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Angular momentum and spin precession are expected to be generic features of a significant fraction of
binary black hole systems. As such, it is essential to have waveform models that faithfully incorporate
the effects of precession. Here, we assess how well the current state-of-the-art models achieve this for
waveform strains constructed only from the l ¼ 2 multipoles. Specifically, we conduct a survey on the
faithfulness of the waveform models SEOBNRV5PHM, TEOBRESUMS, IMRPHENOMTPHM, IMRPHENOMXPHM

to the numerical relativity (NR) surrogate NRSUR7DQ4 and to NR waveforms from the SXS catalog. The
former assessment involves systems with mass ratios up to 6 and dimensionless spins up to 0.8. The latter
employs 317 short and 23 long SXS waveforms. For all cases, we use reference inclinations of zero and
90°. We find that all four models become more faithful as the mass ratio approaches unity and when the
merger-ringdown portion of the waveforms are excluded. We also uncover a correlation between the
coprecessing ð2;�2Þ multipole mismatches and the overall strain mismatch. We additionally find that for
high inclinations, precessing ð2;�1Þ multipoles that are more faithful than their ð2;�2Þ counterparts, and
comparable in magnitude, improve waveform faithfulness. As a side note, we show that use of uniformly
filled parameter spaces may lead to an overestimation of precessing model faithfulness. We conclude our
survey with a parameter estimation study in which we inject two precessing SXS waveforms (at low and
high masses) and recover the signal with SEOBNRV5PHM, IMRPHENOMTPHM, and IMRPHENOMXPHM. As a
bonus, we present preliminary multidimensional fits to model unfaithfulness for Bayesian model selection
in parameter estimation studies.
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I. INTRODUCTION

Over the course of three observing periods, the terrestrial
network of gravitational wave interferometers has detected
roughly 100 compact binary inspiral-merger events [1–29].
An overwhelming majority of these involved binary black
hole systems where each compact body is expected to
have non-negligible spin angular momentum, which has
been confirmed by the analysis of the binary black hole
population thus far detected [14,22,30]. Depending on the
binary formation scenario, a significant subpopulation of
these binaries can have spins misaligned with the orbital
angular momentum [31–36].
The leading-order general relativistic effect of such

misaligned spins is the precession of the orbital angular
momentum vector around the total angular momentum of
the system, which leaves a faint, but detectable imprint on
the gravitational waveform as amplitude and phase mod-
ulations on a timescale 1.5 post-Newtonian (PN) orders
longer than the orbital timescale [37,38], and at an order
1.5PN higher in the phase than the leading-order terms
[39,40]. As such, spin effects are harder to infer, or
even detect, than the chirp mass and the (symmetric)
mass ratio of the binary system. Nonetheless, information

about black hole spins has been obtained successfully
[6,13,14,16,17,19,20,22,23,25,26,28,30,41–44]. One way
to convey this information is to provide distributions for the
inferred spin magnitudes and tilts, the latter with respect to
some reference frame. However, thus far, such posteriors
have been mostly uninformative with a few exceptions as
illustrated by Figs. 6, 10, and 11 of the three Gravitational
Wave Transient Catalogs, respectively [14,22,30].
A more fruitful way of gleaning spin information has

been via the construction of specific projections of the spins
parallel and perpendicular to the orbital angular momentum
at a reference frequency, usually 20 Hz. These projections
reduce the seven-dimensional intrinsic parameter space
(mass ratio and six spin components) to three dimensions,
which was shown to essentially capture the phenomenol-
ogy of precessing waveforms [45]. The parallel scalar has
come to be known as the effective spin parameter χeff
[46,47]. Though the term effective (or reduced or PN) spin
has been used for similar scalars [48,49], we employ the
phenomenological definition given in our Eq. (8) [45,50]
which has become standard. It was shown in Ref. [47] that
χeff is a conserved quantity up to 1.5PN, i.e., neglecting
spin-spin and higher-order interactions. The magnitude of
χeff changes very little even with the inclusion of these
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interactions. As such, it has become a very useful quantity
in parameter estimation, especially since it emerges in the
PN series for the waveform phase at a more dominant order
than all other parameters except for the chirp mass and the
symmetric mass ratio [39,40,51]. In fact, in the strong field
regime, the contribution of the χeff term is large enough to
cause a well-known partial degeneracy between the sym-
metric mass ratio and the parallel component of the total
spin [39,40,50–52].
χeff also provides a way to gather information about

the properties of the binary black hole (BBH) population
since isotropically distributed spins would result in a
normal distribution for χeff centered on zero. Several
studies have already looked at this over the ensemble of
the detected BBHs and more or less agree that the
distribution is somewhat asymmetric and peaks at values
slightly above zero [53–59].
The perpendicular scalar is known as the effective

precession parameter (or spin) χp [45,60] and is given
below in Eq. (9). It was shown by Refs. [45,60] that the
dominant effects of precession on the gravitational wave
(GW) waveform can be characterized by mapping the four
perpendicular components of the binary’s spin vectors to
just one parameter, χp, assigned to be the sole perpendicular
component of the spin of the larger (primary) component
of the binary. Since χp provides information about the
perpendicular component of the spins, specifically, the
perpendicular component of the primary’s spin, it is taken
as an indication of spin precession.
The inference of χp is more challenging than that of χeff

because, for instance, in the limit that the orbital angular
momentum is much larger than the total spin, the
perpendicular components can be considered to be 0.5PN
order higher than the parallel components [61]. This can
also be understood in terms of the respective contributions
of the parallel and the perpendicular components to the
waveform phase. Comparing the contribution of the χeff -
term to the overall phase with that of the accumulated
precession phase [cf. Eq. (45) of Ref. [37] ] for a canonical
neutron star binary inspiraling from 10 Hz, we see that
the former is roughly 2 orders of magnitude larger.
Accordingly, at moderate signal-to-noise ratios (SNRs),
it is not possible to obtain a clear measurement of the
individual spins [60]. Moreover, the inclination of the orbit
also matters; it is harder to detect precession in binaries
where the line of sight is aligned with the total angular
momentum as the precession-induced modulations are
minimized [62]. Therefore, it is not surprising that there
have thus far been only three GW events for which there is
evidence for precession: GW190412 [20], GW190521
[21,26,63], and GW200129_065458 [22,64–66].
Discerning precession in compact binary inspirals (and

mergers) is important for breaking parameter degeneracies
and understanding binary formation scenarios. To this end,
accurate modeling of spin effects has become crucial in

GW astronomy. Though nonprecessing, i.e., aligned-spin,
quasicircular waveform models such as those given by
Refs. [67–74] have matured to the faithfulness level of
≲10−3 with respect to numerical relativity waveforms,1 the
precessing models are approximately one half to an order of
magnitude worse in faithfulness and much more sensitive
to modeling systematics. As the detectors’ sensitivities
improve steadily through O4, O5, and beyond, systematic
errors in parameter estimation due to mismodeling the
effects of precession will dominate over the statistical error,
especially for signals with large SNR [39,75]. In fact,
recent research has shown that even the current accuracy
of the NR waveforms may not be enough for bias-free
parameter estimation at the projected sensitivities of the
third-generation ground-based interferometers [76]. For
this reason, the waveform modeling community has been
endeavoring toward building ever more faithful precessing
models. There are now several precessing quasispherical
waveform models borne out of various waveform
“families” and all have achieved ≲10−2 faithfulness. The
state of the art among these is NRSUR7DQ4 [77], the latest
precessing member of the numerical relativity surrogate
family [68,78–82] with an NR faithfulness of ∼10−4. It was
recently employed in a reanalysis of most O3 events [83].
Another set of models is the NR-informed effective-one-

body (EOB) family [46,84–88]. This contains two similar,
but distinct subfamilies: SEOBNR [67,73,89–101] and
TEOBRESUMS [74,102–116]. A third major family is the
phenomenological inspiral-merger-ringdown, IMRPHENOM

waveforms [45,60,69–71,117–133], which have mostly
been built in the frequency domain. This has enabled
faster parameter estimation runs compared with the time-
domain EOB models. However, there are now also a few
time-domain IMRPHENOM models [69,131].
Specific waveform models from each family are usually

referred to as approximants. The state-of-the-art approximant
from each of the families listed in the previous paragraph
are, respectively, SEOBNRV5PHM [98,100,101,134] (recent
upgrade from SEOBNRV4PHM [95–97]), TEOBRESUMS

2

[107,110], IMRPHENOMTPHM [131] (time domain), and
IMRPHENOMXPHM [128] (frequency domain). Note, we do
not employ here the more recent IMRPHENOMXODE [133] or
IMRPHENOMXO4A [135], or the upgraded IMRPHENOMXPHM

[136] though we do include a brief comparison involving
these two models in Appendix C. Essentially, these models
are “too new” as the bulk of our work was already completed
by the time they appeared.
When a newwaveformmodel is complete, it may undergo

a review where it is extensively compared with numerical

1We quote the approximate median value for a specific
mismatch with respect to numerical relativity simulations over
a large sample.

2Nonprecessing and precessing approximants in this family are
all called by the same name.

MAC UILLIAM, AKÇAY, and THOMPSON PHYS. REV. D 109, 084077 (2024)

084077-2



relativity simulations and with various other approximants
as well as undergoing parameter estimation tests. Such
studies are also detailed in the articles introducing the specific
models (see, e.g., theworks cited above).Recently, theLIGO-
Virgo-KAGRA Collaboration (LVK) also conducted a
detailed study of the faithfulness of the waveforms generated
by the models NRSUR7DQ4, SEOBNRV5PHM, TEOBRESUMS,
IMRPHENOMTPHM, IMRPHENOMXPHM, and IMRPHENOMXO4A

using a set of≳1500 NR simulations, but this is not publicly
available. However, some of this work has been documented
inRef. [98] (also seeRef. [135] for a similar studyusingBAM
waveforms [137–139]). A separate study focusing on the
parameter estimation performance of the precessing models
was conducted in Ref. [140]. This work compared the system
parameters inferred by NRSUR7DQ4, IMRPHENOMTPHM,
IMRPHENOMXPHM, and SEOBNRV4PHM for an ensemble of
nearly 60 “pure” BBH O3 events.
Here, we undertake a more systematic survey based

on simulated data. First, in Sec. IV, using the NR surro-
gate NRSUR7DQ4 (henceforth NRSUR) as a proxy for NR,
we compute the unfaithfulnesses of {SEOBNRV5PHM,
TEOBRESUMS, IMRPHENOMTPHM, IMRPHENOMXPHM} to it
for a discretely spaced and a random-uniformly-filled set of
intrinsic parameters with the binary mass fixed to both a
light and a heavy value, and inclination fixed to 0 and π=2.
We focus solely on the l ¼ 2waveform strain faithfulness
throughout our work. For the discrete parameter set, we
document in detail the deterioration of faithfulness with
increasing mass asymmetry, which is well known (see
e.g., in Refs. [98,131,132]), but we also uncover multi-
modalities in the unfaithfulness distributions coming from
strongly precessing cases. We further reveal a correlation
involving the unfaithfulness of the coprecessing ð2;�2Þ
multipoles. We additionally contrast the unfaithfulness
results from the discrete set with those of a uniformly
filled parameter set. Using this, we show that the latter
type of parameter set may result in the overestimation of
model faithfulness.
We then move on to direct comparisons with NR

waveforms from the SXS catalog [141], choosing simula-
tions that were not used in the calibration of the models
of interest here. We employ a set of 317 SXS simulations
with a mass ratio grouping similar to the discrete set above
so that we can reapply the same analyses which result in our
reaching very similar conclusions. We further employ a
smaller set consisting of 23 SXS waveforms containing
more than 100 GW cycles each in order to briefly assess the
models’ faithfulness for longer inspirals.
Finally, to complete our survey, we perform zero-noise

injections of a moderately and a strongly precessing numeri-
cal relativity waveform and recover their parameters with
SEOBNRV5PHM, IMRPHENOMTPHM, and IMRPHENOMXPHM.
As we explain in detail in Sec. VI, we are unable to present
Parameter Estimation (PE) results for TEOBRESUMS for these
injections.

Our faithfulness survey provides us with enough data
to construct fits for unfaithfulness over the intrinsic
parameter space. These fits can be used to generate a
weighted categorical prior to inform model choice in a joint
Bayesian analysis [142]. We reduce the dimensionality of
the parameter space by employing the parallel and
perpendicular effective spin projections for our fits. We
then construct three-dimensional fits to the logarithm of the
unfaithfulness as functions of the mass ratio and the spin
projections. These fits can subsequently be employed to
assign weights to each waveform model in various regions
of the parameter space. Our results shown in Appendix A
are preliminary as we intend to pursue this line of research
elsewhere.
The remaining sections are organized as follows. In

Sec. II, we briefly review precession dynamics and pre-
cessing waveform construction, and introduce the parallel
and perpendicular spin projections. Section III introduces
the various metrics which we employ to assess waveform
faithfulness. We summarize our work in Sec. VII and
conclude with a retrospective discussion in Sec. VIII.
Appendices B and C contain additional model compar-
isons. Finally in Appendix D, we present timing bench-
marks for the main models that we consider here. We
provide our data and the notebooks/codes/scripts used to
obtain it in a GIT repository [143].
We work with geometrized units where G ¼ c ¼ 1. m1

and m2 denote the masses of the primary and secondary
components of the compact binary system, with m1 ≥ m2.
Accordingly, we define small and large mass ratios as
q ¼ m2=m1 ≤ 1 and Q ¼ 1=q ≥ 1, the symmetric mass
ratio η ¼ q=ð1þ qÞ2, and the total massM ¼ m1 þm2. S1

and S2 denote the spin vectors of each binary component
with the respective dimensionless spin vectors given by
χ i ¼ Si=m2

i and χi ≔ jχ ij, i ¼ 1, 2. Unless otherwise noted,
we set M ¼ 1. Overdots denote time derivatives whereas
hats denote unit vectors. Throughout this article, we use the
terms aligned and parallel interchangeably, as well as
perpendicular/in plane/planar where the former direction
is along the orbital angular momentum vector and the latter
is in the orbital plane.

II. REVIEW OF PRECESSING WAVEFORM
CONSTRUCTION

For this article, we focus only on quasispherical binary
systems as most binaries are expected to have circularized
by the time they enter the LIGO-Virgo-KAGRA band [144]
which is supported by the GW data so far [145–152]
(see Refs. [153,154] for a few exceptions). However,
there are binary formation scenarios in which a moderate
amount of eccentricity survives beyond the decihertz
regime [155–168]. Therefore, it is important to have
template banks of sufficiently faithful eccentric and pre-
cessing waveforms in the near future.
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In general relativity, GWs have only two propagating
degrees of freedom, þ and × polarizations, which can be
obtained from the following multipole sum in terms of spin
weight ¼ −2 harmonics

hþ − ih× ¼
X∞
l¼2

Xl
m¼−l

−2Y
lmðϑLN;0;φrefÞhlmðtÞ; ð1Þ

where ϑLN;0 ≔ cos−1ðL̂N;0 · N̂Þ is the orbital inclination
with N̂ being the line-of-sight vector from the binary’s
center of mass to the observer. φref ¼ π=2 − φc is a
constant reference phase [169], where φc denotes the phase
at coalescence.
The polarizations hþ;× couple with the detectors’

antenna patterns on Earth. For an L-shaped interferometer,
the GW strain in the time domain is given by

hðtÞ ¼ Fþðθs;ϕs;ψ sÞhþðt;ϑLN;0;φrefÞ
þ F×ðθs;ϕs;ψ sÞh×ðt;ϑLN;0;φrefÞ; ð2Þ

where θs;ϕs are the source sky location angles, ψ s is the
source polarization with respect to the detector, and Fþ;×

are the detector antenna pattern functions that can be found
in, e.g., Ref. [170]. The GW strain at the detector
(henceforth just the strain) given by Eq. (2) is the quantity
which we use in determining the faithfulness of the EOB
and the phenomenological approximants via a certain sky-
maximized mismatch defined in Sec. IV.
It was shown by Refs. [49,62,171] that precessing

waveform multipoles, hlm, can be built to a good approxi-
mation from the Euler rotation of aligned-spin (AS) multi-
poles via the following expression

hlm ¼
Xl

m0¼−l

DðlÞ�
m0;mð−γ;−β;−αÞhASlm0 ; ð3Þ

whereDðlÞ
m0;m are Wigner’s D matrices [172,173]. α; β, and γ

are the Euler angles of the frame rotation with α, β being
the spherical angles of the Newtonian orbital angular
momentum vector LN with respect to a chosen frame,
e.g.,LN;0 ≔ LNðf0Þwhere f0 is a reference frequency. The
third rotation by γ uniquely fixes the frame to the so-called
minimal-rotation frame [171].
The Euler angles α, β are obtained from the time

evolution of LN ¼ LNL̂N governed by the PN precession
equations. At next-to-leading order (NLO), the orbit-
averaged evolution equations can be written in the follow-
ing form

Ṡi ¼ Ωi × Si; ð4aÞ

˙̂LN ¼ ΩNLO × L̂N; ð4bÞ

with i ¼ 1, 2 denoting the primary and the secondary,
respectively. The precession frequencies are given by

Ωi

v5
¼ η

�
2þ 3

2
qi

�
L̂N þ v

2
fSj − 3½ðqiSi þ SjÞ · L̂N�L̂Ng;

ð5aÞ

ΩNLO ¼ −
v
η
ðΩ1 þΩ2Þ; ð5bÞ

where v is the relative speed of the binary components in
the center-of-mass frame, q1 ¼ 1=q; q2 ¼ q, and j ¼ 3 − i.
Radiation reaction is incorporated through the decay of
the magnitude of the angular momentum, L̇N, while the
direction of the total angular momentum vector J ¼ LN þ
S1 þ S2 is kept fixed at a desirable PN order. It is standard
to rewrite L̇N as v̇ðvÞ or ω̇ðωÞ using LN ¼ η=v ¼ ηω−1=3

where ω ¼ v3 is the orbital frequency. Further details can
be found in, e.g., Refs. [37,38,100,107,174,175].
The coupled system of ODEs consisting of the decay of

LN and Eqs. (4a) and (4b) can be numerically solved
straightforwardly. Analytic solutions have also been found
at this PN order via the multiscale approach [175–178].
PN information exists up to 3.5PN in the radiation
reaction sector [179–181] and next5LO in the precession
dynamics [100]. Once the solution LNðtÞ is known, αðtÞ
and βðtÞ can be computed immediately, and, subsequently,
γ from [171]

γ̇ ¼ �α̇ cos β; ð6Þ

where there is a sign freedom in the right-hand side.
Note that Eq. (3) is an approximation for the true

precessing multipoles, hpreclm , which can be extracted from
NR simulations for example. One can then obtain the
coprecessing multipoles via inverse of the transformation in
Eq. (3)

hcopreclm ¼
Xl

m0¼−l

DðlÞ
m0;mðα; β; γÞhlm0 : ð7Þ

Though hcopreclm ≠ hASlm, the AS multipoles are, in general, a
good approximation for the coprecessing multipoles [182]
as we will show in Sec. IVA 3.
The AS multipoles satisfy the relation hASl;−m ¼

ð−1ÞlhAS�lm , which does not hold for hcopreclm due to the
asymmetric emission of GWs above and below the orbital
plane leading to the “bobbing” of the binary and eventually
resulting in the well-known kick of the final black hole
[182–185]. Although the difference in the �m multipoles
may be small, it seems to be non-negligible for unbiased
parameter estimation of precessing binaries even at mod-
erate SNRs [185], and most definitely so at high SNRs
[186]. The only model used in this work that does not
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neglect this multipole asymmetry is NRSUR7DQ4 [77],
though we note that the newest phenomenological approx-
imant PHENOMXO4a also contains this feature for the
dominant, quadrupolar multipole [135,187].
Another approximation made above is the use of orbit-

averaged ODEs to describe the precession dynamics which
removes the nutation of the spins from the evolution of the
binary.3 Though wide nutation angles may leave a unique
signature on future GWevents [188], the work of Ref. [189]
has found no strong evidence of nutation in any detected
event thus far.
Returning to the binary with the orbital and spin angular

momenta vectors fLN;S1;S2g, let θi ¼ cos−1ðL̂N · ŜiÞ
denote the polar (tilt) and ϕi the azimuthal angle of
each spin vector with i ¼ 1, 2. The components of the
spins parallel and perpendicular to L̂N are given by Si;jj ¼
ðSi · L̂NÞL̂N ¼ m2

i χi cos θiL̂N and Si;⊥ ¼ Si − Si;jj with
magnitude m2

i χi sin θi.
We have already discussed the most commonly

employed parallel and perpendicular scalars, χeff and χp,
in Sec. I. χeff is given by [46]

χeff ¼
1

1þ q
ðχ1 cos θ1 þ qχ2 cos θ2Þ ð8Þ

and its perpendicular counterpart by [45,60]

χp ¼ max

�
χ1 sin θ1; q

4qþ 3

4þ 3q
χ2 sin θ2

�
: ð9Þ

The Kerr spin limit χi ≤ 1 imposes the condition 0 ≤ χp ≤
1 where χp ¼ 0 corresponds to a nonprecessing (aligned
spin or spinless) and χp ¼ 1 to a maximally precessing
binary. There is an elegant discussion in Ref. [190] on the
physical meaning of this definition which leads to a
generalized version of this parameter

χGenp ¼
�
ðχ1 sin θ1Þ2 þ

�
q
4qþ 3

4þ 3q
χ2 sin θ2

�
2

þ 2q
4qþ 3

4þ 3q
χ1χ2 sin θ1 sin θ2 cosðΔϕÞ

�
1=2

; ð10Þ

where

cosðΔϕÞ ¼ ðŜ1 × L̂NÞ · ðŜ2 × L̂NÞ ð11Þ

which is the span of the planar angle between S1 and S2.

χGenp is in fact equal to j ˙̂LNj=Ω1 [190] and a comparison
of Eq. (10) with Eq. (9) reveals that χGenp can exceed 1
(χGenp ≤ 2) which can only be achieved by systems in which

both spins are large and mostly planar [190]. This fact
has already been used for a simulated study of O4 events
showing that for moderate to high SNRs, double-spin
precession can be inferred [191].
There are several other recently proposed perpendicular

scalars. For example, Ref. [107] introduced the following
perpendicular scalar

χ⊥;J ¼
jS1;⊥ þ S2;⊥j

M2
: ð12Þ

Reference [132] introduced a modification to χp for
improved single-spin mapping in the merger-ringdown
regime for binaries where Q≲ 1.5. Reference [192]
replaced χp with a two-dimensional vector in the phenom-
enological waveform mapping to improve the faithfulness
of the precessing ð2;�1Þ; ð3;�3Þ; ð4;�4Þ multipoles.
Here, we concern ourselves only with χp; χGenp and χ⊥;J

all of which we collectively refer to as the χ⊥’s.
As can be seen from the equations defining the χ⊥’s,

each one depends on quantities that evolve in time (in other
words, in frequency). Traditionally, the values for these
quantities are usually quoted at a reference frequency of
20 Hz, but this choice is somewhat arbitrary. Alternative
reference times (or frequencies) have been suggested such
as tp−100 ≔ tpeak − 100M and tISCO ≔ tðf ¼ 6−3=2=ðMπÞÞ,
where tpeak denotes the time at which the coprecessing
(2, 2) multipole amplitude peaks, and tISCO is the time at
which the GW frequency equals twice the Schwarzschild
innermost stable circular orbit (ISCO) frequency.
References [193,194] have recently adopted yet another
alternative: the t → −∞ðf → 0 HzÞ limit where the spin
tilt angles θ1, θ2 can be unambiguously obtained. However,
the angle Δϕ cannot be uniquely determined which means
that we cannot compute χGenp or χ⊥;J at past infinity.
One can also work with averaged quantities instead.
For example, Ref. [190] introduces a precession-cycle-
averaged version of χp which they further extend to
precession- and rms-averaged versions of χGenp in
Ref. [175]. Unless otherwise noted, we quote the values of
the various spin scalars at the initial time (frequency) t0ðf0Þ.

III. QUANTIFYING WAVEFORM FAITHFULNESS

The faithfulness of a given template waveform strain
h0ðtÞ to a target waveform h0ðtÞ is measured in terms of the
waveform match given by

M ¼ max
tc;φc

hh0jh0iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh0jh0ihh0jh0i
p : ð13Þ

The match is maximized over constant time and phase
shifts which we take to be the time and phase shifts at
coalescence tc;φc. The angular brackets denote the noise-
weighted inner product

3For non-orbit-averaged versions, see Eqs. (2.8) and (2.10) of
Ref. [47].
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hh0jh0i ≔ 4ℜ
Z

ff

fi

h̃0ðfÞh̃0�ðfÞ
SnðfÞ

df; ð14Þ

where h̃ðfÞ are the Fourier transforms of the time-domain
GW strains. The inner product is weighted by the one-sided
power spectral density (PSD) SnðfÞ of the detector noise for
which we use the Advanced LIGO [195] zero-detuned
high-power design sensitivity [196]. The integration is
performed from the initial frequency fi to the final
frequency ff which we set equal to 1024 Hz. As can be
seen from Fig. 1, this choice of final frequency is large
enough to encompass the merger-ringdown portions of the
waveforms for BBHs with M ¼ 37.5M⊙; 150M⊙ which
will be our chosen values for much of this article. To
mediate the effects caused by finite signal duration, we
choose fi such that there are at least three waveform cycles
between it and f0, the initial coprecessing (2, 2)-multipole
frequency. We set the luminosity distance of the sources to
the fiducial value of dL ¼ 500 Mpc.
If the system of interest is precessing then the detector

antenna patterns of Eq. (2) become time dependent.
Consequently, the waveform strain at the detector becomes
dependent on constant and time-varying extrinsic param-
eters (and of course the intrinsic parameters) which we can
write as

hðtÞ ¼ Fþðθs;ϕs;ψ sðtÞÞhþðϑLN;0;φref ; trefÞ
þ F×ðθs;ϕs;ψ sðtÞÞh×ðϑLN;0;φref ; trefÞ: ð15Þ

By introducing an effective amplitude A,

Aðθs;ϕsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2þðθs;ϕs;ψ sÞ þ F2

×ðθs;ϕs;ψ sÞ
q

ð16Þ

and an effective polarizability κ via

eiκðθs;ϕs;ψsÞ ¼ ½Fþðθs;ϕs;ψ sÞ þ iF×ðθs;ϕs;ψ sÞ�=Aðθs;ϕsÞ;
ð17Þ

we can rewrite Eq. (15) as

hðtÞ ¼ Aðθs;ϕsÞfcos ½κðθs;ϕs;ψ sÞ�hþðϑLN;0;φref ; trefÞ
þ sin ½κðθs;ϕs;ψ sÞ�h×ðϑLN;0;φref ; trefÞg; ð18Þ

where we suppressed the t dependence in the right-
hand side.
We can now define the sky-maximized (optimized)

faithfulness (match) between the target strain and the
waveform template as

Mopt ¼ max
t0ref ;φ

0
ref ;κ

0;ϕ0

hh0jh0iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh0jh0ihh0jh0i
p ; ð19Þ

where t0ref ;φ
0
ref ; κ

0 are template parameters to be optimized
over. The details of the optimization can be found in
Refs. [110,198]. In particular, the κ0 optimization is
performed analytically, while t0ref is maximized via the
inverse fast Fourier transform. The maximization over
φ0
ref is performed numerically using a dual annealing

algorithm [110,128]. ϕ0 represents the final degree of
freedom to be maximized over, i.e., the freedom to shift
ϕ1;ϕ2 by a constant amount which leaves Δϕ unchanged.
We perform this maximization using another dual
annealing algorithm [110]. It is evident from Eq. (18) that
the match is also a function of the inclination angle ϑLN;0,
but since we fix the inclinations in our comparisons at a
given reference frequency, we do not need to optimize
over them.
Note that Mopt is a function of φref and κ so, as a final

step, we compute its average over an evenly spaced grid
for fφref ; κg∈ ½0; 2πÞ × ½0; π=2Þ with 6 × 7 ¼ 42 elements
to obtain

Mopt;av ≔
1

42

X42
i¼1

Moptðφref;i; κiÞ: ð20Þ

This is done to marginalize over any dependence of the
match on the sky position and obtain values which depend
exclusively on the intrinsic parameters of the source. This
quantity is similar to the sky-and-polarization-averaged
faithfulness given by Eq. (35) of Ref. [98], but we do not
average over the inclination.

FIG. 1. Typical waveform amplitudes in the frequency domain
from the sample of BBHs generated for the survey in Sec. IVA.
In particular, we display in blue (orange) a trio of light (heavy)
precessing binaries starting from f0 ¼ 37.5 Hz (12 Hz) with
Q ¼ 1.1̄; 2; 4 (dot dashed, dotted, solid) at a fiducial luminosity
distance of 500 Mpc and initial inclination of ϑLN;0 ¼ 0 shown
against both Advanced LIGO design sensitivity [196] (black solid
curve) and LIGO Livingston detector strain sensitivity during
O3 [197] (faint gray curve). We used the approximant IMRPHE-

NOMXPHM to generate these waveforms. For each case, we have
maxðχpÞ ¼ 0.8. The orange and blue vertical bands mark the
regions of fpeak for each triplet of waveforms. Since fpeak varies
for each set of parameters, we opted to show bands here instead of
six additional vertical lines marking individual fpeak.
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For the remainder of this article, we employ the sky-
averaged, optimized waveform mismatch

M̄opt ≔ 1 −Mopt;av ð21Þ

as our faithfulness gauge. The optimized mismatches that
we quote henceforth will always be this average which we
may occasionally refer to as the “full mismatch.” As a
check, we also store the minimum and the maximum values
of M̄opt over the grid as well as the standard deviation all
which we present in the data provided in our GIT repository.
To further disentangle possible causes of waveform

mismodeling, we additionally compute mismatches
where we truncate the mismatch integral before the
transition to plunge, specifically at ff ¼ 0.6fpeak with
fpeak ≔ fðt ¼ tpeakÞ denoting the GW frequency at the
maximum (peak) amplitude of the coprecessing l ¼ 2
strain of NRSUR7DQ4, i.e., the maximum of

AcoprecðtÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm¼2

m¼−2
hcoprec2m ðtÞ

vuut ð22Þ

with t0 < tpeak [169]. We have checked that 0.6fpeak ≥
fMECO, the minimum energy circular orbit (MECO) fre-
quency [70]. Accordingly, we present results for not only
M̄opt, but also for the merger-ringdown excluded (inspiral-
only) mismatch

M̄noMR
opt ≔ M̄optðff ¼ 0.6fpeakÞ: ð23Þ

IV. FAITHFULNESS SURVEY I:
COMPARISONS WITH NRSUR7DQ4

We begin our survey with Sec. IVAwhere we assess the
faithfulness of SEOB, TEOB, TPHM, and XPHM to NRSUR7DQ4

using a discrete grid for the intrinsic parameters at zero
inclination, by which we mean ϑLN;0 ≔ ϑLNðf0Þ ¼ 0. Since
the direction of L̂N evolves in time, so does ϑLN. Thus, the
best we can do is specify its value at some reference
frequency. In principle, we could have employed the
(approximately) fixed inclination with respect to the total
angular momentum, θJN. However, the ϕ0 optimization of
Eq. (19) becomes nontrivial in this case.
We also include in Sec. IVA a comparison in the

extrapolation region of NRSUR7DQ4, where the model is
stated to be robust [77]. In Sec. IV B, we consider the same
discrete set at ϑLN;0 ¼ π=2 thus changing the multipole
content of the strain in Eq. (1). We perform a similar
analysis in Sec. IV C over a random-uniformly-filled
intrinsic parameter space and compare our findings with
those of Secs. IVA and IV B. We should add that the most
recent version of SEOB (v5) was released near the com-
pletion of this work so we had initially conducted our

survey on SEOBNRV4PHM. As a useful sidenote, we present
a brief comparison of v5 and v4 in Appendix B.

A. Discrete parameter set with zero inclination

As both LIGO and Virgo noise curves are frequency,
and therefore mass, dependent, we consider a set of light
and heavy binaries for our survey with M ¼ 37.5M⊙ and
150M⊙. We divide each set into four equal-size subsets
separated by mass ratio values of Q ¼ 1.1̄; 2, 4, 6. We have
chosen Q ¼ 1.1̄ðq ¼ 0.9Þ to break the Q ¼ 1 symmetry
where the nonprecessing (2, 1) multipole equals zero,
i.e., hAS21 ¼ 0. The subset with Q ¼ 6 is in the so-called
extrapolation region of NRSUR7DQ4 so we delegate the
comparison pertaining to it to Sec. IVA 4.
A lighter binary mostly accumulates SNR during its

inspiral whereas a heavy enough binary could have as much
SNR accumulated during the merger-ringdown stage as
the inspiral assuming signals enter the detector band at
≳20 Hz. We illustrate this in Fig. 1 with three light and
three heavy BBH waveforms with Q ¼ 1.1̄; 2; 4 and the
same spin vectors. The merger-ringdown SNR for the light
binaries ranges from a quarter to ≲ half of its inspiral
counterpart (computed from 38 Hz; see f0’s in Table I)
while the same SNR for the heavy systems ranges from
70% to 90% of its inspiral counterpart (from 12 Hz).
Therefore, by considering light and heavy systems, we are
effectively dividing our survey sample into two halves
whereby merger-ringdown modeling is much more impor-
tant for waveform faithfulness in one half (heavy BBHs)
than the other (light BBHs).
Any comparison with NRSUR7DQ4 is ultimately limited

by the fact that the surrogate waveforms have a maximum
inspiral time length of 4300M. For this reason, we have
chosen f0 ¼ f30; 31; 35g Hz for the Q ¼ 1.1̄; 2; 4 subsets
of the M ¼ 37.5M⊙ set and f0 ¼ f7.5; 8; 9g Hz for the
same subsets of the M ¼ 150M⊙ set. These yield between
27 and 47 GW cycles for light BBHs and between 25 and
45 GW cycles for the heavy BBHs.

TABLE I. Relevant parameters for the binary systems which
we use in our faithfulness survey in Sec. IVA. f0 denotes the
initial frequency from which we start the binary evolution. We fix
ϕ1 ¼ 0 at f0 without loss of generality.

Total mass M∈ f37.5M⊙; 150M⊙g
Mass ratio Q∈ f1.1̄; 2; 4; 6g
Initial
frequency f0¼

� f30;31;35;38.5gHz forM¼37.5M⊙;
f7.5;8;9;10gHz forM¼150M⊙

Spin
magnitudes

χ1 ¼ χ2 ¼ 0.8

Tilt angles cos θ1;2 ¼ f−
ffiffi
3

p
2
þ k

ffiffi
3

p
4
g ∪ f−1g; k ¼ 0;…; 4

if θ1 ¼ π; θ2 ≠ π
Azimuthal
angles

ϕ1 ¼ 0;ϕ2 ¼ kπ=4; k ¼ 1;…; 8
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Each Q subset consists of a grid of spin angles fθ1; θ2;
Δϕ ≔ ϕ2 − ϕ1g where the tilt angles are evenly spaced in
cos θi from −

ffiffiffi
3

p
=2 to

ffiffiffi
3

p
=2 in steps of

ffiffiffi
3

p
=4. We also

included the grid points with cos θi ¼ −1 (i ¼ 1 or 2) with
the intention to create a small subset of cases with near-
transitional precession [37] to test the models’ robustness.
Specifically, the eight cases with Q ¼ 4; θ1 ¼ π; θ2 ¼ π=6
yield L̂Nðt0Þ ·JN;0≈−0.02 and jJN;0j≈0.025≈0.033jLN;0j
(in units of M2). The addition of these extra grid points
creates a somewhat skewed coverage of the parameter
space as can be seen by the blue dots in Fig. 2.
Δϕ runs from π=4 to 2π in steps of π=4. We fix

the dimensionless Kerr spin parameter χ to 0.8 for all
cases resulting in χp ≤ 0.8; χ⊥;J < 0.55; χGenp < 1.45, and
jχeff j < 0.7. We summarize these parameter choices in
Table I, and show the coverage of the dimensionless
intrinsic parameter space in terms of the parallel and
perpendicular spin projections in Fig. 2 as the blue disks.
The figure also shows the same quantities plotted for the
uniformly filled parameter set of Sec. IV C and the SXS sets
of Sec. V.
The three-angle fθ1; θ2;Δϕg grid has in total ð62 − 1Þ ×

8 ¼ 280 elements. This then yields 280 × 3 ¼ 840 separate
binaries to consider per total mass separated by Q ¼
1.1̄; 2; 4. Overall, we have 840 × 2 ¼ 1680 systems for
each of which we compare the waveforms generated
by {SEOB, TEOB, TPHM, XPHM} to NRSUR via the averaged,

optimized mismatch M̄opt given by Eqs. (19) and (21) for
which the last quantity to consider is the lower limit of the
match integral, i.e., fi. For the M ¼ 37.5M⊙ set, we pick
fi ¼ f0 þ 3 Hz which captures approximately 25 to
42 GW cycles depending on the intrinsic parameters.
This allows for plenty of SNR accumulation in the inspiral
stage before transitioning to plunge. On the other hand,
for the M ¼ 150M⊙ set, we deliberately fix fi ¼ 11 Hz
leading to fewer inspiral cycles captured in the match
integration, thus increasing the relative contribution of the
merger-ringdown stage to the overall SNR.
In Fig. 3, we show the main result of this section where

we plot the distributions of M̄opt between NRSUR7DQ4

and SEOB, TEOB, TPHM, XPHM. In the left (right) panel,
we present the mismatches for the light (heavy), i.e.,
M ¼ 37.5M⊙ð150M⊙Þ, systems for all Q ¼ 1.1̄; 2; 4. An
apparent feature in the figure is the superior faithfulness
of SEOB exhibiting no cases of M̄opt > 0.035 and having
≈22% of the heavy-binary mismatches below 10−3. We also
note comparable performances among TEOB, TPHM, and
XPHM. For the heavy systems, the distributions of M̄opt

for these approximants become wider with more cases
of M̄opt > 0.035.
Perhaps the most curious feature in Fig. 3 is the

little “bump” in the heavy XPHM histogram at M̄opt ∼ 0.3
with a similar smaller “island” for the light-binary XPHM

FIG. 2. The coverage of the spin space for all our parameter sets shown using the parallel and perpendicular effective spin scalars
computed at the initial time t0. In each panel, χeffðt0Þ of Eq. (8) is plotted in the vertical axis. From left to right, χpðt0Þ [Eq. (9)], χGenp ðt0Þ
[Eq. (10)], and χ⊥;Jðt0Þ [Eq. (12)] are plotted in the horizontal axes, respectively. The blue disks correspond to the values of
these quantities coming from our discrete parameter set of Sec. IVA (see Table I). The green squares, orange diamonds, and the
black crosses represent the same quantities obtained from our random-uniformly-filled set (Sec. IV C), the short and the long SXS sets
(Secs. VA and V B), respectively. As χp has no dependence on the azimuthal components of the spins, the parameters of the discrete and
the short SXS sets yield degenerate values clustered at χp ≈ 0.4, 0.72, 0.8, whereas both χGenp and χ⊥;J cover their respective ranges better
since they are ϕi dependent.

MAC UILLIAM, AKÇAY, and THOMPSON PHYS. REV. D 109, 084077 (2024)

084077-8



mismatches at 0.1 ≤ M̄opt ≤ 0.3. For both light and heavy
systems, we find that these are the same 40 cases which
have Q ¼ 4; θ1 ¼ π with the worst mismatches coming
from the θ2 > π=2 subset. For these configurations, which
have the most negative z projections of spins, i.e.,
χeff ≲ −0.5, the default multiple scale analysis (MSA)
prescription for the precession dynamics of XPHM breaks
down [178] and the model defaults to the single-spin, next-
to-next-to-leading-order (NNLO) prescription for the spin
dynamics with a 3PN approximation to jLj. This is a
known shortcoming of XPHM and is expected to be fixed in
the next version of the model [136].

1. Effects of the merger-ringdown portion
of GWs on faithfulness

The increased amplitude/phase disagreement between
NR and waveform models in the plunge-merger-ringdown
stages of the binary evolution is a well-known shortcoming,
usually illustrated in terms of time-domain plots of
the waveforms. For this reason, we investigated how the
mismatches plotted in Fig. 3 change when neglecting the
merger-ringdown portions of the waveforms. We quantify
this in terms of the merger-ringdown truncated (i.e., inspiral
only) mismatch given in Eq. (23). There are two reasons
for which we a priori expect the merger-ringdown- (MR)
truncated waveforms to agree better with NRSUR; i.e., we
expect the M̄noMR

opt distributions to occupy lower values
than their M̄opt counterparts. The first reason pertains to
signal morphology: The inspiral is much smoother than the
MR and therefore easier to optimize over in the match
computation. The second reason has to do with the
modeling: The MR stages are more difficult to model
analytically, especially without input from NR simulations.
As such, the waveform models employ NR-informed fits
for the MR regime.

Our second expectation is a larger shift between the
M̄noMR

opt and M̄opt distributions for theM ¼ 150M⊙ sample
since the MR part of the signal is much more important for
these heavier binaries.
These expectations are confirmed in Fig. 4 where we

present the distributions of M̄noMR
opt and M̄opt as (half)

violin plots for the four approximants for both the light
and the heavy BBH samples. We can clearly see that the
distributions of the MR-excluded mismatches (M̄noMR

opt ),
i.e., the darker-shaded half violins, are all shifted to lower
values than the lighter-shaded half violins representing
the distributions of M̄opt. This downward shift is more
pronounced for the heavier cases (M ¼ 150M⊙) with the
median of the M̄noMR

opt distributions roughly half an order of
magnitude lower than the M̄opt distributions (less so for
TEOB). The shift is less prominent for the light BBHs
(M ¼ 37.5M⊙) where the MR portion of the signal is much
less important than the inspiral.
One can also discern a smaller secondary peak in most of

the M̄noMR
opt distributions which comes from the mismatches

of the Q ¼ 4 subset. This peak is somewhat obscured in
Fig. 4 where we plot the entire ensemble of Q ¼ 1.1̄; 2; 4
subsets. We investigate this in more detail in the next
section where we separate the mismatch data by mass ratio.
One can further ask whether or not there are regions in

the spin space where there is a larger gap between M̄noMR
opt

and M̄opt than other regions. To this end, we define the
following ratio R ≔ M̄opt=M̄noMR

opt and look at how it is
distributed in the fχ⊥’s; χeff ; Qg space, where χ⊥’s repre-
sents one element of the set fχp; χGenp ; χ⊥;Jg at a time.
For the light BBHs, we observe R≲ f2; 3.5; 6g for

{SEOB, TEOB, TPHM} regardless of Q. For XPHM, R ≲
f4.6; 6; 9g for Q ¼ f1.1̄; 2; 4g. Moreover, R seems to
increase monotonically for TEOB and TPHM as the spin

FIG. 3. The main result of this section: the distributions of the sky-optimized mismatch, M̄opt, given by Eq. (21) between the models
listed in the legend and NRSUR7DQ4 which we take as a proxy for numerical relativity. The parameters for the waveforms are given in
Table I with the Q ¼ 6 subset excluded from the figure and we consider only the l ¼ 2 strain for the mismatches. The left (right) panels
display the results for low (high) mass,M ¼ 37.5M⊙ (M ¼ 150M⊙), systems, respectively. SEOB (v5), being the most recent of the four
models, shows improvement, especially for heavier systems. The dashed vertical line in both panels marks mismatch of 1 − 0.91=3 ≈
0.035 translating to an event loss rate of 10% [199,200].
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vectors become more planar, i.e., as θ1;2 → π=2, whereas
for XPHM, the large-R region is mostly situated in the
θ1;2 → 5π=6 region. As for SEOB, since 1 ≤ R≲ 2, no
specific region stands out.
For the heavy BBHs, R increases significantly for all

models. SEOB still yields the smallest values with R≲ 6
regardless of the mass ratio with a small region of R ≈ 8
in the Q ¼ 4 subset. The values of R output by the other
three models show more variation with mass ratio as R≲
f12; 18; 14g for TEOB, R≲ f6; 10; 12g for TPHM, and R≲
f6; 10; 17g for XPHM corresponding to Q ¼ f1.1̄; 2; 4g.
Unlike the light set, we now observe larger-R regions in the
χeff > 0 half of the parameter space for SEOB, TEOB, and
TPHM with the opposite relation applying to XPHM.
In order to better determine how much of the increased

mismatches are genuinely due to mismodeling of the
merger-ringdown regimes, one could construct hybrid
waveforms where the inspiral-only part generated by the
four models is attached to the plunge-merger-ringdown part
of the corresponding NRSUR7DQ4 waveform. One could
then compute M̄opt between the hybrid waveforms and the
full NRSUR7DQ4 waveforms, and compare these values to
the ones obtained here. Though this strategy is, in principle,
straightforward, its implementation is highly nontrivial
with precession. We leave this for future work.

2. The dependence of waveform unfaithfulness
on the mass ratio

Another known degradation of waveform faithfulness
occurs for systems with more component mass asymmetry,
i.e., large (small) values of QðqÞ. In terms of our sample,
this should translate to increasing mismatches with increas-
ing Q (or decreasing q). In order to better reduce the
potential “contamination” of the mismatches due to

merger-ringdown mismodeling, we present only M̄noMR
opt

separated by Q values here. Accordingly, we should
expect to see M̄noMR

opt ðQ ¼ 1.1̄Þ ≼ M̄noMR
opt ðQ ¼ 2Þ ≼

M̄noMR
opt ðQ ¼ 4Þ ≼ M̄noMR

opt ðQ ¼ 6Þ, where we are appro-
priating the ≼ symbol to mean that the distributions have
higher occupancy per bin at lower mismatch values. The
results of this breakdown by mass ratio are shown in Fig. 5,
where we plot the distributions of M̄noMR

opt as separate half
violins for the Q ¼ 1.1̄; 2, 4, 6 subsets, but delegate our
discussion of the last subset (Q ¼ 6) to Sec. IVA 4.
Let us recall that increasing Q increases the number

of cycles in the range ½fi; ff�, so part of the increased
mismatch may be simply due to having longer waveforms.
However, this is not the only factor. Given a value of Q,
the spin configurations that yield the longest waveforms
are those with θi ¼ π=6 and the shortest waveforms are
the ones with θ1 ¼ 5π=6ð150°Þ; θ2 ¼ π. It is true that the
cases with fQ; θ1; θ2g ¼ f6; π=6; π=6g have higher mis-
matches than, e.g., the cases with f1.1̄; π=6; π=6g, where
the former cases have nearly twice as many cycles in the
½fi; ff� interval. On the other hand, the mismatches for
fQ; θ1; θ2g ¼ f6; π=6; π=6g are lower than the cases
with f6; π=2≲ θ1 ≲ 5π=6; π=2≲ θ2 ≲ 5π=6g, where the
latter cases have 10 to 20 fewer cycles in band. Therefore,
waveform length alone cannot explain the increased
mismatches.
Figure 5 essentially corroborates our expectations.

We find that for both light and heavy systems, the best
agreement with NRSUR for each approximant is always by
the Q ¼ 1.1̄ subset with the Q ¼ 2 subset yielding slightly
worse mismatches. What is additionally apparent from the
figure is the relative upward shift of the mismatch dis-
tributions for theQ ¼ 4, 6 subsets, i.e., a clear deterioration
of waveform faithfulness for more mass asymmetric

FIG. 4. Merger-ringdown truncated mismatches versus full-length waveform mismatches. The dark-shaded half violins are the
distributions of M̄noMR

opt [Eq. (23)] between the numerical relativity surrogate NRSUR7DQ4 and the four approximants listed along the
bottom horizontal axis of each panel. Similarly, the light-shaded half violins are the distributions of M̄opt [Eq. (21)], which are shown in
the legend as M̄X¼MR

opt . These are the same quantities plotted in Fig. 3 as histograms. The left (right) panel contains the data from the light
(heavy), M ¼ 37.5M⊙ð150M⊙Þ, binaries. We used the default Gaussian kernel density estimator of the SEABORN library [201] to
smooth the histograms for the violin plots. The horizontal dashed line marks the mismatch value of 1 − 0.91=3 ≈ 0.035.
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systems. We also observe an emergence of multimodalities
in the distributions of the Q ¼ 4, 6 mismatches.
In more detail, we observe that the worst mismatches

from the Q ¼ 4 subset predominantly come from the cases
with χp ≳ 0.7 (0.6≲ χGenp ≤ 1 and χ⊥;J ≳ 0.4), where we
quote the values at f0. This is somewhat expected as these
cases precess more strongly. However, for the heavy-mass
subset, some of the worst mismatches show up by χp ≳ 0.4
indicating additional mismatch dependence on the parallel
projection of the spins. This might be connected with some
of the observed multimodalities. For example, we discov-
ered that the two distinct peaks in TEOB’s Q ¼ 4 mismatch
distributions can be mapped to two separate regions in the
parallel-perpendicular spin projection space. Specifically,
we find that for M ¼ 150M⊙, the mismatches of the upper
peak (M̄noMR

opt > 10−2) solely come from cases with
χeff < 0. Light SEOB exhibits a less prominent bimodality
separated at M̄noMR

opt ≈ 0.004 with the mismatches coming
from the upper peak corresponding to cases with χp ≳ 0.7
and mostly χeff < 0. Light TPHM also exhibits a bimodality
separated at M̄noMR

opt ≈ 0.004 corresponding to χp ≳ 0.7
regardless of the value of χeff . Heavy XPHM distribution
separates at M̄noMR

opt ≈ 0.02 with mismatches of the upper
peak all coming from χeff < 0 cases.
We show how the multimodalities of these four cases

map to fχ⊥;J; χeffg space in Fig. 6 for the Q ¼ 4 subset.
For this figure, we opted to use χ⊥;J instead of χp (or χGenp )
for visual clarity. From the figure, we observe that for
the χ⊥;J ≳ 0.4 (χp ≳ 0.5) cases, the χeff < 0 corner of the
parameter space seems to be more challenging than the
χeff > 0 corner for all approximants except for TPHM.
The aforementioned breakdown of XPHM’s MSA prescrip-
tion is also exhibited in the χeff ≲ −0.5; χ⊥;J ≲ 0.05ðχp ≲
0.2Þ corner of the parameter space.

Finally, let us finish this section with a brief breakdown
of the full mismatches (M̄opt) in terms of mass ratio so
as to complement Fig. 5. For SEOB, we find no cases of

FIG. 5. Mass ratio separated, merger-ringdown truncated mismatches, M̄noMR
opt , between NRSUR7DQ4 and the approximants {SEOB,

TEOB, TPHM, XPHM} labeled along the bottom axes and plotted in blue, orange, green, red, respectively. For each approximant, we
present four half violins representing, from left to right, the ϑLN;0 ¼ 0mismatches for the subsets with mass ratiosQ ¼ 1.1̄; 2, 4, 6 which
are shown along the top axes. TheQ ¼ 6 subset is discussed separately in Sec. IVA 4 as it involves comparisons with NRSUR7DQ4 in its
extrapolation region. The horizontal dashed line marks the mismatch value of 1 − 0.91=3 ≈ 0.035.

FIG. 6. The association of certain peaks in the mismatch
distributions with specific regions in the spin parameter space.
In each of the four panels, we scatter plot the fχ⊥;J; χeffg values of
theQ ¼ 4 subset of the discrete parameter space. The larger disks
correspond to points which yield values of M̄noMR

opt [Eq. (23)] in
the rightmost peaks of the histograms plotted in the insets where
the thick, vertical dashed lines separate the multiple modes
(peaks) of each histogram. The smaller squares mark the
complementary Q ¼ 4 cases. The SEOB, TPHM histograms in
the first and third insets correspond to theQ ¼ 4 half violins from
the left panel of Fig. 5, while the rest from the right panel.
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M̄opt > 0.035 for Q ≤ 4 as is clear from Figs. 3 and 4.
{TEOB, TPHM, XPHM} are also robust for Q ≤ 2 with very
few cases of M̄opt > 0.035 for either light or heavy BBHs,
worst being 3% of the M ¼ 150M⊙ð37.5M⊙Þ cases for
TEOB (TPHM), but their faithfulness degrades for higher
values of Q. For example, at Q ¼ 4, f14%; 40%; 50%g of
the light-mass cases yield M̄opt > 0.035 which becomes
f40%; 36%; 49%g for the heavy-mass set for {TEOB, TPHM,
XPHM}, respectively. We can also contrast these percent-
ages with their M̄noMR

opt > 0.035 counterparts which are
f0%; 2%; 4%g for the light and f0%; 1%; 2%g for the
heavy sets. In short, there is a noticeable degradation of
model performance in going from Q≲ 2 to Q≳ 4 for all
models including SEOB though overall it is always better
than 0.965 faithful for Q ≤ 4.

3. The effect of AS/coprecessing multipoles
on faithfulness

Since each precessing multipole of the four models is
constructed using Eq. (3) or some variant of it (e.g., using
coprecessing multipoles instead of AS multipoles), there
are two main modeling systematics at interplay here:
(i) systematics coming from the modeling of precession
dynamics that are manifest in the Euler angles used in the
frame rotation, and (ii) systematics in the AS (or copre-
cessing) multipoles that are being Euler rotated. We focus
on the latter in this section.
Even if the Euler angles of {SEOB, TEOB, TPHM, XPHM}

equal those of NRSUR (not actually the case), strain
mismatches can still be large if the Euler-rotated multipoles
poorly match NRSUR’s coprecessing multipoles. Moreover,
in the case of unequal Euler angles, the AS/coprecessing
multipole mismatch may still end up being the dominant
systematic. We investigate this here by computing
AS/coprecessing multipole mismatches between the four
models and NRSUR’s coprecessing multipoles.
First, let us add a few details. To our knowledge, among

the four models, TEOB is the only one that rotates actual AS
multipoles. SEOB twists AS multipoles with the constant
spin parameters χi replaced by the time-varying χ iðtÞ ·
L̂NðtÞ evolved via SEOB-specific dynamics. TPHM and
XPHM rotate AS multipoles with modified remnant proper-
ties [128,131]. Though these multipoles may be referred to
as coprecessing, they are all approximations and thus, not
exactly equal to hcopreclm of Eq. (7). Therefore, let us denote
these approximate coprecessing multipoles by hASlm as well.
These still satisfy the m ↔ −m multipole symmetry.
Though exact for nonprecessing systems, this is an
approximation for the true coprecessing multipoles which
are known to violate this symmetry (see, e.g., Fig. 2 of
Ref. [182]).
We can now ask: How faithful are AS multipoles to the

true coprecessing multipoles? And what is the penalty in
using AS multipoles to construct precessing waveforms?

Reference [182] provides the first detailed answer to this
question using comparisons to 72 NR simulations though
only six cases have Q ≥ 4. They find that the AS ð2;�2Þ
multipoles are faithful representations of their coprecessing
counterparts with only one (five) out of the 72 simulations
resulting in mismatches larger than 0.03 (0.01) (see their
Fig. 2 and Table III), but that the AS ð2;�1Þ multipoles
may not be considered to be so (ibid.). Especially relevant
here is their specific comparison with a short BAM
[138,139] simulation (ID 28) with Q ¼ 3; χp ¼ 0.8, where
they identify them-multipole asymmetry as the cause of the
high mismatch.
In the following, we conduct a study similar to

Ref. [182]’s. Specifically, we compute mismatches between
the coprecessing ð2;�2Þ multipoles of NRSUR7DQ4 and
those of {SEOB, TEOB, TPHM, XPHM}. We do this by
modifying the source code for the GWSURROGATE package.
We focus on hAS22 which is dominant in Eq. (3), which we
also treat as a proxy for results pertaining to hAS2;−2. We
proceed by first computing a new quantity: M̄22;AS, the
standard ftc;φcg-optimized mismatch between NRSUR’s
coprecessing (2,2) multipole and each AS (2,2) multipole
of the four models. We then look for correlations
between these mismatches and the strain mismatches
M̄ðϑLN;0 ¼ 0Þ;M̄optðϑLN;0 ¼ 0Þ. Indeed, as Fig. 7 high-
lights, there is a very prominent correlation between
logM̄22;AS and logM̄ for TPHM and TEOB, with XPHM

showing a weaker trend and SEOB hardly showing any.
The linear correlation of the logs implies a power law
relation between these mismatches. Additionally, we
observe that

(i) the correlations are stronger between M̄22;AS and M̄
than M̄opt. This means that the optimization of
the mismatch over extrinsic parameters partially
“smears out” this relation;

(ii) the correlations are much more prominent for the
light BBHs, where more inspiral cycles are included
in the match integrals;

(iii) the correlations persist in all mass ratio subsets, but
are stronger for Q ¼ 1.1̄ and 2.

For TPHM and TEOB, the Q ¼ f1.1̄; 2g subset correla-
tion coefficients are larger than 0.9. Moreover, we
observe that for the cases that yield M̄22;AS ≳ 0.05, both
TEOB’s and TPHM’s M̄ can be fit by lines parametrized by
M̄22;AS with slopes ≳1, not just their logarithms. This is
an indication that the AS multipole unfaithfulness, when
large enough, becomes the dominant systematic in wave-
form faithfulness for these two models. This linearity is
less obvious for SEOB and XPHM. The former model
produces the most faithful AS multipoles, M̄22;AS < 0.01
for almost every case, whereas the latter model has the
most outliers indicating other systematics contaminating
this relation such as the already mentioned MSA-related
breakdown. Despite these exceptions, when M̄22;AS is
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large enough, the observations above also hold for these
two models.
This systematic becomes more severe with increasing

mass ratio as we determined by comparing the slopes of the
linear fits to the mismatch data for TEOB and TPHM between
the Q ¼ 1.1̄; 2, Q ¼ 4 and the Q ¼ 6 subsets. In each
comparison, the slope of the larger Q subset was greater
than the slope of the smaller Q subset, though we observed
this to be more severe for TEOB than for TPHM.
When we looked at the intrinsic parameters of the cases

that yield the highest values for M̄22;AS for each approx-
imant, we found that the worst mismatches come from the
65°≲ θ1;2 ≲ 115° region, resulting in the largest planar spin
projections. We have already identified this region as the
most challenging one consistent with the literature. The fact
that the AS multipole mismatches are also the highest in
this region tells us that the true coprecessing multipoles
differ much more than the AS multipoles for cases with
mostly planar spins. We believe this to be mostly due to the
imposed m ↔ −m symmetry on the AS multipoles, which
we confirmed to be more violated for the strongly precess-
ing cases. We did this by comparing M̄22;AS with M̄sym

22;AS,
i.e., the AS multipole mismatches computed with respect to
the m-symmetrized coprecesing NRSUR7DQ4 multipoles,
and found that the quantity M̄22;AS − M̄sym

22;AS peaks for

65°≲ θ1;2 ≲ 115°, i.e., for the cases with mostly in-
plane spins.
When we extended the above analysis of the AS (2,2)

multipole to the AS (2,1) multipole, we encountered some
unexpectedly high values of M̄21;AS for Q ¼ 1.1̄ for all
four models. This contradicts the thus-far observed trend of
increasing mismatches with increasing Q. Upon closer
examination, we discovered that the problem was due to
NRSUR7DQ4: Since for Q ¼ 1, hAS21 ¼ hcoprec21 ¼ 0 exactly,
the model generates a coprecessing (2,1) multipole that is
barely above numerical error for Q ¼ 1.1̄. For this reason,
we choose to disregard all Q ¼ 1.1̄ values of M̄21;AS.
Focusing on the Q ≥ 2 part of the discrete set, we

observe that the previously observed tight correlation for
the AS (2,2) multipole becomes much less strong for the
AS (2,1) mode. In fact, the linear trend between logM̄21;AS

and logM̄ is only discernible for TPHM, with SEOB and
TEOB showing some positive correlation at the high-
mismatch end as well. As was the case with the AS (2,2)
multipole, the trends are more visible for theM ¼ 37.5M⊙
BBH set. As for the cases that yield the worst AS (2,1)
mismatches, we find more of a spread in the fθ1; θ2g space,
but with the worst common mismatches coming from
the θ1 ≤ π=2; θ2 ≥ π=2 corner, while the cases with maxi-
mum or near-maximum jχeff j values consistently yield the

FIG. 7. The correlation between M̄22;AS and M̄ðϑLN;0 ¼ 0Þ for theM ¼ 37.5M⊙ cases, where M̄22;AS is the mismatch [via Eq. (13)]
between NRSUR’s coprecessing (2,2) multipole and each AS (2,2) multipole of the four models labeled in the legends where we also
show the square of the Pearson correlation coefficient. The upper panels show the mismatches from the combined Q ¼ 1.1̄ and Q ¼ 2
subsets, while the lower panels show the results from the Q ¼ 4 subsets. The cluster of red dots in the upper left corner of the Q ¼ 4
XPHM panel are the cases for which the aforementioned MSA prescription of XPHM’s precession dynamics breaks down.
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lowest mismatches. We should keep in mind that even for
the worst cases where this correlation is tight, it need not
necessarily affect the overall unfaithfulness M̄opt signifi-
cantly as the AS (2,1) multipole amplitude is roughly an
order of magnitude smaller than its (2,2) counterpart. And
as we discuss further below, the AS ð2;�1Þ multipoles
have a rather weak effect on the overall strain faithfulness.
The AS ð2;�1Þ multipoles’ importance for faithful

precessing waveform construction was investigated by
Ref. [182] where they showed that while the inclusion
of the AS ð2;�1Þ multipoles degrades the precessing
ð2;�1Þ multipole faithfulness (see their Table III and
Fig. 4), it marginally improves the precessing ð2;�2Þ
multipoles. How these changes affect the faithfulness of
the waveform strain is illustrated for a Q ¼ 5 case in their
work, where it is shown that the inclusion of the AS ð2;�1Þ
multipoles lowers the l ¼ 2 strain unfaithfulness by 0.01 in
the highest mismatch regions as can be gathered by
comparing the middle left with the middle right panel in
their Fig. 5. In the words of Ref. [182], this indicates that
the improvement in the precessing ð2;�2Þ multipoles, due
to the inclusion of the ð2;�1Þ AS multipoles, compensates
for the degradation of the precessing ð2;�1Þ multipoles.
We extend their work here by turning “off” hcoprec2�1 for

NRSUR7DQ4 and looking at the unfaithfulness of the
resulting strain with respect to the full-multipole content
NRSUR7DQ4 strain. Specifically, we compute M̄noMR

opt and
M̄opt for the l ¼ 2 strain at inclinations of zero and π=2.
Though we use the same multipole content as Ref. [182],
they considered all inclinations in the one example that they
present whereas we suffice with two inclinations here, but
repeat the computation for all 1120 cases of the discrete set.
For ϑLN;0 ¼ 0, we find that M̄opt ranges from ∼10−8 to

10−2 with mismatches increasing with Q and the highest
values coming from the θ1;2 ¼ π=2 cases of the Q ¼ 4, 6
subsets. For ϑLN;0¼π=2, we observe 10−5≲M̄opt<0.035,
with the dependence on Q becoming less important.
In other words, when the coprecessing ð2;�1Þ multipoles
are omitted, we observe increased strain unfaithfulness at
higher inclinations. Accordingly, the coprecessing ð2;�1Þ
multipoles improve the strain faithfulness more for higher
inclinations, consistent with the findings of Ref. [182].
Interestingly, the largest values of M̄optðϑLN;0 ¼ π=2Þ
come from cases with θ1;2 ≥ 5π=6, not π=2 as was the
case for ϑLN;0 ¼ 0.

4. Mismatches in the extrapolation region of NRSUR7DQ4

Since the approximants exhibit a degradation in faithful-
ness as Q increases, we extended our investigation into the
extrapolation regime of NRSUR7DQ4 by setting Q ¼ 6 for
the same discrete grid as before, resulting in two additional
subsets of light and heavy BBHs with 280 cases each. We
have opted to present this comparison separately from the
Q ≤ 4 cases of the previous subsections since, as Ref. [77]

advises, we must exercise caution when using NRSUR7DQ4

in its extrapolation region, i.e., 4 < Q < 6; 0.8 < χi < 1.
Nonetheless, comparisons with 100 SXS simulations with
Q ¼ 6 and χi ≤ 0.8 have yielded mismatches ranging from
∼10−4 to ∼10−2 with the median at ∼10−3. Overall, this is
roughly an order of magnitude worse than NRSUR7DQ4’s
performance in its training region, Q ≤ 4; χi ≤ 0.8, but
good enough for our purposes here. A more direct approach
would be to compare the four models with the aforemen-
tioned 100 SXS simulations, but we were unable to retrieve
these from the SXS database. We present comparisons using
different sets of SXS simulations in Sec. V.
Returning again to Fig. 5, where the Q ¼ 6 M̄noMR

opt

distributions are plotted as the rightmost half violins for
each color, we see that the worsening trends observed for
the (Q ¼ 4)-case mismatches persist for the Q ¼ 6 cases.
As before, the mismatch distributions exhibit bi- or
trimodalities with the larger-mismatch peaks of fSEOB;
TEOB;XPHMg’s distributions coming from cases with
either large planar spins, i.e., χp ≳ 0.7 or with moderate χp
values combined with negative χeff values. TPHM once
again exhibits mismatches that are more symmetric
with respect to χeff . Overall, the Q ¼ 6 M̄noMR

opt values
for the four models are slightly worse than the Q ¼ 4
values. Interestingly, the χeff ≲ −0.5; χp ≲ 0.2 corner of the
parameter space that previously yielded high mismatches
for XPHM has shrunk to a single point that has the most
negative χeff value of the entire Q ¼ 6 set. This minor
improvement in XPHM’s performance is partly due to the
fact that we no longer have the near-transitional precession
cases encountered for Q ¼ 4 where jJN;0j ≪ jLN;0j. which
were causing the MSA prescription to break down forcing
the model to default to the NNLO prescription for pre-
cession dynamics.
Taking M̄noMR

opt as a gauge of inspiral-only model
faithfulness, we find that {SEOB, TEOB, TPHM, XPHM}
are reasonably faithful at this mass ratio with the percentage
of cases of M̄noMR

opt > 0.035 being f0%; 0%; 5%; 28%g for
the light- and f0%; 14%; 2%; 11%g for the heavy-mass
sets. As for the full mismatch M̄opt, the percentage of cases
greater than 0.035 is, respectively, f0%; 34%; 37%; 75%g
for the light- and f16%; 41%; 46%; 77%g for the heavy-
mass set.

B. Behavior of model unfaithfulness
under changing inclination

Our aim in this section is to investigate how the
inclusion of the precesssing (2,1) multipole, i.e., h21,
affects the faithfulness. Equation (1) tells us that the
contribution of h21 is maximal for ϑLN ¼ π=2 yielding
j−2Y21j=j−2Y22j ¼ 2. Though jhAS21 j < jhAS22 j always holds
true, for precessing multipoles, one can observe that
jh21j ∼ jh22j (see, e.g., Fig. 1 of Ref. [77]). This is due
to the power from the AS ð2;�2Þ multipoles rotating into
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h21 which is time (frequency) dependent, as is ϑLN.
Accordingly, the −2Y21h21 term in the strain (1) can be
dominant. Therefore, comparisons of strain mismatches for
cases with large inclinations offer an indirect way to assess
the faithfulness of “subdominant” multipoles such as h21
which, as we just explained, may not be subdominant at all
for certain configurations. The analysis almost equally
applies to h2;−1 due to the precessing multipoles approx-
imately inheriting the m ↔ −m symmetry of the AS multi-
poles. For a more detailed investigation of the mismodeling
of h21 and higher multipoles (l > 2), see Ref. [182].
This analysis also indirectly gauges the performance

of the Euler angles used in the frame rotations. Since, as
shown, the faithfulness of the coprecessing ð2;�2Þ multi-
poles matters much more than that of the coprecessing
ð2;�1Þ multipoles, the cases for which the former are very
faithful, but the resulting M̄opt values are high may tell us
something about the mismodeling of the Euler angles.
We proceed by reemploying the discrete parameter set of

Sec. IVA with ϑLN;0 ¼ π=2, and compute the mismatches
M̄noMR

opt ;M̄opt as before. Our results are presented in Fig. 8
where we show the distributions of the mismatches
between the ϑLN;0 ¼ 0 and ϑLN;0 ¼ π=2 sets for the
Q ≤ 4 portion for both light and heavy binaries. Several
features stand out in the figure which we highlight next.

First, as in the ϑLN;0 ¼ 0 case, the distributions of M̄opt

are in general broader than M̄noMR
opt distributions and shifted

to higher values. This shift is larger for the heavy masses.
Second, the inspiral-only faithfulness of all approximants
remains mostly unchanged between ϑLN;0 ¼ 0 and
ϑLN;0 ¼ π=2, with TEOB even showing a slight improve-
ment for ϑLN;0 ¼ π=2. There is also an overall trend of the
high-mismatch tails being reduced.
In Fig. 9, we show a decomposition of M̄noMR

opt ðϑLN;0 ¼
0Þ and M̄noMR

opt ðϑLN;0 ¼ π=2Þ in terms of mass ratio,
where the upper (lower) panels correspond to the M ¼
37.5M⊙ðM ¼ 150M⊙Þ set. We note several observations.
First, the ϑLN;0 ¼ π=2 distributions exhibit less or no
modality compared with the ϑLN;0 ¼ 0 distributions.
Second, Q ≥ 4 ϑLN;0 ¼ π=2 mismatches have narrower
distributions and mostly occupy lower values than their
ϑLN;0 ¼ 0 counterparts. The converse holds true for the
Q ≤ 2 mismatches with the exception of TEOB. Third, the
medians of the ϑLN;0 ¼ π=2 distributions shift to lower
values than the medians of the ϑLN;0 ¼ 0 distributions as Q
increases, especially for the EOB models. The especially
remarkable feature is the improved inspiral-only faithful-
ness for all models for Q ¼ 4 at ϑLN;0 ¼ π=2 as compared
with ϑLN;0 ¼ 0.
For Q ¼ 6, there is mostly a reduction of the

bi/trimodalities which we consider to be an improvement.
However, the situation is somewhat more complicated
for Q ¼ 6 as the values of M̄noMR

opt ðϑLN;0 ¼ 0Þ of the
leftmost peaks are mostly lower than the smallest
values of M̄noMR

opt ðϑLN;0 ¼ π=2Þ whereas the values of
M̄noMR

opt ðϑLN;0 ¼ 0Þ of the rightmost peaks are mostly
higher than the largest values of M̄noMR

opt ðϑLN;0 ¼ π=2Þ.
So, the question of whether or not the models show
improved inspiral-only faithfulness for Q ¼ 6 may have
a subjective, rather than an objective answer. Therefore, let
us focus on the Q ¼ 4 cases next.
Given the above observations, an obvious question is,

what is the cause of the improved faithfulness for Q ¼ 4
in going from ϑLN;0 ¼ 0 to ϑLN;0 ¼ π=2? We hypothesize
that this may be due to the h2;�1 multipoles improving the
strain when they are more faithful than h2;�2. Given that
at ϑLN;0 ¼ π=2, we have j−2Y2;�1j=j−2Y2;�2j ¼ 2, this
improvement more likely matters only for cases where
jh2;�1j≳ jh2;�2j. This may then result in M̄noMR

opt ðϑLN;0 ¼
π=2Þ being less than M̄noMR

opt ðϑLN;0 ¼ 0Þ. Henceforth,
we will simply mention the (2,1) and (2,2) multipoles
with the same results applying to the ð2;−1Þ; ð2;−2Þ
multipoles.
We test our hypothesis on the TEOB mismatches

first since it shows the most Q ¼ 4 improvement for
ϑLN;0 ¼ π=2 as well as showing improvements for
Q ¼ 1.1̄; 2. We begin by computing two new quantities:
M̄noMR

22 ;M̄noMR
21 , i.e., the inspiral-only ftc;φcg-maximized

FIG. 8. Comparison of the mismatch distributions between
face-on (ϑLN;0 ¼ 0) and edge-on (ϑLN;0 ¼ π=2) configurations. In
the top row, we display violin plots of M̄noMR

opt ðϑLN;0 ¼ 0Þ vs
M̄noMR

opt ðϑLN;0 ¼ π=2Þ for the M ¼ 37.5M⊙ (M ¼ 150M⊙) sets
in the left (right) panels. Likewise, the bottom row shows
M̄optðϑLN;0 ¼ 0Þ vs M̄optðϑLN;0 ¼ π=2Þ for the same sets. Note
that we exclude theQ ¼ 6 subset here, but we include it in Fig. 9.
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mismatches [see Eq. (13)] of the precessing (2,2) and (2,1)
multipoles between NRSUR7DQ4 and TEOB. We also com-
pute the ratio

R ≔
2

N

XN
i¼0

jh21;ij
jh22;ij

; ð24Þ

where we have N þ 1 samples in the time domain labeled
by i. R is the Riemann sum of the following integral

Z
dt
j−2Y21ðπ=2; 0Þh21ðtÞj
j−2Y22ðπ=2; 0Þh22ðtÞj

: ð25Þ

R > 1 tells us that the ð2;�1Þ terms have larger magnitudes
than their ð2;�2Þ counterparts in the waveform strain.
Thus when R > 1 and M̄noMR

21 < M̄noMR
22 , we expect the

more faithful h21 to result in improved faithfulness
for ϑLN;0 ¼ π=2 as compared to ϑLN;0 ¼ 0, i.e.,
M̄noMR

opt ðϑLN;0 ¼ π=2Þ ≼ M̄noMR
opt ðϑLN;0 ¼ 0Þ in the respec-

tive distributions.
We proceed by counting the cases satisfying the con-

dition ½R > 1� ∧ ½M̄noMR
21 < M̄noMR

22 � and comparing the
resulting distributions for M̄noMR

opt ðϑLN;0 ¼ π=2Þ with those
of M̄noMR

opt ðϑLN;0 ¼ 0Þ. The expectation is that we should
see the distributions of the affirmative cases satisfying
M̄noMR

opt ðϑLN;0 ¼ π=2Þ ≼ M̄noMR
opt ðϑLN;0 ¼ 0Þ and that there

are enough such cases to affect the overall distributions as
seen in Fig. 9. We find our hypothesis validated by the
M ¼ 37.5M⊙; Q ¼ 4 subsets of SEOB and TEOB as well as
the M ¼ 150M⊙; Q ¼ 4 subset of TPHM. We chose these
subsets because it is evident from Fig. 9 that this improve-
ment is most prominent for them. We also confirmed our
hypothesis for the entire M ¼ 37.5M⊙; Q ≤ 4 TEOB set.
We did not use XPHM because it is nontrivial to obtain its

precessing multipoles in the time domain as it is a
frequency domain approximant.
The MR-included version of Fig. 9 (which we do not

include) shows less modality in the M̄optðϑLN;0 ¼ π=2Þ
distributions. However, there are fewer Q subsets where
ϑLN;0 ¼ π=2 mismatches are lower than the ϑLN;0 ¼ 0

mismatches. The exceptions to this relation are SEOB’s
light and heavy Q ¼ 4, 6 mismatches. For these, we
verified that the above arguments held.
The fixed angle ϑJN is also at play here: Precession-

induced modulations to the waveform decrease as ϑJN → 0
[37]. Using the LALSIMULATION function SIMINSPIRAL-
TRANSFORMPRECESSINGWVF2PE, we computed ϑJN and
observe that as the Q ¼ 4 subset’s spin tilt angles go from
pointing “northward” to southward, ϑJNjϑLN;0¼π=2 drops
below ϑJNjϑLN;0¼0. In other words, the higher inclination
cases yield smaller precession-induced modulations, which
ties in with the discussion above, but does not explain why
the precessing ð2;�1Þ multipoles are sometimes more
faithful than ð2;�2Þwhen both have the same coprecessing
(AS) multipole content dominated by hcoprec2;�2 (hAS2;�2).
To answer this question, one would have to dismantle the

individual coprecessing (AS) multipole contribution to the
twist expression (3) and compare the interplay between
various multipoles. We do not pursue this matter any
further here. Reference [182] presents additional analysis
in this direction, where they compare waveform strain and
individual precessing multipole mismatches for cases in
which all (useful) AS multipole content has been included
and for cases where some AS multipoles, e.g., ð2;�1Þ,
have been excluded.
The final observation relevant to this section is that just

as in the ϑLN;0 ¼ 0 case, the distributions for M̄optðπ=2Þ are
shifted upward, i.e., to worse values, as compared to
M̄noMR

opt ðϑLN;0¼π=2Þ distributions, especially for Q¼4, 6.

FIG. 9. Comparison of the mismatch distributions between “face-on” (ϑLN;0 ¼ 0) and “edge-on” (ϑLN;0 ¼ π=2) configurations
separated by mass ratio. In particular, we present results here only for the MR-truncated, sky-angle optimized mismatch M̄noMR

opt . The top
row displays results for the light (M ¼ 37.5M⊙) BBH set, and the bottom row the heavy (M ¼ 150M⊙) BBHs.
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The fact that M̄noMR
opt ≤ M̄opt is not surprising since the

merger-ringdown part of the signal is more complex as we
already mentioned. We can nonetheless ask whether or not
there might be regions in the spin space where there is a
larger gap between M̄noMR

opt and M̄opt than other regions.
To this end, we again looked at how the ratio R ¼
M̄opt=M̄noMR

opt is distributed in the spin space. The approx-
imants show a lot variability with respect to each other and
across Q values. However, one nearly common feature is
this ratio reaching Oð10Þ for θ1;2 ¼ π=2 with XPHM as the
exception. Additionally, SEOB has the smallest maxima
for the ratio while XPHM has the largest. XPHM has more
occurences for large ratios in the χeff < 0 half whereas the
other three models yield more large ratios in the χeff > 0
half. XPHM also behaves differently for the Q ¼ 4 subset
with the ratio showing very little variation in the spin space
and tending to the smallest values at θ1;2 ¼ π=2.

C. Comparisons over a uniformly filled
parameter space

We now consider a uniformly populated parameter
space consisting of 1000 BBHs with M∈ ½35; 225�M⊙;
Q∈ ½1; 4�; χi ∈ ½0.1; 0.8�. We choose to make the spin tilt
angles uniform in their cosine, i.e., cos θi ∈ ½−1; 1� with
ϕ1 ¼ 0;ϕ2 ∈ ½0; 2πÞ. To ensure once again that the result-
ing inspirals are not longer than 4300M, we set f0 equal to
a linearly decreasing function of M from 35 to 5.75 Hz as

M increases from 35M⊙ to 225M⊙. We fix fi ¼ f0 þ 3 Hz
(11 Hz) for M ≲ 210M⊙ð≳210M⊙Þ in the integral (14). In
the following, we present the mismatches similarly to what
we have done for the discrete set of Sec. IVA so that we can
illustrate the differences in the approximant performance
between a more traditional parameter space (uniformly
filled) and one for which certain parameters are tailored to
potentially better expose precession-related modeling
systematics.
We summarize our main results in Fig. 10, where in the

top row we compare M̄noMR
opt with M̄opt at inclinations of

ϑLN;0 ¼ 0 (π=2) in the left (right) panels. As expected, the
relation M̄noMR

opt ≼ M̄opt holds likely due to the combina-
tion of MR modeling systematics and simpler signal
morphology for the inspiral. The shifts between the peaks
of the M̄noMR

opt and M̄opt distributions are larger for ϑLN;0 ¼
π=2 than for ϑLN;0 ¼ 0 as can be discerned from the upper
left and right panels of the figure. This was also the case for
the discrete set though this is somewhat hard to extract from
Fig. 8. This is a reaffirmation of the fact that the modeling
of the plunge-merger-ringdown stages of the precessing
ð2;�1Þ multipoles remains challenging.
In the bottom panels of Fig. 10, we show how the

mismatches shift upward more for SEOB and XPHM than for
TEOB and TPHM as the inclination goes from 0 to π=2, more
consistent with the M ¼ 150M⊙ (right) panels of Fig. 8

FIG. 10. Mismatches between NRSUR7DQ4 and SEOB, TEOB,
TPHM, XPHM for the uniformly filled parameter space of 1000
cases. Upper panels compare M̄noMR

opt with M̄opt at inclinations of
ϑLN;0 ¼ 0 (left) and π=2 (right) and the lower panels compare
M̄noMR

opt ðϑLN;0 ¼ 0Þ with M̄noMR
opt ðϑLN;0 ¼ π=2Þ (left) and

M̄optðϑLN;0 ¼ 0Þ with M̄optðϑLN;0 ¼ π=2Þ (right).

FIG. 11. Comparison of model mismatches to NRSUR7DQ4
between the discrete parameter set and the random-uniformly-
filled one. The left half violins are the mismatch distributions
from the entire M ¼ f37.5M⊙; 150M⊙g; Q ¼ f1.1̄; 2; 4g dis-
crete set while the right ones are the mismatch distributions
from the 1000-case random-uniformly-filled set. In the top
(bottom) row, we plot M̄noMR

opt (M̄opt) at inclinations of 0 (left
panels) and π=2 (right panels).
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than for the M ¼ 37.5M⊙ (left) ones. This somewhat
makes sense as 150M⊙ roughly equals the median of
M∈ ½35; 225�M⊙, whereas 37.5M⊙ is at the lower end.
Figure 11 better highlights the differences in model

faithfulness resulting from using a uniformly filled set vs
our purpose-built discrete set of Secs. IVA and IV B. In this
figure, the left half violins (darker shaded) are the mismatch
distributions from the entire M ¼ f37.5M⊙; 150M⊙g;
Q ¼ f1.1̄; 2; 4g discrete set, while the lighter-shaded right
violins correspond to the mismatch distributions from the
1000-case random-uniformly-filled set. One immediately
notices that the distributions for the latter (uniform) set have
smaller minima, means, and maxima than the former
(discrete) set. Though the shifts between the respective
minima are not so large, the offset between the means and
the maxima are quite prominent. The distributions for the
uniform set are also smoother, narrower, and unimodal
owing to the nature of the uniformly filled intrinsic
parameter space.
The main conclusion of Fig. 11 is that the model

faithfulness is better for the uniform set than for our
purpose-built discrete set. This is, of course, not surprising
since intrinsic parameters of the discrete set are such that it
contains many more cases with strong precession than the
uniform set, where χpðt0Þ ≥ 0.6 for 60% of the cases for
the former vs 13% for the latter. We already documented
this contrasting coverage of the spin space in Fig. 2.
Additionally, one third of the discrete set is made up of
Q ¼ 4 cases whereas the uniform set has ∼17% of its cases
with 3.5 ≤ Q < 4. Recall that these high-Q cases appear to
be the most challenging for the models that we consider
here, as can be gathered from Figs. 5 and 9.
Perhaps the difference between the two sets is best

illustrated by considering the “extremal corner” of the five-
dimensional fQ; χ1; χ2; θ1; θ2g parameter space. Let us as,
an example, assign to this region the following bounds:
Q∈ ½3.5; 4�, χi ∈ ½0.7; 0.8�, and cosðθiÞ∈ ½−0.1; 0.1�. A
straightforward computation shows that the uniform set
needs to consist of 20379 points in order to have a 50%
chance that one case will be inside this extremal region,
whereas the discrete parameter set has eight out of 840
cases in this extremal corner (see Table I).
Let us elaborate why the differences shown in Fig. 11

matter. Our concern is for strongly precessing events like
GW200129_065458 for which the PE routines should
mostly draw samples from the large χp region of the spin
space. This in itself is not a problem. However, if one
employs a model whose faithfulness, to a target model such
as NRSUR7DQ4, has been documented over a uniformly
filled parameter space, then one may overestimate the
faithfulness of that model. For example, a figure akin to our
Fig. 10 may lead to the conclusion that model “X” is better
than 0.035 faithful in the entire parameter space, but it may
turn out that this model X actually has a large-mismatch tail
extending to ∼0.1 in the relevant corner of the parameter

space as illustrated in our Fig. 11. This would be quite
problematic for reliable parameter estimation from strongly
precessing events. In short, uniformly sampled intrinsic
parameter spaces may not contain the best set of parameters
to properly “stress test” precessing approximants.
Let us conclude this section by providing additional

metrics. As done in the previous section, we once again
look at the ratio R ¼ M̄opt=M̄

noMR
opt . For ϑLN;0 ¼ 0, we

observe that R≲ 5 everywhere in the parameter space for
all four models. For ϑLN;0 ¼ π=2, we record that R≲ 10.
For both inclinations, these upper bounds are roughly half
of the corresponding bounds of R for the discrete param-
eter set. As before XPHM has the largest values of R and
SEOB the smallest with TPHM yielding very similar magni-
tudes for R in the parameter space. One major difference
with respect to the discrete set is that as we uniformly fill
the mass ratio space from Q ¼ 1 to 4, the clear-cut regions
of large R observed for the discrete set at, e.g., Q ¼ 4, are
no longer there. Overall, the values of R are more
uniformly spread in the spin space and show less variation.
Finally, we count the percentage of cases with M̄noMR

opt >
0.035 and M̄opt > 0.035 for both inclinations. As is
clear from Fig. 10, this is 0% for all SEOB mismatches
and 0% for all other M̄noMR

opt values regardless of inclina-
tion. As for M̄opt percentages, we record f2%;0.4%;0.8%g
for M̄optðϑLN;0 ¼ 0Þ > 0.035, and f0.1%; 0%; 0.2%g for

FIG. 12. Mismatches defined by Eq. (21) between the four
approximants and the 317 short SXS waveforms shown at an
inclination of ϑLN;0 ¼ 0 for a direct comparison with Fig. 3. The
left and right columns of panels correspond to mismatches from
the light (M ¼ 37.5M⊙) and heavy (M ¼ 150M⊙) binaries.
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M̄optðϑLN;0 ¼ π=2Þ > 0.035, respectively for fTEOB;
TPHM;XPHMg. These can be compared with the ones
from the discrete set provided at the end of Sec. IVA 2.

V. FAITHFULNESS SURVEY II: COMPARISONS
WITH NUMERICAL RELATIVITY WAVEFORMS

In the second part of our survey, we assess the faithful-
ness of {SEOB, TEOB, TPHM, XPHM} to numerical relativity
waveforms from the SXS [202] catalog. Specifically, we
compare against 317 short SXS waveforms and 23 long SXS

waveforms of the LVCNR catalog [169], where short (long)
means that the total number of GW cycles in the simu-
lations is ≲70ð≳125Þ. As such, the short SXS waveforms
are more comparable in length to our discrete and uniform
set NRSUR7DQ4 waveforms. For consistency with the
previous sections, we setM ¼ 37.5M⊙; 150M⊙ once again
for the short waveform comparisons. For the long wave-
forms, we consider several other values for M as there are
only 23 cases to compare.

A. Short SXS waveforms

We employ a specific dataset containing 317 short
SXS waveforms, with χp ≲ 0.89, χeff ∈ ½−0.6; 0.66�, and
Q≲ 6. These have between 13 and 70 GW cycles. Though
there are roughly 1500 SXS BBH simulations from which
we can extract waveforms, we purposefully formed a
specific subset similar to that of the discrete set of
Secs. IVA and IV B. Specifically, our short SXS set has

98 cases with Q < 1.3, 114 cases with 1.9 < Q < 2.1, and
101 cases with 3.99 < Q < 4.01, thus having nearly the
same mass ratio split as our discrete set. As there are only
three Q ≈ 5 and one Q ≈ 6 simulations in our set, we
discuss them separately from the 313Q≲ 4 cases. The
relevant spin space parameters of these simulations are
plotted in Fig. 2, where it can be seen that there are many
cases with χp ≈ 0.8 and jχeff j ≪ 1. We obtained the
parameters for each simulation using LALSimulation [203]4

which requires the recasting of SXS data into the LVCNR

catalog format for which we employed the tools of the SXS

package [204]. We provide the list of the 317 SXS

simulations that we use in the linked GIT repository.
For the match computation, we retain the same values of

dL ¼ 500 Mpc, ff ¼ 1024 Hz, and the same grid over the
fκ;ϕrefg space. As SXS simulations start from differing
frequencies, we do not employ a fixed value for f0, but use
instead the F_LOWER_AT_1MSUN attribute [169] of each
simulation’s data to obtain the frequency in hertz for 1M⊙
then rescale for M ¼ 37.5M⊙; 150M⊙. As before, we set
fi ¼ f0 þ 3 Hz (11 Hz) in the match integral for light
(heavy) systems.
The main results for zero inclination (ϑLN;0 ¼ 0) are

shown in Fig. 12 where we plot the distributions of M̄opt.
What stands out the most is the superior performance of

FIG. 13. Merger-ringdown truncated and full mismatches between the four approximants and the 317 short SXS waveforms shown
for inclinations of 0 and π=2. The left (right) 2 × 2 blocks of figures correspond to light, M ¼ 37.5M⊙ (heavy, M ¼ 150M⊙) binaries.
The top panels compare M̄noMR

opt with M̄opt for ϑLN;0 ¼ 0 and π=2 and the bottom panels compare M̄noMR
opt ðϑLN;0 ¼ 0Þ with

M̄noMR
opt ðϑLN;0 ¼ π=2Þ and M̄optðϑLN;0 ¼ 0Þ with M̄optðϑLN;0 ¼ π=2Þ.

4We employ the tools at https://git.ligo.org/waveforms/
lvcnrpy/-/tree/master with public SXS data.
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SEOB as compared with the other three models. It yields
only a handful of cases of M̄opt > 0.035 whereas TEOB,
TPHM, and XPHM have many mismatches above 0.035,
especially for the light-mass BBHs, with a few cases of
even M̄opt > 0.1, which have fQ; χpg ¼ f1.1̄; 0.89g;
f2; 0.85g; f4; 0.8g; f6; 0.77g. A quick count yields that
f0.3; 30; 35; 27g% ðf1; 31; 17; 9g%Þ of the 317 cases have
M̄opt > 0.035 for {SEOB, TEOB, TPHM, XPHM} for the light
(heavy) binaries.

1. Effects of merger ringdown on faithfulness

As we did in Sec. IVA 1, we compare M̄noMR
opt with M̄opt

for all four models in order to investigate how the model
faithfulness is affected by the inclusion of the MR regime.
When considering the inspiral-only mismatch M̄noMR

opt , the
percentages above drop significantly, to f0.3; 4; 4; 5g%
ðf0.6; 1; 0.6; 1g%Þ. This drop is shown across the
top row of Fig. 13 where we display the distributions
for both M̄noMR

opt and M̄opt at ϑLN;0 ¼ 0 and π=2 for
M ¼ 37.5M⊙; 150M⊙. As was the case with our discrete
set, we observe an increased shift between the M̄noMR

opt and
M̄opt distributions as the binary mass increases from
37.5M⊙ to 150M⊙. The upward shift also increases more
when the inclination goes from 0 to π=2 though less clearly
so for the heavy binaries. We also observe that all
four models behave extremely similarly for inspiral-only

heavy BBHs, for which we show the distributions of
M̄noMR

opt ðϑLN;0 ¼ 0Þ in the upper left panel of Fig. 14.
This is not the case for the longer-inspiral light-mass
binaries except for SEOB for which we observe very similar
M̄noMR

opt distributions at both masses. We discuss our results
for M̄noMR

opt further below.
Looking, as before, at the spread of the ratio R ¼

M̄opt=M̄noMR
opt over spin space, we see that R ≲ 4 for light

SEOB, TPHM, and XPHM, with TEOB’s range up to 7. For
heavy BBHs, SEOB, XPHM yield R≲ 7, with R≲ 14 for
TPHM and R≲ 22 for TEOB. The near-maximal and
maximal values cluster around the θ1;2 ≈ π=2 region of
the parameter space. Moreover, the θ1 > π=2 half of
the parameter space yields lower values for R than the
θ1 < π=2 half though with plenty of variability in the
fθ1; θ2g space. The range ofR shows a weaker dependence
on the mass ratio here than was observed in Sec. IVA 1.
This is due to the fact that we had previously used the same
spin parameters at all three mass ratios, whereas in this
section, the spin parameters and the mass ratios are dictated
by the SXS simulations.
The mismatch distributions also exhibit some multi-

modality regardless of histogram binning, which is more
prominent for TEOB, TPHM, and XPHM for M ¼ 37.5M⊙ as
evident in Fig. 12. This was not the case for the Q ≤ 4
discrete set as can be gathered from Fig. 3 though
multimodalities emerged for its Q ¼ 4 subset shown in
Figs. 5 and 9. More multimodalities are seen in Fig. 13
in the various distributions such as TEOB and TPHM’s
M̄optðϑLN;0 ¼ π=2Þ for M ¼ 150M⊙ (lower right panel).
Some of the modes seem to be due entirely to the MR
part of the mismatch. For example, neither the M ¼
37.5M⊙, nor the M ¼ 150M⊙ distributions for SEOB’s
M̄noMR

opt ðϑLN;0 ¼ 0Þ show any of the secondary modes
present in the M̄optðϑLN;0 ¼ 0Þ distributions as seen in
Fig. 12, which stand out more clearly using different
histogram binning. We observe similar, MR-related modes
appearing in all the distributions for M̄opt for all models.
Therefore, we narrow our focus to M̄noMR

opt in the next few
paragraphs.

2. Dependence of inspiral-only faithfulness
on intrinsic parameters

As done in Sec. IVA, we investigate whether or not
specific modes in the M̄noMR

opt distributions can be attributed
specific regions in the fQ; θ1; θ2g space. As briefly
mentioned, we observe unimodal, positively skewed dis-
tributions for the heavy-mass M̄noMR

opt ðϑLN;0 ¼ 0Þ for all
models as well as for the light-mass M̄noMR

opt ðϑLN;0 ¼ 0Þ
SEOB distribution. However, the same distributions
for light-mass {TEOB, TPHM, XPHM} exhibit a clear sec-
ondary mode peaking between M̄noMR

opt ¼ 0.02 and 0.03,

FIG. 14. Inspiral-only mismatches at ϑLN;0 ¼ 0, i.e.,
M̄noMR

opt ðϑLN;0 ¼ 0Þ between our entire Q≲ 4 short SXS set of
waveforms and SEOB, TEOB, TPHM, XPHM plotted as a function of
χ⊥;J [Eq. (12)]. Since χ⊥;J is maximized for θ1;2 → π=2, we
observe increasing mismatches as the spins become more planar,
i.e., for stronger precession.
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which emerges at Q ≈ 2, and becomes dominant at Q ≈ 4.
This behavior is consistent for {TEOB, TPHM, XPHM}
indicating very similar inspiral performance for these
models.
The tilt angles corresponding to the Q ≈ 2 secondary

mode all come from cases with θ1;2 ≈ π=2; χ1;2 ≈ 0.8
similar to our results in Sec. IVA 2. For Q ≈ 4, it is mostly
the cases with θ1 ≈ π=2 and χ1 ≈ 0.8 that yield the
mismatches in the now-dominant mode of the M̄noMR

opt

distributions for {TEOB, TPHM, XPHM}. There is no strong
θ2 dependence as jS2j ≪ jS1j forQ ≥ 4. There is however a
second smaller region of high mismatches clustered around
θ1 ≈ 3π=4. The common theme in the above analysis is that
strongly precessing cases remain challenging for the
models. This is even true for comparable mass ratios,
where we found that the highest M̄noMR

opt ðϑLN;0 ¼ 0Þ values
come from cases with the largest planar spin projections.
We demonstrate this in Fig. 14, where we plot
M̄noMR

opt ðϑLN;0 ¼ 0Þ vs χ⊥;J for the entire M ¼ 37.5M⊙;
Q≲ 4 short SXS set. We opt for χ⊥;J as χp yields many
degenerate values and χGenp correlates less clearly. Recall
that χ⊥;J becomes maximum for θ1;2 → π=2; thus the figure
tells us that the highest mismatches come from cases
with θ1;2 ≈ π=2.

3. Model faithfulness under increasing inclination

Returning to Fig. 13, we first focus on the bottom
row where we compare ϑLN;0 ¼ 0 mismatches with the
ϑLN;0 ¼ π=2 ones. For light BBHs, we observe once again
that the distributions for ϑLN;0 ¼ π=2 are narrower, con-
sistent with the left panels of Fig. 8. Overall the inspiral-
only performance of the models is comparable modulo
SEOB’s superior performance for light BBHs. TEOB and
TPHM yield very similar M̄noMR

opt ðϑLN;0 ¼ π=2Þ distribu-
tions. For light BBHs, XPHM’s distribution is also very

similar to these two. For heavy BBHs, there is less
similarity in the distributions. Nonetheless, the ranges
of the mismatches for all models are very comparable
modulo a secondary mode appearing for XPHM seen in the
upper right panel of Fig. 8. A quick count yields
f0.3; 0.6; 0.6; 1g% of the light mass, and f0; 0; 0; 0g% of
the heavy-mass cases resulting in M̄noMR

opt ðϑLN;0 ¼ π=2Þ >
0.035. These percentages are lower than their ϑLN;0 ¼ 0

counterparts. A similar count returns f0.3; 28; 23; 20g%
ðf0; 22; 4; 8g%Þ for the percentage of light (heavy) cases
yielding M̄optðϑLN;0 ¼ π=2Þ > 0.035, which are also lower
than the corresponding ϑLN;0 ¼ 0 percentages.
The large offsets between the M̄noMR

opt ðϑLN;0 ¼ π=2Þ and
M̄optðϑLN;0 ¼ π=2Þ distributions for both light and heavy
masses shown in Fig. 13 are consistent with our previous
results of Sec. IV B. As before, we also observe that
changing inclination has a subdominant effect on model
faithfulness compared to the MR portion of the waveforms.
As for the ratio R, we observe that R≲ f3; 8; 5; 5g for the
light and ≲f5; 10; 9; 14g for the heavy {SEOB, TEOB, TPHM,
XPHM} mismatches. Comparing these with the ϑLN;0 ¼ 0

ratios of Sec. VA 1 tells us that R’s range has barely
changed for the light binaries. In the case of the heavy
binaries, R’s maximal values have decreased for SEOB,
TEOB, and TPHM, while it has increased for XPHM. The large
changes in the maximal values ofR are due to a few cases,
each of which might be challenging to a particular model,
while not to others, and vice versa.
The θ1;2 ≈ π=2 region still results in larger values of R.

And the θ1 > π=2 half of the parameter space still yields
lower values for R than the θ1 < π=2 half though this is
less distinct than it was for ϑLN;0 ¼ 0, and with XPHM

violating this trend with the region θ1;2 ≳ 2π=3 also
returning large values of R. Consistent with our previous
findings, the maximal values of R do not vary much with
changing mass ratio.

FIG. 15. Sky-optimized mismatches [Eq. (21)] between {SEOB, TEOB, TPHM, XPHM} and the 317 short SXS waveforms shown for
inclinations of ϑLN;0 ¼ 0 and π=2, separated into three subsets in terms of the mass ratioQ. The top (bottom) panels show the mismatch
distributions for binaries with total mass M ¼ 37.5M⊙ð150M⊙Þ.
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A striking feature in Fig. 13 is the prominent bimodal-
ities in the ϑLN;0 ¼ π=2 mismatch distributions for
M ¼ 150M⊙, which are not present for M ¼ 37.5M⊙.
This bimodality is most prominent for the heavy-mass
TEOB and TPHM mismatches, and is seen, albeit less
strongly, for the heavy SEOB and the light TEOB, TPHM

mismatches (referring specifically to M̄opt). Decomposing
these mismatches further into their mass ratio subsets as
shown in Fig. 15 clarifies that the bimodalities are due to
the mismatches clustering into two separate regions for
Q≲ 2 vs Q ≈ 4. We had already observed a similar
behavior for the ϑLN;0 ¼ 0 mismatches as Q increased
from 1 to 4, which we replot in Fig. 15, mirroring our
ϑLN;0 ¼ π=2 results. The cases causing these large mis-
matches have θ1 ∈ ½1.45; 1.6� and χp ≈ 0.8, which, for
Q ≈ 4, result in values of M̄noMR

opt ðϑLN;0 ¼ π=2) much
larger than the ones coming from the Q≲ 2 cases.
These inspiral-only mismatches further degrade by up to
an order of magnitude when we consider the full mis-
matches M̄opt. Note that the values of θ1, θ2 do not alone
explain the increased mismatches for Q ≈ 4 as the Q ≈ 2
subset has even more cases with θ1;2 ≈ π=2. The number of
cycles do not provide a satisfactory explanation either as
our chosen Q ≈ 4 simulations are comparable in length to
the Q ≈ 2 subset.
Another interesting feature of Fig. 15 is the fact that for

Q ≈ 4 the ϑLN;0 ¼ π=2 mismatches are mostly lower than
the ϑLN;0 ¼ 0 ones. Specifically, for all light BBHs and the
heavy SEOB and TPHM, we clearly have M̄optðϑLN;0 ¼
π=2Þ ≼ M̄optðϑLN;0 ¼ 0Þ. Focusing on the Q ≈ 4 SEOB

subsets alone, we confirmed that the improved faithfulness
at ϑLN;0 ¼ π=2 is due to the arguments made in Sec. IV B;
i.e., for cases with jh21j≳ jh22j and M̄21 ≲ M̄22, we see
M̄optðϑLN;0 ¼ π=2Þ ≼ M̄optðϑLN;0 ¼ 0Þ for the distribu-
tions. In short, as we had observed in Sec. IV B, when
the h2;�1 multipoles are more NR faithful than h2;�2 and
their amplitudes are comparable to jh2;�2j, the resulting
high-inclination strain matches are mostly better than zero-
inclination matches.

4. Effects of coprecessing multipoles on faithfulness

As we had done in Sec. IVA 3, we investigate once again
whether or not the unfaithfulness of the AS (coprecessing)
multipoles have any effect on model performance.
As before, we find a correlation between logðM̄22;ASÞ
and logðM̄ðϑLN;0 ¼ 0ÞÞ, where M̄22;AS is the mismatch
between the SXS coprecessing (2,2) multipole5 and each
model’s AS (2,2) multipole. The correlation for our short
SXS set is stronger than the discrete set of Sec. IVA and
persists whether or not we consider logM̄ or logM̄opt or

inspiral-only vs full mismatches. It is also seen for the
M ¼ 150M⊙ waveforms, which for the SXS set are in
general longer than the discrete set, which were limited by
NRSUR7DQ4’s length restrictions. As before, the correlation
is strongest for the M ¼ 37.5M⊙ TEOB and TPHM mis-
matches, but also persists for SEOB and XPHM as can be seen
in Fig. 16, where we plot only the data from the Q≲ 2
subset. Thus, this figure can be directly compared with the
top row of Fig. 7. In Fig. 16, we also provide the R2 values
for the log-log scatter plots, which for TEOB and TPHM are
near unity, and equals almost 0.9 for XPHM.
Following Sec. IVA 3, we additionally compute the

slopes of the linear fits to M̄ðϑLN;0 ¼ 0Þ as a function
of M̄22;AS for TEOB, TPHM, and XPHM. We find that the
entire Q≲ 4 set of M̄ðϑLN;0 ¼ 0Þ (313 out 317 cases) for
TEOB and TPHM can be fit by lines with slopes of
approximately 0.9, and 0.5 for XPHM. This is consistent
with our findings in Sec. IVA 3 that once the AS ð2;�2Þ
multipole unfaithfulness exceeds a certain value, it
becomes the dominant source of unfaithfulness for the
strain mismatch.
Since the ð2;�2Þ AS/coprecessing multipoles also

make up the dominant contribution to the precessing
ð2;�1Þ multipoles, we expect the correlation to persist
for M̄ðϑLN;0 ¼ π=2Þ, albeit less strongly. Indeed, the R2

values provided in Fig. 16 drop to f0.2; 0.77; 0.85; 0.6g,
respectively for four models. And the slopes of the linear

FIG. 16. The correlation between M̄22;AS and M̄ðϑLN;0 ¼ 0Þ
for theM ¼ 37.5M⊙; Q ≲ 2 cases of our short SXS set. M̄22;AS is
the mismatch [Eq. (13)] between the SXS coprecessing (2,2)
multipole and each AS (2,2) multipole of the four models. Each
legend also gives the R2 value for the log-log datasets. This figure
is akin to the top panel of Fig. 7.

5We employ the SCRI package [205–208] to extract the SXS
coprecessing multipoles.
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fits are comparable. Finally, as we have already seen in
Sec. IVA 3 the AS ð2;�1Þmultipoles do not yield a similar
correlation: Their magnitudes are too small. As done in
Sec. IVA 3, we also checked howmuch these modes matter
for strain faithfulness. Specifically, we reconstructed the
SXS strains without the hcoprec2;�1 content and computed
the mismatch to the unaltered SXS strains. As before, we
found that the mismatch is at most 0.015 (0.07) at
ϑLN;0 ¼ 0ðϑLN;0 ¼ π=2Þ. At both inclinations, it is only
few cases that yield such mismatches with the majority of
the values below 0.001 (0.01).

5. Q ≥ 5 comparisons

As already noted, we only have four cases with Q ≥ 5 in
our short SXS set. Three of these, namely SXS:0057,
0058,0062, have Q ≈ 5;−0.18≲ χeff ≲ 0 and 0.45≲
χp ≲ 0.5, and one, SXS:0165, has Q ≈ 6; χeff ≈ −0.45; χp≈
0.77. We should caution that we detected “V-shaped” kinks
in the phases of both the precessing and coprecessing (2,2),
(2,1) multipoles. The first kinks appear at ≈100M
before the peak of the multipole amplitude. Additionally,
SXS:0057 is very short; i.e., its inspiral lasts ≈800M. For
these reasons, we present only the full wavelength mis-
match, M̄opt for these cases.
We list the values of M̄opt forM¼37.5M⊙;150M⊙, and

ϑLN;0 ¼ 0; π=2 for each model in Table II. One interesting
finding is that M̄optðϑLN;0 ¼ π=2Þ < M̄optðϑLN;0 ¼ 0Þ
for all models except for the M ¼ 150M⊙ mismatches
for SXS:0058. Most of the improved faithfulness at
ϑLN;0 ¼ π=2 is due to a more faithful h21 multipole
satisfying the relation jh21j≳ jh22j as we have previously
explored in detail. As we have only four cases with Q≳ 5,
we move on to comparisons of longer waveforms.

B. Long SXS waveforms

For this assessment, we employ 23 long SXS wave-
forms, namely simulations 1389–1411 [141]. The
total number of GW cycles in these simulations varies
approximately between 128 and 305, and the relevant
parameters have the following ranges: Q≤4;χp≲0.49;
χeff∈ ½−0.2;0.3� though only 1409–1411 have Q ¼ 4
with the rest having Q < 2. With only 23 cases as
compared with Oð103Þ in Sec. IV and Oð102Þ in
Sec. VA, we could afford the computational time to
expand our total mass sample to the following values:
M ¼ f37.5; 75; 112.5; 150; 187.5; 225gM⊙, with fi ¼
f0 þ 3 Hz for all match integrals. Note that because
the amplitude spectral density drops steeply from
Oð10Þ to 20 Hz (see Fig. 1), only one to two inspiral
cycles contribute to the match integrals for the M ¼
225M⊙ cases even though fi ∈ ½4; 5� Hz for these.
Similarly, we record 2.5 to 4 inspiral cycles for M ¼
187.5M⊙ and 4.5 to 7 cycles for M ¼ 150M⊙.

Accordingly, we observe that ðMR-only SNRÞ≳
ðinspiral-only SNRÞ for M ≳ 175M⊙.
We present the resulting mismatches as trace plots in

Fig. 17. In the top two rows of the figure, we display
M̄noMR

opt at ϑLN;0 ¼ 0 and π=2 then repeat this for M̄opt in
the bottom two rows with the four columns corresponding
to the four approximants in the usual order. First, we note
that with the exception of one TPHM ϑLN;0 ¼ π=2 case
(corresponding to SXS:1395), all mismatches are less than
0.035. Moreover, we also observe that M̄noMR

opt ðϑLN;0 ¼
0Þ < 0.01 holds nearly universally and that this inequality
still holds at ϑLN;0 ¼ π=2 for the EOB models. Our finding
of M̄noMR

opt ≼ M̄opt from the previous sections persists here
as well, which can be gathered by comparing row one with
row three, and row two with row four. The dependence of
the mismatches on inclination also seems to be consistent
with our previous results as the relation M̄optðϑLN;0 ¼ 0Þ ≼
M̄optðϑLN;0 ¼ π=2Þ is retained as seen by comparing
row one with row two, and row three with row four of
the same figure.
As for the dependence of the mismatches on the total

mass, we observe mostly a flattening of each mismatch
curve as M exceeds a certain threshold, more strongly so
for the ϑLN;0 ¼ 0 cases. This flattening is consistent with
the results of, e.g., Refs. [70,98,110,131]. Interestingly we
observe it for both M̄noMR

opt and M̄opt. For the flattening
of the former, our reasoning is as follows: As the binary
gets heavier, the signal shifts toward lower frequencies,
e.g., fpeak ≲ 50 Hz for M ¼ 150M⊙ and fpeak ≲ 30 Hz for
M ¼ 225M⊙. In this regime, the detectors are less sensitive

TABLE II. The sky-optimized mismatches between the four
Q > 4 SXS waveforms and the four models that we consider in
this work.

M̄optðϑLN;0 ¼ 0Þ M̄optðϑLN;0 ¼ π=2Þ
SXS ID Model 37.5M⊙ 150M⊙ 37.5M⊙ 150M⊙

0057 SEOB 0.027 0.032 0.011 0.0076
TEOB 0.024 0.038 0.015 0.010
TPHM 0.029 0.032 0.012 0.0081
XPHM 0.036 0.038 0.015 0.0098

0058 SEOB 0.0069 0.0041 0.0055 0.0050
TEOB 0.022 0.014 0.018 0.019
TPHM 0.026 0.0087 0.013 0.0086
XPHM 0.012 0.010 0.013 0.018

0062 SEOB 0.014 0.019 0.0039 0.0026
TEOB 0.020 0.038 0.0079 0.0076
TPHM 0.016 0.023 0.0051 0.0045
XPHM 0.025 0.047 0.0062 0.0077

0165 SEOB 0.061 0.055 0.017 0.016
TEOB 0.088 0.076 0.028 0.023
TPHM 0.063 0.11 0.028 0.027
XPHM 0.13 0.093 0.080 0.057
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(see Fig. 1); therefore the mismatch expression is also less
sensitive to the differences between waveforms. So the
dependence on the total mass becomes irrelevant for
M̄noMR

opt beyond a certain threshold.

The flattening of the M̄opt curves are partly due to this
reason combined with the fact that for the cases with only a
few inspiral cycles, i.e., M ≳ 150M⊙, the MR part of the
signal becomes the dominant contribution to the mismatch.

FIG. 17. Trace plots of the mismatches between {SEOB, TEOB, TPHM, XPHM} and numerical relativity waveforms from 23 long SXS

simulations as a function of the total binary mass. We computed the mismatches at the values of M ¼ f37.5; 75; 112.5;
150; 187.5; 225gM⊙ (marked by the faint vertical lines) and linearly connected the data points. The top (bottom) two rows show
M̄noMR

opt (M̄opt) with odd (even) rows corresponding to ϑLN;0 ¼ 0 (ϑLN;0 ¼ π=2) results. The four columns represent, from left to right,
the results for SEOB, TEOB, TPHM, XPHM.
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In other words, the contribution to the mismatch from ≲5

inspiral cycles does not change the overall M̄opt signifi-
cantly enough. However, the MR part of some of the heavier
cases falls in the Oð100Þ Hz region, where the detectors
are more sensitive, as is, accordingly, our full-band
mismatch M̄opt. This is why we observe flatter curves for
M̄noMR

opt ðϑLN;0 ¼ 0Þ than for M̄optðϑLN;0 ¼ 0Þ in Fig. 17.
Also note that some curves do not flatten out at all. We are
unable to provide a single universal, “one size fits all”
explanation for these as the shape and mass dependence of
each curve varies from one model to another.
One final prominent feature of the figure is the change in

XPHM’s faithfulness, M̄opt, in going from ϑLN;0 ¼ 0 to π=2,
for which we see that the values of the mismatches shift
from mostly being below 0.01 to mostly being above it,
while still remaining below 0.035. This behavior might be
indicative of more severe MR-related issues for XPHM’s
precessing ð2;�1Þ multipoles than for other models.
We recomputed M̄optðϑLN;0 ¼ π=2Þ using the updated
SPINTAYLOR version of XPHM [136] which showed
improvement: The range of M̄optðϑLN;0 ¼ π=2Þ dropped
from [0.004, 0.03] to [0.003, 0.02]. More noticeably, the
M ≳ 100M⊙ values of M̄optðϑLN;0 ¼ π=2Þ obtained with
the SPINTAYLOR version are all ≲0.02 in contrast to many
cases of 0.02 < M̄optðϑLN;0 ¼ π=2Þ≲ 0.035 seen in the
lower right panel of Fig. 17.

VI. INJECTION/RECOVERY STUDY

As the final part of our survey, we investigate the
performance of the precessing approximants in an

injection-recovery PE study. Specifically, we inject two
different SXS (l ¼ 2)-only strains into LIGO noise and
recover the parameters of the injected waveforms with
SEOB, TPHM, and XPHM. We are grateful to Charlie Hoy
and Lorenzo Pompili for assisting us with the SEOB runs.
Our omission of the TEOB results is due to (i) the
precessing model can only be used for PE with the
BAJES library [209] which is external to the computational
infrastructure that we employed for the PE runs with
{SEOB, TPHM, XPHM}; (ii) BAJES runs crashed with
waveform errors when the upper bounds of the χ1;2 priors
were above 0.8 despite TEOB generating reasonable
waveforms in that regime. This error first arose when
attempting to analyze GW200129_065458 with TEOB and
persisted when injection/recovery runs were carried out.
We hope to collaborate with BAJES developers in the
future so that these issues can be resolved.
Returning to our study here. We performed zero-

noise injections of the NR waveforms SXS:0050
(henceforth 0050) and SXS:0628 (henceforth 0628)
while using an estimated O4a PSD [210] for our likelihood
computations. These simulations have key parameters
fQ; χeff ; maxðχpÞg ≈ f3; 0.001; 0.5g; f2; −0.174; 0.84g
respectively. The former has a higher component mass
asymmetry and moderate spins, only in the orbital plane,
whereas the latter has a moderate mass ratio, but significant
precession. We perform each injection twice: for a low
mass and a high mass BBH given in the detector frame,
specifically,Mdet ¼ 56.5M⊙; 150M⊙ for 0050 andMdet ¼
67M⊙; 150M⊙ for 0628. The values for the lighter masses
are chosen so that the SXS reference frequency corresponds
to fdet0 ≈ 20 Hz for both simulations. The values for the

FIG. 18. Recovery performances of SEOB, TPHM, and XPHM for a synthetic signal generated by a “zero-noise” injection of the SXS

simulation 0050 into the O4a LIGO Hanford-Livingston network. In each panel, we present the results from both the light- and the
heavy-mass runs as the darker and lighter halves of each violin, respectively. Shown are the recovered posteriors for
fMdet

c ;Mdet; q; χeff ; dL; χ1; θ1; χ2; θ2; ϑLN;0g with the dashed horizontal lines marking the injected values. For fMdet
c ;Mdet; dLg, we

present posteriors for the relative difference between the injected and the recovered values, i.e., ΔrelX ≔ ðXr − XinjÞ=Xr. The first panel,
i.e.,ΔrelMdet

c , is somewhat hard to read because the models produced very narrow posteriors for the light-mass run, but much wider ones
for the heavy one.
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heavier masses are chosen to put more emphasis on the
plunge-merger-ringdown portions of the waveforms, con-
sistent with the rest of this article. The source-frame masses
are smaller by a factor of (1þ z) where z is the redshift
of the sources at the injected luminosity distance which we
set to ff308; 649g; f555; 1020gg Mpc, respectively for
light/heavy 0050 and light/heavy 0628.
The reason why the value of dL for the 150M⊙ 0050 run

differs from that of 0628 is due to our choice of extrinsic
parameters. Specifically, we fine-tuned fϑLN;0; θs;ϕs;
ψ s; dLg such that the total network SNR, ρtot, accumulated
by the H1-L1 network is 40 for each case resulting in a
precession SNR of ρp ¼ ff11; 6.4g; f15; 10gg, respec-
tively for light/heavy 0050 and light/heavy 0628. This
quantity was first defined in Ref. [211] and represents the
contribution to the SNR coming from the second most
significant precessing harmonic. It is proportional to the
total SNR, thus becomes larger for louder events, and has
to be greater than 2.1 for the effects of precession on the
signal to not be attributed to noise alone [211]. Let us add
that we opted here for ρtot ¼ 40 as our trial runs with
ρtot ¼ 20 resulted in the posteriors of precession-related
quantities, such as χp, being prior dominated, hence
uninformative. The specific values for all our injected
parameters can be found in the config files uploaded to our
GIT repository.
We employ the BILBY [212,213] and BILBY_PIPE [214]

modules with the DYNESTY sampler [215–218]. We set the
number of live points, NLIVE, to 1000, and NACCEPT to 60.
Other DYNESTY attributes are set to their default values.
When employing the IMRPHENOM models, we run two
parallel chains and combine the results at the end. For SEOB,
we run only one chain per injection.
The priors for the parameters are as follows. For the

lighter mass runs, we use the BILBY function UNIFORMIN-
COMPONENTSCHIRPMASS with the range Mc ∈ ½10; 35�M⊙,
the UNIFORMINCOMPONENTSMASSRATIO function with

range q∈ ½0.083; 1�, and constraints of mi ∈ ½1; 1000�M⊙.
The luminosity distance prior range is given by
dL ∈ ½100; 5000� Mpc via the function UNIFORMSOURCE-
FRAME using ΛCDM cosmology parametrized by Planck
2015 data [219]. The spin magnitudes are uniform in the
range χi ∈ ½0; 0.99� while the spin tilt angles are uniform in
their sines, sin θi ∈ ½0; 1�, and the J frame inclination angle
is uniform in cosine, cos ϑJN;0 ∈ ½−1; 1�, where ϑJN;0 is the
angle betweenJ and N̂ atf ¼ f0.Other angles are all uniform
in their respective ranges. For the heavier Mdet ¼ 150M⊙
runs, we set the chirp mass prior range to Mc ∈ ½45;
85�M⊙ð½40; 90�M⊙Þ for 0050 (0628) with the other priors
kept the same. We find that such an injection/recovery PE
“job” consisting of two chains of IMRPHENOMTPHM and two
chains of IMRPHENOMXPHM takes roughly one day using 100
processors. With the same resources, one SEOBNRV5PHM

chain can be obtained in ∼1.5 days.

A. Main results

Overall, we have 12 sets of posterior parameters to
present resulting from fSEOB;TPHM;XPHMg × f0050;
0628g × flight; heavyg runs. For the sake of brevity, we
show only a subset of posteriors for important intrinsic and
extrinsic parameters, namely the set fMdet

c ;Mdet; q; χeff ;
dL; χ1; θ1; χ2; θ2; ϑLN;0g in Figs. 18 and 19, where, for
fMdet

c ;Mdet; dLg we present the relative differences
between the injected and the recovered values. When
relevant, we also discuss the posteriors for other parameters
besides these. Table IV presents the 5th, 50th, and 95th
percentiles of the recovered posteriors for the relevant
parameters. We discuss the recovery of precession-related
quantities further below in Sec. VI B. For reference, we
display in Table III, the mismatches between the injected
waveforms and those generated by SEOB, TPHM, and XPHM

using the injected parameters.
We start with Fig. 18, where we present both the light-

and heavy-mass posteriors from the 0050 recovery runs as

FIG. 19. Same as Fig. 18, but for the SXS simulation 0628.
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violin plots. A common feature seems to be that SEOB and
TPHM posteriors are more similar to each other than XPHM.
In general, one model recovers a particular set of param-
eters better than the other two. For example, for the light-
mass case, SEOB recovers fMdet

c ; q; χeffg better, whereas
XPHM recovers fχ1; θ1; θ2; dLg better. TPHM recovers ϑLN;0
better than the other two models, and is sometimes better
than SEOB or XPHM for other parameters, but not both. χ2 is
recovered at roughly the same confidence by the models
though the XPHM posterior is skewed oppositely. Looking
at the median values and the 90% confidence intervals (CIs)
for m1, m2, i.e., the source-frame component masses, in
Table IV, we see SEOB=TPHM slightly overestimating m1

while underestimating m2 with XPHM behaving in the
opposite manner. Additional corner plots of the posteriors
can be found in our GIT repository.

SEOB’s and TPHM’s performances are even more similar
for the heavy-mass case. SEOB=TPHM recover fMdet

c ;
q; χ1g better, whereas XPHM does so for fθ1; θ2; dL; ϑLN;0g.
χ2 posteriors for SEOB=TPHM look nearly flat indicating
the dominance of the uniform prior in the posterior,
whereas XPHM’s posterior rails against the χ ¼ 1 Kerr
bound. fMdet; χeffg are recovered equally marginally by
SEOB and XPHM. The recovery posteriors for Mdet

c are
rather wide with the 90% CIs ranging roughly from 54M⊙
to 68M⊙ for SEOB, 54M⊙ to 70M⊙ for TPHM, and from
58M⊙ to 70M⊙ for XPHM, given an injected value of 55M⊙.
The recovery of 0628’s parameters reveals yet more

differences in model performance, but with the similarity in
SEOB and TPHM’s posteriors persisting. Let us recall that
0628 has stronger precession than 0050, but nonzero
parallel spin projections. For the light-mass run, SEOB

recovers fMdet
c ; χeffg better while TPHM does so for

fMdet; q; θ1g with XPHM recovering θ2 better. SEOB,
TPHM recover ϑLN;0 very similarly, and SEOB, XPHM do
so for dL. SEOB=XPHM both rail against the χ1 ¼ 1
bound, but not TPHM. On the other hand, SEOB=TPHM
rail against the χ2 ¼ 0 bound, with XPHM somewhat railing
against χ2 ¼ 1. Though XPHM recovers Mdet

c in the 90%
CI, its recovery of the other mass parameters is rather poor.
For example, its posteriors for both the detector and the
source-frame (total, primary, secondary) masses do not
contain the injected parameters within their respective 90%
CIs, whereas SEOB’s and TPHM’s posteriors do, with the

injected values recovered near the peaks of the distribu-
tions. This can also be partly gathered by looking at the
recovered fm1; m2g posteriors in Table IV under the 0628
Light rows. The fact XPHM under(over)estimates m1ðm2Þ is
why it recovers Mc within its 90% CI.
As for the heavy-mass 0628, SEOB=TPHM recover

both the detector and source-frame masses robustly. XPHM
underestimates the injected values for m1; mdet

1 by 3
standard deviations or more. Despite this, its q posteriors
are comparable to that of SEOB’s. Overall, SEOB recovers
fMdet; χeff ; dLg better, while TPHM does so for fq; χ1; θ1g,
and with XPHM doing so for fMdet

c ; θ2g, but cannot recover
θ1 with any confidence. The various railings of the χ1;2
posteriors against the χ1;2 ¼ 0, 1 bounds, seen for the light-
mass injection, are exacerbated. As was the case with
0050, the recovered posteriors for Mdet

c are wider for the
heavy-mass run with the 90% CIs ranging roughly from
58M⊙ to 67M⊙ for SEOB, 59M⊙ to 69M⊙ for TPHM, and
from 53M⊙ to 64M⊙ for XPHM for an injected value of
60.5M⊙. Another prominent feature to note is the bimo-
dality in the ϑLN;0 posteriors which we did not observe for
0050. Given that we only inject and recover the l ¼ 2
strain, some bimodality in the inclination is expected due to
the distance-inclination degeneracy. However, when there
is precession, the ð2;�1Þ multipoles may contain enough
power to break this, and more so for larger Q. Indeed, we
find that the ratio j−2Y21h21j=j−2Y22h22j is larger for 0050
than for 0628, thus explaining why we observe no
bimodality in the inclination posteriors for 0050.
An interesting result that warrants further discussion is

the consistent overestimation of χeff for the 0050 run
where the injection has χeff ¼ 0.001. This can be seen in
the upper right panel of Fig. 18 (also upper left panels of
Figs. 20, 21) and in Table IV. This is consistent with the
broad findings of Ref. [220]. Given that the total SNRs are
fixed to 40 with precession SNRs all exceeding 6, this is
somewhat surprising. Perhaps, this may be due to the fact
that the injected value is small. Interestingly, Appendix D
of Ref. [220] contradicts us, mostly finding that the
posteriors slightly underestimate the injected values of
χeff ¼ 0. We believe the disagreement is mostly due to
the facts that (i) they set θ1;2 ¼ 10°; 30° thus have to fix
χ1;2 ¼ 0 to obtain χeff ¼ 0, which is different from our
situation which has θ1;2 ≃ 90°; (ii) they employ the
IMRPHENOMPV2 model which is no longer considered the
state of the art. It might be case that the recovery of small
injected values of χeff with large χp is in general more
challenging. Otherwise, we can expect χeff to be well
recovered by the current models as seen in, e.g., Table I of
Ref. [131] for TPHM and Table II of Ref. [128] for XPHM.
A systematic injection/recovery campaign would certainly
find a trend (if there is any). Let us reiterate that χeff is
an effective measure of the impact of spin in the inspiral,
which may not necessarily hold for high-mass systems,
i.e., few inspiral cycles. Indeed, we observe that the

TABLE III. Mismatches calculated between the injected SXS

waveforms and the recovery models evaluated at the same
parameters as the injected waveforms. The values presented here
are calculated using Eq. (13).

Model 0050 light 0050 heavy 0628 light 0628 heavy

SEOB 1.28 × 10−2 1.39 × 10−2 1.05 × 10−2 7.94 × 10−3

TPHM 2.13 × 10−2 1.00 × 10−2 1.75 × 10−2 9.81 × 10−3

XPHM 2.43 × 10−2 1.73 × 10−2 1.67 × 10−2 1.63 × 10−2
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overestimation is more severe for our heavy-mass injection.
For the 0628 run, SEOB recovers χeff very well, but TPHM
and XPHM overestimate it once again.
Overall, the least informative recovery is for χ2 as can be

gathered from Figs. 18 and 19 and Table IV. Though the
models capture the injected values within their 90% CIs,
these are 2 to 3 times wider than the ones corresponding
to χ1, thus hardly informative. The only clear result is the
opposite behavior between the SEOB=TPHM and XPHM

posteriors with the former favoring low values and the latter
high values. We should also remark that the heavy 0050
SEOB=TPHM posteriors are mostly prior dominated. To
better quantify this, we compute the Jensen-Shannon (JS)
divergences, DJS, between the posteriors and the priors.
Given two distributions p1ðxÞ; p2ðxÞ, the JS divergence is a
measure of how similar they are, given by [221]

DJS¼
1

2

�X
x

p1ðxÞln
�
p1ðxÞ
p̄ðxÞ

�
þp2ðxÞ ln

�
p2ðxÞ
p̄ðxÞ

��
; ð26Þ

where p̄ðxÞ ¼ ðp1ðxÞ þ p2ðxÞÞ=2. DJS ¼ 0 means identi-
cal distributions. We find that for the heavy-mass 0050
run, both SEOB and TPHM χ2 posteriors yield DJS < 0.01

indicating high resemblance to the flat χ2 priors as can be
seen from Fig. 18.
Similarly, for θ2, the SEOB=TPHM posteriors are mostly

prior dominated. For three TPHM runs, the JS divergence
between the θ2 posteriors and the prior are all ≲0.01,
indicative of very similar distributions. Even for the light-
mass 0628 run, TPHM yields DJS ≈ 0.019. SEOB posteriors
give DJS ≈ 0.03 for the same run, and DJS < 0.015 for the
other three runs. On the other hand, the JS divergences
between XPHM’s posteriors and the priors are all greater
than 0.1 except for the light 0050 run which still yields
DJS > 0.02, which is usually taken to be the threshold for
similarity between two distributions.

B. Inferring precession from the injections

In the previous section, we deliberately omitted the
discussion on the recovery of χp as we want to present
it along with the other precession scalars, namely χGenp and
χ⊥;J. Recall that our injected signals have total SNRs of
40 each, part of which is due to the precession SNR,
specifically, ρp ¼ ff11; 6.4g; f15; 10gg, respectively for
light/heavy 0050 and light/heavy 0628.

TABLE IV. The results of our injection/recovery parameter estimation runs. For a selected subset of parameters given in the first row,
we present the medians and f5th; 95thg percentile error bars for the posteriors recovered by SEOB, TPHM, and XPHM for four injections of
SXS numerical relativity waveforms into LIGO Hanford-Livingston O4a sensitivity. The labels 0050, 0628 in the first column are the
SXS simulation numbers. Light and Heavy refer to the total mass of the binary black hole system. The row label “inj.” denotes the
injected value. The f5th; 95thg error bars are simply the following percentile differences: f5th-50th; 95th-50thg.

m1ðM⊙Þ m2ðM⊙Þ χ1 χ2 χeff χp θ1 θ2 dL ðMpcÞ ϑLN;0

0050 Light
inj. 39.74 13.25 0.50 0.50 0.001 0.50 1.57 1.57 308 1.05
SEOB 41.56þ3.79

−3.21 12.75þ1.08
−0.93 0.66þ0.16

−0.18 0.32þ0.48
−0.29 0.023þ0.056

−0.059 0.66þ0.16
−0.18 1.49þ0.14

−0.15 1.78þ0.92
−1.13 328þ35

−36 0.86þ0.17
−0.12

TPHM 42.57þ4.08
−3.33 12.63þ1.06

−0.97 0.58þ0.12
−0.12 0.31þ0.48

−0.28 0.077þ0.068
−0.057 0.57þ0.12

−0.13 1.38þ0.16
−0.16 1.67þ1.01

−1.15 322þ36
−39 0.95þ0.20

−0.16

XPHM 37.84þ3.00
−2.85 14.17þ1.09

−1.00 0.39þ0.21
−0.15 0.64þ0.29

−0.45 0.034þ0.065
−0.067 0.38þ0.22

−0.15 1.51þ0.45
−0.44 1.44þ0.89

−0.88 311þ61
−62 0.88þ0.23

−0.19

0050 Heavy
inj. 99.24 33.08 0.50 0.50 0.001 0.50 1.57 1.57 649 1.05
SEOB 98.85þ10.75

−9.01 39.01þ11.26
−8.04 0.64þ0.24

−0.29 0.49þ0.43
−0.44 0.085þ0.121

−0.111 0.62þ0.24
−0.29 1.46þ0.25

−0.36 1.36þ1.12
−0.94 694þ186

−174 0.97þ0.25
−0.17

TPHM 100.63þ15.24
−12.94 38.68þ15.13

−8.97 0.57þ0.21
−0.25 0.43þ0.48

−0.38 0.122þ0.105
−0.110 0.54þ0.20

−0.24 1.32þ0.31
−0.38 1.43þ1.12

−1.01 705þ198
−164 1.01þ0.23

−0.19

XPHM 90.36þ7.01
−8.13 46.31þ13.09

−7.91 0.30þ0.29
−0.20 0.80þ0.17

−0.39 0.139þ0.106
−0.123 0.36þ0.22

−0.14 1.38þ0.62
−0.67 1.16þ0.70

−0.61 679þ202
−168 1.08þ0.31

−0.24

0628 Light
inj. 40.44 19.61 0.85 0.51 −0.174 0.84 1.70 2.23 555 0.52
SEOB 38.65þ3.54

−3.57 20.36þ2.25
−1.88 0.87þ0.10

−0.18 0.33þ0.44
−0.29 −0.167þ0.065

−0.066 0.84þ0.10
−0.17 1.81þ0.17

−0.19 1.89þ0.82
−1.12 584þ114

−114 0.52þ2.05
−0.22

TPHM 40.44þ4.66
−4.06 19.62þ2.27

−1.96 0.78þ0.14
−0.15 0.33þ0.48

−0.28 −0.083þ0.071
−0.065 0.77þ0.13

−0.15 1.75þ0.20
−0.16 1.46þ1.00

−0.87 612þ108
−110 0.55þ2.11

−0.28

XPHM 34.46þ2.85
−2.57 23.26þ2.22

−2.51 0.83þ0.14
−0.23 0.72þ0.22

−0.50 −0.102þ0.091
−0.131 0.63þ0.21

−0.20 2.24þ0.29
−0.30 0.79þ0.56

−0.47 585þ145
−134 2.01þ0.57

−1.53

0628 Heavy
inj. 84.07 40.77 0.85 0.51 −0.174 0.84 1.70 2.23 1020 0.52
SEOB 76.22þ8.92

−8.92 46.75þ12.28
−8.17 0.84þ0.13

−0.24 0.32þ0.52
−0.28 −0.179þ0.094

−0.093 0.79þ0.15
−0.24 1.89þ0.27

−0.30 1.73þ0.91
−1.13 1029þ259

−255 0.95þ1.74
−0.56

TPHM 78.37þ13.73
−10.79 46.87þ11.36

−8.94 0.78þ0.17
−0.25 0.29þ0.50

−0.26 −0.100þ0.102
−0.096 0.75þ0.19

−0.26 1.78þ0.33
−0.31 1.62þ0.98

−1.03 1130þ323
−285 0.85þ1.77

−0.44

XPHM 73.16þ6.51
−5.59 45.84þ8.28

−9.45 0.82þ0.15
−0.30 0.81þ0.16

−0.46 −0.139þ0.163
−0.269 0.53þ0.20

−0.17 2.42þ0.31
−0.33 0.78þ0.71

−0.50 909þ315
−298 1.13þ1.27

−0.53
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We present the recovered posteriors for fχp; χGenp ; χ⊥;Jg
(along with χeff ) from the light/heavy 0050 PE runs in
Figs. 20 and 21. Similar results for the light/heavy 0628
recovery are shown in Figs. 22 and 23. In all the figures, we
observe posteriors not dominated by the priors (dashed
histograms) consistent with our having injected ρp ≥ 6 into
all runs. We also see the tallest and narrowest posteriors for
the ρp ¼ 15 run, i.e., the light 0628. As was the case in the
previous section, the posteriors coming from the heavy-
mass recovery runs are in general wider than their light-
mass counterparts. They are additionally not as centered on
the injected values and less symmetric.
Starting with the χp posteriors, we note that TPHM

consistently recovers the injected value very close to its
median with SEOB performing similarly with some dis-
agreement between the two models’ posteriors for the light-
mass injections. XPHM consistently underestimates χp,
but still recovers it within its 90% CI except for heavy
0628 (see Table IV). The underestimation by XPHM bias
was not observed in Ref. [128], where the recovery of a
fQ ¼ 6; χeff < 0; χp ≳ 0.75g injection (SXS:0165) was
performed, albeit at an SNR of 26 with no information
as to what ρp is. This might explain why a bias was not
observed there though we should be cautious about
drawing conclusions regarding systematic biases from a
few PE runs [131].
Turning our attention to the χGenp posteriors, we find that

all models recover the injected values within their 90% CIs
as can be discerned from Figs. 20–23. The consistent
underestimation of χp by XPHM is not exhibited here for
χGenp . SEOB=TPHM recover the injected values closer to

the medians than XPHM except for the heavy 0628 run.
In any case, we do not see the bias observed in the
lower panels of Fig. 7 of Ref. [191], where injections of
NRSUR7DQ4 were carried out. The reason for this most
likely is that their injected SNRs were greater than 75.
As for the χ⊥;J recovery, we find that both SEOB and TPHM

also recover this quantity rather well, whereby the injected
values almost line up with the peaks of nearly symmetric
posterior distributions. TPHM’s recovery is especially out-
standing for the light-mass runs. XPHM underestimates the
injected value every time and either barely recovers within
its 90% CI or just outside it. As far as we are aware, ours are
the first PE results for this quantity so we can not compare
our findings with the literature.
Overall, both SEOB and TPHM seem to recover any one

of the three χ⊥’s well at these relatively high SNRs. The
models especially recover χGenp ; χ⊥;J posteriors well though
this is likely just a coincidence, and nonetheless warrants a
more systematic investigation. XPHM seems to best recover
χGenp of the three χ⊥’s. Focusing only on the χp recovery, we
see that SEOB, TPHM perform reliably, with perhaps the
latter being most reliable in terms of consistent recovery
closest to its median.
Looking at the ftc;φcg-maximized mismatches of

Table III, we can see some support for why we expect
SEOB, TPHM to perform better: For the heavy injections,
SEOB=TPHM waveforms with injected parameters yield
mismatches that are nearly half of the corresponding XPHM

waveforms. As for the light cases, SEOB mismatches
are lower, while the TPHM mismatch is lower for 0050,
and roughly the same for 0628. We can compare these
mismatches with what the indistinguishability criterion of

FIG. 20. Posterior distributions recovered by TPHM and XPHM

for fχeff ; χp; χGenp ; χ⊥;Jg for the injection of the SXS simulation
0050 with Mdet ¼ 56.5M⊙. The black dashed distribution is the
prior for each quantity. The orange line marks the injected value.
The color coding of each model is consistent with the entire
article.

FIG. 21. Same as Fig. 20, but for the heavy 0050 PE run with
an injected value ofMdet ¼ 150M⊙. Note that the vertical scale is
different from Fig. 20, which is why the histograms for the priors
may give the illusion of looking different, when they are in fact
identical.
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Ref. [51] gives us. Namely, for k degrees of freedom and an
SNR of ρ, the required mismatch below which two wave-
forms will be indistinguishable at 100p% confidence is
given by [64]

M̄ ≤
χ2kð1 − pÞ

2ρ2
: ð27Þ

A precessing BBH system has 8 degrees of freedom. This
reduces to 4 if we minimize the mismatches over the
planar spin components ϕ1;ϕ2. To quantify waveform
indistinguishability at 90% confidence, we use χ28ð0.1Þ ≃
13.362 and χ24ð0.1Þ ≃ 7.79. Accordingly, for an SNR of
40, two waveforms will be indistinguishable if their
mismatch is less than 4.2 × 10−3 assuming k ¼ 8 and
M̄ ≤ 2.4 × 10−3 assuming k ¼ 4. The mismatches we
have in Table III are larger than these bounds, but
SEOB’s are only twice to thrice the k ¼ 8 bound, with
TPHM’s slightly larger. Thus, we expect the results of our
PE recovery to be somewhat biased, but less so for SEOB

and TPHM. Perhaps this is manifest mostly in the pre-
cession-related posteriors. We can also solve Eq. (27) for
an “indistinguishability SNR” given a mismatch. For the
fiducial value of M̄ ¼ 0.01, we obtain ρ ≈ 26. Thus, any
injection with less than this SNR would not pick up
modeling-related systematics in PE.

VII. SUMMARY

We conduct a long survey of four precessing waveforms
models: SEOBNRV5PHM, TEOBRESUMS, IMRPHENOMTPHM,
and IMRPHENOMXPHM. Our survey has a large part pertain-
ing to assessing model faithfulness to the surrogate model
NRSUR7DQ4 and to numerical relativity waveforms from the
SXS simulation catalog. We quantify model faithfulness

via the optimized mismatch, M̄opt [Eqs. (20) and (21)], and
the merger-ringdown truncated (inspiral-only) mismatch,
M̄noMR

opt [Eq. (23)]. The second shorter part of our survey
involves checking model performance in several injection/
recovery parameter estimation runs for which we cannot
employ TEOBRESUMS.
The assessment of model faithfulness to NRSUR7DQ4

has two separate parts distinguished by the chosen set of
intrinsic parameters. In Secs. IVA and IV B, we employ
a discrete grid with emphasis on having large planar
components for the spin vectors S1, S2 to “stress test” the
precessing models. In Sec. IV C, we use a random-
uniformly filled intrinsic parameter space. The latter is
commonly encountered in reviews of waveform models
as well as in parameter estimation runs, where the
parameter space is randomly sampled. As can be seen
from Fig. 2, the two parameter sets cover different
regions. For the discrete grid, we consider both a light-
and a heavy-mass binary with total source-frame masses
of 37.5M⊙ and 150M⊙. The cases with the latter mass
contain fewer inspiral cycles; thus the plunge-merger-
ringdown portions contribute more to the signal than for
the light-mass cases. We further decompose each mass
set into four subsets of mass ratio, Q ¼ f1.1̄; 2; 4; 6g, the
last of which is in the so-called extrapolation region of
NRSUR7DQ4.
In Sec. V, we extend the above survey to comparisons

with numerical relativity waveforms from the SXS catalogs.
We separate our investigation into a part involving “short”
waveforms, i.e., fewer than 70 GW cycles (Sec. VA) and
into a part with longer waveforms (≳125 GW cycles) in
Sec. V B. For the former, we once again set the binary mass
to 37.5M⊙ and 150M⊙. For the latter, we considere a total
of six values for the total mass ranging from 37.5M⊙ to
225M⊙ in steps of 37.5M⊙. For the short SXS set, we pick

FIG. 22. Same as Fig. 20, but for the light 0628 run with an
injected value of Mdet ¼ 67M⊙.

FIG. 23. Same as Fig. 20, but for the heavy 0628 run with an
injected value of Mdet ¼ 150M⊙.
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317 simulations out of the larger ensemble of approximately
1600 in order to have roughly 100 precessing waveforms per
mass ratio subsets: fQ≲ 1.3; Q ≈ 2; Q ≈ 4g. This way, we
are better able to draw parallels with the assessment
conducted using NRSUR7DQ4 in Secs. IVA and IVB.
We compute all mismatches at inclinations of ϑLN;0 ¼ 0

and ϑLN;0 ¼ π=2. For each case, we also compute the
merger-ringdown truncated, i.e., inspiral-only, mismatch
denoted by the noMR superscript. Our findings are as
follows:

(i) For each case in our parameter sets, M̄noMR
opt <

M̄opt. The corresponding distributions can be
seen in Figs. 4, 10, 13, and 17. The ratio R ¼
M̄opt=M̄noMR

opt can be Oð10Þ or larger, but remains
≲7 for SEOB.

(ii) The offset between the M̄noMR
opt distributions and

the M̄opt distributions is larger for the heavier-mass
binaries as can be seen by comparing the left and
right panels of Figs. 4 and 13.

(iii) Model faithfulness deteriorates with increasing mass
asymmetry as shown in Figs. 5, 9, and 15.

(iv) For short waveforms, model faithfulness, specifi-
cally M̄opt, does not significantly degrade at higher
inclinations as exhibited in Figs. 8, 10, 13, and 15.
However, for long waveforms, i.e., ≳125 cycles,
faithfulness decreases as inclination goes from 0 to
π=2 as shown in Fig. 17. The models’ faithfulness
under changing inclination also varies when con-
sidering the inspiral only (M̄noMR

opt ) and different
mass ratios.

(v) Models exhibit higher unfaithfulness to NRSUR7DQ4/
SXS in regions with strong precession.

(vi) When large enough, the unfaithfulness of the co-
precessing (aligned-spin) ð2;�2Þ multipoles to the
corresponding NRSUR7DQ4/SXS multipoles can be-
come the dominant systematic in the precessing
waveform unfaithfulness. This is especially the case
for TEOBRESUMS and IMRPHENOMTPHM as detailed
in Secs. IVA 3 and VA 4, and is manifested as a
strong correlation shown in Figs. 7 and 16.

(vii) Sufficiently faithful precessing ð2;�1Þ multipoles
can make high-inclination waveforms more faithful
than their low-inclination counterparts as explained
in Secs. IV B and VA 3.

Finally, in Sec. VI, we conduct a parameter estimation
study by performing zero-noise injections of two precess-
ing SXS simulations (0050 and 0628) and recovering
the injected parameters with the models SEOBNRV5PHM,
IMRPHENOMTPHM, and IMRPHENOMXPHM. Our work in this
regard complements those of Refs. [98,128,131], where
different SXS simulations were injected. We perform each
injection twice, at a low and high total binary mass. We set
the extrinsic parameters so that in each case the total
network SNR equals 40 with 15% to 40% coming from

precession depending on the case. The recovered posterior
distributions for a subset of key parameters are shown in
Figs. 18 and 19 for SXS:0050 and SXS:0628, respectively.
These are supplemented by Table IV where we present the
median values as well as the f5; 95g percentile error bars of
the posteriors for a complementary subset of parameters
with some overlap.
Overall, we observe mixed model performance where

one model may recover certain parameters better than the
other. For example, SEOBNRV5PHM consistently recovers
χeff better while IMRPHENOMTPHM could be argued to better
recover χ1 (no railing), whereas IMRPHENOMXPHM better
recovers θ2. However, when it comes to the recovery of the
effective precession scalars, χp; χGenp and the perpendicular
spin component χ⊥;J, SEOBNRV5PHM and IMRPHENOMTPHM

outperform IMRPHENOMXPHM, which we present in
Figs. 20 and 21 for SXS:0050, and in Figs. 22 and 23
for SXS:0628. χGenp and χ⊥;J are especially rather well
recovered by SEOBNRV5PHM and IMRPHENOMTPHM as can
be garnered from the bottom panels of these figures. We
must nonetheless repeat our cautionary remark from
Sec. VI that results from a few parameter estimation runs
that are insufficient for drawing general, reliable conclu-
sions regarding model performance. Therefore, many more
such studies are needed with special attention paid to the
precession SNR.

VIII. DISCUSSION

Our findings indicate that at present, the MR portion of
the waveforms along with the precessing ð2;�1Þ multi-
poles need to be further improved to attain an overall
waveform faithfulness comparable to that of the inspiral-
only ð2;�2Þ multipoles for all inclinations. As already
mentioned, part of the increased unfaithfulness when
considering the full waveform is simply due to changing
signal morphology of the MR phase. One can, in principle,
determine how much of the increase is due to the actual
mismodeling of the MR regime by smoothly stitching the
inspiral part of, e.g., an SEOBNRV5PHM waveform with the
MR part of an NRSUR7DQ4/SXS waveform and computing
the mismatch M̄opt between this hybrid waveform and the
full SEOBNRV5PHM waveform. A comparison of this mis-
match with the already computed M̄noMR

opt values with
respect to NRSUR7DQ4/SXS then roughly tells us how much
of the mismatch comes from waveform systematics in the
MR regime. This comparison might provide an estimation
for an achievable waveform model unfaithfulness that can
be targeted.
As for the modeling of the precessing ð2;�1Þ multi-

poles, we have seen already that the main contribution to
these comes from the AS ð2;�2Þ multipoles which differ
most from NRSUR7DQ4/SXS’s coprecessing ð2;�2Þ multi-
poles for cases with 60° ≤ θ1;2 ≤ 120° and with increasing
mass asymmetry. This region in θ1;2 space is also where we
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believe the assumed m ↔ −m symmetry of the AS multi-
poles is most unfaithful. The obvious remedy is the
abandonment of this symmetry, at least for the AS
ð2;�2Þ multipoles which has been done for the new model
IMRPHENOMXO4A [135].
Though the AS ð2;�1Þ multipoles do not matter nearly

as much as their ð2;�2Þ counterparts, we have seen that
their omission can cause mismatches as large as 0.01 for
ϑLN;0 ¼ 0 and 0.03 for ϑLN;0 ¼ π=2. As detector sensitivity
steadily improves such margins will become crucial to
overcome. More work needs to be undertaken to fully
determine how much the unfaithfulness of the AS ð2;�1Þ
multipoles matters, while it is clear that this is subdominant
to the unfaithfulness of the AS ð2;�2Þ multipoles.
However, the ratio jhAS2;�1j=jhAS2;�2j increases with increasing
mass asymmetry implying that unfaithfulness of the AS
ð2;�1Þ multipoles becomes non-negligible beyond a cer-
tain mass ratio.
The repeatedly observed fact that faithfulness, in general,

deteriorates with increasing mass asymmetry (Q≳ 4)
should be addressed more systematically. Though it is
the case that these waveforms have more GW cycles than
the ones with Q ≤ 2, we had argued that waveform length
alone does not explain the increased unfaithfulness. Part of
the degradation is due to the AS multipoles as we saw in
Sec. IVA 3: They become less faithful to NRSUR7DQ4’s
coprecessing multipoles as Q increases. On the other hand,
some deterioration could be due to the mismodeling of the
AS ð2;�1Þmultipoles which have increasing contributions
as discussed above. Another part could be due to the
mismodeling of the Euler angles which brings us to the
second part of this discussion.
Our survey is by no means a complete one, so let us

expand on possible ways to extend it here. The twist
prescription has two essential ingredients: the AS multi-
poles and the Euler angles used to rotate the multipoles
from the LNðtÞ frame (coprecessing) to an inertial (e.g.,
LN;0) frame. Though we investigated how the unfaithful-
ness of the AS multipoles might affect the strain faithful-
ness, we did not conduct a study of how the systematics in
the Euler angles affect the faithfulness. We propose the
following hybridized approach for such a study: Euler
rotation of NRSUR7DQ4’s coprecessing multipoles for which
the angles are to be input from various models under
investigation. Such a study was performed in Ref. [132]
(Fig. 18) for assessing the MSA angles and the angles from
their new prescription.
In our case, we could, for example, use TEOBRESUMS

Euler angles to twist the coprecessing NRSUR7DQ4 multi-
poles then compute the mismatches between the resulting
hybrid waveforms and NRSUR7DQ4 waveforms. This
investigation can also be extended to the choice of
coprecessing frame; i.e., since L ≠ LN, the Euler angles
for the LðtÞ → L0 rotation will differ from those of the
LNðtÞ → LN;0 rotation, albeit slightly. Moreover, neither

direction coincides with the direction of maximum GW
emission which, in the time domain, differs depending on
whether one uses the GW strain, the Bondi news function,
or the Weyl scalar ψ4 [49,132,206,222,223].
It would be useful to extend our total mass coverage

in Secs. IV and VA to more values as we did for our
assessment using the long SXS waveforms. A range of
M ≈ 10M⊙ to ≈250M⊙ in steps of 10M⊙ is common.
Additionally, for random-uniformly-filled parameter
spaces, 5000 to Oð104Þ cases are customary. However,
given that we have to compute M̄noMR

opt and M̄opt separately
at two different inclinations for each single point in the
BBH parameter space, we have 4 times the computational
burden. This is a considerable increase as each optimized
mismatch requires up to Oð105Þ waveform generations
which we must then repeat for 42 points in our fφref ; κg
grid [Eq. (20)].
Another obvious way to extend our survey is by including

higher multipoles in the strain. Reference [182] already
conducted such a study with the multipoles ð3;�3Þ;
ð3� 2Þ; ð4;�4Þ; ð4;�3Þ included. We can extend our AS
ð2� 2Þ; ð2� 1Þ multipole assessment of Sec. IVA 3 to
these multipoles.We can also reapply all the analyses that we
performed on the l ¼ 2 strain to the l > 2 strain.
Yet another extension is to employ as many precessing

numerical relativity waveforms as feasible as was done in
the LVK study using ≳1500 NR waveforms that we
mentioned in Sec. I. A shorter version of this at a single
inclination of π=3 was presented in Ref. [98]. We can
supplement these results with our M̄noMR

opt and M̄opt

computed at inclinations of 0 and π=2 and possibly more.
All of these data could then be presented in terms of
mass ratio as in our Figs. 5, 9, and 15. We should also
add that the latest trend in the literature is to present
model unfaithfulness in terms of an SNR-weighted
match [95,132]. This quantity is different from the sky-
optimized match Mopt of Eq. (19). Therefore, a com-
parison of these two faithfulness measures may also be
informative.
A large-scale injection/recovery parameter estimation

campaign would make certain vague trends either more
concrete or obsolete. However, such studies are computa-
tionally expensive which is why most model reviews
suffice with one or two of these. Nevertheless, we have
found that using the PARALLEL_BILBY library, we can
complete two chains of IMRPHENOMTPHM and two
chains of IMRPHENOMXPHM injection/recovery runs per
day using Oð100Þ processors. With the same resources,
we can alternatively obtain one SEOBNRV5PHM chain
per ∼1.5 days. So, ≳30 injection/recovery PE runs
can be completed in approximately one month with the
IMRPHENOM models.
The conclusions of injection/recovery studies are depen-

dent on the choice of injected SNRs. In our case, we opted
for a total SNR of 40 which may seem unrealistic given that
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95% of the O1, O2, O3 events had SNR≲ 23.6 However,
there will be a few events with large enough SNRs for
which accurate modeling of precession will be crucial.
GW200129_065458, at an SNR of 26, was such an
event where a reanalysis of the data with the state-of-
the-art precessing model NRSUR7DQ4 discovered strong
precession [64], consistent with an earlier analysis from
an IMRPHENOMXPHM run, but not with the one from
SEOBNRV4PHM [22]. The precession SNR ρp should also
be chosen carefully in such studies. Even if an SNR ¼ 40
system is very strongly precessing, if the extrinsic param-
eters conspire to minimize ρp, the imprint of precession on
the received GWs will be weak.
Finally, let us add that a survey such as ours risks

becoming outdated by the time it may be complete. Indeed,
during the writing of this article, the model SEOBNR got
upgraded from V4 to V5. Additionally, the MSA prescrip-
tion of BBH precession dynamics in IMRPHENOMXPHM got
replaced by one based on SPINTAYLORT4 [136]. Finally, an
upgraded IMRPHENOMX (O4A) model was released [135].
The inclusion of any new models into a similar survey
inevitably delays the completion of the survey itself.
However, once a new model is incorporated into
LALSIMULATION it should, in principle, be straightforward
to assess its faithfulness within the framework that we
have built.

The supporting data for this paper are openly available
on GitHub [143]. The following software have been used
for this work. The NumPy [225], Matplotlib [226], PANDAS

[227,228], and SEABORN [201] libraries of PYTHON.
LALSuite (7.10) [203], LALInference [229], PyCBC (2.0.6) [230]
BILBY (2.1.2) [212,213], the SXS package (v2022.5.2) [204],
the SCRI package (2022.8.8) [208], and TEOBResumSv4.1.5-

GIOTTO 84b8f10 (July 6, 2023). These results were found
to be in good agreement with the more recent TEOBRESUMS

bd3452e (September 7, 2023).
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APPENDIX A: MULTIDIMENSIONAL FITS
OF MISMATCHES FOR BAYESIAN

MODEL SELECTION

As briefly mentioned in Sec. I, we can use the results of
our faithfulness survey to inform Bayesian model selection.
For example, one can employ the waveform mismatch,
M̄opt in our case, as a type of weight to generate a weighted
categorical prior. This then can act as a custom prior in a
joint Bayesian analysis [142]. Therefore, by constructing
fits to M̄opt over the intrinsic parameter space, we can
effectively provide a parameter-space-dependent prior for
Bayesian model selection. We take a first step toward
building this categorical prior here by constructing multi-
dimensional fits to M̄optðϑLN;0 ¼ 0Þ.
Though we have at our disposal several sets of intrinsic

parameters, namely the discrete grid of Sec. IVA, the
uniformly filled space of Sec. IV C, and the SXS sets of

6We extracted this value from the list of events provided in
Ref. [224].
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Sec. V, we choose the discrete grid, as this set seems to
cover the high-spin regions of the parameter space better
(see Fig. 2). We should keep in mind that we fixed
χ1 ¼ χ2 ¼ 0.8 for this set.
In more detail, we construct multidimensional polyno-

mial fits to log10½M̄optðϑLN;0 ¼ 0Þ� as functions of η; χeff
and either χGenp or χ⊥;J. We choose these perpendicular
projections as opposed to χp since these have better
coverage of the parameter space as shown in Fig. 2.
Using the symmetric mass ratio η allows us to work with
a compact fit domain since 0 < η ≤ 0.25. We do not
include the Q ¼ 6ðη ¼ 6=49Þ subset for our fits here
though this can be included straightforwardly. For our
specific fits, we use the values for fχeff ; χGenp ; χ⊥;Jg at
f ¼ f0, but have dropped the subscript 0 to reduce clutter.
The total mass, M, is the fourth parameter in our fits, but
since we have only two points in mass space, i.e.,
M ¼ 37.5M⊙; 150M⊙, we construct separate 3D fits for
each mass. Future work in this direction will have addi-
tional data coming from other values of the total mass, thus
necessitating 4D fits.
For fitting, we employ simple polynomials of the form

PMðx; y; zÞ ¼
Xny
j¼0

Xnz
k¼0

Xnkjmax

i¼0

aijkxiyjzk; ðA1Þ

where aijk are the fitting coefficients, fy; zg ¼ fχeff ; ηg,
x ¼ χGenp or χ⊥;J, and nkjmax ¼ maxfnx; ny; nzg − k − j. We

expect the highest variation in mismatches to be along the
planar spin direction and the least variation in the mass ratio
space. Therefore, we impose nx > ny > nz with nx ≤ 7,
ny ≤ 5, nz ≤ 4. For our fits, we use a routine that picks the
best values for nx, ny, nz that minimize (i) 1 − R̄2, where R̄2

is the adjusted R-squared value, (ii) the Bayesian informa-
tion criterion (BIC), (iii) the Akaike information criterion
with the finite sample correction (AICc), and (iv) the
average relative difference between the fit PM and the
validation data di ¼ ðxi; yi; zi; wiÞ which we define as

Δav
rel ≔

1

N

�XN
i¼1

�
1 −

wi

PMðxi; yi; ziÞ
�
2
�1=2

; ðA2Þ

where wi represent log10½M̄optðϑLN;0 ¼ 0Þ�. We employ
two thirds of the dataset for fitting and the remaining one
third for validation, where the assignment fit/validation is
made randomly. There are likely more informative ways of
choosing the fit/validation subsets, but we leave this for
future work. There is also not necessarily one set of unique
values of fnx; ny; nzg that satisfy all four criteria listed
above. If more than one set of values satisfy the criteria, we
pick the one with smaller values of fnx; ny; nzg. On the
other hand, if the routine cannot meet all four criteria, it
looks for fnx; ny; nzg that minimize three out of the four.
Using this routine and the fitting function (A1), we

construct 3D fits of log10½M̄optðϑLN;0 ¼ 0Þ� for all four
approximants for M ¼ 37.5M⊙; 150M⊙. We find that in

TABLE V. List of the three-dimensional fits to the mismatches between a given waveform model and NRSUR7DQ4.
Specifically, we have fitted to log10½M̄optðϑLN;0 ¼ 0Þ� values resulting from the discrete parameter set of Sec. IVA.
From left to right, the columns are the model name, the total mass, the x variable used in the fits [see Eq. (A1)], the
three-dimensional polynomial order of the fits (ibid.), the total number of parameters used, the adjusted R-squared
value, the average relative difference between the fit and the validation data [see Eq. (A2)], the Bayesian information
criterion value, and the value of the finite-sample size corrected Akaike information criterion.

Model MðM⊙Þ x ðnx; ny; nzÞ No. params. R̄2 Δav
rel BIC AICc

SEOB 37.5 χGenp (4,2,1) 21 0.777 3.33 × 10−3 −696 −793
TEOB 37.5 χGenp (7,5,2) 81 0.959 2.49 × 10−3 −1512 −1858
TPHM 37.5 χGenp (6,4,2) 60 0.874 1.54 × 10−2 −304 −565
XPHM 150 χGenp (6,5,2) 63 0.895 4.97 × 10−3 −481 −754
SEOB 150 χGenp (6,4,2) 60 0.813 5.10 × 10−3 þ76 −182
TEOB 150 χGenp (6,5,2) 63 0.893 5.96 × 10−3 −479 −751
TPHM 150 χGenp (6,4,2) 60 0.869 6.89 × 10−3 −319 −579
XPHM 150 χGenp (7,4,2) 75 0.914 6.79 × 10−3 −248 −570
SEOB 37.5 χ⊥;J (7,5,2) 81 0.884 3.17 × 10−3 −823 −1171
TEOB 37.5 χ⊥;J (7,3,2) 66 0.965 1.72 × 10−3 −1646 −1929
TPHM 37.5 χ⊥;J (6,5,3) 73 0.898 5.63 × 10−3 −353 −666
XPHM 37.5 χ⊥;J (7,4,1) 55 0.904 3.96 × 10−3 −606 −846
SEOB 150 χ⊥;J (6,5,2) 63 0.884 5.10 × 10−3 −203 −475
TEOB 150 χ⊥;J (6,5,2) 63 0.918 4.85 × 10−3 −680 −954
TPHM 150 χ⊥;J (6,4,2) 60 0.908 5.79 × 10−3 −572 −834
XPHM 150 χ⊥;J (7,3,2) 66 0.933 5.35 × 10−3 −457 −742
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most cases, the best fit functions have nx ¼ 6 or 7, ny ¼ 4

or 5 and, not surprisingly, nz ≤ 2 (since there are only three
η values), thus resulting in roughly Oð60Þ parameters as
shown in Table V where we also report various goodness-
of-fit metrics. As can be seen from the table, the mis-
matches for TEOB and XPHM can be fit rather well for both
light and heavy masses with R̄2 values as high as 0.965 and
an average relative disagreement as low as 1.7 × 10−3.
SEOB mismatches can still be fit, but not as well, with R̄2

below 0.9. TPHM mismatches prove to be hardest to fit with
the corresponding Δav

rel values being some of the highest.
Table V also hints that fits constructed using χ⊥;J yield

slightly higher (lower) values for R̄2ðΔav
relÞ than those using

χGenp though the difference is rather marginal and requires a
more thorough investigation to be conclusive. We show one
of the fits of Table V in Fig. 24 in terms of 2D contour plots
of the relative difference between the fit and the validation
data for the M ¼ 37.5M⊙ TEOB mismatches. This particu-
lar fit uses χ⊥;J so corresponds to the third TEOB row of
Table V with R̄2 ¼ 0.965. As the figure shows, for most
of the plot regions, the relative difference between the
validation data points (red) and the fit is less than 0.05. In
fact, according to Table V, the average relative difference is
≈1.7 × 10−3. Fits of this level of faithfulness may prove
quite useful for Bayesian model selection.
We additionally briefly explored whether or not a more

finely sampled set of parameters improves the goodness
of the fits. In particular, we recomputed the M ¼ 150M⊙
NRSUR7DQ4-XPHM mismatches for Oð3000Þ BBHs, i.e.,
nearly 3 times as many data points in the spin space. For
both the χGenp and χ⊥;J fits, we observed slight improvement
with R̄2 almost equaling 0.95 andΔav

rel dropping to 2 × 10−3

which can be compared with the second and fourth XPHM

rows of Table V. We should add that this improvement
comes at the expense of increasing the computational
burden by a factor of 3.
In summary, we have illustrated that, using certain

projections of the spins, it is possible to construct
reasonably good three-dimensional fits of the mis-
matches, effectively capturing most of the behavior of
model faithfulness over the seven-dimensional intrinsic
parameter space. The fits can be improved by including a
denser coverage of the parameter space, but also need to
be extended along the fourth dimension (total mass) to be
of actual use in Bayesian model selection. There are
further additional improvements that can be made, but we
leave it all to future work. Our goal here was to show that
faithful fits can be constructed in principle by using either
χGenp or χ⊥;J and the goodness-of-fit metrics in Table V
seem to affirm this.

APPENDIX B: A BRIEF COMPARISON OF
SEOBNRV5PHM WITH SEOBNRV4PHM

As already mentioned, while in the middle of this
project, the upgraded model SEOBNRV5PHM [98] was
released along with a simple-to-use PYTHON package
PYSEONBR [101] for it. As the newer model is considerably
faster than its V4 predecessor, we were easily compelled to
use it. We had however already generated a considerable
dataset of SEOBNRV4PHM mismatches by then. Therefore,
we show a brief comparison between the newest (V5) and
the previous versions in Fig. 25 where we plot M̄noMR

opt and
M̄opt once again at inclinations of ϑLN;0 ¼ 0 and π=2 for
the randomly uniformly filled 1000-case parameter set. We
see that the upgraded model is more faithful to NRSUR7DQ4

than its predecessor.

FIG. 24. Contour plots of the relative difference between the validation data (red points) and the third TEOB fit of Table V, which is
obtained from Eq. (A1) with fnx; ny; nzg ¼ f7; 3; 2g. This particular fit is a function of χ⊥;J; χeff and η and represents theM ¼ 37.5M⊙,
log10½M̄optðϑLN;0 ¼ 0Þ� data, where M̄opt is the sky-optimized mismatch between NRSUR7DQ4 and TEOB. The three panels from left to
right show contour plots of the relative differences separated by mass ratios of Q ¼ 1.1̄; 2, 4. The black dots are the data points used to
construct the fit and are not covered by the contour plot shown here which only applies to the red dots.
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APPENDIX C: ANOTHER COMPARISON:
IMRPHENOMXO4A VS MSA AND SPINTAYLOR

IMPLEMENTATIONS OF IMRPHENOMXPHM

Here, we provide a brief comparison between the
original IMRPHENOMXPHM (using MSA angles) [128] with
the upgraded version that uses SPINTAYLORT4 dynamics to
obtain the Euler angles [136]. We also include the new
model IMRPHENOMXO4A [135] in the comparison. We had
briefly discussed the unfaithfulness performances of
the MSA and the SPINTAYLORT4 versions at the end of
Sec. V B. We supplement it here with Fig. 26 where we plot
M̄noMR

opt and M̄opt yet again at inclinations of ϑLN;0 ¼ 0 and
π=2 for the random-uniform parameter set. We observe
very similar performances between the MSA and
SPINTAYLOR implementations, and XO4A. The performance
of the MSA version is only slightly inferior at higher
inclinations with the newer IMRPHENOMX models slightly
outperforming their predecessor. All three models yield
very similar distributions for the inspiral-only mismatches
M̄noMR

opt , indicating that the differences exhibited may be
more related to merger-ringdown modeling.
A more striking difference in the faithfulness of the MSA

version vs the other two is exposed when considering the
discrete parameter set of Secs. IVA and IV B where we had
a small number of cases with parameters chosen such that
jJN;0j ≈ 0.025M2 which caused the MSA prescription to
break down. This was exhibited as small secondary modes
located at M̄opt ≈ 0.1ð0.3Þ for M ¼ 37.5M⊙ð150M⊙Þ in
the mismatch distributions plotted in Figs. 3, 8, and
replotted in Fig. 27, where we plot the histograms for
M̄opt at ϑLN;0 ¼ 0; π=2 for M ¼ 37.5M⊙; 150M⊙. We can

see from the figure that the newer SPINTAYLOR version of
XPHM and XO4A do not run into this issue.

APPENDIX D: TIMING BENCHMARKS

Though detailed timing benchmarks can be found in,
e.g., Refs. [98,128,131], we nonetheless present our own
results here. We choose three different Q ¼ 2 configura-
tions for our timing: (i) θ1;2 ¼ 30°, (ii) θ1 ¼ 90°; θ2 ≈ 115°,

FIG. 25. Comparison of the faithfulness of SEOBNRV5PHM with
that of SEOBNRV4PHM for the 1000-case random-uniformly-filled
parameter space described in Sec. IV C. The baseline model used
to measure faithfulness is NRSUR7DQ4.

FIG. 26. Comparison of the faithfulness of the MSA imple-
mentation of IMRPHENOMXPHM with that of its more recent
SPINTAYLOR implementation (ST in the figure) and the new model
IMRPHENOMXO4A. The parameters used to generate the wave-
forms are those of the random-uniformly-filled set of Sec. IV C.
The baseline model used to measure faithfulness is NRSUR7DQ4.

FIG. 27. Same comparison as Fig. 26, but for the discrete
parameter set of Sec. IVA. Note the disappearance of a secondary
mode containing high-mismatch values for the SPINTAYLOR

version of XPHM and IMRPHENOMXO4A.
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and (iii) θ1 ¼ 180°; θ2 ¼ 150°. We fix f0 ¼ 20 Hz and
vary the total mass from 10M⊙ to 150M⊙ in steps of 10M⊙.
We further set ϑLN;0 ¼ 0 and dL ¼ 500 Mpc. We run each
case 1000 times per model and quote the median values of
the results. For the time-domain models, we use a sample

rate of 16384 Hz and for the frequency domain XPHM we
use df ¼ 1=32 Hz. All runs were performed on an AMD
EPYC 7453 server, running under virtualization with
OMP_NUM_THREADS and NUMBA_NUM_THREADS both
set to 1. We present the timing results in Fig. 28.
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