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Spherical black hole (BH) solutions have been found in the bumblebee gravity where a vector field
nonminimally couples to the Ricci tensor. We study dynamic (in)stability associated with the gravitational
and vector perturbations of odd parity against these bumblebee BHs. Under the plane-wave approximation,
we find that bumblebee BHs do not suffer ghost instability, but gradient instability and tachyonic instability
exist when the bumblebee charge exceeds certain values. The existence of the instabilities also depends on
the nonminimal coupling constant ξ such that there is a minimal value ξ ∼ 4πG with G the gravitational
constant for the instabilities to happen. The theoretical consideration for bumblebee BH stability turns
out to place stronger constraints on the parameter space than those from the recent observations of super-
massive BH shadows by the Event Horizon Telescope Collaboration. It is also reminiscent of Penrose’s
cosmic censorship conjecture since the charge of bumblebee BHs cannot be too large due to the dynamic
instabilities. Specifically, for ξðξ − 16πGÞ > 0, we find that the charge of a bumblebee BH cannot be larger
than its mass.
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I. INTRODUCTION

A framework of Lorentz-symmetry violation using
effective field theory in low-energy approximation was
proposed by Kostelecký and Samuel [1], which is called
the Standard Model extension (SME). The SME serves
to systematically study theoretical effects of all possible
Lorentz-symmetry violation terms as extensions of the
Standard Model of particle physics and the general rela-
tivity (GR) [2–7]. One of the primary Lorentz-violating
terms in the gravitational sector of the SME takes the form
sμνRμν, where Rμν denotes the Ricci tensor and sμν is an
extra field that breaks the Lorentz symmetry when acquir-
ing a nonzero background value [2]. To investigate the
connection of SME and specific vector-tensor gravitational
theories with Lorentz-symmetry violation, an action was
studied by Kostelecký [2],

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ
Rþ ξ

2κ
BμBνRμν −

1

4
BμνBμν

− V
�
BμBμ � b2

��
; ð1Þ

where κ ¼ 8πG is related to the Newtonian constantG. The
theory (1) is called the bumblebee gravity. Here we use Bμ

to denote the bumblebee vector field. The dynamical term
of the bumblebee field in the action is generated by the
tensor Bμν ≡ ∂μBν − ∂νBμ, analogous to Maxwell’s theory
of electromagnetism. The bumblebee theory contains a
nonminimal coupling term, ∼BμBνRμν, between the Ricci
tensor and the bumblebee field, resembling the SME
Lorentz-violating term sμνRμν. This term is controlled by
a coordinate-independent parameter ξ. When ξ ¼ 0 and V
globally vanish, the bumblebee theory reduces to the
Einstein-Maxwell theory, identifying Bμ with the four-
dimensional electromagnetic potential. Compared with the
Einstein-Maxwell theory, the vector field in the bumblebee
theory has a self-interaction potential, VðBμBμ � b2Þ. For a
stable vacuum of spacetime, we require that the potential V
is minimized when Bμ ¼ bμ and bμbμ ¼∓ b2, implying
that the bumblebee vector field has a nonzero background
for a preferred frame and it violates Lorentz symmetry in
the stable vacuum, analogous to the Higgs mechanism for
the Higgs scalar field. In general, a nonvanishing minimum
of the potential V is equivalent to the cosmological con-
stant. For an unknown expression of V, it is an often
practice to probe Lorentz-symmetry violation in the asymp-
totically flat spacetime under the consideration of a
vanishing minimum of V. We thus consider,

V
�
BμBμ � b2

�jBμ¼bμ ¼ 0;

V 0�BμBμ � b2
�jBμ¼bμ ¼ 0; ð2Þ

where V 0ðxÞ≡ dV=dx.
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For the potential with a vanishing minimum, the
bumblebee theory is consistent with the SME in the weak
field limit [3–5]. Furthermore, to probe Lorentz-symmetry
violation in the strong-field region where relativistic
effects of gravity become important, the properties and
associated applications to compact objects, such as black
holes (BHs) and neutron stars, are thus interesting topics in
the bumblebee theory. Recently, several spherical and
slowly rotating BH solutions with bumblebee vector hair
and their properties in the bumblebee theory have been
studied [8–14]. In particular, Xu et al. [13] constructed a
class of spherical BHs with nonvanishing temporal com-
ponent for the bumblebee field. These spherical bumblebee
BHs only have two degrees of freedom, the mass M and
the vector charge Q. Specifically, there are two special
analytical solutions in the bumblebee theory: (i) the
Reissner-Nordström (RN) BH when ξ ¼ 0; (ii) a stealth
Schwarzschild BH carrying a nontrivial bumblebee hair
when ξ ¼ 2κ [13]. The current observations of the shadows
of the supermassive BHs, M87� and Sgr A� from the Event
Horizon Telescope (EHT) already placed some interesting
bounds on Q=M for various values of ξ [13,15]. These
constraints show that there is still a large parameter space
for the bumblebee BHs yet to be excluded observationally.
Liang et al. [16] illustrated that it is possible to probe the
vector charge-to-mass ratio up to Q=M ∼Oð10−3Þ with
future observations of millihertz gravitational waves
from extreme-mass-ratio inspirals, so that we might dis-
tinguish bumblebee BHs from the Schwarzschild BH.
A recent study by Hu et al. [17] shows that timing a
radio pulsar orbiting around Sgr A� in a close orbit can as
well probe a vector charge-to-mass ratio as small as
Q=M ∼Oð10−3Þ.
Regardless of the constraints on the vector charge from

observations, as one of the important intrinsic properties of
BHs, BH stability answers whether such a BH can exist in
our Universe from the theoretical perspective. It might give
extra constraints on the parameter space of the bumblebee
BHs. In a previous study, the extended thermodynamics
and associated local thermodynamic stability of bumblebee
BHs have been studied by us [18]. Unlike the RN BH
which has one phase transition point separating locally
thermodynamic stability and instability, the bumblebee
BHs can have zero to two phase transition points, depend-
ing on the value of the coupling constant ξ [18].
In this work, we study the dynamic stability of bumble-

bee BHs. As shown by the action (1), the bumblebee theory
can be considered as a class of vector-tensor theories.
For the special case of a vanishing ξ, the bumblebee theory
recovers the Einstein-Maxwell theory and the RN BH
solution has been proven to be stable against generic
perturbations [19,20]. For general bumblebee BHs, we are
going to focus on the gradient instability and the ghost in-
stability. These two types of instabilities have been widely
investigated for hairy BHs in various modified gravity

theories, such as the fðRÞ gravity [21,22], scalar-tensor
theories [23–26], vector-tensor theories [27–29], and
scalar-vector-tensor theories [30,31]. It seems that compact
objects suffer the gradient and ghost instabilities due
to nonminimal couplings between the gravitational field
and extra fields. Specifically, Kase et al. [28] considered
vectorized BHs in vector-tensor theory including a
Horndeski-like nonminimal coupling term GμνAμAν, find-
ing that there are parameter-dependent ghost and gradient
instabilities associated with the odd-parity gravitational and
vector perturbations. In addition, BHs in the Einstein-æther
theory, which is one of the Lorentz-violating gravity
theories, suffer the ghost and gradient instabilities asso-
ciated with the odd-parity perturbations as well [32]. The
gradient and ghost instabilities of bumblebee BHs have not
been studied yet. Our work complements to the existing
knowledge of BH instabilities in vector-tensor theories and
provides concrete examples with detailed numerical results
on the conditions for the gradient and ghost instabilities of
bumblebee BHs.
This paper is organized as follows. In Sec. II, we review

the ghost and gradient instabilities briefly. In Sec. III A, we
review the basic properties of the vectorized bumblebee
BHs given by Xu et al. [13]. In Sec. III B, we first introduce
the gravitational and the bumblebee vector perturbations of
odd parity. From the perturbed action up to the second
order, we find that bumblebee BHs have no ghost insta-
bility, and then we give the generic conditions of the
gradient instability. In Sec. III C, we analyze the gradient
instability in detail with the numerical BH solutions,
finding that in the absence of the gradient instability,
bumblebee BHs cannot carry very large values of the
bumblebee charge. In Sec. IV, we summarize our inves-
tigation and give some discussions for further studies. In
this paper, we adopt ð−;þ;þ;þÞ as the metric convention
and the Planck natural units, namely G ¼ c ¼ ℏ ¼
4πϵ0 ¼ kB ¼ 1.

II. GRADIENT AND GHOST INSTABILITIES
IN A TOY FIELD THEORY

We aim to investigate the dynamic stability of bumblebee
BHs. To do this, we first generally consider a field
perturbation under the BH background and study whether
it will grow with time. Let us introduce various stabilities
using a toy model [33–35]. As a simple example, we
first consider a single scalar field ψðt; r; θ;φÞ in four-
dimensional spherical coordinate. In general, the action of a
free scalar field in Minkowski spacetime is

S ¼ −
1

2

Z
d4x
�
∂μψ∂

μψ
�

¼ 1

2

Z
r2dtdrdΩ

�
ψ̇2 − ð∇ψÞ2�; ð3Þ
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where ψ̇ denotes the time derivative and ∇ denotes the
gradient operator in three spatial dimensions. To investigate
various instabilities, we introduce two coefficients, c1 and
c2, and construct the following action

S ¼ 1

2

Z
r2dtdrdΩ

�
c1ψ̇2 − c2ð∇ψÞ2

�
: ð4Þ

Due to the spherical symmetry, one can set

ψðt; r; θ;φÞ ¼
X
l;m

ϕlmðt; rÞ
r

Ylmðθ;φÞ; ð5Þ

where l and m are the total and azimuthal angular momen-
tum numbers respectively, satisfying l ¼ 0; 1; 2;… and
m ¼ 0;�1;�2;…;�l. After integrating over the angular
coordinates, the action (4) yields

S ¼ 1

2

X
l;m

Z
dtdr

�
c1jϕ̇lmj2 − c2jϕ0

lmj2

−
c2lðlþ 1Þ

r2
jϕlmj2

�
: ð6Þ

Here we have performed the integration by parts with
respect to r.
In the following, we drop the l; m indices of the scalar

mode for simplicity. Considering a Fourier mode ϕðt; rÞ ¼
ϕkeiðωt−krÞ, the dispersion relation from Eq. (6) is approx-
imately,

ω2c1 − k2c2 −
c2lðlþ 1Þ

r2
¼ 0: ð7Þ

Here we have taken the high-energy limit so that the
derivatives of ϕk;ω, and k are neglected. Depending on the
relative size of k and l=r, there are two simple cases useful
to consider, namely

k ≫ l=r∶ ω2 ¼ c2
c1

k2; ð8Þ

k ≪ l=r∶ ω2 ¼ c2
c1

l2

r2
: ð9Þ

We can further define the propagating speed along the
radial direction as

cr ≡ dr
dt

¼ ω

k
¼

ffiffiffiffiffi
c2
c1

r
; ð10Þ

and the propagating speed along the angular direction as

cΩ ≡ rdθ
dt

¼ rω
l

¼
ffiffiffiffiffi
c2
c1

r
: ð11Þ

In this simple model (4), cr and cΩ are the same.

Obviously, ϕ is stable when c1 and c2 have the same
sign, implying that all modes of ϕ are propagating modes.
On the contrary, ϕ is unstable when c1 and c2 have different
signs, giving an imaginary propagating speed, implying
that ϕ grows exponentially with time. Furthermore, the
instability is usually classified into two types. When c1 < 0
and c2 > 0, ϕ is said to have ghost instability. When c1 > 0
and c2 < 0, ϕ is said to have gradient instability. In Table I,
we list case by case the conditions for ghost and gradient
instabilities for different c1 and c2.
Before we generalize the conditions to the case of

multiple scalar fields, we need to point out that the
instability analysis becomes less straightforward when c1
and c2 depend on r. One can only conclude that when c1
and c2 have the same sign for any r, there are no in-
stabilities. If c1 or c2 becomes negative in some intervals of
r, the existence of ghost instability or gradient instability
depends on the specific expressions of c1 and c2. In
conclusion, for r-dependent c1 and c2, we only have a
necessary condition for ghost or gradient instability; c1 < 0
or c2 < 0 for some intervals of r, or equivalently, a
sufficient condition for ϕ being stable, c1c2 > 0 for any r.
Now we discuss the ghost and gradient instabilities

generalized to a toy model with multiple scalar fields.
Consider n coupled scalar fields (ψ1;ψ2;…;ψn) in spheri-
cal coordinates, which can be written in the vector form,

ψ⃗ ¼ ðψ1;ψ2; � � �ψnÞ⊺: ð12Þ

Expanding with the spherical harmonics,

ψ i ¼
X
l;m

ϕiðt; rÞ
r

Ylmðθ;φÞ; ð13Þ

and after integrating over the angular coordinates, the
action of the model reduces to

S ¼
X
l;m

Z
dtdr

� ˙
ϕ⃗
⊺
K ˙
ϕ⃗þ ϕ⃗0⊺Gϕ⃗0 þ ϕ⃗⊺Mϕ⃗

�
; ð14Þ

where K, G, M are n × n matrices that may depend on r.
In addition, we assume that M depends on l. Similarly, we
consider a Fourier mode ϕ⃗ðt; rÞ ¼ ϕ⃗keiðωt−krÞ, and take the
high-energy limit to get the dispersion relation

TABLE I. The conditions of ghost instability and gradient
instability for the action (4).

Instability Conditions

Propagating mode c1 > 0 c2 > 0 c2r ; c2Ω > 0

Ghost instability c1 < 0 c2 > 0 c2r ; c2Ω < 0

Gradient instability c1 > 0 c2 < 0 c2r ; c2Ω < 0

Propagating mode c1 < 0 c2 < 0 c2r ; c2Ω > 0
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detðω2K þ k2GþMÞ ¼ 0: ð15Þ

In general, it is difficult to deduce necessary and suffi-
cient conditions from Eq. (15) for the ghost and gradient
instabilities. The two simplified cases in Eqs. (8) and (9) are
useful to consider. The case where the l-terms are dropped
corresponds to

detðω2K þ k2GÞ ¼ 0; ð16Þ

from which the radial propagating speed can be solved,

c2r ¼ lim
k→∞

ω2

k2
: ð17Þ

The case where k is dropped corresponds to

detðω2K þMÞ ¼ 0; ð18Þ

from which the angular propagating speed can be solved,

c2Ω ¼ lim
l→∞

r2ω2

l2
: ð19Þ

A set of necessary conditions for stable propagating modes
then can be obtained by requiring,

c2r > 0; c2Ω > 0: ð20Þ

Because the matrices K, G, M generally depend on r, the
speeds calculated using Eqs. (17) and (19) are functions
of r. Equation (20) requires them to be positive everywhere
in the domain of interest.
If either c2r or c2Ω is negative, then instability occurs.

Analogous to the single-field model, if c2r < 0 or c2Ω < 0

while K is nonpositive definite, then the instability is the
ghost instability. If c2r < 0 while G is non-negative definite,
then the instability is gradient instability. Besides the
ghost instability and the gradient instability, there might
be another type of instability when c2Ω < 0 and M is non-
negative definite. This is called the tachyonic instability.
In the single-field model, it happens to be the same
coefficient c2 appearing in both cr and cΩ, so the gradient
instability and the tachyonic instability occur simultane-
ously. In the multi-field model, the elements of the matrix
M are in general not related to the matrix G, so the
gradient instability and the tachyonic instability can occur
independently.

III. GRADIENT AND GHOST INSTABILITIES
OF BUMBLEBEE BHS

A. BHs with bumblebee charge

We first briefly review the bumblebee BH solutions that
extend the RN BH solution, and detailed derivations can be

found in Refs. [13,18]. To obtain the covariant field
equations of the bumblebee theory, we perform a variation
for the action of the bumblebee theory with respect to
the gravitational field gμν and the bumblebee vector field
Bμ [4]. We then have

Gμν ¼ κTB
μν; ∇μBμν ¼ ξ

κ
RμνBμ − 2V 0Bν; ð21Þ

where Gμν ≡ Rμν − 1
2
gμνR denotes the Einstein tensor and

TB
μν is the energy-momentum tensor contributed by the

bumblebee field. Here, ∇α is the covariant derivative
operator. The key assumptions to obtain these bumblebee
BH solutions include the following:

(i) The potential term Vð·Þ in Eq. (1) can be ignored
because either the background bumblebee field bμ
associated with the BH solutions satisfies Eq. (2)
or the potential has a characteristic length at the
cosmological scale so that it plays little role at the
length scales of BHs;

(ii) The background bumblebee field has only the
temporal component nonvanishing, namely bμ ¼
ðbt; 0; 0; 0Þ. In principle, all spherical, static BH
solutions with bμ ¼ ðbt; br; 0; 0Þ in the bumblebee
gravity were obtained by Xu et al. [13]. We here
focus on the branch of bumblebee BHs with tem-
poral component only.

With these assumptions, the field equations for the
metric of bumblebee gravity and the associated background
bumblebee field bμ are then [13],

Gμν ¼ κTb
μν; ∇μbμν ¼

ξ

κ
Rμνbμ; ð22Þ

where bμν ¼ ∂μbν − ∂νbμ, and the energy-momentum ten-
sor contributed by bμ is

Tb
μν ≡ TB

μνjBμ¼bμ
¼ ξ

2κ

�
gμνbαbβRαβ − 2bμbλRv

λ − 2bνbλRμ
λ

−□gðbμbνÞ− gμν∇α∇βðbαbβÞ
þ∇κ∇μðbκbνÞ þ∇κ∇νðbμbκÞ

�
þ bμλbνλ −

1

4
gμνbαβbαβ: ð23Þ

Here □g ≡∇α∇α is defined as the d’Alembertian in the
curved spacetime.
With the spherical ansatz for the metric,

ds2 ¼ −hðrÞdt2 þ dr2

fðrÞ þ r2
�
dθ2 þ sin2 θdφ2

�
; ð24Þ

one gets three equations from Eq. (22) to solve for the
metric functions hðrÞ, fðrÞ, and the bumblebee field
component, btðrÞ. The explicit field equations under the
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static spherical ansatz are displayed in the Appendix. Two
analytical solutions are worth mentioning.

(I) When ξ ¼ 0, we have

f ¼ h ¼ 1 −
2M
r

þQ2

r2
; bt ¼ μ∞ −

ffiffiffi
2

κ

r
Q
r
:

ð25Þ

It is the RN solution as one expects for ξ ¼ 0 (μ∞ is
a constant usually taken to be zero).

(II) When ξ ¼ 2κ, we have

f ¼ h ¼ 1 −
2M
r

; bt ¼
Qffiffiffiffiffi
2κ

p
M

	
1 −

2M
r



:

ð26Þ

It is an interesting case showing that the Schwarzs-
child metric can be accompanied by a simple but
nonzero bumblebee field.

For other arbitrary values of ξ, we could not find
analytical solutions. Numerical BH solutions are calculated
instead. These numerical BHs have the following asymp-
totic behavior:

hðrÞjr→∞ ¼ 1 −
2M
r

þ h̃2
r2

þ � � � ;

fðrÞjr→∞ ¼ 1 −
2M
r

þ f̃2
r2

þ � � � ;

btðrÞjr→∞ ¼ μ∞ −
ffiffiffi
2

κ

r
Q
r
þ b̃2

r2
þ � � � ; ð27Þ

where the Arnowitt–Deser–Misner (ADM) massM and the
bumblebee charge Q are the only two free parameters for
the solutions, and other expansion coefficients,
μ∞; h̃2; f̃2; b̃2; � � �, are recursively related to M and Q. At
the event horizon r ¼ rh, the functions h; f; bt behave as

fðrÞjr→rh ¼ f1ðr − rhÞ þ f2ðr − rhÞ2 þ � � � ;
hðrÞjr→rh ¼ h1ðr − rhÞ þ h2ðr − rhÞ2 þ � � � ;
btðrÞjr→rh ¼ bt1ðr − rhÞ þ bt2ðr − rhÞ2 þ � � � ; ð28Þ

where the coefficients, f1; h1; bt1; f2; h2; bt2; � � �, and the
horizon radius rh can be related to M and Q numerically.
In Fig. 1, we plot rh with respect to the bumblebee

charge Q for different values of ξ. We note that when
ξ < 2κ, the BHs have maximal vaules for the bumblebee
charge; a typical example is Qmax ¼ M in the RN case
when ξ ¼ 0. When ξ ¼ 2κ, the numerical result shows that
Q becomes unrestricted, agreeing with the analytical
solution in Eq. (26). For ξ > 2κ, our numerical method
can produce very large values ofQwith extremely small rh,
suggesting that Q is also unrestricted when ξ > 2κ. But the

errors of our numerical solutions increase rapidly at largeQ
so that the solutions quickly become untrustworthy before
we can extract further information.
To figure out whether Q has maximal values when

ξ > 2κ, we have made another insufficient yet plausible
attempt. We find approximate solutions around ξ ¼ 2κ,

f ¼ h ¼ 1 −
2M
r

−
δξ

2κ

Q2

r2
þOðδξ2Þ;

bt ¼
Qffiffiffiffiffi
2κ

p
M

	
1 −

2M
r

−
δξ

2κ

Q2

r2
þOðδξ2Þ



; ð29Þ

where δξ ¼ ξ − 2κ. Then the radius of horizon has the
approximation,

rh ¼ 2M þ δξ

4κ

Q2

M
þOðδξ2Þ: ð30Þ

For the approximation to work at a small enough jδξj, we
have an estimation,

jδξj
4κ

Q2

M
≲ 2M; ð31Þ

which tells us that Q=M is bounded at least at a small
enough jδξj via

Q
M

≲
ffiffiffiffiffiffiffi
8κ

jδξj

s
: ð32Þ

We cannot think of a reason for Q being unbounded when
δξ is large if it already has a bound around ξ ¼ 2κ. So we
tentatively conclude that Q may also have maximal values
when ξ > 2κ. The corresponding boundary is currently
represented by the largest values of Q that we can find
using our numerical code while limiting the relative error in
the radius of horizon to 5%.

FIG. 1. BH horizon rh versus BH charge jQj for different ξ.
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B. Field perturbation: Odd parity

With the bumblebee BH solutions in hand, we are ready
to investigate the dynamical stability of bumblebee BHs.
We consider a gravitational perturbation ϵhμν and a vector
perturbation ϵδbμ in the bumblebee BH background with
ϵ ≪ 1. Then, including the bumblebee BH background
gμν and bumblebee vector bμ, the perturbed metric and
bumblebee vector field are given by

gμν → gμν þ ϵhμν; bμ → bμ þ ϵδbμ: ð33Þ

In general, on the spherical ansatz background, the per-
turbations can be decomposed into odd-parity modes and
even-parity modes based on the following rules. For the
gravitational perturbation hμν, the components htt, htr,
and hrr transform as scalars under rotation on the two-
dimensional sphere of θ and φ. For example, an arbitrary
scalar function, Ψðt; r; θ;φÞ, can be written as summation
of spherical harmonic function, Ylmðθ;φÞ, as

Ψðt; r; θ;φÞ ¼
X
l;m

Ψlmðt; rÞYlmðθ;φÞ: ð34Þ

Since the spherical harmonic function transforms as

Ylmðπ − θ;φþ πÞ ¼ ð−1ÞlYlmðθ;φÞ

under reflection on the two-dimensional sphere, one finds

Ψðt; r; π − θ;φþ πÞ ¼ ð−1ÞlΨðt; r; θ;φÞ:

It is called the even-parity mode. On the other hand, with
a; b ¼ θ;φ, hta, and hra transform as vector, while hab
transforms as tensor under two-dimensional reflection. For
the vector or tensor components, the mentioned even-parity
modes transform with the ð−1Þl factor, while the others
transform with the ð−1Þlþ1 factor and are called odd-parity
modes [20]. Given an arbitrary vector or symmetric tensor
on the two-dimensional sphere, Va and T ab, they can be
decomposed into

Va ¼ DaΨ1 þ
ffiffiffi
γ

p
εbaDbΨ2;

T ab ¼ DaDbΨ3 þ γabΨ4 þ
ffiffiffi
γ

p
2

�
εcaDcDb þ εcbDcDa

�
Ψ5;

where the antisymmetric tensor εab is defined on the two-
dimensional sphere with εθφ ¼ 1, and Ψi are scalar func-
tions. We denote γab as the induced metric on this sphere,
with γ its determinant and Da its corresponding covariant
derivative.
In this paper, we focus on the bumblebee BHs’ dynami-

cal stability associated with the odd-parity perturbations.
Following the above illustrations, the gravitational pertur-
bation hμν of odd parity can be written as

htt ¼ hrr ¼ hrt ¼ 0;

hta ¼
X
l;m

h0lmðt; rÞ ffiffiffi
γ

p
εa

bDbYlmðθ;φÞ;

hra ¼
X
l;m

h1lmðt; rÞ ffiffiffi
γ

p
εa

bDbYlmðθ;φÞ;

hab ¼
1

2

X
l;m

h2lmðt; rÞ
ffiffiffi
γ

p �
εcaDcDb þ εcbDcDa

�
Ylmðθ;φÞ:

The odd-parity perturbation of the bumblebee vector can be
written as

δbt ¼ δbr ¼ 0; ð35Þ

δba ¼
X
l;m

βlmðt; rÞ
ffiffiffi
γ

p
εa

b
∂bYlm: ð36Þ

It is worthwhile to point out that not all perturbations are
physical because of the gauge degrees of freedom. Note
that the diffeomorphism still holds in the bumblebee theory,
and one can consider an infinitesimal diffeomorphism
transformation, xμ → xμ þ λμ, yielding

h0μν → hμν þ∇νλμ þ∇μλν: ð37Þ

It indicates that one can always find four scalar functions to
simplify the perturbations. Based on the decomposition
rules for odd-parity modes, we consider

λt ¼ λr ¼ 0; ð38Þ

λa ¼
X
l;m

Λlmðt; rÞ
ffiffiffi
γ

p
εa

b
∂bYlm; ð39Þ

such that the gravitational perturbations, h0lm, h1lm, and
h2lm, respectively transform as

h0lm → h0lm þ dΛlm

dt
;

h1lm → h1lm þ dΛlm

dr
−
2

r
Λlm;

h2lm → h2lm þ 2Λlm: ð40Þ

Specifically, the monopole with l ¼ 0 does not exist in
odd-parity modes. As for the dipole mode with l ¼ 1, hab
vanishes identically. We therefore discuss this case sepa-
rately. For l ≥ 2, we shall choose the Regge-Wheeler
gauge such that h2lm ¼ 0 and two physical components,
h0lm and h1lm, are left [20]. Following the above argu-
ments, the gravitational perturbation, together with the
bumblebee vector perturbation, can be rewritten in the
following matrix form,
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hμν ¼
X
l;m

0
BBB@

0 0 −h0ðt; rÞsin−1θ∂φ sin θh0ðt; rÞ∂θ
0 0 −h1ðt; rÞsin−1θ∂φ sin θh1ðt; rÞ∂θ
� � 0 0

� � 0 0

1
CCCAYlmðθ;φÞ; ð41Þ

δbμðt; rÞ ¼
X
l;m

βðt; rÞ

0
BBB@

0

0

−sin−1θ∂φ
sin θ∂θ

1
CCCAYlmðθ;φÞ; ð42Þ

where the � represents the symmetric part of the matrix. For
convenience, in the following, we drop the l; m indices.
With Eqs. (41) and (42), we expand action (1) up to Oðϵ2Þ.
Then, after performing integration with respect to θ and φ,
as well as integrating by parts with respect to t and r, the
resulting perturbed action of odd-parity modes reads

I ¼ I0 þ ϵ2
X
l;m

lðlþ 1Þ
4κ

Iodd; ð43Þ

where I0 denotes the on shell action satisfying the equa-
tions of motion (22). Moreover, we have

Iodd ¼
Z

dtdr

�
C1

	
ḣ1 − h00 þ

2

r
h0



2

þ 2ðC2β
0 þ C3βÞ

×

	
ḣ1 − h00 þ

2

r
h0



þ C4β̇

2 þ C5β
02

þ �C6h21 þ C7h20 þ C8βh0
�þ C9β

2

�
; ð44Þ

where the coefficients Ci ði ¼ 1; 2;…; 9Þ are listed as
follows:

C1 ¼
ffiffiffi
f

p ðh − ξb2t Þ
h3=2

;

C2 ¼
ffiffiffi
f

p
ξbtffiffiffi
h

p ;

C3 ¼
ffiffiffi
f
h

r 	ðξ − 2κÞb0t
r

−
2ξbt
r



;

C4 ¼
2κffiffiffiffiffiffi
fh

p ;

C5 ¼ −2κ
ffiffiffiffiffiffi
fh

p
;

C6 ¼ −
ðl − 1Þðlþ 2Þ ffiffiffiffiffiffi

fh
p

r2
;

C7 ¼
ðl − 1Þðlþ 2Þðh − ξb2t Þffiffiffiffiffiffi

fh
p

hr2
;

C8 ¼ −
ðl − 1Þðlþ 2Þ2ξbt

r2
ffiffiffiffiffiffi
fh

p ;

C9 ¼ −
2κlðlþ 1Þ

r2

ffiffiffi
h
f

s
−
ξðhð−2þ 2f þ rf0Þ þ rfh0Þ

r2
ffiffiffiffiffiffi
fh

p :

1. The l ≥ 2 modes

In this subsection, we consider the odd-parity modes
with l ≥ 2. Note that the perturbed action (44) does not
contain ḣ0 term, thus there are only two dynamical fields,
h1 and β. However, since Eq. (44) involves h00, h0 cannot be
solved directly. By introducing a Lagrangian multiplier
χðt; rÞ, Eq. (44) yields,

I0odd ¼
Z

dtdr

�
C1

�
−χ2 þ 2χ

	
ḣ1 − h00 þ

2

r
h0 þ

C2β
0 þ C3β

C1


�
−
ðC2β

0 þ C3βÞ2
C1

þ C4β̇
2 þ C5β

02

þ �C6h21 þ C7h20 þ C8βh0
�þ C9β

2

�
: ð45Þ

It is not difficult to find that the former action (44) can be
recovered by varying χðt; rÞ in the new action (45).
Performing variation on I0odd with respect to h0 and h1
gives,

C1χ̇ − C6h1 ¼ 0;

2C1ðχ0 − χÞ − 4

r
χ − ð2C7h0 þ C8βÞ ¼ 0: ð46Þ

Then I0odd can be rewritten in the quadratic form,

I0odd ¼
Z

dtdr

�
−
C2
1

C6

χ̇2 −
C2
1

C7

χ02 þ Uχχ
2 þUχβχβ þ C4β̇

2

þ
	
C5 −

C2
2

C1



β02 þ Uββ

2

�
; ð47Þ
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or in the matrix form

I0odd ¼
Z

dtdr
�˙χ⃗⊺K ˙χ⃗ þ χ⃗0⊺Gχ⃗0 þ χ⃗⊺Mχ⃗

�
: ð48Þ

Here χ⃗ ¼ ðχ; βÞ⊺ and K, G, M are 2 × 2 matrices

K ¼
 
− C2

1

C6
0

0 C4

!
; ð49Þ

G ¼

0
B@− C2

1

C7
0

0 C5 −
C2
2

C1

1
CA; ð50Þ

M ¼
	
Uχ Uχβ

0 Uβ



; ð51Þ

where

Uχ ¼ −C1 −
6C2

1 − r2C1C00
1

r2C7

−
rC1C0

1C
0
7 þ 2C2

1C
0
7

rC2
7

;

Uβ ¼ C9 þ
	
C2C3

C1


0
−
C2
3

C1

−
C2
8

4C7

;

Uχβ ¼ 2C3 −
2C1C8

rC7

þ C1

	
C8

C7


0
: ð52Þ

We next shall analyze the ghost and gradient (in)stability of
χ⃗ following the scheme introduced in Sec. II. One can find
that the coefficients of kinetic terms of χ̇2 and β̇2,

C4 ¼
2κffiffiffiffiffiffi
fh

p > 0; ð53Þ

C2
1

C6

¼ −
ffiffiffi
f
h

r
r2ðh − ξbtÞ2

ðlþ 2Þðl − 1Þh3 < 0; ð54Þ

yielding

K11 > 0; detK > 0: ð55Þ

It, therefore, shows that for the l ≥ 2 case of the odd-parity
modes, the bumblebee BHs have no ghost instability.
In the following, we shall investigate the gradient

instability of bumblebee BHs following the scheme intro-
duced in Sec. II. We assume that χ⃗ has a wave solution
along the radial direction,

χ⃗ ¼ χ⃗keiðωt−krÞ; ð56Þ

where χ⃗k is a constant vector. We first consider the high-
energy limit along the radial direction. In other words, we
take limits ω → ∞ and k → ∞, but keeping ω=k a finite
value. In order for χ⃗k to have a nontrivial solution, we have

detðω2K þ k2GÞ ¼ 0: ð57Þ

We then define the locally propagating speed of χ⃗ along the
radial direction,

cr ≡ dr�
dτ

¼ ω

k
ffiffiffiffiffiffi
fh

p ;

where the proper time τ≡ R hdt and the tortoise coordinate
satisfies dr�=dr ¼ f. Then, Eq. (57) gives two solutions for
the radial speed,

c2r1 ¼
C2
2 − C1C5

C1C4fh
; c2r2 ¼ −

C6

C7fh
: ð58Þ

Recall that the no-ghost condition implies C4 > 0 and
C6 < 0. For the absence of gradient instability along the
radial direction, namely

c2r > 0; ð59Þ

we have the following constraints of gradient stability for
bumblebee BHs,

C2
2 − C1C5

C1

¼ ξ2b2t þ 2κðh − ξb2t Þ
h − ξb2t

> 0;

C7 ¼
ðl − 1Þðlþ 2Þðh − ξb2t Þ

r2
ffiffiffi
f

p
h3=2

> 0: ð60Þ

It is easy to verify that when hðrÞ > ξbtðrÞ2, namely that
c2r1 > 0 is satisfied, c2r2 > 0 is also satisfied. Therefore, for
bumblebee BHs, the condition for the absence of gradient
instability associated with the radial direction is

hðrÞ − ξbtðrÞ2 > 0: ð61Þ

In addition to the radial direction, instability may also
arise along the angular direction, depending on the propa-
gating speed of χ⃗. Now we consider the high-energy limit
but along the angular direction. In other words, we take
ω → ∞ and l → ∞, but keep ω=l being finite. This limit
indicates that the perturbation field, χ⃗, propagates with
large energy and angular momentum but the speed of
propagation is finite. For nontrivial χ⃗l solution, we have

detðω2K þMÞ ¼ 0: ð62Þ

In the large-l limit, the speed of propagation along the
angular direction is defined as

cΩ ≡ r
dθ
dτ

¼ r
dθffiffiffi
h

p
dt

¼ rωffiffiffi
h

p
l
:

With this definition and in the large-l limit, c2Ω can be
solved from Eq. (62) as
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c2Ω1
¼ h

ðh − ξb2t Þ
; ð63Þ

c2Ω2
¼ ξ2b2t þ 2κðh − ξb2t Þ

2κðh − ξb2t Þ
: ð64Þ

We can see that the no tachyonic instability condition
associated with the angular speed, namely,

c2Ω > 0; ð65Þ

shares the same constraints given by the no gradient
instability condition associated with the radial speed
in Eq. (61).

2. The l= 1 modes

We have discussed the instabilities of bumblebee BHs
for l ≥ 2 odd-parity modes. Now we separately discuss the
dipole mode, namely, l ¼ 1. As we discussed previously,
when l ¼ 1, the gauge degree of freedom is not fixed in
Eq. (43) since hab identically vanishes.
Recalling the gauge transformation rules given in

Eq. (40), one can simplify the gravitational perturbation
by choosing a gauge with h1 ¼ 0, implying that

Λðt; rÞ ¼ −r2
Z

h1ðt; r0Þ
r02

dr0 þ r2F ðtÞ; ð66Þ

where F ðtÞ is an arbitrary function with respect to t.
Performing variation on the action (44) with respect to β
and h0, and setting h1 ¼ 0, we have

Ξ̇ ¼ 0; Ξ0 ¼ 0; ð67Þ

where

Ξ≡ 2C1

	
h00 −

2

r
h0



− 2ðC2β

0 þ C3βÞ: ð68Þ

It yields

Ξ ¼ C1; ð69Þ

where C1 is an integration constant. Then h0 can be
solved as

h0 ¼ r2F 2ðtÞ þ r2
Z

dr̃
C1r̃þ 2C4β þ 2C3r̃β0

2C1r̃3
; ð70Þ

where F 2ðtÞ is a gauge mode which can be eliminated by
setting F ðtÞ ¼ R dtF 2ðtÞ. In addition, if shutting down the
vector perturbation with β ¼ 0, namely that h0 does not
depend on time, then C1 is related to the angular momentum
of a slowly rotating BH [23,25].

After integrating by parts, action (44) then reduces to

I0odd ¼
Z

dtdr

�
C4β̇

2 −
	
C5 −

C2
2

C1



β02

þ
�
C9 þ

	
C2C3

C1


0
−
C2
3

C1

�
β2
�
; ð71Þ

where we set C1 ¼ 0 for convenience. The reduced action
(71) shows that only one dynamical field, βðt; rÞ, prop-
agates. It is obvious that for l ¼ 1, a bumblebee BH has no
ghost instability because

C4 ¼
2κffiffiffiffiffiffi
fh

p > 0: ð72Þ

Since l has been fixed, one can only read c2r in the high-
energy limit along the radial direction and it is easy to find
that the no gradient instability condition is

C5 −
C2
2

C1

¼ ξ2b2t þ 2κðh − ξb2t Þ
h − ξb2t

> 0; ð73Þ

which is consistent with condition (60). To summarize our
results, for the odd-parity modes, the condition of no
gradient instability for bumblebee BHs is

hðrÞ − ξbtðrÞ2 > 0: ð74Þ

In addition to the ghost instability, gradient instability,
and tachyonic instability, instabilities associated with the
quasinormal modes (QNMs) of BHs may arise when
solving the equations of motion of χ⃗ under appropriate
boundary conditions [36]. However, it is out of the scope of
this work. We leave it to our future work to analyze the
QNMs of bumblebee BHs.

C. Numerical results

In the previous section, we find that a bumblebee BH
has no ghost instability but may have gradient instability
and tachyonic instability, and obtain the condition (74) for
avoiding them. In the following, we numerically investigate
the condition and give constraints on the vector charge of
bumblebee BHs.
Based on Eq. (74), a direct conclusion is that for ξ ≤ 0,

hðrÞ − ξbtðrÞ2 > 0 ð75Þ

is always satisfied, indicating that these bumblebee BHs
(including the RN BH) have no gradient instability nor
tachyonic instability.
For ξ > 0, the condition becomes complicated so we

shall discuss it case by case. We begin with ξ ¼ 2κ since
then the bumblebee BH has an analytical solution, the
Schwarzschild metric with a nontrivial vector field given in
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Eq. (26). From Eq. (74) it follows that:

h − ξb2t ¼
ðr − 2MÞ½2MQ2 þ rðM2 −Q2Þ�

r2M2
> 0; ð76Þ

implying that when M > Q, h − ξb2t is always positive,
while Q > M, h − ξb2t is positive only when r is small.
Therefore, there must exist a critical radius,

rc ¼
2MQ2

Q2 −M2
; ð77Þ

where h − ξb2t changes the sign, implying that instabilities
occur. IfQ ¼ M, rc is located at the infinity. We thus easily
draw a simple conclusion that when ξ ¼ 2κ, the condition
for no gradient instability nor tachyonic instability for a
stealth Schwarzschild BH is

M ≥ Q: ð78Þ

It is a conclusion that, while concise, is rich in physical signi-
ficance. It implies that even though stealth Schwarzschild
BHs admit solutions with Q > M, the conditions of no
instabilities indicate that such solutions cannot exist stably.
Similar phenomena where Schwarzschild BHs with non-
trivial vector field suffer the gradient instability also
appear in the Einstein-aether theory and other vector-tensor
theories [28,32].
For a general ξ, there is yet no analytical but numerical

BH solutions. Following the hints given by the case of
ξ ¼ 2κ, we thus choose a gradient stability indicator to
show whether these numerical bumblebee BHs satisfy the
condition (74). Note that

hðrÞjr→∞ ¼ 1; btðrÞjr→∞ ¼ μ∞; ð79Þ

we thus choose the gradient stability indicator,

hðrÞ − ξb2t jr→∞ ¼ 1 − ξμ2∞; ð80Þ

to show that when 1 − ξμ2∞ > 0, bumblebee BHs have no
gradient instability. Recall the example of ξ ¼ 2κ, we have

1 − ξμ2∞ ¼ M2 −Q2

M2
; ð81Þ

showing that the result of gradient stability for stealth
Schwarzschild BHs is consistent with Eq. (78). In addition
to the case of ξ ¼ 2κ, we find that 1 − ξμ2∞ changes sign
when

ξ ≈ 0.5κ; ð82Þ

indicating that bumblebee BHs begin to suffer gradient
instability when ξ > 0.5κ (see Table II). Here we practically

assume that when ξ ≤ 0.5κ, h − ξb2t is a monotonically
increasing function with respect to r. Since when r → rh,
one has h − ξb2t → 0, such an assumption implies that
h − ξb2t will always be positive for r > rh when ξ ≤ 0.5κ.
To verify it numerically, we show h − ξb2t against r for
various ξ around 0.5κ in Fig. 2.
Recall that bumblebee BHs can be described by two

parameters, Q and M. We plot the gradient (in)stability
indicator 1 − ξμ2∞ with respect to jQj in Fig. 3. In the figure,
we use the same ξ as in Fig. 1. When ξ ¼ −2κ and 0, the
gradient stability indicators are always positive for all jQj,

FIG. 2. h − ξb2t against r for various ξ around 0.5κ. We verify
that when ξ ≤ 0.5κ, h − ξb2t is a monotonically increasing func-
tion with respect to r.

TABLE II. Values of jQj=M and 1 − ξμ2∞ of bumblebee BHs
for ξ around 0.5κ. It shows that 1 − ξμ2∞ changes sign when
ξ ¼ 0.51κ, indicating the critical point when the gradient insta-
bility happens.

ξ=κ 0.48 0.49 0.50 0.51 0.52 0.53

jQj=M 1.00016 1.00227 1.00193 1.00187 1.00216 1.00287
1 − ξμ2∞ 0.040 0.024 0.0039 −0.016 −0.036 −0.055

FIG. 3. The relation between the gradient (in)stability indicator,
1 − ξμ2∞, and the charge of bumblebee BHs.
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which is consistent with our previous statement that a
bumblebee BH has no gradient instability when ξ ≤ 0.
Moreover, in Fig. 3, we denote the critical points where
1 − ξb2t changes sign with red dots and the maximum of jQj
with black dots. For ξ < 0.5κ, there does not exist any
critical point (red dot), showing that a bumblebee BH does
not suffer from the gradient instability (for example, see the
green solid line for ξ ¼ 0.3κ in Fig. 3). We found that the
critical points (red dots) appear when ξ > 0.5κ. When ξ
increases but is less than 1.4κ, there exist two bumblebee
BH solutions for the same jQj. When ξ is close to but larger
than 0.5κ, only one of the two BH solutions suffers gradient
instability (for example, see the orange solid line for ξ ¼
0.6κ in Fig. 3). The critical points first move to the right,
and then to the left after the critical points coincide with the
maximum points (the black dots). When 0.75κ < ξ < 1.4κ,
both of the two branches of bumblebee BHs suffer the
gradient instability for larger jQj (see the purple solid line
for ξ ¼ κ in Fig. 3 as an example). Furthermore, when
ξ > 1.4κ, there is only one bumblebee BH solution for
one jQj, and the bumblebee BH suffers the gradient
instability when 1 − ξμ2∞ is negative (see the case of ξ ¼ 2κ
in Fig. 3).
As mentioned in the Introduction, Xu et al. [13,15] have

put observational bounds on jQj associated with bumblebee
BHs for various ξ using the supermassive BH shadows of
M87� and Sgr A� from the EHT. Based on our results of
the gradient stability for bumblebee BHs, in Fig. 4 we give
an extended plot of Fig. 3 for more choices of ξ. The
black line, formed by connecting the maximum jQj of
bumblebee BHs, serves as the boundary of the BH
solutions. The blue line serves as the boundary of the
existence of two branches of solutions for the same jQj and
ξ. On the other hand, the green and orange dot-dashed lines
are given by the observations of the shadows for the
supermassive BHs in M87 and the MilkyWay, respectively.
The red line, formed by connecting the critical points for
different values of ξ (some of which are denoted as red dots
in Fig. 4) serves as the boundary of the gradient stable and
unstable regions. Therefore, the colored region represents
bumblebee BHs suffering the gradient instability.
In addition, due to the bound given from observations

on shadows for the supermassive BHs, we find that when
ξ < 2κ, even though the bumblebee BHs do not suffer the
gradient instability, jQj of bumblebee BHs cannot be
sufficiently large since such BH solutions do not exist.
Specifically, when ξ is negative, jQj < M is always
satisfied. Nevertheless, when ξ > 2κ, it admits bumblebee
BHs carrying a considerable vector charge jQj. However,
the bumblebee BHs with jQj > M can rarely exist due to
gradient instability. Therefore, we draw a conclusion that
the bumblebee BHs could not carry considerable vector
charge jQj, and further when ξ ≥ 2κ or ξ ≤ 0—equivalently
ξðξ − 2κÞ > 0—the vector charge of a bumblebee BH
cannot be larger than its mass,

jQj < M: ð83Þ

It is worth mentioning that our stability analysis on the
gradient of the bumblebee BHs, especially the onset of the
gradient instability, is based on the plane-wave approxi-
mation, namely Eq. (56). For general solutions of χ, the
conditions of the (in)stability of the bumblebee BHs
become more complicated. It is indeed a worthwhile topic
and we will leave it for future studies.

IV. CONCLUSIONS

In this paper, we have studied the dynamic (in)stability
of bumblebee BHs in the bumblebee vector-tensor theory.
Treating the BH spacetime as the background, we have
considered perturbations of the gravitational field and the
bumblebee field with odd parity and have investigated the
associated (in)stability. Under the plane-wave approxima-
tion, our conclusions can be summarized as follows:

(I) Bumblebee BHs do not suffer the ghost instability;
(II) Bumblebee BHs suffer the gradient and tachyonic

instabilities when ξ > 0.5κ according to our numeri-
cal results;

(III) The conditions for avoiding both the gradient
and tachyonic instabilities for bumblebee BHs in-
dicate a no-go theorem on the bumblebee charge.

FIG. 4. Constraints on the ξ-jQj plane from EHT observations
and the gradient instability. The dark red region shows the
parameter space where there are two branches of solutions but
only one of them has gradient instability while the blue region
shows that both two branches of BHs have gradient instability.
Furthermore, the light red region shows the parameter space
where there is only one solution and it is unstable, with the red
solid line giving the boundary for the gradient instability to
happen. The orange and green dot-dashed lines show the bounds
given by the observations of the shadows of supermassive BHs in
M87 and Milky Way, respectively [15]. The black lines give the
boundary of the existence domain of BH solutions. The region
enclosed by the black and blue lines indicates that there exist two
branches of BHs for the same jQj and ξ=κ.
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Specifically, when ξðξ − 2κÞ ≥ 0, the vector charge
of a bumblebee BH can not be larger than its mass.

As shown in Fig. 4, the theoretical condition for no
gradient/tachyonic instability gives a stronger constraint on
the charge of bumblebee BHs than the constraints given by
the observed BH images from EHT when ξ≳ 1.3κ. In
general, Fig. 4 also shows that if ξðξ − 2κÞ ≥ 0, bumblebee
BHs with jQj > M can hardly exist in our Universe due to
the gradient/tachyonic instability. This appears to be a
realization of the weak cosmic censorship conjecture in the
bumblebee theory. In GR, for a RN BH, the weak cosmic
censorship conjecture states that the charge cannot be larger
than the mass, to avoid the naked singularity [37,38]. Our
finding suggests that the gradient/tachyonic instability
might be the physical mechanism behind the weak cosmic
censorship, if we extend the Einstein-Maxwell theory to the
bumblebee vector-tensor theory, potentially providing a
physical mechanism for the weak cosmic censorship in a
broader context of gravity theories. As the gradient/
tachyonic instability also exists in other modified gravity
theories, we expect there to be also such worthwhile con-
straints on the corresponding additional hairs of BHs in
these theories. In addition to the ghost instability, gradient
instability, and tachyonic instability of odd-parity pertur-
bations considered in this work, instabilities related to the
QNMs of bumblebee BHs, together with the even-parity
perturbations and their stability properties, are also worth-
while topics for the stability analysis of bumblebee BHs.
We leave them for future studies.
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APPENDIX: THE BACKGROUND FIELD
EQUATIONS UNDER THE STATIC

SPHERICAL ANSATZ

Denoting Eμν ¼ Gμν − κTb
μν, with static spherical ansatz

the nonvanishing components of the background Einstein
equations are

0 ¼ Ett ¼
hð1 − f − rf0Þ

2r2κ
−
1

4
fb02t

þ ξ

2κ

	
b00t þ

b02t
bt

þ
	
2

r
þ f0

2f
−
2h0

h



b0t

þ
	
5h02

4h2
−
h00

h
−
4fh0 þ rf0h0

2rfh



bt



fbt; ðA1Þ

0 ¼ Err ¼
h0

2rκh
þ f − 1

2r2κf
þ b02t

4h
þ ξ

8κ

	
b2t h02

h3
−
2btb0th0

h2



;

ðA2Þ

0 ¼ Eθθ ¼
Eφφ

sin2θ
¼ r2f

4κh
h00 þ rð2f þ rf0Þ

8κh
h0

−
r2f
8κh2

h02 þ rf0

4κ
−
r2f
4h

b02t

þ ξ

8κ

	
2b0tfh0

h2
−
btfh02

h3



r2bt; ðA3Þ

where 0 denotes the derivative with respect on r. The field
equation of the background bumblebee vector has only the
temporal component, namely

0 ¼ b00t þ
	
2

r
þ f0

2f
−

h0

2h



b0t

−
	
4fh0 þ rf0h0

4rfh
−

h02

4h2
þ h00

2h



ξ

κ
bt: ðA4Þ
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