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The primary constraints for general teleparallel quadratic gravity are presented. They provide a basic
classification of teleparallel theories from the perspective of the full nonlinear theory and represent the first
step towards a full-fledged Hamiltonian analysis. The results are consistent with the limit of metric and
symmetric teleparallel quadratic gravity. In the latter case we also present novel results, since symmetric
teleparallel theories have only been partially studied so far. Apart from the general results, we also present
the special cases of teleparallel theories classically equivalent to general relativity, which differ by a
boundary term from the formulation of Einstein and Hilbert. This affects the constraint algebra as the
primary constraints involve a mix of torsion and nonmetricity, implying that the symmetries of general
relativity are realized in a more intricate way compared to the teleparallel case. In this context, a more
detailed understanding will provide insights for energy and entropy in gravity, quantum gravity, and
numerical relativity of this alternative formulation of general relativity. The primary constraints are
presented both in the standard formulation and in irreducible parts of torsion and nonmetricity. The special
role of axial torsion and its connection to the one-parameter of viable new general relativity is confirmed.
Furthermore, we find that one of the irreducible parts of nonmetricity affects the primary constraint for shift
but not lapse.
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I. INTRODUCTION

After more than a hundred years since its conception,
general relativity (GR) has garnered affirmation through
various experiments and observations, thus confirming its
position as a fundamental piece in comprehending gravity
and the Universe. Nonetheless, despite being the most
widely accepted theory of gravity, GR exhibits certain
deficiencies and limitations [1]. It clashes with quantum
mechanics [2] and with the related description of gravity at
small scales; it fails to wholly elucidate phenomena like
dark matter and dark energy, presumed to constitute the
bulk of the Universe’s composition [3]; it predicts the
existence of singularities where conventional physics
breaks down and lacks a self-consistent theory of quantum
gravity aiming to merge GR and quantum mechanics [4,5].
For all these reasons, throughout the years, the motivations
for going beyond GR has grown even stronger [6].
Consequently, alternate gravity explanations have emerged,
aiming to address specific GR drawbacks such as dark
matter and energy, cosmic structure formation, and early-
time gravity behavior [7–14].

Some notable modified gravity theories include e.g.,
modifications to the Einstein-Hilbert gravitational action,
by introducing higher-order curvature invariants [15–17] or
couplings between geometry and scalar fields [18–21]. The
most basic extension, fðRÞ gravity, incorporates a function
of the scalar curvature within the action, resulting in field
equations of the fourth order [22–27]. Some formulations
of this theory can yield modifications in the Newtonian
potential [28], thus addressing the Galaxy rotation curve
issue without relying on dark matter, as well as elucidate
the Universe’s exponential expansion without invoking
dark energy [29]. In this framework, particular interest
was gained by the Starobinsky model [30], which includes
a quadratic term in the scalar curvature to accounts for
cosmic inflation.
Another class GR alternatives breaks the assumption of

Levi-Civita connection, which is fundamental in Einstein’s
gravity in order to obtain metric-compatible connections
and fully get the dynamics from the starting line element.
By relaxing the assumption of symmetric connections,
for instance, torsion arises in the given spacetime [31,32].
In certain instances, this deviation leads to the violation of
the equivalence principle [33] and offers a means to
describe gravity at smaller scales [34,35]. Particularly,
by mandating spacetime to be governed solely by torsion
rather than curvature, a self-consistent theory of gravity
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can be developed, mirroring GR’s dynamics precisely. This
theory, dubbed “teleparallel equivalent of general relativ-
ity” (TEGR) [36,37], has undergone extensive studies in
recent years, becoming the focus of numerous investiga-
tions and analysis [38–41].
TEGR represents a theoretical framework that frames

gravity as a consequence of torsion in spacetime fabric. In
this context, the gravitational force is described via a set of
tetrad fields (also termed “vierbeins”), forming the basis for
spacetime geometry depiction. These tetrad fields define a
torsion tensor, acting as gravity’s source in the theory and
representing the antisymmetric part of the Christoffel
connection.
Within these alternative models, the most studied along

with TEGR is the so-called “symmetric teleparallel equiv-
alent of general relativity” (STEGR), based on nonmetricity
of the spacetime. Nonmetricity accounts for the possibility
that the spacetime might not adhere to the metric compat-
ibility condition, which is a fundamental assumption in GR.
As torsion emerges in direct relation to the antisymmetry of
the affine connection, nonmetricity arises when considering
a nonzero covariant derivative of the metric tensor, that
is ∇μgαβ ≠ 0.
While entirely equivalent toGR in termsof field equations,

TEGR and STEGR fails to address the limitations GR poses
on larger scales. Hence, akin to fðRÞ gravity in metric
formalism, the Lagrangian density of TEGR can bemodified
in various ways [42], such as an arbitrary function of the
torsion scalar, giving rise to the so-called fðTÞ gravity
[43,44]. The latter has been proposed as a solution to late-
time issues, like the Universe’s accelerated expansion
[45,46], offering novel solutions and alternative models.
However, its capability to better explain gravity’s observed
behavior than GR remains unclear, necessitating further
research to ascertain its viability as a gravitational theory.
It is important to note that, despite actions involving

fðRÞ, fðTÞ, and fðQÞ (with R being the Ricci curvature
scalar, T the torsion scalar andQ the nonmetricity scalar, as
detailed in Sec. II) are not in principle equivalent, intro-
ducing corresponding boundary terms enables their equiv-
alence [47,48].
The features of fðTÞ and fðQÞ gravity are currently

under investigation in literature, particularly in applications
within cosmology and astrophysics. For example, in
Ref. [49] the authors demonstrate that a power-law model
of fðTÞ fits the galaxy rotation curve. On the other hand,
Ref. [50] explores ways to address the H0 tension within
fðTÞ models. In Ref. [51] the authors derive an equation of
state from fðTÞ that tackles the dark energy issue.
In the context of fðQÞ gravity, the work in Ref. [52]

studies big bang nucleosynthesis, while Ref. [53] considers
the early stages of the Universe to investigate the slow-roll
inflation. In [54] the authors explore bouncing cosmologi-
cal models within fðQÞ gravity, whereas Ref. [55] provides
wormhole solutions within static and spherically symmetric

backgrounds. Also, in Ref. [56] gravitational waves are
studied in the context of fðQÞ model, searching for
deviations from GR.
Leading to the same dynamical field equations, GR,

TEGR, and STEGR are often referred to as “geometric
trinity of gravity”. However, it is worth pointing out that
recent discoveries have shown that there is either strong
coupling or ghosts in nonlinear extensions to the trinity of
gravity [57,58].
To overcome the latter issue, another possible extension of

TEGR, known as “new general gelativity” (NGR), was
introduced in [59]. In contrast to fðTÞ, NGR does not
involve a nonlinear extension. Instead, it incorporates torsion
contractions at the same derivative order as in TEGR. This
theory has been restricted to a one-parameter viable theory by
requiring the absence of ghosts in its extension of TEGR,
based on these assumptions. Additionally, it was discovered
that the PPN-parameters align with those of GR, suggesting
consistency with solar system tests [60]. This theory was
found to contain strongly coupled fields [61,62] casting
doubt if NGR could be considered viable. Recently, there has
been a renewed interest in NGR [63] finding that, contrary to
previous statements, although not completely problem-free
NGR is not generically plagued by ghosts.
Based onTEGR, STEGR, and their related extensions, it is

also possible to consider in the starting gravitational action
both torsion and nonmetricity, properly contracted as pro-
vided in Sec. II, giving rise to the so-called “general tele-
parallel quadratic gravity” [64]. Within this geometry it is
possible to formulate the “general teleparallel equivalent of
general relativity” (GTEGR). Generally, TEGR, STEGR,
and GTEGR belong to the so-called metric-affine theories of
gravity, whose fundamental aspects and applications have
been extensively studied in the literature [6,40,65–73].
Despite being probably the least explored sector of metric-
affine gravity, GTEGR has shown promise to act as an
alternative, or possibly even an improvement, to the notion of
energy and entropy in gravity [74], and this hints towards
possible developments in canonical quantization of GR.
The first approach to face the latter issue is the so-called

Arnowitt-Deser-Misner (ADM) formalism [75] and emerged
as an attempt to address challenges in reconciling GR with
quantum mechanics. Through a 3þ 1 decomposition of the
metric, the formalism yields a gravitational Hamiltonian and
establishes quantization rules, leading to a Schrödinger-like
equation, known as the Wheeler-DeWitt (WDW) equation,
initially formulated in [4,76,77]. However, the ADM for-
malism is no longer seen as the definitive solution for
quantizing GR, due to its inability to provide a complete
theory of quantum gravity. Additionally, it involves an
infinite-dimensional superspace that poses challenges for
handling.
Nevertheless, the 3þ 1 decomposition represents the

very first step towards setting up the Hamiltonian formal-
ism for the given theory and, eventually, find a link between
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gravity and quantum mechanics. In addition, the restriction
of the superspace can be useful in view of applications to
quantum cosmology, which in turn has provided interesting
insights in describing the early stages of the Universe
evolution. Specifically, cosmological restrictions enable a
reduction of the configuration superspace to a finite-
dimensional minisuperspace, allowing analytical solutions
to the WDW equation. Quantum cosmology, thus, offers
insights into the Universe’s early stages through the “wave
function of the Universe”, a solution to the WDWequation.
Interpreting this wave function is not straightforward due to
the absence of a Hilbert space and a definite-positive inner
product in gravitational theory, though various interpreta-
tions have been proposed [78–82].
In this paper, we study the 3þ 1 decomposition and the

Hamiltonian constraints of some alternative gravity models,
including TEGR, STEGR, GTEGR, and their extensions.
Specifically the paper is organized as follows. In Sec. II we
introduce the main properties of TEGR, STEGR, GTEGR,
and general teleparallel quadratic gravity, to subsequently
study the corresponding 3þ 1 decompositions in Sec. III. In
Secs. IV and V, the primary constraints of fðTÞ, fðQÞ, and
fðGÞ, namely the extensions of TEGR, STEGR, and
GTEGR, are considered, aswell as the conditions for primary
constraints in the irreducible representation of torsion and
nonmetricity. The shifted algebra among constraints is
evaluated in Sec. VI. Finally, in Sec. VII we conclude the
work with final considerations and perspectives.

II. GENERAL TELEPARALLEL QUADRATIC
GRAVITY

In this section we review themain aspects of those models
modifying the assumptionofLevi-Civita connection, namely
TEGR, STEGR, and GTEGR. We also introduce the action
for general teleparallel quadratic gravity, which is an exten-
sion toGTEGR and themain theory studied in this article. As
is widely known,within nonflat spacetimes, the arrangement
of geodesic paths relies on the nature of the connection Γρ

μν.
In GR, adopting a metric-compatible and torsionless con-
nection leads to describing the dynamics only by knowing
the form of the metric. However, by relaxing these assump-
tions, it becomes feasible to define two rank-3 tensors
associated with the asymmetric part ofΓρ

μν and the covariant
derivative of the metric, that is respectively the “torsion
tensor” Γα

μν and the “nonmetricity tensor” Qρμν, defined as

Γα
μν ≡ 2Γα½μν�; Qρμν ≡∇ρgμν ≠ 0: ð1Þ

Therefore, themost general Christoffel connection including
both contributions (in addition with the Levi-Civita contri-
bution) reads,

Γρ
μν ¼ Γ̆ρ

μν þ Kρ
μν þ Lρ

μν; ð2Þ

with Γ̆ρ
μν being the Levi-Civita connection and

Kρ
μν ≡ 1

2
gρλðTμλν þ Tνλμ þ TλμνÞ ¼ −Kρ

νμ; ð3Þ

Lρ
μν ≡ 1

2
gρλð−Qμνλ −Qνμλ þQλμνÞ ¼ Lρ

νμ: ð4Þ

In GR, both the contorsion tensorKρ
μν and the disformation

tensor Lρ
μν vanish identically. However, the latter is just a

possible choice and, depending on the form of the con-
nection, three main models can be considered, namely,1

GR → Lρ
μν ¼ Kρ

μν ¼ 0;

TEGR → Rμ
νρσðΓÞ ¼ Lρ

μν ¼ 0;

STEGR → Rμ
νρσðΓÞ ¼ Kρ

μν ¼ 0; ð5Þ

where Rμ
νρσðΓÞ is the Riemann tensor. These three theories

are completely equivalent at the level of field equations and
this can be shown by evaluating the corresponding actions.
Specifically, using the definitions,

Spμν ≡ Kμνp − gpνTσμ
σ þ gpμTσν

σ; ð6Þ

Q≡ −
1

4
Qαμν

�
−2Lαμν þ gμνðQα − Q̃αÞ

−
1

2
ðgαμQν þ gανQμÞ

�
; ð7Þ

Qμ ≡Qμ
λ
λ; Q̃μ ≡Qαμ

α; T ≡ TpμνSpμν; ð8Þ

the three actions

SGR ≡ κ

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ SðmÞ; ð9Þ

STEGR ≡ κ

2

Z
d4x

ffiffiffiffiffiffi
−g

p
T þ SðmÞ; ð10Þ

SSTEGR ≡ κ

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Qþ SðmÞ; ð11Þ

result equivalent up to a four-divergence. The field equations
of TEGR, STEGR, and the related extensions can be found
e.g., in [43,46,49,83–88] and will not be further examined
here. Another interesting extension of GR, which deals with
both torsion and nonmetricity, is GTEGR. The latter can be
obtained as a specific subcase of the general teleparallel
quadratic gravity action, i.e.,

1In TEGR and STEGR Γ̆ρ
μν is not present, even though it is not

strictly zero.
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Sk ¼
1

2
M2

pl

Z
d4x

ffiffiffiffiffiffi
−g

p ½a1TαμνTαμνþa2TαμνTνμαþa3TμTμ

þb1QαμνTναμþb2QμTμþb3Q̄μTμc1QαμνQαμν

þc2QαμνQμναþc3QμQμþc4Q̄μQ̄μþc5QμQ̄μ�; ð12Þ

by setting the coefficients to

ða1; a2; a3Þ ¼
�
1

4
;
1

2
;−1

�
; ðb1; b2; b3Þ ¼ ð−1; 1;−1Þ

ð13Þ

and ðc1; c2; c3; c4; c5Þ ¼
�
1

4
;−

1

2
;−

1

4
; 0;

1

2

�
; ð14Þ

where Mpl represents the Planck mass and we follow
the same convention2 as Ref. [64], with Tμ ¼ Tα

μα and
Q̄μ ¼ Qα

αμ. In order to recover TEGR, one must further
require bi ¼ ci ¼ 0, whereas for STEGR one has to impose
ai ¼ bi ¼ 0. Both subcases are obviously limits of GTEGR
taking nonmetricity and torsion to zero, respectively. As
better detailed in Sec. III, the above alternativemodels can be
formulated in terms of tetrads and spin connection. In TEGR,
for instance, the involvement of the spin connection does not
affect the field equations. Consequently, setting it to zero
does not have physical implications and allows the theory to
be exclusively expressed through the tetrad field. However,
in nonlinear modifications of TEGR, this becomes more
complex, as a null spin connection leads to the so-called
Weitzenböck gauge, influencing the options available for
choosing the tetrad. For this reason, in the covariant
formulation of TEGR, the inclusion of the spin connection
is essential. Yet, there is the possibility to adopt a specific
gauge where the spin connection vanishes, without altering
the degrees of freedom. A detailed discussion on the gauge
fixing for the spin connection can be found e.g., in [90–94].

III. 3 + 1 DECOMPOSITION AND PRIMARY
CONSTRAINTS

In adopting the 3þ 1 formalism, our fundamental
variables will be α; βi; hij; Lμ

ν, but we will realize primary
constraints from the torsion sector, by using Lorentz indices
and to transform the indices we use tetrads. We denote the
tetrad and its inverse respectively as θAμ and eAμ, thus the
torsion and the nonmetricity tensors defined in Sec. II can
be written as

TA
μν ¼ 2∂½μθAν� þ θB½νΓA

μ�B;

Qαμν ¼ ∂αgμν − 2Γβ
αðμgνÞβ; ð15Þ

where teleparallelism implies that the connection can be
cast in the following way [95]:

Γα
μν ¼ ðL−1Þαλ∂μLλ

ν: ð16Þ

Here, Lμ
ν ∈GLð4;RÞ and has sixteen components. In the

limit of symmetric teleparallel geometry Lμ
ν ¼ ∂νξ

μ and a
coordinate choice making the connection vanish, known as
“the coincident gauge”, can always be made. In this way, the
components of ξμ can be thought as Stückelberg fields,
manifesting that the coincident gauge is physically equiv-
alent to the covariant formulation [95]. Similarly, in metric
teleparallel geometries, transforming the coordinate indices
of Lμ

ν to tangent indices with the use of a tetrad, allows to
introduce the so-called spin connection ωA

Bμ ¼ ΛA
C∂μΛB

C,
which depends on Lorentz matrices ΛA

B. Torsion is then
given by

TA
μν ¼ 2∂½μθAν� þ 2ωA

B½μθBν�; ð17Þ

and one can always perform a Lorentz transformation such
that the spin connection vanishes [92]. However, in general
teleparallel geometries, the coincident gauge cannot be
adopted, as it automatically implies vanishing torsion, as
follows from the definition (1).
The 3þ 1 decomposition involves constant-time hyper-

surfaces Σt and a normalized normal vector ξμ that
complies with the condition ξμξ

μ ¼ −1. As outlined and
detailed in Ref. [96], this split exclusively applies to
spacetime indices, excluding Lorentz indices. The hyper-
surfaces Σt form a manifold denoted by spatial indices
i; j; k;…, and feature the induced metric γij. Following this
division, the tetrads are characterized by

θA0 ¼ αξA þ βiθAi; ð18Þ

with α being the lapse function, βi the shift vector and

ξA ¼ −
1

6
ϵABCDθ

B
iθ

C
jθ

D
kϵ

ijk; ð19Þ

is normal to hypersurfaces of constant time slices. We use a
3þ 1 decomposition in the ADM formalism, so that the
metric takes the well-known form,

gμν ¼
�−α2 þ hijβiβj hijβj

hijβj hij

�
; ð20Þ

where hij ¼ θAiθ
B
jηAB is the inducedmetric, with ηAB being

the Minkowski metric. For brevity, we present results with
noncanonical index positions, like βi ≡ hijβj. However, note

2In [64] there is an obvious typo, where the coefficients c1 and
c2 are the same (realized by the symmetries of nonmetricity).
Furthermore, the GTEGR coefficients contain a couple of sign
mistakes for the mixed terms. This was, however, corrected
in [89].
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that this is a shorthand notation, especially when one for
example applies derivatives or variations to such objects.
Our canonical variables are α; βi; hij; Lμ

ν and to realize
the primary constraints we will perform the irreducible
decomposition of velocities (and their conjugate momenta)
under the rotation group Oð3Þ, as has been done in
[68,91,96–99],

L̇A
i ¼ VL̇i þ AL̇jihkjθAk þ SL̇jihjkθAk: ð21Þ

We here omit the full decomposition and combine the trace
with the trace-free part, since this sector is of less interest
for primary constraints, as we shall see later in this section.
By making a ADM decomposition of torsion and non-

metricity and applying the chain rule one gets,

π
α ≔

∂L
∂α̇

¼ −2α
∂L

∂Q000

; ð22Þ

π
β
i ≔

∂L

∂β̇i
¼ ∂L

∂Q00
i þ 2βi

∂L
∂Q000

; ð23Þ

πij ≔
∂L

∂ḣij
¼ ∂L

∂Q0ij
þ βiβj

∂L
∂Q000

þ βi
∂L

∂Q00j
þ βj

∂L
∂Q00i

:

ð24Þ

Next we need to find the conjugate momenta with
respect to L, namely the rank-2 tensor Pμ

ν ≔ ∂L
∂L̇μ

ν
, which

turns out to be

Pμ
0¼π

α
�
−αðL−1Þ0μþðL−1Þiμβi−ðL−1Þ0μ

β2

α
−2ðL−1Þiμ

βi
α

�

−2π
β
iðβiðL−1Þ0μþðL−1ÞiμÞ≕π

α
S
α

μþπ
β
iS
β
i
μ: ð25Þ

Thus, we get four primary constraints for the connection

PCμ
0 ¼ Pμ

0 − π
α
S
α

μ þ π
β
iS
β
i
μ ≈ 0: ð26Þ

The other twelve components of P can be written as

Pμ
i ¼ 1

2
θBμðL−1ÞAB

∂L
∂TA

0i
− 2πijðβjðL−1Þ0μ þ ðL−1ÞkμhjkÞ þ 2π

β iððα2 − β2ÞðL−1Þ0μ − ðL−1ÞjμβjÞ

þ 2βiπ
β
jðβjðL−1Þ0μ þ ðL−1ÞjμÞ þ 4π

α
�
2αβiðL−1Þ0μ − ðL−1Þ0μ

βi

α
β2 − ðL−1Þjμ

βi

α
βj

�

≕
1

2
θBμðL−1ÞAB

∂L
∂TA

0i
þ πijSμj þ π

β iS
β

μ − βiπ
β
jS
β
j
μ þ π

α
S
α
i
μ: ð27Þ

The vector momenta is obtained by the following particular contraction

VPi ¼ 2ξDLC
DeCμPμ

i ¼ ξA
∂L

∂TA
0i
; ð28Þ

and similarly one obtains the antisymmetric and symmetric momenta,

AP½ji� ¼ 2LC
DeCμθDkhk½jPμ

i� ¼ θAkhk½j
∂L

∂TAj0ji�
; ð29Þ

SPðjiÞ ¼LC
DeCμθDkhkðjPμ

iÞ ¼ 1

2
θAkhkðj

∂L
∂TAj0jiÞ

þLC
DeCμθDkhkðjπ

β iÞS
β

μ−LC
DeCμθDkhkðjβiÞπ

β
jS
β
j
μþπ

α
LC

DeCμθDkhkðjS
α iÞ
μ

þLC
DeCμθDkhkðjπiÞkSμk

¼ 1

2
θAkhkðj

∂L
∂TAj0jiÞ

þLC
DeCμθDkhkðjπ

β iÞS
β

μ−LC
DeCμθDkhkðjβiÞπ

β
jS
β
j
μþπ

α
LC

DeCμθDkhkðjS
α iÞ
μ þLC

DeCμθDkhkðjπiÞkSμk

≕
1

2
θAkhkðj

∂L
∂TAj0jiÞ

þ SΠij: ð30Þ

forming the whole set of primary constraints for GTEGR. The primary constraints can be obtained from the above conjugate
momenta, specifically looking at conditions for which they become independent of velocities. By defining

A
α

1 ¼ c1 þ c2 þ c3 þ c4 þ c5, A
α

2 ¼ 2c3 þ c5 and A
α

3 ¼ b2 þ b3, the conjugate momentum with respect to the lapse
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function can be recast as

π
α ¼

ffiffiffi
h

p
Mpl

�
2A

α

1

Q000

α4
− 4A

α Q00iβ
i

α4
− 2A

α

1

Qi00β
i

α4

þ 4A
α

1

Qi0jβ
iβj

α4
þ 2A

α

1

Q0ijβ
iβj

α4
−A

α

2

Q0

α2

− ð2c4 þ c5Þ
Q̄0 − Q̄iβ

i

α2
− 2A

α

1

Qijkβ
iβjβk

α4

þA
α

2

Qiβ
i

α2
−A

α

3

TA
0iθA

i

α2
−A

α

3

TA
ijβ

iθA
j

α2

�
: ð31Þ

When the torsion vanishes, the above expression is
consistent with Ref. [100]; moreover, a primary constraint
arises if and only if the rhs is independent of velocities, i.e.,
when the nonmetricity term Q0�� and the torsion term T0

cancel each other out. As a first approximation, the primary

constraint can be simply obtained by setting A
α

1 ¼ A
α

2 ¼
A
α

3 ¼ 0 resulting in the following constraint:

C
α ¼ π

α þMpl

ffiffiffi
h

p

α2
½ð2c4 þ c5ÞðQ0 − Q̄iβ

iÞ� ≈ 0: ð32Þ

Before writing the explicit expression of the shift

conjugate momentum, it useful to define A
β

1 ¼ 2c1 þ c2 þ
c4 and A

β

2 ¼ b1 − b3, so that Eq. (23) can be written as

πi
β ¼ Mpl

ffiffiffi
h

p

2

�
2A

β

1

Q00i

α3
− 2A

β

1

Q0ijβ
j

α3
− 2A

β

1

Qj0iβ
j

α3

− 2ð2c2 þ c5Þ
Qi0jβ

j

α3
− c5

Qi

α
þ ð2c2 þ c5Þ

Qi00

α3

þ ð2c2 þ c5Þ
Qijkβ

jβk

α3
þ 2A

β

1

Qjikβ
jβk

α3
− 2c4

Q̄i

α

þA
β

2

TA
0iξA
α2

þA
β

2

TA
ijξAβ

j

α2
− b3

TA
ijθA

j

α

�
: ð33Þ

From the above equation, it turns out that the associated

primary constraints appear if and only if A
β

1 ¼ A
β

2 ¼ 0,
giving,

C
β
i ¼ π

β i−
Mpl

ffiffiffi
h

p

2

�ð2c2þc5Þ
α3

ðQi
00þQi

jkβ
jβk−2Qi

0jβ
jÞ

−c5
Qi

α
−2c4

Q̄i

α
−b3

Ti

α

�
≈0: ð34Þ

Also here, Eq. (34) is consistent with Ref. [100], but it is
worth noticing that torsion arises due to the presence of
mixed terms. For this reason, it is expected that diffeo-
morphism will be realized from the Hamiltonian analysis in
a more complex way than GR and STEGR.

Let us now consider the vector irreducible part of the
conjugate momentum (28), which, by means of the

definitions A
V

1 ¼ 2a1 þ a2 þ a3 and A
V

2 ¼ A
β

2 ¼ b1 − b3,
can be recast in the following compact form:

VPi¼−
Mpl

ffiffiffi
h

p

α2

�
A
V

1αξATA
0
i−A

V

1αξATA
j
iβj−a3αθBjηABTAji

þA
V

2

2
Q00

i−
A
V

2

2
βjQ0j

iþb2
2
α2Qiþb3

2
α2Q̄i

−
1

2
ðb1þb2ÞQi

00þðb1þb2ÞQi
0jβ

j−
A
V

2

2
Qj0

iβj

þA
V

2

2
Qjk

iβjβk−
1

2
ðb1þb2ÞQi

jkβ
jβk

�
: ð35Þ

By setting A
V

1 ¼ A
V

2 ¼ 0, we obtain the following primary
constraint:

VCi ¼ VPiþMpl

ffiffiffi
h

p

α2

�
−a3αθBjηABTAjiþb2

2
α2Qiþb3

2
α2Q̄i

−
1

2
ðb1þb2ÞQi

00þðb1þb2ÞQi
0jβ

j

−
1

2
ðb1þb2ÞQi

jkβ
jβk

�
≈0: ð36Þ

With regard to the antisymmetric irreducible part of the

conjugate momentum, it is enough to define A
A

1 ¼ 2a1 −
a2 to get

AP½ji� ¼
ffiffiffi
h

p
Mpl

4α
½2A

A

1TA
0
jθA

i−2A
A

1TA
0
iθA

jþ2A
A

1TAjkβkθA
i

þ2A
A

1TAkiβkθA
jþ4a2αξATAij−b1α3Qj

0
i

þb1α3Qi
0
jþb1αQjikβk−b1αQijkβk�; ð37Þ

and the primary constraint occurs as soon asA
A

1 ¼ 0, where
we have

AC½ji� ¼AP½ji�−
ffiffiffi
h

p
Mpl

4
½4a2ξATAij−b1α2Qj

0
iþb1α2Qi

0
j

þb1Qjikβk−b1Qijkβk�≈0: ð38Þ

The presence of nonmetricity in Eq. (38) demonstrates the
influence stemming from mixed terms. Before looking at
the symmetric momenta SP it is useful to define the
following: SA1 ¼ b1 þ 2a1 þ a2, SA2 ¼ b2 þ a3, SA3 ¼
b2 þ b3, SA4 ¼ b2 þ 4c3, SA5 ¼ 2c3 þ c5, SA6 ¼ b1þ
4c1, SA7 ¼ c1 þ c2 þ c3 þ c4 þ c5, and SA8 ¼ 2c1þ
c2 þ c4. The momenta takes the following form:
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SPij ¼ Mpl

2α2

�
−2SA1αθA

jTA
0
i − 2SA1αθA

iTA
0
j − 4SA2αT0hij þ 4SA3T0

βiβj

α
− 2SA4Q0

hij

α

þ4SA5Q0

βiβj

α
þ 2ðSA3 þ 2SA5ÞQ000

hij

α
− 8SA7Q000

βiβj

α
− 4ðSA3 þ 2SA5ÞQ00k

βk

α
hij

þ16SA7Q00k
βiβjβk

α3
− 4SA8Q00

i β
j

α
− 4SA8Q00

j β
i

α
þ 2ðSA3 þ 2SA5ÞQ0kl

βkβl

α
hij

−8SA7Q0kl
βiβjβkβl

α3
þ 4SA8Q0k

i β
jβk

α
þ 4SA8Q0k

j β
iβk

α
− 2SA6αQ0

ij

�
þ SSij þ SΠij; ð39Þ

where the purely spatial part is given by

SSij ¼ Mpl

ffiffiffi
h

p

α2

�
SA1αTAkjβkθA

i þ SA1αTAkiθA
j − b3αTA

k
iθA

kβj − b3αTA
k
jθA

kβi

þαhijTA
klθA

lβkð2a3 þ 2b2Þ − 2SA3

βiβjβk

α
TA

klθA
l þ SA4αQkβ

khij þ αQ̄kβ
khijðb3 þ 2c5Þ

−ðSA3 þ 2SA5ÞhijQklm
βkβlβm

α
þ SA6αQk

ijβk þ α

2
Qjikβkðb1 þ c2Þ þ

α

2
Qijkβkðb1 þ c2Þ

−2SA8Qkl
j β

iβkβl

α
− 2SA8Qkl

i β
jβkβl

α
þ 4SA7Qklm

βiβjβkβlβm

α3
þQj

kl
βiβkβl

α
ð−2c2 − c5Þ

þQi
kl
βjβkβl

α
ð−2c2 − c5Þ − 2SA5Qk

βiβjβk

α
þ 2c4αQ̄jβi þ 2c4αQ̄iβj þ Q̄k

βiβjβk

α
ð−4c4 − 2c5Þ

þc5αQjβi þ c5αQiβj
�
: ð40Þ

If we plug the aforementioned coefficients making null the velocities, we get the following primary constraint:

SCij ¼ SPij −
Mpl

ffiffiffi
h

p

α2

�
b2αTA

k
iθA

kβj þ b2αTA
k
jθA

kβi þ α

2
Qjikβkð−b2 þ c2Þ þ

α

2
Qijkβkð−b2 þ c2Þ

þQj
kl
βiβkβl

α

�
−2c2 −

b2
2

�
þQi

kl
βjβkβl

α

�
−2c2 −

b2
2

�
þ 2c4αQ̄jβi þ 2c4αQ̄iβj

þ Q̄k
βiβjβk

α
ð−4c4 − b2Þ þ

b2
2
αQjβi þ b2

2
αQiβj

�
− SΠij ≈ 0: ð41Þ

There are also primary constraints associated with the induced metric, whose occurrence automatically yields no
propagating spin-2 field. Thus, if such conditions are satisfied, the resulting theory cannot be understood as a gravity model,
but rather as a different theory relying on a rank-2 tensor. The momentum reads,

πðijÞ ¼ M2
pl

ffiffiffi
h

p

α3
½−2c1α2Q0

ij − 2c3α2hijQ0 þ ð2c3 þ c5ÞhijQ000

þ2ð2c3 þ c5ÞhijQ00
kβk þ 2ð2c3 þ c5ÞhijQ0klβ

kβl

−c5hijα2Q̄0 − ð2c3 þ c5ÞhijQk00β
k þ 2ð2c3 þ c5ÞhijQk0lβ

kβl

þ2c1α2Qk
ijβk þ c2α2Qijkβk þ c2α2Qjikβk þ 2c3hijα2Qkβ

k

þc5hijα2Q̄kβ
k − ð2c3 þ c5ÞhijQklmβ

kβlβm − b2α2hijTA
0kθA

k − b1α2TA
0
ðiθAjÞ

þb1αTA
0
ðiβjÞξA − b1TA

0kβ
iβjβk�: ð42Þ

PRIMARY CONSTRAINTS IN GENERAL TELEPARALLEL … PHYS. REV. D 109, 084078 (2024)

084078-7



For general and symmetric teleparallel theories, the follow-
ing choice makes the spin-2 field nondynamical,

b1 ¼ b2 ¼ c1 ¼ c3 ¼ c5 ¼ 0; ð43Þ

gives rise to the following six primary constraints,

NGCðijÞ ¼ πðijÞ ≈ 0; ð44Þ

where NG stands for “No Gravity”. As stated in [100], the
imposition c1 ¼ c3 ¼ c5 ¼ 0 gives us primary constraints
for symmetric teleparallelism.
In the context of symmetric teleparallelism, primary

constraints have not been derived, except for STEGR
[100,101] and fðQÞ [102–105]. In [100], the analysis of
the Hessian reveals that primary constraints occur either

when c1 ¼ c3 ¼ c5 ¼ 0 or c4 ¼ −c2 þ c2
5

4c3
, though the

explicit expression of the primary constraints is not
presented. However, it can be seen that c1 ¼ c3 ¼ c5 gives
primary constraints for the full symmetric part in symmetric
teleparallel gravity. In symmetric teleparallel quadratic
gravity, it is possible to get the explicit expression of six
primary constraints, occurring if c1 ¼ c3 ¼ c5 ¼ 0.

Reasonably, the condition c4 ¼ −c2 þ c2
5

4c3
gives rise to

one primary constraint associated to the trace, but this
scenario will not be further investigated here, since this
sector is nongravitational due to the absence of spin-2
fields. In metric teleparallelism the primary constraints
related to the nongravitational sector are trivial [96], as
discussed in Sec. IV C.
In this study, we aim to present the conditions for primary

constraints in general teleparallel quadratic gravity, from
which it is possible to classify their different combinations
and count the number of possibilities. Note that, as already
demonstrated in the case of metric teleparallelism [98] and
symmetric teleparallelism [100], often degeneracy can occur.
Hence, certain combinations derived from combinatorial
analysis, can represent trivial theories; on the other hand, a
combination of specific primary constraints could impose an
additional constraint. All possibilities are listed and dis-
played respectively in Table I and in Fig. 1.
In the Table I we have introduced the index i for brevity.

It should be understood as running through all possible
labels of the corresponding A. For example one should

view A
α

i as taking any of the values A
α

1;A
α

2;A
α

3.

TABLE I. Classification of general teleparallel quadratic theories based on primary constraints.

Name Theory Constraints
Number of free
parameters

G1 AI ≠ 0∀ I ∈ fα; β;V;A;S; T g No constraints 10

G2 A
α

1 ¼ A
α

2 ¼ A
α

3 ¼ 0 C
α

7

G3 A
β

1 ¼ A
β

2 ¼ 0 C
β
i 8

G4 VA1 ¼ VA2 ¼ 0 VCi 8
G5 AA1 ¼ 0 AC½ji� 9

G6 A
α

1 ¼ A
α

2 ¼ A
α

3 ¼ A
β

1 ¼ A
β

2 ¼ 0 C
α
; C
β
i 5

G7 A
α

1 ¼ A
α

2 ¼ A
α

3 ¼ VA1 ¼ VA2 ¼ 0 C
α
; VCi 5

G8 A
α

1 ¼ A
α

2 þ 2A
α

3 ¼ AA1 ¼ 0 C
α
;AC½ji� 7

G9 A
β

1 ¼ A
β

2 ¼ VA1 ¼ 0 C
β
i; VCi 7

G10 A
β

1 ¼ A
β

2 ¼ AA1 ¼ 0 C
β
i; AC½ji� 7

G11 VA1 ¼ VA2 ¼ AA1 ¼ 0 VCi; AC½ji� 7

G12 A
α

1 ¼ A
α

2 ¼ A
α

3 ¼ A
β

1 ¼ A
β

2 ¼ VA1 ¼ 0 C
α
; C
β
i; VCi 4

G13 A
α

1 ¼ A
α

2 ¼ A
α

3 ¼ A
β

1 ¼ A
β

2 ¼ AA1 ¼ 0 C
α
; C
β
i;AC½ji� 4

G14 A
α

1 ¼ A
α

2 ¼ A
α

3 ¼ VA1 ¼ VA2 ¼ AA1 ¼ 0 C
α
; VCi;AC½ji� 4

G15 A
β

1 ¼ A
β

2 ¼ VA1 ¼ AA1 ¼ 0 C
β
i; VCi; AC½ji� 6

G16 A
α

1 ¼ A
α

2 ¼ A
α

3 ¼ VA1 ¼ A
β

1 ¼ VA2 ¼ AA1 ¼ 0 C
α
; C
β
i; VCi;AC½ji� 3

G17 SAi ¼ A
α

i ¼ A
β

i ¼ VAi ¼ 0 SCij; C
α
; C
β i

; VCi 2

G18 SAi ¼ A
α

i ¼ A
β

i ¼ VAi ¼ AAi ¼ 0 SCij; C
α
; C
β i

; VCi; AC½ji� 1
G19 b1 ¼ b2 ¼ c1 ¼ c3 ¼ c5 ¼ 0 NGCðjiÞ 5
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IV. PRIMARY CONSTRAINTS IN THE TRINITY
OFGRAVITYAND ITS NONLINEAREXTENSIONS

Let us begin by recalling the values to which the
coefficients ci must be set to restore GTEGR,

ða1; a2; a3Þ ¼
�
1

4
;
1

2
;−1

�
; ðb1; b2; b3Þ ¼ ð−1; 1;−1Þ;

ð45Þ

and ðc1; c2; c3; c4; c5Þ ¼
�
1

4
;−

1

2
;−

1

4
; 0;

1

2

�
: ð46Þ

Notice that these coefficients satisfy the conditions for the
presence of primary constraints, except for NGCij (or their
irreducible parts). The case of TEGR is obtained in the limit

b1 ¼ b2 ¼ b3 ¼ c1 ¼ c2 ¼ c3 ¼ c4 ¼ c5 ¼ 0, while to
get STEGR we must set b1 ¼ b2 ¼ b3 ¼ a1 ¼ a2 ¼
a3 ¼ 0. Consequently, we can obtain the primary con-
straints for the tinity of gravity by simply plugging these
coefficients into the result obtained in the previous section.
Note that we still have the following theory-independent
constraints3:

PCμ
0 ¼ Pμ

0 − π
α
S
α

μ þ π
β
iS
β
i
μ ≈ 0; ð47Þ

The GTEGR coefficients have a similar role for non-
linear extensions. Let us then assume that extended
GTEGR model can be recast as a second-order theory

FIG. 1. Visualization the constraints that G1–G19 theories satisfy, respectively. The lower-left region (NC) is the most generic theory
with no constraint. The lower-right corner (NG) stands for “no gravity” and is constrained such that the spin-2 field is nonpropagating.
The five corners, i.e., α; β;V;A;S, represent the parameter spaces that have primary constraints for lapse, shift, vector, antisymmetric,
and symmetric, respectively. The combinations for coefficients that impose primary constraints are collected to the right.

3The same constraints will be used throughout the rest of the
paper.
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nonminimally coupled to a dynamical scalar field,
namely,

SfðGÞ ¼
1

2
M2

pl

Z
d4x

ffiffiffiffiffiffi
−g

p
fðGÞ≡ 1

2
M2

pl

Z
d4x

ffiffiffiffiffiffi
−g

p

× ðϕG − VðϕÞÞ; ð48Þ

where G is defined as the argument of the action in
Eq. (12), with the coefficients set as in Eqs. (45) and
(46), namely

G≡ 1

4
TαμνTαμν þ 1

2
TαμνTνμα − TμTμ −QαμνTναμ þQμTμ

− Q̄μTμ þ 1

4
QαμνQαμν −

1

2
QαμνQμνα −

1

4
QμQμ

þ 1

2
QμQ̄μ: ð49Þ

This is not proved and we take it for granted, assuming
that under conformal transformations modified GTEGR
behaves like fðRÞ [106] and fðQÞ [103] gravities. By
imposing vanishing nonmetricity or torsion, fðTÞ and fðQÞ
models are respectively restored. In all cases, we can
immediately note the primary constraints yield,

ϕ
π
≔

∂L

∂ϕ̇
≈ 0: ð50Þ

It is worthwhile stressing the difference between fðGÞ and
fðRÞ gravity. In the latter case, the velocities ϕ̇ appear
because of the presence of second-order derivatives in R,
which can be cast in terms of time derivatives of ϕ prior
integrating by parts. The same does not occur in the latter
case, namely in fðGÞ, since G does not contain higher-
order derivatives. The presence of the scalar field alters the
primary constraints in the trinity of gravity, due to a
rescaling of the conjugate momenta. This introduces a
relative factor of ϕ alongside other terms within the primary
constraints (if present), correspondingly breaking the sym-
metry, while activating new degrees of freedom found in
the nonlinear extensions to the trinity of gravity. In the
following subsections we will list the primary constraints of
the trinity of gravity as well as the primary constraints in
their nonlinear extensions.

A. GTEGR and f ðGÞ
Let us start by writing the GTEGR primary constraint

related to lapse function α,

C
α ¼ π

α þMpl

ffiffiffi
h

p

2α2
ðQ̄0 − Q̄iβ

iÞ ≈ 0; ð51Þ

which coincides with the corresponding primary constraint
in STEGR. By plugging the coefficients (45) and (46) into

the shift primary constraint (34) we get,

C
β
m ¼ π

β m þMpl

ffiffiffi
h

p

2

�
1

2α3
ðQi00 þQijkβ

jβk − 2Qi0jβ
jÞ

þQm

2α
−
Tm

α

�
≈ 0; ð52Þ

which is equivalent to the corresponding primary constraint
of STEGR, except for the presence of an additional torsion
term. This result suggests that diffeomorphism invariance
emerges in a more intricate way than the case of STEGR.
Adopting the same procedure for the vector constraint
yields,

VCi ¼ VPiþMpl

ffiffiffi
h

p

α

�
θBjηABTAjiþα

2
Qi−

α

2
Q̄i

�
≈0: ð53Þ

Here we notice that the primary constraint is influenced by
the mixed term and this gives rise to the presence of
nonmetricity. If one assume nonmetricity to vanish, the
corresponding primary constraints for TEGR can be
recovered. The final primary constraint is given by the
antisymmetric irreducible part and reads as

AC½ji� ¼AP½ji�−
ffiffiffi
h

p
Mpl

4
½2ξATAijþα2Qj

0
i−α2Qi

0
j

−QjikβkþQijkβk�≈0: ð54Þ

Also in this case, the above constraint contains nonme-
tricity terms in addition to the expected torsion term. This
means that both diffeomorphism and Lorentz invariance are
realized in a more complicate way, if compared to canonical
gravity, STEGR and TEGR. Finally, the symmetric con-
straints associated with the relation between metric and
affine connection reduces to

SCij¼ SPij−
Mpl

ffiffiffi
h

p

α2

�
αTA

k
iθA

kβjþαTA
k
jθA

kβi−
3

4
αQjikβk

−
3

4
αQijkβkþQj

kl
βiβkβl

2α
þQi

kl
βjβkβl

2α
− Q̄k

βiβjβk

α

þ1

2
αQjβiþ1

2
αQiβj

�
− SΠij≈0:

ð55Þ

Extending this result to the nonlinear extension of
GTEGR is straightforward by recasting the fðGÞ model
in the Jordan frame, namely as a scalar tensor theory of the
form presented in Eq. (48). As shown in Refs. [96,103], the
equivalence between the two frames can be realized both in
fðTÞ and fðQÞ gravity. From this ansatz it follows that the
aforementioned primary constraints will be deformed by a
factor ϕ, which in turn carries an additional constraint.
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Thus the whole set of primary constraints in fðGÞ gravity
reads as

π
ϕ
≈ 0; ð56Þ

C
α

fðGÞ ¼ π
α þ ϕ

Mpl

ffiffiffi
h

p

2α2
ðQ̄0 − Q̄iβ

iÞ ≈ 0; ð57Þ

C
β
m
fðGÞ ¼ π

β m þ ϕ
Mpl

ffiffiffi
h

p

2

�
1

2α3
ðQi00 þQijkβ

jβk − 2Qi0jβ
jÞ

þQm

2α
−
Tm

α

�
≈ 0; ð58Þ

VCi
fðGÞ ¼ Vπi þ ϕ

Mpl

ffiffiffi
h

p

α

�
θBjηABTAji þ α

2
Qi −

α

2
Q̄i

�
≈ 0;

ð59Þ

AC½ji�
fðGÞ ¼ Aπ½ji� − ϕ

ffiffiffi
h

p
Mpl

4
½2ξATAij þ α2Qj

0
i − α2Qi

0
j

−Qjikβk þQijkβk� ≈ 0; ð60Þ

SCij ¼ SPij − ϕ
Mpl

ffiffiffi
h

p

α2

�
αTA

k
iθA

kβj þ αTA
k
jθA

kβi

−
3

4
αQjikβk −

3

4
αQijkβk þQj

kl
βiβkβl

2α
þQi

kl
βjβkβl

2α

− Q̄k
βiβjβk

α
þ 1

2
αQjβi þ 1

2
αQiβj

�
− SΠij ≈ 0:

ð61Þ

One can conclude that calculating the Poisson brackets
needs cumbersome computations and that the intricate
realization of symmetries in GTEGR will be consequently
deformed.

B. STEGR and f ðQÞ
The limit of STEGR can be obtained by assuming a

vanishing torsion in the action4 (12) and properly setting
the values of the coefficients ai, bi, ci. The vector and
antisymmetric irreducible parts are pure tetrad contribu-
tions that trivially vanish Vπi ¼ Aπ½ij� ¼ 0, as symmetric
teleparallelism can be formulated completely in terms of
the metric. The conjugate momenta with respect to lapse
and shift are, in contrast to canonical gravity, dependent on
nonmetricity itself,

C
α ¼ π

α þMpl

ffiffiffi
h

p

2α2
ðQ̄0 − Q̄iβ

iÞ ≈ 0; ð62Þ

C
β
m ¼ π

β m þMpl

ffiffiffi
h

p

2

�
1

2α3
ðQi00 þQijkβ

jβk − 2Qi0jβ
jÞ

þQm

2α

�
≈ 0: ð63Þ

Notice that the former constraint turns out to be the same as
in GTEGR. Finally, there are momenta with respect to the
connection related to primary constraints. Apart from the
four temporal constraints, mentioned at the beginning of
this section, we also have the following twelve constraints
occurring for any symmetric teleparallel theory:

VCi ¼ VPi ≈ 0; AC½ji� ¼ AP½ji� ≈ 0;
SCi ¼ SPij − SΠij ≈ 0: ð64Þ

This is consistent with the findings of Refs. [93,95], though
the expressions provided in the latter reference differ since
they do not adopt the ADM variables. In other words, the
coincident gauge is always allowed in symmetric tele-
parallel theories, but the same does not hold in general
teleparallel theories.
The nonlinear extension fðQÞ, can be dealt with by

considering the action (48) and setting bi ¼ ci ¼ 0.
Moreover, similarly to the case of fðQÞ it is convenient
to consider the Einstein frame, so that a further constraint
arises due to the presence of the scalar field ϕ. The whole
set of primary constraints in fðQÞ gravity is

C
ϕ

fðQÞ ¼ π
ϕ
≈ 0; ð65Þ

C
α

fðQÞ ¼ π
α þ ϕ

Mpl

ffiffiffi
h

p

2α2
ðQ̄0 − Q̄iβ

iÞ ≈ 0; ð66Þ

C
β
m
fðQÞ ¼ π

β mþϕ
Mpl

ffiffiffi
h

p

2

�
1

2α3
ðQi00þQijkβ

jβk−2Qi0jβ
jÞ

þQm

2α

�
≈0: ð67Þ

Nevertheless, an alternative form of the primary constraints
is presented in the literature [102–105], with a nontrivial

expression for π
ϕ
, which is claimed to be obtained after an

integration by parts. The references also made different
conclusions regarding the number of propagating degrees
of freedom, which suggests that the Hamiltonian structure
for symmetric teleparallel theories needs to undergo a more
extensive analysis in order to clarify disputing results.

4Note that one cannot simply take the primary constraints of
GTEGR and set the torsion to zero, since they originate from a
variation with respect to torsion.
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C. TEGR and f ðTÞ
Let us finally consider the most well-studied theory

within the trinity of gravity, TEGR. Enforcing nonmetricity
to vanish at the level of the action, it is straightforward to
realize that there are no time derivatives in the lapse and
shift sectors, thus απ ¼ βπi ¼ 0. However, as pointed out in
[96], the primary constraints for the antisymmetric and
vector parts contain torsion, contrary to the case of
canonical gravity. The primary constraints then read,

VCi ¼ Vπi þMpl

ffiffiffi
h

p

α
θBjηABTAji ≈ 0; ð68Þ

and

AC½ji� ¼ Aπ½ji� −
ffiffiffi
h

p
Mpl

4
2ξATAij ≈ 0: ð69Þ

They both differ from the GTEGR case due to the absence
of nonmetricity. In the absence of nonmetricity, Eq. (61)
does not trivialize, no associated primary constraint can be
found and LA

μ plays the role of a tetrad. It is known that the
affine connection can be split in two parts, associated with
tetrad and spin connection [39]. On the other hand, one can
always choose the so-called Weitzenböck gauge, where the
dynamics is contained into the tetrads [90,107], which
appear along with the primary constraints. Alternatively,
the same can be realized by coordinate transformation in
the tangent space [92]. Here we found a new perspective
for the Hamiltonian analysis, by simply using the sixteen
components of Lμ

ν as our starting point, instead of the
sixteen components of the tetrad, but assuming the
Weitzenböck gauge. Previous works in the covariant
formulation include six additional degrees of freedom
associated with the spin connection and, in some cases,
even curvature is included in the action as Lagrange
multipliers. Note that, in metric teleparallel gravity, it is
still possible to get primary constraints in the symmetric
sector. However, this kills the degrees of freedom of the
spin-2 field, contrary to the requisite for having a gravi-
tational theory [61] (the explicit expressions can be found
in [96] and references therein).
The most well-studied extended teleparallel theory is

fðTÞ and, although suffering from inconsistencies [96],
several studies about the Hamiltonian analysis reveals the
existence of five degrees of freedom [108]. The existing
literature in this context agrees upon the form of the
primary constraints to be

C
ϕ

fðTÞ ¼ π
ϕ
≈ 0; ð70Þ

VCi
fðTÞ ¼ Vπi þ ϕ

Mpl

ffiffiffi
h

p

α
θBjηABTAji ≈ 0; ð71Þ

AC½ji�
fðTÞ ¼ Aπ½ji� − ϕ

ffiffiffi
h

p
Mpl

4
2ξATAij ≈ 0: ð72Þ

V. CONDITIONS FOR PRIMARY CONSTRAINTS
IN THE IRREDUCIBLE REPRESENTATION

OF TORSION AND NONMETRICITY

Torsion and nonmetricity can be decomposed in irre-
ducible parts [70,72,109–111], one of which plays a crucial
role in the one-parameter healthy class of metric teleparallel
quadratic gravity [91,112].5 The most famous irreducible
part of nonmetricity is accounted for the Weyl vector Wμ.
To complete the irreducible decomposition of nonmetricity,
four terms are needed (including the Weyl vector), i.e.,

Wμ ¼
1

4
Qμ; ð73Þ

Λμ ¼
4

9
ðQ̄μ −WμÞ; ð74Þ

Ωλ
μν ¼ −

�
ϵμνρσQρσλ þ ϵμνρλ

�
3

4
Λρ −Wρ

��
; ð75Þ

qλμν ¼ QðλμνÞ − gðμνWλÞ −
3

4
gðμνΛλÞ: ð76Þ

For the torsion we have three terms, namely

vμ ¼ Tν
μν; ð77Þ

aμ ¼ ϵμλρνTλρν; ð78Þ

tλμν ¼ Tλμν −
2

3
gλ½νTμ� −

1

6
ϵλρμνaρ; ð79Þ

named the vector, axial, and tensor parts, respectively.
According to this representation, the GTEGR scalar G can
be recast as

k1tαμνtαμν þ k2aμaμ þ k3vμvμ þ k4ϵμναβtλμνΩλ
αβ þ k5vμWμ

þ k6vμΛμ þ k7qαμνqαμν þ k8Ωα
μνΩα

μν þ k9ΛμΛμ

þ k10WμWμ þ k11WμΛμ: ð80Þ
Most of the terms in the above expression can be written
explicitly in terms of Weyl vector, torsion and nonmetricity.
In particular, we have

k7qλμνqλμν ¼ k7

�
QðλμνÞQðλμνÞ − 2QðλμνÞgðμνWλÞ

−
3

2
QðλμνÞgðμνΛλÞ þ gðμνWλÞgðμνWλÞ

þ 3

2
gðμνWλÞgðμνΛλÞ þ 9

16
gðμνΛλÞgðμνΛλÞ

�

¼ k7

�
1

2
QλμνQμλν þ 1

2
QλμνQλμν þ 1

36
Q̄λQλ

þ 11

72
QλQλ −

1

18
Q̄λQ̄λ

�
; ð81Þ

5In [113], the statement that other theories propagate ghosts
was proven to be incorrect and from this point of view the harsh
conclusions of the viability of those theories can be weakened.
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k8Ωλ
μνΩλ

μν ¼
�
ϵμνρσQρσλ þ ϵμνρλ

�
3

4
Λρ −Wρ

���
ϵμναβQαβλ þ ϵμνα

λ

�
3

4
Λα −Wα

��

¼ ϵμνρσQρσλϵμναβQαβλ þ ϵμνρσQρσλϵμνα
λ

�
3

4
Λα −Wα

�
þ ϵμνρλ

�
3

4
Λρ −Wρ

�
ϵμναβQαβλ

þ ϵμνρλ

�
3

4
Λρ −Wρ

�
ϵμνα

λ

�
3

4
Λα −Wα

�

¼ 2QαβλQαβλ − 2QβαλQαβλ −
2

3
QλQλ −

2

3
Q̄λQ̄λ þ 4

3
QλQ̄λ; ð82Þ

k9ΛμΛμ ¼ 16

81

�
Q̄μ −

1

4
Qμ

��
Q̄μ −

1

4
Qμ

�
¼ 16

81
Q̄μQ̄μ

−
8

81
QμQ̄μ þ 1

81
QμQμ; ð83Þ

k10WμWμ ¼ k10
16

QμQμ; ð84Þ

k11WμΛμ ¼ 1

9
Qμ

�
Q̄μ −

1

4
Qμ

�
; ð85Þ

from which it is possible to get the following system of
linear equations in the symmetric teleparallel case:

c1QλμνQλμν ¼ QλμνQλμν

�
1

2
k7 þ 2k8

�
; ð86Þ

c2QλμνQμλν ¼ QλμνQμλν

�
1

2
k7 − 2k8

�
; ð87Þ

c3QμQμ ¼QμQμ

�
−

7

72
k7−

2

3
k8þ

1

81
k9þ

1

16
k10−

1

36
k11

�
;

ð88Þ

c4Q̄μQ̄μ ¼ Q̄μQ̄μ

�
−

1

18
k7 −

2

3
k8 þ

16

81
k9 þ

1

9
k11

�
; ð89Þ

c5Q̄μQμ ¼ Q̄μQμ

�
−
2

9
k7 þ

4

3
k8 −

8

81
k9

�
; ð90Þ

whose solution is

8>>>>>><
>>>>>>:

k7 ¼ c1 þ c2
k8 ¼ c1−c2

4

k9 ¼ 9
8
c1 − 45

8
c2 − 81

8
c5

k10 ¼ 16c3 þ 4c4 þ 10c5
k11 ¼ 9c2 þ 9c4 þ 18c5

8>>>>>><
>>>>>>:

c1 ¼ 1
2
k7 þ 2k8

c2 ¼ 1
2
k7 − 2k8

c3 ¼ 11
72
k7 − 2

3
k8 þ 1

81
k9 þ 1

16
k10 − 1

36
k11

c4 ¼ − 1
18
k7 − 2

3
k8 þ 16

81
k9 þ 1

9
k11

c5 ¼ − 2
9
k7 þ 4

3
k8 − 8

81
k9:

ð91Þ

If we substitute the STEGR-coefficients in the above
solution, we obtain that the only nonvanishing coefficients
ki are

8>>>>>><
>>>>>>:

k7 ¼ − 1
4

k8 ¼ 3
16

k9 ¼ − 63
32

k10 ¼ 1

k11 ¼ 9
2
;

ð92Þ

so that conditions for primary constraints take the following
form:

8>>>>><
>>>>>:

A
α

1 ¼ 7
8
k7 þ 1

9
k9 þ 1

16
k10 þ 1

12
k11

A
α

2 ¼ 1
12
k7 − 2

27
k9 þ 1

8
k10 − 1

18
k11

A
β

1 ¼ 13
9
k7 þ 4

3
k8 þ 16

81
k9 þ 1

9
k11:

ð93Þ

Note that the term k8Ωλ
μνΩλ

μν is only involved in the
condition for constraints related to shift, and not for lapse.
However, the whole set of coefficients ci are involved in the
primary constraint for lapse, in the standard action formu-
lation for symmetric teleparallel theories. Furthermore, we
also notice that k10WμWμ is not involved in the condition
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for primary constraint related to the shift sector. However,
this is not an improvement from the previous formulation,
as neither c3 nor c5 determine any condition for this
primary constraint.
In future works it would be interesting to check the

further restrictions that can be obtained by demanding the
Hamiltonian to be linear in lapse and shift.
The case of metric teleparallelism is already known (see

Ref. [114] for details) and leads to the following solution
for the coefficients ai:8>><

>>:
a1 ¼ 1

2
k1 − 1

18
k2

a2 ¼ 1
2
k1 þ 1

9
k2

a3 ¼ k3 − 1
2
k1

8>><
>>:

k1 ¼ 2
3
ð2a1 þ a2Þ

k2 ¼ 6ða2 − a1Þ
k3 ¼ 1

3
ð2a1 þ a2Þ þ a3;

ð94Þ

from which the conditions for primary constraints auto-
matically follow

8>>>>><
>>>>>:

VA1 ¼ k1 þ k3
AA1 ¼ 1

2
k1 − 2

9
k2

SA1 ¼ 3
2
k1

TA1 ¼ 3k3:

: ð95Þ

Finally, in order to evaluate the case of quadratic metric
teleparallel theories of gravity, it is necessary to consider
nonvanishing trace and symmetric sectors, thus imposing
k1, k3 ≠ 0, otherwise no propagating spin-2 field occurs
and the physical relevance of the corresponding theory is
consequently lost. Fixing one of them with the Planck mass
and the ghost-free condition VA1 ¼ 0, makes k2 the only
free parameter. The latter governs the axial part and, if set to
k2 ¼ 9

4
k1, allows to restore TEGR, though the remaining

parameters lead to a new physics that have been shown to
suffer from the strong coupling problem [61,62].
Similarly to the previous case, by considering the explicit

expression of ki coefficients, namely

k4ϵμναβtλμνΩλ
αβ ¼ −12TλμνQμνλ; ð96Þ

k5vμWμ ¼ 1

4
k5TμQμ; ð97Þ

k6vμΛμ ¼ k6
4

9
Tμ

�
Q̄μ −

1

4
Qμ

�
; ð98Þ

we can write the following system of linear equations:

b1QαμνTναμ ¼ −12k4QαμνTναμ; ð99Þ

b2QμTμ ¼ QμTμ

�
1

4
k5 −

1

9
k6

�
; ð100Þ

b3Q̄μTμ ¼ 4

9
k6; ð101Þ

whose solution yields,

8>><
>>:

k4 ¼ − 1
12
b1

k5 ¼ 4b2 þ 4
9
b3

k6 ¼ 9
4
b3

� b1 ¼ −12k4
b2 ¼ 1

4
k5 − 1

9
k6

b3 ¼ 4
9
k6:

ð102Þ

Finally, the symmetric constraint related to GTEGR read,

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

SA1 ¼ −12k4 þ 3
2
k1

SA2 ¼ 1
4
k5 − 1

9
k6 þ k3 − 1

2
k1

SA3 ¼ 1
4
k5 þ 1

3
k6

SA4 ¼ 1
4
k5 − 1

9
k6 þ 11

18
k7 − 8

3
k8 þ 4

81
k9 þ 1

4
k10 − 1

9
k11

SA5 ¼ 1
12
k7 − 2

27
k9 þ 1

8
k10 − 1

18
k11

SA6 ¼ −12k4 þ 2k7 þ 8k8
SA7 ¼ 7

8
k7 þ 1

9
k9 þ 1

16
k10 þ 1

12
k11

SA8 ¼ 13
9
k7 þ 4

3
k8 þ 16

81
k9 þ 1

9
k11:

ð103Þ

From the results within the scope of this article, we cannot
see any advantage of writing torsion and nonmetricity into
irreducible parts. However, as noted for quadratic sym-
metric teleparallel gravity, we found k8Ωλ

μνΩλ
μν to play a

special role regarding the primary constraints for lapse and
shift, such as axial torsion plays a special role in metric
teleparallel quadratic gravity.

VI. SHIFTED ALGEBRA AMONG CONSTRAINTS

It is well-known that the trinity of gravity (including
GTEGR) gives rise to the same field equations as GR. The
degrees of freedom are, hence, two (or four in phase-space)
and there must exist enough symmetry to constrain the
extra introduced components of the tetrad and spin con-
nections. The first point to stress is that the spin connection
is purely gauge, which has support in the literature: (i) for
the case of metric teleparallelism [90–92,113,115]; (ii) for
the case of symmetric teleparallelism [93,115]; (iii) but not
for the case of general teleparallelism. Thus, in metric and
symmetric teleparallel theories we are allowed to choose
the so-called coincident gauge [116–118] where the affine
connection drops out and the focus shifts only on the 10 (or
20 in phase space) degrees of freedom of the metric. This
means that the associated primary constraints are expected
to be of the first class, removing the degrees of freedom of
the affine connection, whereas the case of GTEGR works
differently. As a matter of facts, spin connection is pure
gauge in any teleparallel theory, but the affine connection
can be made to vanish only in symmetric teleparallelism. In
other words the Weitzenböck gauge is always available, but
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the coincident gauge is available only for symmetric
teleparallelism [95].
For the canonical Hamiltonian analysis, however, the

output is influenced by boundary terms [119]. This in turn
affects the algebra among constraints and, consequently,
the way to restore the symmetries of GR. We name this
feature “shifted algebra among constraints” and this section
is dedicated to shading light in this framework by compar-
ing both the three corners of the trinity of gravity and
GTEGR.

A. The case of canonical gravity

In the canonical case, namely with the Einstein-Hilbert
action as the starting point, the spin connection is not
present. Since the theory is fully invariant under Lorentz
transformations, it is conventionally formulated in terms of
metric rather than tetrad [75], especially because residing to
the tetrad formulation makes the analysis more cumber-
some. Nevertheless, the latter approach can be consistently
pursued at the same level of the metric one, as demonstrated
in [120,121]. The tetrad formulation includes the antisym-
metric part of the conjugate momenta, which introduces
primary constraints simply providing

π½μν� ≈ 0: ð104Þ

This can also be written in the canonical form, with
opposite indices with respect to those of the tetrad, if
one adopts the V, A part of the irreducible decomposition
with respect to the rotation group Oð3Þ. However, for
simplicity, in this section we follow the standard formu-
lation based on the metric. The primary constraints restrict
the additional six components arising when passing from
the metric to the tetrad formulation. By calculating the
Poisson brackets with the Hamiltonian, it turns out that
the well-known Lorentz invariance of GR follows from the
Lorentz algebra provided by the Poisson brackets.
Let us start by considering, in the metric formulation, the

trivial primary constraints associated with lapse and shift,

π
α ≈ 0; π

β i ≈ 0: ð105Þ

They are related to diffeomorphism invariance and with the
intrinsic nature of lapse and shift, which are purely gauge
degrees of freedom. However, them being first class only
reduces the number of degrees of freedom to six (or 12 in
phase space). This happens because diffeomorphism invari-
ance in canonical gravity does not only give rise to primary
constraints, but also to secondary constraints and, for this
reason, diffeomorphism invariance can be thought as
“hitting twice” [107]. The latter consideration finally brings
the counting down to two degrees of freedom (or four in
phase space). The secondary constraints are realized by the
observation that the final expression for the Hamiltonian
turns out to be linear in lapse and shift. In the following we

will demonstrate how the counting of degrees of freedom
goes similarly in the trinity of gravity. The symmetries are
the same, but their generators are shifted, as it can be
realized by the more intricate expressions for the primary
constraints provided in Sec. IV.

B. The case of TEGR

The case of TEGR is particularly interesting in our
formulation, since the metric was only introduced through
nonmetricity. Thus, in the metric teleparallel limit, we only
have degrees of freedom related to Lμ

ν. It turns out that the
latter takes the same role as the tetrad in the Weitzenböck
gauge and torsion can also be rewritten in terms of tetrad
and the spin-connection derivatives [122]. Consequently,
one can choose 16 components of the tetrad plus six
components of Lorentz matrices as the starting point. The
Hamiltonian then reveals that all Lorentz matrix compo-
nents are subjected to primary constraints [90,94] and
choosing the Weitzenböck gauge is physically fully con-
sistent [92,122]. In this approach the starting point is the
covariant formulation, as the coincident gauge is incon-
sistent with general teleparallelism (torsion would vanish
and the geometry would reduce to symmetric teleparallel-
ism). However, instead of considering tetrad plus Lorentz
matrices (or spin connection), one can also start from Lμ

ν,
which structurally appears in the same way as the tetrad
appears in the Weitzenböck gauge. This means that Lμ

ν can
be associated with the “Lorentz gauge-invariant variables in
metric teleparallel theories” [92].
We found primary constraints for all general teleparallel

theories associated with the temporal part of Lμ
ν [see

Eq. (26)]. In the Weitzenböck analysis, this corresponds to
the four primary constraints associated with lapse and shift
[96]. Thus, the sixteen degrees of freedom coming from Lμ

ν

or θ reduce to twelve, if these are of first class. Additionally,
there are the vector and antisymmetric constraints given by
Eqs. (68) and (69).6 They are not independent of torsion,
which makes the calculations of the Poisson brackets
among constraints more difficult, compared to canonical
gravity [Eq. (104)]. However, these computations have
been performed (see [124]) and it can be shown that they
form the Lorentz algebra. Therefore, though the Lorentz
symmetry is realized by the Hamiltonian analysis, the
generators are shifted. The remaining six degrees of free-
dom coincide with those of canonical gravity evaluated at
the level of primary constraints, namely without consider-
ing secondary constraints from the Hamiltonian. Following
the evaluation of these secondary constraints in TEGR
[68,124], the final conclusion is two degrees of freedom
(or four in phase space), which is consistent with GR.

6In the case of TEGR and its nonlinear extension fðTÞ-gravity,
it is possible to combine the three vector primary constraints with
the three antisymmetric primary constraints, to get six Lorentz
constraints [36,123].
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An interesting note is that there are no primary constraints
associated with SPij, contrarily to the cases of GTEGR and
STEGR. This lack is due to the fact that the momentum SPij

in metric teleparallelism takes the role of momentum for the
induced metric. If this momentum was subjected to primary
constraints, the spin-2 field would become nondynamical,
which is inconsistent with the properties we expect for a
gravitational theory and, certainly, not the case of GR.

C. The case of STEGR

For STEGR introducing tetrad fields is not needed since,
like canonical gravity, the metric is enough and the
antisymmetric part of the conjugate momenta vanishes
when adopting the tetrad formalism. Furthermore, it can be
seen that there exist primary constraints associated with
each component of Lμ

ν, which is consistent with [93] and
with the claim that the coincident gauge is valid for any
symmetric teleparallel theory [95]. STEGR differs from
canonical gravity by the presence of (linear) time deriva-
tives of lapse and shift. Thus, their conjugate momenta do
not vanish, but rather are proportional to nonmetricity (not
containing time derivatives). This allows to recover the
primary constraints given by Eqs. (62) and (63).
Comparing this to canonical gravity, the primary con-

straints related to lapse and shift are shifted, similarly to
how the vector and antisymmetric constraints were shifted
in the case of TEGR. In most cases, the evolution of these
primary constraints is not considered, but they are instead
referred to as gauge fixing. However, it is important to
avoid any gauge fixing in the Hamiltonian analysis, as
pointed out in [107]. This is due to the fact that the gauge
fixing of lapse and shift leads to missing control to the
“hitting twice” of diffeomorphism invariance.
Before providing more details on this topic, some

comments about the state of art for the Hamiltonian
analysis for symmetric teleparallel gravity are in order.
Only recently, progresses on this topic have been pursued
[100–102,104,105,125], and the preservation of these
constraints in time have never been investigated. In fact,
the earliest article [101] made an integration by parts
and found the correct boundary term to supplement in order
to make it identical to canonical gravity.7 In [125] the same
boundary term is added, but then the authors discarded a term
that is mistakenly identified as a boundary,

α
ffiffiffi
h

p
DiðQi − Q̄iÞ ¼ α∂ið

ffiffiffi
h

p
ðQi − Q̄iÞÞ;

obviously failing to be a boundary due to the presence of
lapse. In Refs. [101,125], the interesting effect coming from
the boundary term, which makes the difference between
STEGR and canonical gravity, is avoided by integration by

parts (in particular involving time derivatives). In [105] it is
stated the proposition; Surface terms do change canonical
momentum variables but do not change the symplectic
structure. Thus, the boundary term that was added in
[101] is not incorrect, but in our opinion less interesting,
since it simply leads to canonical gravity. In future works it
would be interesting to perform the full Hamiltonian analysis
of STEGR without adding this kind of boundary terms. This
will reasonably shift the algebra among constraints similarly
to the case of TEGR.
Out of the ten free components occurring in the metric

(20 if one includes the conjugate momenta), the afore-
mentioned primary constraints are not enough to reduce the
degrees of freedom to two (or four in phase space). The
missing ingredients are the secondary constraints, conven-
tionally called “Hamiltonian” and “momenta” constraints.
They are realized by the Hamiltonian that turns out to be
linear in lapse and shift, and together with the primary
constraints for lapse and shift, there are eight constraints
which can be proven to be of first class. This reduces the
number of dynamical degrees of freedom to two (or four in
phase space), as expected. In [101,104,105] it is demon-
strated that the Hamiltonian, along with the Poisson
brackets among the Hamiltonian and the momenta con-
straints, form the ADM algebra, proving they are indeed of
first class.

D. The case of GTEGR

With the list of primary constraints, we can now sketch
the counting of degrees of freedom in GTEGR. We know
that the latter is a gravitational theory including diffeo-
morphism and Lorentz invariance and that the number of
degrees of freedom should be two (or four in phase space).
Therefore, it is reasonable to assume that all constraints are
of first class, so that the count of degrees of freedom in the
phase space is no longer needed. The metric and Lμ

ν have
10þ 16 degrees of freedom, four of which are related to the
temporal part of Lμ

ν, like in any general teleparallel theory.
The vector and antisymmetric constraints remove six more
degrees of freedom (also here associated to Lμ

ν), so that the
count drops to 10þ 6, where ten are linked to the metric
and six to Lμ

ν. The final six degrees of freedom related to
Lμ

ν are fully constrained by the symmetric constraints SPij.
Thus, if a given model carries the aforementioned primary
constraints, then the connection does not contain any
dynamical degree of freedom, with the consequence that
the corresponding gravitational theory can be always
framed within symmetric teleparallel theories. On the other
hand, the lapse and momentum constraints remove four
additional degrees of freedom from the ten related to the
metric. Therefore, we end up having only six metric
degrees of freedom, as in canonical gravity. The last four
constraints, which are needed to drop the degrees of
freedom count to the known number two, are expected
to come from the secondary (Hamiltonian and momentum)

7Note that in canonical gravity something similar is done to the
Einstein–Hilbert action [75], with the aim to neglect higher-order
time derivatives.
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constraints, though further analyses in this direction are
needed to investigate the nature of such constraints.
More specifically, in GTEGR time derivatives appear

linearly on both lapse and shift, as well as the antisym-
metric part of Lμ

ν. The primary constraints are given by
Eqs. (47) and (51)–(55) and they are all different from
canonical gravity due to the presence of torsion and
nonmetricity and also contain additional primary con-
straints related to Lμ

ν. So far, no previous work dealing
with the Hamiltonian analysis of general teleparallel
theories has been done. However, all primary constraints
of GTEGR should be preserved in time and it is also
expected that the Hamiltonian reveals linearity in lapse and
shift. Starting with the aforementioned 10þ 16 compo-
nents of metric and Lμ

ν, one can see that there are sixteen
primary constraints in GTEGR associated with Lμ

ν [see
Eq. (47) and Eqs. (53)–(55)]. Then we essentially end up
with the starting point of canonical gravity, where one
needs to find constraints for the ten metric components. The
primary constraints related to lapse and shift are reported in
Eqs. (51) and (52), whereas we expect that secondary
constraints can be found from the Hamiltonian, similarly to
canonical gravity. However, the primary constraints are
more than those occurring in canonical gravity and most of
them contains both torsion and nonmetricity. Notice that
GTEGR is an alternative formulation that only differ from
GR by a boundary term, meaning that the algebra among
constraints will eventually provide the same results as
Einstein’s theory, i.e. two dynamical degrees of freedom.
Nevertheless, analyzing how the algebra closes can be of
extreme interest for future studies, especially considering
that the primary constraint contains both nonmetricity and
torsion, meaning that the latter are both needed to realize
diffeomorphism and Lorentz symmetry, or rather the
combined group GLð4;RÞ. It remains to see how different
the Hamiltonian and momenta constraints are with respect
to the canonical case, though we expect that the Poisson
brackets among constraints will realize GLð4;RÞ in a way
that is much less straightforward than the cases of TEGR
and STEGR, because of the complex form taken by
Hamiltonian and momenta constraints.

VII. CONCLUSIONS AND OUTLOOK

We have derived all primary constraints for general
teleparallel quadratic theories of gravity. They have
been shown to be consistent with previous works
[36,68,96,98,100,123,124]. The most remarkable insight
from the primary constraints is that they contain both
torsion and nonmetricity, which is a feature also enjoyed by
in GTEGR. Since general teleparallel quadratic gravity is
equivalent to GR (modulo a boundary term), diffeomor-
phism and Lorentz invariance of both type I and II
(following the conventions of [92,93]) have to be realized.
Moreover, the primary constraints are “shifted” by involv-
ing torsion and nonmetricity, with the consequence that the

Poisson brackets among constraints vanish on shell in a
much less trivial way.
We also note that, while the Hamiltonian analysis for

metric teleparallel theories has been widely studied (see [96]
and references therein), the case of symmetric teleparallel
gravity hasgotten attention recently (see [103] and references
therein). Furthermore, in STEGR [101,125], an integration
by parts essentially yielding the case of canonical gravity has
been pursued in Ref. [75], whereas the study of the nonlinear
extension exhibited strong disagreements [102–105]. More
precisely, the disagreement in the number of degrees of
freedom in fðQÞ can be comparedwith the recent result from
perturbation theory [57,58,126] revealing seven degrees of
freedom, among which at least one ghost degree of freedom.
Perturbations around backgrounds revealing less degrees of
freedom will instead suffer from strong coupling [57].
We have classified general teleparallel quadratic theories

based on the (non)presenceof primary constraints. In totalwe
find 19 distinct teleparallel quadratic theories (seeTable I and
Fig. 1) with all of them having up to ten free parameters.
Among these, we find one nongravitational theory, though it
is expected that a few more can be found. The other 18
theories have at least one free parameter. However, consid-
ering thatGTEGRdoes notmanifest any free parameters, it is
expected that conditions for secondary constraints will
introduce more branches in the tree of general teleparallel
theories, fixing the final parameter. If restricting the geometry
to metric teleparallelism, one gets nine classes of theories
with 0–2 free parameters, all containing the Hamiltonian and
momenta constraints (secondary constraints ensuring diffeo-
morphism symmetry) [98,127]. For the case of symmetric
teleparallel quadratic gravity, conditions for secondary con-
straints are unknown, but a similar classification of theories
was done in [100]. It is easy to see that our results are
consistent with metric and symmetric teleparallel limits.
Alternatively, general teleparallel quadratic theories canbe

written in terms of irreducible components of torsion and
nonmetricity, as shown in Eq. (80). We found that the
k8Ωα

μνΩα
μν-term does not affect conditions for primary

constraints related to lapse. Furthermore, as already known
from the literature, the axial part of torsion (i.e., k2aμaμ) can
be associated with the one-parameter family of ghost-free
metric teleparallel quadratic gravity [112,114]. Our study
also introduced a smoother way to perform the Hamiltonian
analysis in covariant metric teleparallel theories, namely
using Lμ

ν instead of tetrad plus spin connection, which is
equivalent to adopt the Weitzenböck gauge.
Our results open up several directions towards further

investigating the Hamiltonian analysis of general telepar-
allel theories, which in turn can be considered to determine
the viability of the given model and the number of degrees
of freedom,8 as well as for the application to quantum

8This may efficiently be done for the 19 different theories, by
extending the method developed in [128].
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cosmology [42,104,129–131]. In the trinity of gravity,
GTEGR stands out as the most promising candidate to
improve the notion of energy and entropy in GR [74] and it
would be interesting to further investigate this through a
full-fledged Hamiltonian analysis. Moreover, as stated in
Sec. VI, another future perspective is to get the full picture
about the way in which the Poisson brackets among
constraints vanish in the trinity of gravity (which we only
know for the case of canonical gravity and TEGR, but not for
STEGR and GTEGR). Finally, one may also investigate if
TEGR, STEGR, or GTEGR models have an advantageous

formulation for numerical relativity as pointed out in
[101,125,132].
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Golovnev, Débora Aguiar Gomes, María-José Guzmán,
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Energy and entropy in the geometrical trinity of gravity,
Phys. Rev. D 107, 024044 (2023).

[75] R. L. Arnowitt, S. Deser, and C.W. Misner, The dynamics
of general relativity, Gen. Relativ. Gravit. 40, 1997 (2008).

[76] B. S. DeWitt, Quantum theory of gravity. 2. The manifestly
covariant theory, Phys. Rev. 162, 1195 (1967).

[77] J. A. Wheeler, On the nature of quantum geometrody-
namics, Ann. Phys. (N.Y.) 2, 604 (1957).

[78] A. Vilenkin, The interpretation of the wave function of the
universe, Phys. Rev. D 39, 1116 (1989).

[79] S. W. Hawking, The quantum state of the universe, Nucl.
Phys. B239, 257 (1984).

[80] A. Vilenkin, Creation of universes from nothing, Phys.
Lett. 117B, 25 (1982).

[81] A. Vilenkin, Quantum creation of universes, Phys. Rev. D
30, 509 (1984).

[82] R. Bousso and L. Susskind, The multiverse interpretation
of quantum mechanics, Phys. Rev. D 85, 045007 (2012).

[83] S. Capozziello, V. F. Cardone, H. Farajollahi, and A.
Ravanpak, Cosmography in f(T)-gravity, Phys. Rev. D
84, 043527 (2011).

[84] C. G. Boehmer, A. Mussa, and N. Tamanini, Existence of
relativistic stars in f(T) gravity, Classical Quantum Gravity
28, 245020 (2011).

[85] T. P. Sotiriou, f(R) gravity, torsion and non-metricity,
Classical Quantum Gravity 26, 152001 (2009).
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