrangian (3.2) contain the Keldysh
function at coincident space-time points, which is the UV-
divergent quantity and requires an accurate regularization
procedure. Although the self-consistent study of the effec-
tive theory requires to fix all the counterterms, we deter-
mine only the counterterm to the cosmological constant in
the end of this section, which is sufficient when we
calculate the effective mass. Nevertheless, the terms (2.15)
are indispensable for gauge invariance. Indeed, one can
check the gauge symmetry of this action, using the trans-
formation in the zeroth and first orders in perturbation,

δξhμν¼−ĝμλb∇λξ
ν−hνβĝαβĝμλb∇λξ

α− ĝμλΓð1Þν
λω ξωþfμ↔νg;

ð3:6Þ

where Γð1Þν
λω are the first order corrections to the exact

Christoffel symbols in the metric (2.2). The invariance in
the order OðξÞ is guaranteed by the covariant conservation
of the stress-energy tensor. In Appendix B, we show how
to make sure of gauge invariance in the order Oðkhq · ξkÞ
with the expressions for the polarization operators given in
this section.
In the case of BD state, we must have hTcl−cl

μν i ¼ δλĝμν,
2

so that the first “source”—term in (3.5) is attributed to
the renormalization of the cosmological constant: Λren ¼
Λþ 8πGδλ. More accurately, let us subtract the following
Λ-renormalization counterterm from the one-loop answer
(3.5), which we also write in terms of the fields (2.6) after
Keldysh rotation:

δΛΓeff ¼−
Z

dDx
ffiffiffiffiffiffiffiffiffi
gðxÞ

p
δλ

¼−
Z

dDx
ffiffiffî
g

p
δλ−

1

2

Z
dDx

ffiffiffiffiffiffiffiffiffi
ĝðxÞ

p
ĝμνh

μν
q ×δλ

−
1

4

Z
dDx

ffiffiffî
g

p
ðĝμνĝαβ− ĝμαĝνβ− ĝμβĝναÞhμνcl hqαβ×δλ:

ð3:7Þ

As we see, this renormalization affects only the local
contributions from the loops and, if we set

δλ ¼ −
1

2
hLi −H2η2

1

D − 1

Z
p
p2Fðpjη; ηÞ; ð3:8Þ

it eliminates the “source” term and the most of the local
parts (3.4),

Π̃loc
00j00ðηÞ ¼ 0; Π̃loc

ijj00ðηÞ ¼ 0; Π̃loc
0ij0lðηÞ ¼ 0;

Π̃loc
ijjklðηÞ ¼

1

H2η2

�
π̃3ðηÞðδijδkl − δikδjl − δilδjkÞ

−
1

4

Z
p
∂η∂η0Fjη0¼ηδijδkl

�
; ð3:9Þ

where

π̃3 ¼
1

4

1

D − 1

Z
p
p2Fðpjη; ηÞ: ð3:10Þ

IV. EFFECTIVE MASS OF THE TENSOR MODE

Having the expressions for the quantum corrections to
the induced gravity action in terms of specific integrals, we
can investigate the effective equation of motion in detail. In
the case of the tensor sectorh00 ¼ h0i ¼ 0,hij ¼ hTT

ij , the
only nonvanishing component of the Eq. (2.14) reads (see
Appendix A for the notations in the nonlocal part),

∇η∂ηhTT
ij þ k2hTT

ij

− 32πG
Z

∞

η

dη0

HD−2η0D−2 e5ðkjη; η0ÞhTT
ij ðk; η0Þ

þ 64πGπ̃3ðηÞhTT
ij ðk; ηÞ ¼ 0: ð4:1Þ

We see that (4.1) is an integro-differential equation, so the
notion of mass requires accuracy. Following the approach
of [27], where the effective mass of photon in the systems
out of the thermal equilibrium was introduced, we expand
the integral part of the Eq. (4.1) in derivatives of hTT

ij in
time. Namely, if we denote

Γbubðη; η0Þ ¼ −32πG
Z

∞

η0

dη00

HD−2η00D−2 e5ðkjη; η00Þ;

∂η0Γbubðη; η0Þ ¼ 32πG
1

HD−2η0D−2 e5ðkjη; η0Þ; ð4:2Þ

and then integrate (4.1) by parts, we arrive at

�
∇η∂η þ k2 − 32πG

Z
∞

η

dη0

HD−2η0D−2 e5ðkjη; η0Þ þ 64πGπ̃3ðηÞ
�
hTT

ij ðk; ηÞ þ
Z

∞

η
dη0Γbubðη; η0Þ∂η0hTT

ij ðk; η0Þ ¼ 0: ð4:3Þ

2This statement is not trivial and can be seen explicitly only in the regularization schemes which preserves dS isometries, such as
dimensional regularization or point-splitting method [37–40]. It is a separate interesting topic, that even in the thermal state the situation is
much more subtle for the space-times with horizons [41].
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One can continue this procedure and expand the nonlocal
part of the effective action through multiple time derivatives
of hTT

ij ðk; ηÞ. Then, for slowly varying field hTT
ij ðk; ηÞ one

has the Klein-Gordon equation of type (2.5),

∇η∂ηhTT
ij þ

�
k2 þm2

TTðk; ηÞ
η2

�
hTT

ij ≃ 0: ð4:4Þ

The last equation allows us to define an effective mass for
graviton as one does for nonequilibrium systems [27],

m2
TT ¼ −32πGlim

k→0
lim
η→0

η2

×

�Z
∞

η

dη0

HD−2η0D−2 e5ðkjη; η0Þ − 2π̃3ðηÞ
�
: ð4:5Þ

In general situation, the order of the limits in (4.5) is very
important. In particular, in flat space another order leads to
the immediate zero value for the Debye mass [7,42]. We
define the limits in the way they are commonly taken in

condensed matter physics [27,43], where this order is also
physically approved. However, it can be easily seen that in
our case, the quantitym2

TTðk; ηÞ actually depends on the dS
invariant variable kη, so that the only limit we need to take
is the zero limit for physical momentum kη → 0.
At first glance, it may seem that the integration over time

region from η to∞ may bring some infra–red effects to the
mass m2

TT and the local correction π̃3 just removes some
ultraviolet singularities. However, the quantum mechanical
perturbation theory (see Ref. [7] and Appendix C) provides
us with the formula,

∂p2Fðpjη; ηÞ ¼ −2
Z

∞

η

dη0

HD−2η0D−2 Fðpjη; η0Þρðpjη; η0Þ;

ð4:6Þ

which reduces the first term on the rhs of (4.5) to the similar
local contribution as the second one. Now we use that
∂p2Fðpjη; ηÞ ¼ 1

2p ∂pF and directly find in the limit k → 0,

Z
∞

η

dη0

HD−2η0D−2 e5ðkjη; η0Þ ¼
2

DðD − 2Þ
Z

∞

η

dη0

HD−2η0D−2

Z
p

�
p2 −

ðkpÞ2
k2

�
2

Fðpjη; η0Þρðk − pjη; η0Þ

¼ ¼k→0 −
1

DðD − 2Þ
Z
p

�
p2 −

ðkpÞ2
k2

�
2

∂p2Fðpjη; ηÞ

¼ −
1

DðD − 2Þ
Ωd

ð2πÞd
Z

∞

0

dppDþ2

�
1 −

2

D − 1
þ 3

D2 − 1

�
1

2p
∂pF

¼ 1

2

Ωd

ð2πÞdðD − 1Þ
Z

∞

0

dppDFðpjη; ηÞ ¼ 1

2

1

D − 1

Z
p
p2Fðpjη; ηÞ; ð4:7Þ

where in the third line we have integrated over the angles
and then by parts over the absolute value of the momentum.
Eventually, we take the renormalized value π̃3 (3.10) and
find from the definition (4.5) that the mass of the spin-2
metric perturbation vanishes,

m2
TT ¼ 0: ð4:8Þ

As it was noted in the Introduction, we believe that there
is a special reason why we have no mass generation for
photon [7] and graviton in dS, while it was proved that
there can be mass of the spin-2 graviton [24,25] in AdS4.

3

Namely, the mass of the gauge fields generates if there is a
pole in the nonlocal part of the self-energy appears, which
corresponds to the Goldstone boson as on the Fig. 1. The
necessary condition for this is the presence of this

Goldstone boson in the tensor product of the from
DðE1; 0Þ ⊗ DðE2; 0Þ, where DðE; 0Þ is an infinite-dimen-
sional, irreducible, positive-weight representation of the
isometry group of the embedding space (UIR), which
corresponds to the physical states of the scalar field theory.
Here, E and s correspond to the minimal energy and angular
momentum (spin) of the given representation, such that other
states in it are obtained by the action of the appropriate
creation operators [22]. In the case of AdS4, the isometry
group is SOð2; 3Þ, and we have the relations [23,24],

DðE; sÞ → Dðsþ 1; sÞ ⊕ Dðsþ 2; s − 1Þ as E → sþ 1;

ð4:9Þ

DðE1; 0Þ ⊗ DðE2; 0Þ ¼
X∞
l¼0

X∞
n¼0

DðE1 þ E2 þ lþ 2n; lÞ:

ð4:10Þ

The first line (4.9) shows that the field of spin-s in the
massless limit E → sþ 1 decomposes onto the massless

3Strictly speaking, quantum field theory in global AdS is ill
defined and suffers from unusual ultraviolet phenomena [44,45].
However, it serves us with a useful playing background to
investigate properties of QFT in different space-times with high
number of symmetries.
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field fromDðsþ 1; sÞ of the same spin and the field of spin-
(s − 1). This decomposition tells us that the field becomes
massive after swallowing the boson from the representation
Dðsþ 2; s − 1Þ in AdS4. In the cases of photon (s ¼ 1) and
graviton (s ¼ 2), the corresponding Goldstone bosons are
fromDð3; 0Þ and Dð4; 1Þ. The second relation (4.10) shows
that the states of these gauge bosons may appear in the
nonlocal contribution to the self-energy of either photon
or graviton in the case of conformally coupled scalar,
which corresponds to the choice E ¼ 1 or E ¼ 2. In the
works [24,25], it was shown that the Goldstone vector is
indeed present in the graviton’s self energy for certain
boundary conditions; hence, the mass of the graviton
generates in AdS4. In order to complete the considerations
of the mass of the photon in [7] from this point of view, we
investigate the scalar QED in AdS4 with curvature radius L
in Appendix E.
In contrast to AdS, there are no such Goldstone bosons in

the tensor product of UIRs [26] for dS isometry group;
hence, the absence of the photon’s and graviton’s mass is
expected. However, dS is neither stationary nor stable
background, so it would be rather naive to proceed this way
and one would better adopt the nonequilibrium approach,
that we use in this paper. Moreover, it is argued in many
works [5,21,29,46,47] that there are a lot of IR peculiarities
in loop corrections in dS, which may affect the result
significantly.

V. DISCUSSION ON THE SCALAR SECTOR
OF GRAVITY

A. General remarks

Treating the problem in transverse-traceless gauge,
we apparently can get some information only about the
coefficient AðΔLÞ in (2.22). In order to say something about
EðΔLÞ, one has to include into consideration different
modes of metric’s perturbation (2.17). For instance, if we
naively set gμν ¼ e2σ ĝμν, we obtain from (2.22),

Γeff ∝
Z �

σðΔL þDH2Þσ þ 32πG
D − 1

D − 2

× σ ·

�
ΔL þDH2

ΔL þ ðD − 1ÞH2

�
2

EðΔLÞ · σ
�
: ð5:1Þ

Let us make a few observations. First, we see that EðΔLÞ
determines a shift to “mass” DH2 which conformal
parameter σ already has. Second, it is crucial that both
the kinetic and mass terms enter the effective action with
the ghostlike sign. On the classical level in the presence of
classical matter this leads to Jeans’ instability [9,16]—it is
not surprising, however, that the classical equations of
motion do not have nontrivial solutions without matter [the
other constraints of (2.18) are not satisfied]: in this case,
the field σ is nonpropagating. On the other hand, nobody
exactly knows what happens in loop-modified gravity,

because, e.g., in the naive massive gravity [28], the scalar
ghostlike degrees of freedom become dynamical. To
answer these questions, more thorough investigation of
Γeff is necessary.
To find the terms which contribute to EðΔLÞ, it is

convenient to express the bubble diagram in terms
of commutator of stress-energy tensors in the operator
formalism,

Πbub
μνjαβðkjη; η0Þ ¼ −

1

8
hBDj½Tμνðk; ηÞ; Tαβð−k; η0Þ�jBDi:

ð5:2Þ

Then, using the relations derived in Appendix D, we can
write for the correction to σ’s masslike term, which is given
by the trace of self-energy over μ ¼ ν and α ¼ β indices
(before taking the limit kη → 0),

δm2
σ ∝

Z
∞

η

dη0

HD−2η0D−2 ½DðD − 2ÞΠ00j00ðkjη; η0Þ

þ ΠΔTjΔTðkjη; η0Þ� − 2Πloc
iijkk; ð5:3Þ

where ΠΔTjΔT denotes the commutator of the form (5.2) for
ΔT defined in Appendix (D1). The quantity (5.3) is UV
divergent even in flat space, not mentioning the problems
with proper renormalization in dS4 [48–51]. This is not
the end of the story. After the accurate subtractions of
required counterterms, we still may have some “spurious”
divergences left in the quantity δm2

σ as a consequence
of definition of the induced mass as a coefficient in the
expansion of the effective action in time derivatives of hμν.
This is similar to the Taylor expansion of the function
e−x

2 ¼ 1 − x2 þ � � �, where the whole function is conver-
gent in the limit x → ∞, while each term in the expansion
is divergent. The appearance of such peculiarities can be
seen if one considers closely the first term in (5.3) in the
limit k → 0 in x space,

DðD − 2Þ
Z

∞

η

dη0

HD−2η0D−2Π00j00ð0jη; η0Þ ∝

∝
Z

∞

η

dη0

η0D−2 hBDj½T00ð0; ηÞ;
Z
x
T00ðx; η0Þ�jBDi: ð5:4Þ

Normally, the integral of T00 is the conserved charge
(total energy), which commutes with any operator. For
example, the covariant conservation of the electrical current

4Actually, being a short-distance local phenomenon, UV
renormalization must be the same for any gravitational back-
ground at least at the leading order. Nevertheless, in order to
obtain correct values for IR quantities, one should preserve
symmetries of the theory at each step of the calculation, which,
for example, forbids the naive UV cutoff regularization scheme in
de Sitter.
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b∇μJμ ¼ ∂ηJ0 þ D
η J

0 − ∂iJi ¼ 0 implies that the integral of

J0 over the position space is J0 ¼ 1
ηD
× const. Hence, in any

commutator of the form (5.4) with electrical charge, the
dependence of the charge on time factors out and the result
is exactly zero, which leads to the vanishing Debye mass in
dS [7]. In contrast, the covariant conservation condition for
the stress-energy tensor includes additional term ΔT (D2),
which makes the analogy with the electric charge inappli-
cable. This conclusion establishes the fact that the energy
(at least defined as the integral of T00) is not conserved in
nonstationary background and nontrivially commutes with
other operators. Therefore, although in flat space, one has
identically zero contribution from Π00j00 to the δm2

σ , in dS,
we obtain

δm2
σ ∼
Z

∞

1

dτ
τ

Z
dD−1ξ

ð2πÞD−1 Imft00ðξÞt00ðξτÞg þ…;

t00ðξÞ≡
�
D − 1

2
hνðξÞ þ ξh0νðξÞ

�
2

þ ðξ2 þm2Þh2νðξÞ;

τ ¼ η0

η
; ξ ¼ ηp: ð5:5Þ

Taking the mode functions (2.4), one can verify that in
D > 2, the are divergences in the UV region. Therefore, in
view of the fact that these divergences are not universal, we
believe that they contribute to some well-defined parts of
Γeff after the resummation, but in this case, we should adopt
more accurate approaches, such as Källén-Lehmann
decomposition for the correlators in dS [52]. We leave
the treatment of the issues discussed in this subsection for
future work, and below we investigate the simplest case of
two-dimensional space-time.

B. Two-dimensional space-time

It is well-known that in 2D the Einstein-Hilbert action is
topological and the only independent component of met-
ric’s perturbation is the Weyl parameter σ. Moreover, the
kinetic term comes form the loops and also has ghostlike
sign in the effective action, if we take into account only the
matter field with positive central charge c [53,54]—below
we insert the mass term to the action with ghostlike sign as
well, such as it appears in the KG equation of motion for σ
as a standard mass, assuming c > 0. In addition, it can be
seen that the tadpole diagram in 2D contributes only to the
cosmological constant’s renormalization, and the loop
diagram is given by the commutator of the form (5.2) of
two stress-energy tensor’s traces. Hence, because the only
covariant quantities which constitute to the effective action
is the covariant Laplacian □ and Ricci scalar R in two
dimensions, when we immerse the massive scalar field in
the curved background, we expect Γeff to have the follow-
ing form (in the second order in σ):

Γeff ¼
Z �

δm2
σR

1

□
2
Rþ c

96π
R
1

□
Rþ…

�
; ð5:6Þ

where the ellipsis stand, first, for further expansion of the
effective action in the powers of laplacian and, second, for
less trivial terms such as Mabuchi action [13,14,55,56],
which arises as a modification of the Liouville action for
nonconformal matter interacting with the metric on a
Riemannian manifold.5 This action satisfies cocycle con-
dition, is bounded from below, and affects the calculation
of correlators in modified two-dimensional quantum grav-
ity [57]. Furthermore, it has a natural generalization to
higher dimensions, making the study of this contribution a
separate interesting task. We write δm2

σ in (5.6) instead of
m2

σ , because such terms as nonperturbative Mabuchi action
certainly lead to contributions to the quadratic part of Γeff
being formally expanded in σ [14,55],

SMabuchi½gμν; ĝμν�¼
Z ffiffiffiffiffi

jĝj
p �

1

πA
σe2σþ…

�
;

Sgrav½gμν; ĝμν�≡1

2
log

detð−□þM2Þ
detð−b□þM2Þ

¼ c
96π

Z
R
1

□
R

þM2A
4

SMabuchi½gμν; ĝμν�þOðM4Þ; ð5:7Þ

where A is the area of the Riemann surface (here, we
assume the euclidean signature and zero genus), on which
this action is defined. Indeed, for the definition of m2

σ as in
the previous section, we find in flat space for the plane

wave harmonics fpðtÞ ¼ 1ffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
p2þM24

p e−i
ffiffiffiffiffiffiffiffiffiffiffi
p2þM2

p
t (we mea-

sure mass in the units of H here),

m2
σ ¼

1

H2

4M4

π

Z
t

−∞
dt0
Z

∞

0

dpImffpðt0Þfpðt0Þf�pðtÞf�pðtÞg

¼ m2

2π
: ð5:8Þ

For the dS background, we have [here hðξÞ denotes the
harmonic function (2.4) either for complementary or for
principal series],

m2
σ ¼ −

4m4

π

Z
∞

1

dτ
τ

Z
∞

0

dξImfh2ðξÞh�2ðξτÞg: ð5:9Þ

This integral is convergent and can be evaluated numeri-
cally (see Fig. 4). It is interesting, that the result in dS
considerably deviates for small masses of scalar field, while
the answer for the static Riemann manifold (5.7) is

5Although Mabuchi action is well-defined on Riemann sur-
faces of fixed area with boundary, appearance of its parts in the
induced gravity seems to be universal.
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supposed to be the leading contribution in this region. This
makes us believe that the IR behavior of light scalar field in
dS leads to amplification of δm2

σ in the long-wave
expansion of the effective action (5.6). Meanwhile, we
see on the Fig. 4 that for large mass of the scalar field the
value of m2

σ approaches the flat-space value, which is not
surprising: very heavy fields decouple and do not feel the
effects of the background. Let us confirm this analytically
for fermionic matter.

1. Fermionic fields in 2D

Consider the standard kinetic term for Dirac fermions in
two dimensions (we will follow the article [58]),

Sferm¼
Z

d2x
ffiffiffiffiffi
jgj

p i
2
½ψ̄γμ∇μψ −∇μψ̄γμψ −mψ̄ψ �; ð5:10Þ

where γμ are gamma matrices in curved space, and the
action of covariant derivatives are determined by spin

connection; see Ref. [58] for details. In flat space, the
gamma matrices are chosen in the form,

γ0 ¼
�
0 1

1 0

�
; γ1 ¼

�
0 1

−1 0

�
: ð5:11Þ

Then we quantize the fermionic field with canonical
anticommutation relation conditions,

ψðt;xÞ ¼
Z

dp
2π

eipx
h
b̂pψ

ðþÞ
p ðtÞ þ d̂†−pψ

ð−Þ
p ðtÞ

i
;

fb̂p; b̂†qg ¼ fd̂p; d̂†qg ¼ 2πδðp − qÞ; ð5:12Þ

where we denote by ψ ðþÞ
p ðtÞ, ψ ð−Þ

p ðtÞ the positive-
and negative-frequency solutions of Dirac equation, deter-
mined by (5.10). Then, using the Schwinger-Keldysh
technique for fermions [33,59], we obtain for the effective
mass of σ,

m2
σ ¼ 8m2

Z
∞

−∞
dt0

ffiffiffiffiffiffiffiffiffiffiffiffi
jgðt0Þj

p Z
∞

−∞

dp
2π

Imfψ̄ ðþÞðpjtÞψ ð−ÞðpjtÞψ̄ ð−Þðpjt0Þψ ðþÞðpjt0Þg: ð5:13Þ

In the case of flat space ψ ðþÞðpjtÞ¼e−i
ffiffiffiffiffiffiffiffiffiffiffi
p2þM2

p
tð0
1
Þ,

ψ ð−ÞðpjtÞ¼ei
ffiffiffiffiffiffiffiffiffiffiffi
p2þM2

p
tð1
0
Þ, we encounter logarithmic

divergence,

m2
σ ¼

4m2

π

Z
∞

0

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p ; ð5:14Þ

which can be connected to the additional nonlocal
terms, which appear in deformation of Mabuchi action
for fermions [56]. Nevertheless, as we are interested
in the difference δm2

σ ≡m2
σjdS −m2

σjMink, let us proceed
naively and just subtract the UV region in (5.13).
As the UV behavior of the harmonics is the same
independently of the curvature, one will have the same

FIG. 4. The dependence of m2
σ on the squared mass of the scalar field. The orange line depicts the value in flat space-time. All masses

are measured in the units of Hubble parameter.
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logarithmic divergence. In dS the mode functions are
as follows:

ψ ðþÞðkjηÞ ¼
ffiffiffiffiffiffiffiffi
H
2jkj

s 8>>>>><>>>>>:

 
−imW−1

2
;imð2ijkjηÞ;

W1
2
;imð2ijkjηÞ

!
; k > 0 

W1
2
;imð2ijkjηÞ;

−imW−1
2
;imð2ijkjηÞ

!
; k < 0

ψ ð−ÞðkjηÞ ¼
ffiffiffiffiffiffiffiffi
H
2jkj

s 8>>>>><>>>>>:

 
W�

1
2
;im
ð2ijkjηÞ;

−imW�
−1
2
;im
ð2ijkjηÞ

!
; k > 0

 −imW�
−1
2
;im
ð2ijkjηÞ;

−W�
1
2
;im

ð2ijkjηÞ

!
; k < 0

;

ð5:15Þ

where Wκ;μðzÞ is a Whittaker function. Hence, after the
subtraction of the UV region in (5.13), the only
contributing range of integration over physical momen-
tum is 1

2τ < jkjη < 1
2
, τ ¼ η0

η , so that with the use of
asymptotics of Whittaker function, we can estimate

δm2
σ ≃

32m2

π

Z
∞

1

dτ
τ

Z
1
2

1
2τ

Im

��
Re2
�
Γð2imÞ
ΓðimÞ

1

ð2iξÞim
�

þm2Re2
�

Γð2imÞ
imΓðimÞ

1

ð2iξÞim
��

e−2iξτ
�
: ð5:16Þ

The integral (5.16) can be calculated, and we find

δm2
σ ≃ 4

�
1 −

2Sið1Þ
π

�
m2

4m
sinh ðπmÞ
sinh ð2πmÞ ; ð5:17Þ

where SiðxÞ is the sine integral function. The qualitative
dependence of δm2

σ on the mass of the matter field is
the same as for the scalar field, including the sign of

this quantity (see Fig. 5), which confirms our discus-
sion above. Note also that this answer is determined by
the IR behavior of the mode functions.
As we already noted, we define the mass term for σ in the

effective action with the wrong sign, so that the answers
depicted on Figs. 4 and 5 describe the positive mass in the
Klein-Gordon equation, because the central charge for the
scalar and fermion matter is 1 and 1

2
, correspondingly,

□σ þ 96π

c
δm2

σσ þ… ¼ 0: ð5:18Þ

Let us stress here again that despite the expansion
over small momenta, the ellipsis here account for non-
perturbative contributions such as the Mabuchi action (5.7),
whose significance at different energy scales is yet to be
understood in more detail. Our conjecture is that δm2

σ ¼
m2

σjdS −m2
σjMink describes the response of quantum matter

to the curved background at low energy scale. Further, if we
treat gravity at quantum level in two dimensions, we should
change c → c − 26 in (5.18), including into account the
central charge of ghosts [53]. In this case, the kinetic term
in the effective action can have the correct sign, and the δm2

σ

corresponds to the negative squared mass in the KG
equation (5.18), effectively describing a distortion of the
initial background. However, the more accurate under-
standing of the evolution of metric perturbations requires
further study of the effective action.

VI. CONCLUSION

The paper discusses the concept of massive terms in the
effective gravitational action, which are induced by quan-
tum fields of matter in dS background. Although it is
known that the initial state of quantum field theory in dS
must decay due to particle production [6,42]: hOutjIni ≠ 1,
the comprehensive understanding of the physical conse-
quences of this phenomena requires the consideration of
the response of specific systems to external influences.

FIG. 5. The dependence of δm2
σ on the squared mass of the matter fields. The first plot (a) depicts the numerical value for scalar field,

and the second plot (b) is analytical approximation for fermions.
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Furthermore, the evolution of metric perturbations in the
presence of classical stress-energy tensor can tell us a lot
about the physics in the early Universe [9,16], while it is
also well understood in physical community that loop
corrections in dS can lead to drastic modifications of tree-
level results [2,3,18,19,21].
It turns out that spin-2 part of metric perturbations,

associated with the graviton, does not acquire a mass in
one-loop effective action. Although the notion of mass in
an expanding space-time enables us to work in nonequili-
brium framework and include some counterterms to the
effective action, we argue that this result is regularisation
scheme independent. This is due to the auxiliary argument,
that there is no “exchange” of the Goldstone vector, which
gives mass to the graviton, because it cannot be produced
by the stress-energy tensor of free field theory out of the
initial Bunch-Davies vacuum. It would be very interesting
to generalize our observations to self-interacting theories,
where we must take into account loop corrections [21].
Additionally, on physical grounds, we must investigate a
much larger scope of various initial states. Indeed, Bunch-
Davies vacuum preserves the highest number of sym-
metries of the problem, while in any real situation, most
symmetries are broken. For instance, in the context of the
early Universe, the most natural initial state is thermal state
with noncanonical temperature [41,60,61]. In this case, the
mean value of stress-energy tensor is not proportional to the
metric h∶Tμν∶ i ≠ δλgμν [41,60]; hence, one should expect
additional contributions from tadpole diagrams on the
Fig. 3. Furthermore, we believe, that our analysis in
Secs. II–IV can be extended to more general geometries
as FLRWand global dS, so we also leave such questions for
further investigations.
Finally, in Sec. V, we have outlined the problems

we encounter when considering the scalar sector of

gravitational perturbations at the one-loop level. The
question of “scalar ghost” in gravity remains unresolved
[12,62,63], but the consideration of loop modified
gravity at classical level will allow us to improve
predictions about the behavior of matter in the
Universe at early stages incorporating the evolution of
scalar metric perturbations. In the simplest case of two
dimensions, we observe that light matter fields exhibit a
considerable response to an expanding background,
because these fields also have significantly different
infrared behavior. Therefore, we believe that further
study of this issue using various approaches will provide
answers about the stability and behavior of matter in
expanding gravitational backgrounds.
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APPENDIX A: BUBBLE DIAGRAM

In this subsection, we analyze the expression for the
nonlocal part Πbub

μνjαβ of the bubble diagram. First of all, let
us implement the OðD − 1Þ rotational symmetry of dS,
rotational symmetry of the chosen quantum state, and the
property Πbub

μνjαβðkjη; η0Þ ¼ −Πbub
αβjμνð−kjη0; ηÞ to write the

general expression for the polarization operator,

Πbub
00j00 ¼ a; Πbub

00j0k ¼ i
kk
k2

b;

Πbub
00jkl ¼ f01δ

⊥
kl þ f02

kkkl
k4

¼ f1δ⊥kl þ f2
kkkl
k4

þ f

�
δkl − ðD − 1Þ kkkl

k2

�
;

Πbub
0ij0k ¼ c1δ⊥ik þ c2

kikk
k4

;

Πbub
0ijkl ¼ i

ki
k2

d01δ
⊥
kl þ id02

kikkkl
k6

þ id3

�
δ⊥il

kk
k2

þ δ⊥ik
kl
k2

�
≡ i

ki
k2

d1δ⊥kl þ id2
kikkkl
k6

þ id

�
δkl − ðD − 1Þ kkkl

k2

�
þ id3

�
δ⊥il

kk
k2

þ δ⊥ik
kl
k2

�
;

Πbub
ijjkl ¼ e1δ⊥ijδ⊥kl þ

�
−ē2

kikj
k4

δ⊥kl þ e2
kkkl
k4

δ⊥ij
�
þ e3

kikjkkkl
k8

þ e4

�
δ⊥ik

kjkl
k4

þ δ⊥jk
kikl
k4

þ δ⊥il
kjkk
k4

þ δ⊥jl
kikk
k4

�
þ e5½δ⊥ikδ⊥jl þ δ⊥ilδ⊥jk�; ðA1Þ
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where all the coefficient functions a; b; f’s; c’s; d’s; e’s depend on η; η0;k, and we have also used line to denote switching

variables, e.g., āðkjη; η0Þ¼defaðkjη0; ηÞ; δ⊥kl¼defδkl − kkkl
k2 . In (A1), we encounter 14 coefficients, but they are not independent

because of the Ward identities b∇αΠbub
μνjαβ ¼ 0, which can be written explicitly as follows:

∇η0Πbub
μνj00 − ð−ikkÞΠbub

μνj0k þ
1

η0
ðΠbub

μνj00 − Πbub
μνjkkÞ ¼ 0; ∇η0Πbub

μνj0k − ð−iklÞΠbub
μνjkl ¼ 0: ðA2Þ

The solution of (A2) can be chosen in the following form:

a ¼ a1 − a2 þ
m2

η02
a3; b ¼ ∇η0a −

D − 2

η0

�
a1 þ a2 −

m2

η02
a3

�
þ 2

η0
m2

η02
a3;

c2 ¼ −∇η0 b̄þD − 2

η0
b̄þD − 1

η0
b1 þ

D − 2

η0
b2;

f1 ¼ a1 þ a2 −
m2

η02
a3; f2 ¼ k2

�
a1 − a2 −

m2

η02
a3

�
;

f ¼ 1

k2
1

D − 2

�
f2 þ

1

k2
∇η0b

�
ðhence f01 ¼ f1 þ f; f02 ¼ −∇η0bÞ;

d1 ¼ b̄þ b1 þ b2; d2 ¼ k2ðb̄þ b1Þ; d3 ¼ ∇η0c1;

d ¼ 1

k2
1

D − 2
ðd2 −∇η0c2Þ ðhence d01 ¼ d1 þ d; d02 ¼ ∇η0c2Þ;

e2 ¼ −∇η0 d̄1; e3 ¼ −∇η0 d̄2; e4 ¼ −∇η0 d̄3;

e1 ¼ −
2

D − 2
e5 −

1

k2
1

D − 2
e2 −

1

D − 2
f01 − η0ð∇η0f01 þ d01Þ: ðA3Þ

Then we are left with seven independent coefficient functions a1; a2; a3; b1; b2; c1; e5. The direct calculation of the stress-
energy correlators (2.16) gives the following expressions:

a1 ¼
1

2

Z
p

�
∂η∂η0F∂η∂η0ρ −

�
kp − p2 −

m2

η2

�
∂η0F∂η0ρ

�
;

a2 ¼
1

2

Z
p
ðkp − p2Þ

�
∂ηF∂ηρ −

�
kp − p2 −

m2

η2

�
Fρ

�
;

a3 ¼
1

2

Z
p

�
∂ηF∂ηρ −

�
kp − p2 −

m2

η2

�
Fρ

�
;

b1 ¼ −2
m2

η02
×
1

2

Z
p
½ðk2 − kpÞ∂ηFρþ kpF∂ηρ�;

b2 ¼ 2 ×
1

2

Z
p
ðkp − p2Þ½ðk2 − kpÞ∂ηFρþ kpF∂ηρ�;

c1 ¼
1

D − 2
×
1

2

Z
p

�
p2 −

ðkpÞ2
k2

�
½∂η∂η0Fρþ F∂η∂η0ρ − ∂η0F∂ηρ − ∂ηF∂η0ρ�;

e5 ¼
4

DðD − 2Þ ×
1

2

Z
p

�
p2 −

ðkpÞ2
k2

�
2

Fρ; ðA4Þ

where for brevity, we have denoted F ¼ Fðpjη; η0Þ; ρ ¼ ρðk − pjη; η0Þ, and Rp ¼ R dD−1p
ð2πÞD−1. Thus, Eqs. (A1), (A3), and (A4)

give the whole contribution of the nonlocal part to the bubble diagram through several loop integrals.

EFFECTIVE GRAVITON MASS IN DE SITTER SPACE PHYS. REV. D 109, 085001 (2024)

085001-15



APPENDIX B: GAUGE INVARIANCE OF THE EFFECTIVE ACTION

Let us pick up only the contributions to δξΓeff , which contain h00q in the orderOðkhq · ξkÞ. For the “source” term in (3.5),
we take the contributions with hαβ in (3.6) and get

−
1

2
δξðhαβq hTcl−cl

αβ iÞ ¼ h00q ∂ηξ
0hTcl−cl

00 i − 2

η
h00q ξ0hTcl−cl

00 i þ 1

2
∂ηh00q ξ0hTcl−cl

00 i þ 1

2
∂ih00q ξihTcl−cl

00 i; ðB1Þ

where we also use that in the rotationally invariant state, one has hTcl−cl
0i i ¼ 0; ∂iFðx; xÞ ¼ 0, etc. The variation of the local

parts of (3.5) in the required order is

δξðhμνcl ðxÞΠloc
μνjαβðηÞhαβq ðxÞÞ ¼ −

1

2

��
∂ηξ

0 −
1

η
ξ0
�
hTcl−cl

00 i þ
�
∂iξ

j −
1

η
δjiξ

0

�
hTcl−cl

ij i
�
h00q : ðB2Þ

Finally, we must take into account terms with the derivatives of the theta functions in (3.5) after the gauge variation
and integration by parts, while the derivatives of the polarization operator in this term is vanishing due to the Ward
identities (A2). Again, we use the commutation relations (2.9) to find the bubble contribution at coincident points and
obtain in the order under consideration,

−
1

2
δξ

Z
hqΠbubhcl ¼

1

2

Z
dDx
HDηD

h00q ½∂iξi∂η∂η0Fðx; xÞ þ ∂iξ
j
∂xi∂yjFðx; xÞ�; ðB3Þ

(where the derivatives over η0 and yj are referred to the second argument of the Keldysh function). Therefore, the whole
variation in this order vanishes

δξΓeff ¼ −
1

2

Z
dDx
HDηD

h00q ðxÞξ0ðxÞb∇μhTcl−cl
μ0 i ¼ 0: ðB4Þ

In the similar way, one can check that all other components of δξΓeff vanish.

APPENDIX C: INTEGRAL RELATION FOR GREEN FUNCTIONS

Consider the bare action for the scalar field (2.1) and the interaction term in the form,

δp2Sint ¼ −
Z
p

Z
dη

HD−2ηD−2 δp
2ϕclðp; ηÞϕqð−p; ηÞ ¼ −δp2

Z
dDx

ffiffiffî
g

p
ϕclðxÞϕqðxÞ: ðC1Þ

Then the first-order correction to the exact Keldysh propagator is given by

δp2Fðpjη; ηÞ ¼ −iδp2

Z
dD−1xdD−1z

dη0

HD−2η0D−2 hϕclðx; ηÞϕclðzÞϕqðzÞϕclðy; ηÞie−ipðx−yÞ

¼ −δp22

Z
∞

η

dη0

HD−2η0D−2 ρðpjη; η0ÞFðpjη; η0Þ: ðC2Þ

On the other hand, we have δp2Fðpjη; ηÞ ¼ δp2
∂p2Fðpjη; ηÞ by construction, and the relation (4.6) follows immediately.

APPENDIX D: RELATIONS FOR THE STRESS-ENERGY TENSOR

From the very definition (2.12), we have the relation,

Tii ¼ −ðD − 1ÞT00 þ ðD − 1Þ∂ηϕ∂ηϕþ ∂iϕ∂iϕ≡ −ðD − 1ÞT00 þ ΔT: ðD1Þ
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In addition, the covariant conservation condition b∇μTμν ¼
0 reads

b∇μTμν ¼ ∂ηT00 þ
2

η
T00 þ ∂

iTi0 −
1

η
ΔT ¼ 0: ðD2Þ

Inmomentum space in the limit k → 0, the last equation gives

ΔTðk ¼ 0; ηÞ ¼ ½η∂η þ 2�T00ð0jηÞ: ðD3Þ

In x-space language, the limit k → 0 is equivalent to the
integral over x. Then first of all we can derive the equality
(below wewrite the stress-energy tensor in position space and
use translational symmetry of the correlator),

Z
∞

η

dη0

η0D−2 hBDj
�
T00ð0; ηÞ;

Z
x
ΔTðx; η0Þ

�
jBDi ¼

Z
∞

η

dη0

η0D−2 ðη0∂η0 þ 2ÞhBDj
�
T00ð0; ηÞ;

Z
x
T00ðx; η0Þ

�
jBDi

¼ ðD − 1Þ
Z

∞

η

dη0

η0D−2 hBDj
�
T00ð0; ηÞ;

Z
x
T00ðx; η0Þ

�
jBDi

¼ ðD − 1Þ
Z

∞

η

dη0

η0D−2Π00j00ð0jη; η0Þ; ðD4Þ

where in the last line, we have integrated by parts. We also can use the invariance of the correlation functions in x space under

transformations x → ax, η → aη (indeed, the correlators depend on the dS-invariant variable Z ¼ η2þη02−ðx−yÞ2
2ηη0 [6,64]) and

introduce new variables y ¼ ax, ω ¼ η2

η0 to obtain

Z
∞

η

dη0

η0D−2 hBDj
�Z

x
ΔTðx; ηÞ; T00ð0; η0Þ

�
jBDi ¼

Z
∞

η

dη0

η0D−2
a4

aD−1 hBDj
�Z

y
ΔTðy; aηÞ; T00ð0; aη0Þ

�
jBDi

¼ 1

ηD

Z
η

0

ωdωhBDj
�Z

y
ΔTðy;ωÞ; T00ð0; ηÞ

�
jBDi

¼ 1

ηD

Z
η

0

ωdωðω∂ω þ 2ÞhBDj
�Z

y
T00ðy;ωÞ; T00ð0; ηÞ

�
jBDi≡ 0; ðD5Þ

where we again integrate by parts in the last line and in the
second line, we take a ¼ η

η0. With the use of the derived
equations, we findZ

∞

η

dη0

η0D−2Π00jiið0jη;η0Þ¼0;Z
∞

η

dη0

η0D−2Πiij00ð0jη;η0Þ¼−ðD−1Þ
Z

∞

η

dη0

η0D−2Π00j00: ðD6Þ

APPENDIX E: THE MASS OF PHOTON IN AdS4

It is convenient for us to treat AdS4 from the beginning
as a hyperboloid, embedded into the five-dimensional
pseudo-Euclidean space with coordinates XA: ηABXAXB ¼
L2, where ηAB ¼ diagð1; 1;−1;−1;−1Þ. Following the
approach developed in the papers [45,65], we first write
the bare action in the form,

S½BA;ϕ�

¼
Z

dμX

�
−
1

4
FABFAB þ jð∂0A þ ieBAÞϕj2 −m2jϕj2

�
;

ðE1Þ

where dμX ¼ 2LδðX2 − L2Þd5X is the AdS-invariant
measure, ∂

0
A ¼ ∂A − 1

X2 XAXI
∂I is the tangent derivative,

FAB ¼ ð∂0A − XAÞBB − ð∂0B − XBÞBA and BA is a vector
potential, which is considered to be tangent to the hyper-
boloid: XABA ¼ 0, XA ∈AdS4. The vector potential in the
AdS4 are obtained by a pullback of BA. Let us impose
additional transversal condition ∂ABA

t ¼ 0, so that the free
equation of motion for the vector potential simplifies to the
ordinary wave equation,

½X2
∂
2 − ðX · ∂Þ2 − 3ðX · ∂Þ − 2�BA

t ¼ 0: ðE2Þ

This is the wave equation for the fields in the massless
representation Dð2; 1Þ [22,23]. The corresponding gauge
variation [23] δφBA ¼ X2

∂Aφ − XAXI
∂Iφ is determined by

the scalar φ∈Dð3; 0Þ. We can construct the projector onto
the transversal vector-potential BA

t by the following gauge
transformation:

BA
t ¼ P̂AB

t BB ¼ BA − ½X2
∂
Aφ − XAXI

∂Iφ�;

φ ¼ 1

X2
∂
2 − ðX · ∂Þ2 − 3ðX · ∂Þ ∂

CBC: ðE3Þ

EFFECTIVE GRAVITON MASS IN DE SITTER SPACE PHYS. REV. D 109, 085001 (2024)

085001-17



Connecting the ordinary mass term in (E1) with the
parameter E in four-dimensional case m2L2 ¼ Eð3 − EÞ,
we write the equation for the Wightman function,

½ð1 − Z2Þ∂2Z − 4Z∂Z þ Eð3 − EÞ�WEðZÞ ¼ 0; ðE4Þ

where ZðX; YÞ ¼ XMYM
L2 is invariant variable. The solution

for E ≠ 1; 2 is [24,64]

WEðZÞ¼
1

4π2L2

ΓðEÞΓðE−1Þ
Γð2E−2Þ

1

ZE 1F2

�
E;E−1;2E−2;

1

Z

�
:

ðE5Þ

For conformally coupled scalar E ¼ 1; 2, the solution looks
like

WcðZÞ ¼
1

4π2L2

�
α

1

Z2 − 1
þ β

Z
Z2 − 1

�
; ðE6Þ

where the choice of α, β corresponds to a different
boundary conditions. The Feynman propagator can be
obtained by the introduction of iϵ prescription:GFðX; YÞ ¼
WðZ þ iϵÞ. The kernel of the inverse operator in (E3)
multiplied by L2 is equal to iW3ðZ þ iϵÞ.
As long as the AdS4 background is stationary and

stable, we might use as well the ordinary Feynman
diagrammatic technique in this case. Note that in the IR
region, we have

W3ðZÞ ¼
1

12π2L2

1

Z3
þO

�
1

Z4

�
; Z → ∞: ðE7Þ

Therefore, if there is actually a nonzero mass of the photon,
we will find in its self-energy the term, proportional to the
projector (E3), and the following contribution in the
effective action:

δΓeff ¼
m2

ph

2

Z
dμXBAP̂

AB
t BB ¼ m2

ph

2

Z
dμX

�
BABA þ X2

∂
ABA

1

X2
∂
2 − ðX · ∂Þ2 − 3ðX · ∂Þ ∂

CBC

�
∼
m2

ph

2

Z
dμXdμY∂ABAðXÞ

i
12π2L2

1

Z3
∂
CBCðYÞ; ðE8Þ

where in the last line, we kept only the nonlocal part of its expression in the IR region. Now we straightforwardly integrate
out the scalar fields with conformal mass in (E1) and omit the terms, proportional to BABA as they do not lead to the
structure of the form (E8),

δΓeff ¼ −i
e2

2

Z
dμXdμYBAðXÞBCðYÞYAXC

L4
½2W0

cW�0
c −WcW�00

c −W00
cW�

c�

¼ −i
e2

2

Z
dμXdμY∂ABAðXÞ∂CBCðYÞfðZÞ; ðE9Þ

where we have used that YA ¼ L2
∂AZ, XC ¼ L2

∂CZ and
introduced the function fðZÞ, which is the solution of
f00 ¼ 2W0

cW�0
c −WcW�00

c −W00
cW�

c, decaying at infinity. The
solution of this differential equation indeed contains the
term, proportional to 1

Z3,

fðZÞ ≃ −
1

16π4L4

2

3
Reðα�βÞ 1

Z3
þ… ðE10Þ

Substituting this result into the effective action (E9) and
comparing the coefficients with (E8), we find

m2
ph ¼

e2

2π2L2
Reðα�βÞ; ðE11Þ

which actually does not vanish when α and β both are
nonzero.
This result in AdS space at the simple example of the

scalar QED confirms the discussions of the papers [24,25],
that such peculiarities of AdS as discrete spectrum of
levels can lead to a presence of the Goldstone bosons as a
bound states created by the electric current or stress-
energy tensor even for free field theory. Indeed, in the
case of QED, we see the propagator of the boson
from Dð3; 0Þ in the Eqs. (E8) and (E9), which is the
analogy of the pole at k2 ¼ 0 in the Higgs mechanism in
the Standard Model with the exchange of the massless
field on Fig. 1.
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