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In this paper we propose a new generalized mass-to-horizon relation to be used in the context of
entropic cosmologies and holographic principle scenarios. We show that a general scaling of the mass with

the universe horizon as M ¼ γ c2
G Ln leads to a new generalized entropy Sn ¼ γ n

1þn
2πkBc3

Gℏ Lnþ1 from which
we can recover many of the recently proposed forms of entropies at cosmological and black hole scales
and also establish a thermodynamically consistent relation between each of them and Hawking
temperature. We analyze the consequences of introducing this new mass-to-horizon relation on
cosmological scales by comparing the corresponding modified Friedmann, acceleration, and continuity
equations to cosmological data. We find that when n ¼ 3, the entropic cosmology model is fully and
totally equivalent to the standard ΛCDM model, thus providing a new fundamental support for the origin
and the nature of the cosmological constant. In general, if log γ < −3, and irrespective of the value of n,
we find a very good agreement with the data comparable with ΛCDM from which, in Bayesian terms, our
models are indistinguishable.
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I. INTRODUCTION

Bekenstein entropy [1] and Hawking temperature [2,3]
have been extensively used in several thermodynamic
approaches [4–7] to cosmology and gravity. Bekenstein
entropy measures entropy in terms of the surface area of
cosmological and black hole horizons, while Hawking
temperature determines temperature in terms of the surface
gravity defined on the horizons.
The holographic principle [8,9] states that, given any

closed surface, we can represent all that happens inside it
by degrees of freedom on that surface. It can be seen as the
generalization of Bekenstein entropy for black holes, and,
in the cosmological context of a universe with a cosmo-
logical boundary, it implies that the degrees of freedom in
the bulk of the universe can be mapped to the two-
dimensional boundary of the universe. With these assump-
tions, Bekenstein entropy, Hawking temperature, and other
thermodynamic quantities can be defined and associated
with the cosmological horizon.
In order to apply the “consistent” thermodynamic rela-

tions on the horizon, the entropy S, the mass M and the
energy E must be associated with the cosmic horizon in
accordance with the holographic principle. In particular,
Bekenstein entropy and Hawking temperature can be related
through the Clausius relation, dE ¼ c2dM ¼ TdS, and a

linear mass-to-horizon relation (MHR), M ¼ c2
G L (with L

the cosmological horizon, c the speed of light, and G the
gravitational constant).
By consistent, in the following, we mean that the area law

for the Bekenstein-Hawking entropy can always be obtained
if: (1) we identify the thermodynamic energy E with the
black hole mass M and the system temperature with the
Hawking temperature; (2) we use a linear MHR; (3) we
assume the Clausius relation; and thus (4) finally yielding
Bekenstein entropy.
This also implies that the mass-energy relation (E ¼ M)

associated with the horizon should be derived by the
Clausius relation with MHR, when temperature and entropy
are defined on the horizon in accorance with the holographic
principle. The Bekenstein-Hawking case makes this clear,
but the Clausius relation results in an inconsistent mass-
energy relation for the horizons when Hawking temperature
is introduced along with nonextensive entropies on the
horizons [10,11]. This means that, aside from Bekenstein
entropy, the Hawking temperature is inconsistent with
nonextensive entropies [11].
Naturally, one question arises; can we, using the holo-

graphic principle, use nonextensive entropies on the hori-
zons other than Bekenstein entropy? We have two options
for responding to this inquiry.
First, we must rely on the thermodynamic notion of

nonextensive entropies and use the Clausius and the linear-
mass horizon relation to obtain the related temperatures
(which will differ from the Hawking temperature) [12].
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This approach allows us to avoid inconsistencies, but estab-
lishing physical explanations for these temperatures is diffi-
cult because quantum field theory cannot justify them.
Second, because the Hawking temperature is the only

justified temperature on the horizon in terms of surface
gravity, it is critical to define consistent thermodynamic
quantities while using the Hawking temperature on the
horizon within the nonextensive setup in order to obtain the
correct mass-energy relation consistent with the holo-
graphic principle. In [20], instead of utilizing the equivalent
Tsallis-Cirto temperature TTC, the authors employed
Hawking temperature TBH with Tsallis-Cirto black hole
entropy, STC for δ ¼ 3=2. Combining TBH and STC with the
linear M − L relation results in an incorrect mass-energy
relation for all δ > 0 values (except for δ ¼ 1, when it
reduces to conventional Bekenstein), which contradicts the
holographic principle.
In this work, we introduce a new general MHR, not

necessarily linearly, from which, starting from Hawking
temperature, a new definition of entropy on the cosmo-
logical horizon can be obtained, which will be thermo-
dynamically consistent in accordance with the holographic
principle. We will use this new definition in the context of
entropic cosmology [13,14], where entropic force terms,
motivated to be coming from the boundary terms in the
Einstein-Hilbert action, are added to the Einstein field
equations and are considered to be responsible for the
universe’s current accelerated phase. It should be noted
that in entropic cosmology, general relativity is assumed
and Einstein field equations for the Friedmann-Lemaître-
Robertson-Walker (FLRW) background are solved. Thus,
the idea of entropic force differs from Verlinde’s entropic
gravity [5], in which gravity is defined as entropic force,
which is considered as an emergent phenomenon.
The remainder of the paper is as follows. In Sec. II, we

discuss entropic force models. In Sec. III, we define the
new generalized horizon entropy using the new general-
ized mass-horizon relation. In Sec. IV, we apply the newly
introduced entropy in the context of entropic cosmology,
and in Sec. V, we introduce the tools required to analyze
the newly developed generalized entropic force models
using the most recent data from various probes. Lastly, we
present the main discussion of our analysis in Sec. VI, and
the conclusions in Sec. VII.

II. ENTROPIC FORCE MODELS

We consider a flat, homogeneous, and isotropic FLRW
universe with the Hubble horizon L ¼ c=H as a boundary,
where the Hubble parameter H is defined as
H ¼ ȧðtÞ=aðtÞ, with the scale factor aðtÞ function of
cosmic time t and dot representing the derivative with
respect to time. On the basis of the holographic principle,
we define the Hawking temperature TBH¼ℏc=ð2πkBLÞ
and the Bekenstein entropy SBH¼kBc3A=ð4ℏGÞ on the
Hubble horizon, where kB, ℏ are Boltzmann, reduced

Planck’s constants, and A ¼ 4πL2 is the surface area
of the cosmological horizon. Accordingly, an entropic
force, Fe ¼ −dE=dL ¼ −TBHdSBH=dL ¼ −c4=G, can be
defined and acts on the boundary. The consequent entropic
pressure, pe ¼ Fe=A ¼ − c2

4πGH
2, pushes the boundary

and contributes to the Friedmann, acceleration, and con-
tinuity equations as a possible explanation for the current
accelerated expansion of the universe.
The main justification for incorporating these entropic

force terms comes from the boundary terms resulting from
the variation of Einstein-Hilbert action. If we consider a
compact closed manifold with a boundary and the Gibbon-
Hawking-York (GHY) boundary term [15,16] is added to
the Einstein-Hilbert action SEH, the total action I can be
expressed as (c ¼ 1)

I¼
Z �

1

16πG
RþLm

� ffiffiffiffiffiffi
−g

p
d4xþ 1

8πG

Z
GHY

ffiffiffi
h

p
Kd3x; ð1Þ

where R is the Ricci scalar, Lm is the Lagrangian for the
matter fields, g is the determinant of the metric tensor gμν, h
is the determinant of the induced metric hμν on the
boundary, and K is the trace of the extrinsic curvature of
the boundary. When employing the Hamiltonian formalism,
the GHY boundary term must be added in order to obtain
the correct Arnowitt-Deser-Misner (ADM) energy. Hence,
associating entropy and temperature on the boundary is
justifiable. Moreover, when calculating black hole entropy
using the Euclidean semiclassical approach, the GHY term
contributes totally. When we vary the action I, we obtain the
Einstein field equations, and the boundary terms resulting
from the variation of SEH may be canceled with the variation
of the GHY terms, provided the variation is carried out
in such a way that it vanishes on the boundary. If we
only consider the compact closed manifold without a
boundary, then the variation of SEH will lead to GHY-like
boundary terms with the Einstein field equations, and these
boundary terms are expected to be of the order of
ð12H2 þ 6ḢÞ=ð8πGÞ for the FLRW metric [13,14,17,18].
In the original entropic force models [13,14], these terms
were phenomenologically regarded and added as entropic
force terms. With them, the Friedmann and acceleration
equations can be written as H2 ¼ 8πG=3ρþ Λe and
ä=a ¼ −4πG=3ðρþ 3p=c2Þ þ Λe, with the entropic force
term Λe ¼ CḢḢ þ CHH2. Here, ρ is the total energy
density of the universe and p the corresponding pressure.
None of these equations are derived directly from some
basic action principle but are inspired by the holographic
principle, the relevance of GHY boundary terms to represent
ADM energy, and the correspondence of Bekenstein
entropy with the boundary terms [16].
The other motivation for (phenomenologically) introduc-

ing the entropic force terms comes from a thermodynamic
perspective. Since we defined the entropic force Fe on the
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boundary, this force caused an entropic pressure, which
contributed to the Friedmann and acceleration equations in
two ways (see Ref. [19] and references there in). First, in the
continuity and acceleration equations, from the entropic
pressure pe we introduce an effective pressure peff ¼
pþ pe in both equations, which will give entropic force
terms. Second, we introduce the entropic equation of state
so that pe ¼ −c2ρe, where ρe is the entropic energy density
associated with the entropic force.

III. A NEW MASS-TO-HORIZON RELATION

The key justification for proposing a newMHR is that, as
shown in [19], as long as the Clausius relation is used for
thermodynamic consistency (i.e., to find the proper temper-
ature) and a linear MHR is assumed, no matter what
definition of entropy is proposed, the entropic force on
cosmological horizons is always equivalent to the standard
entropic force, which can be derived by using Bekenstein
entropy and Hawking temperature. As such, there will
always be the same problems of standard Bekenstein-
Hawking entropic models in reproducing the dynamics
of our universe, both at the level of the cosmological
background and of cosmological perturbations [17,18].
Here, based on [19], we start by noting that the formal

expression of the entropic force is strongly related to the
form of the MHR. One of the first steps which can be taken
is toward a generalization of the latter. We propose to
explore the consequences and reliability of the following
relation:

M ¼ γ
c2

G
Ln; ð2Þ

where n is a non-negative real number and γ has dimen-
sions of length1−n.
The generalized mass-horizon relation is, in fact, a

crucial premise to apply consistent thermodynamic quan-
tities on the cosmological horizons from a thermodynamic
perspective. Geometrically, for n ¼ 1 and γ ¼ 1=2, it is
equivalent to the definition of Misner-Sharp mass for a
spherically symmetric case [20] defined for the apparent
horizon. Furthermore, a masslike function is defined in [20]
to investigate the geometrical first law of the thermody-
namics. There it is shown that this general masslike
function is crucial to relate the geometrical first law of
thermodynamics of apparent horizon and the Friedman
equations. This validates the linear mass-horizon relation
assumption needed to use the thermodynamic quantities in
line with the holographic principle, for the Bekenstein
entropy and the Hawking temperature.
Having said that, for n ¼ 1, Eq. (2) reduces to the

Bekenstein case, which is justified by general relativity,
whereas our general mass horizon is not (yet) geometrically
justified. However, again, in [20] the geometrical definition
of the first law or Clausius relation at the apparent horizon

has been investigated for different theories of gravity with a
generalized masslike function. Therefore, to better grasp
the geometrical significance of this relation, it would be
interesting to conduct additional research, which we will
leave for later. Here we adopt a first phenomenological
approach, whose reliability has to be eventually to be tested
and checked against observational data.
Combined with Hawking temperature and using the

Clausius relation, Eq. (2) leads to a new entropy on the
cosmological horizon,

Sn ¼ γ
2n

1þ n
Ln−1SBH: ð3Þ

Notably, for n ¼ γ ¼ 1, we recover both the standard linear
MHR, generally assumed in analogy with black holes, and
the Bekenstein entropy SBH. But we now have enough
freedom to recover many other types of entropy. For
example, assuming 1þ n ¼ 2δ, we get the nonextensive
entropy of Tsallis-Cirto [21,22]. Similarly, we recover
Barrow entropy [23] for n ¼ 1þ Δ where 0 ≤ Δ ≤ 1.
Thus 1 ≤ n ≤ 2 would be compatible with it. Finally, it
also reduces to Tsallis-Zamora entropy [24,25] for cosmic
horizons when n ¼ d − 1.
What is more important to note is that, as pointed out

in [10,11,19], if one starts from a linear MHR, one cannot
combine Tsallis-Cirto entropy with Hawking temperature
because they do not satisfy the Clausius relation and the
corresponding correct Tsallis-Cirto temperature must be
found. From this perspective, all literature that combines
Tsallis-Cirto entropy (or any other generalized entropy) and
Hawking temperature is thus wrong. Here we are proposing
a graceful exit; if one assumes a generalizedMHR, then it is
possible to associate Tsallis-Cirto, Tsallis-Zamora, or
Barrow entropy with Hawking temperature in a thermo-
dynamically consistent way. This is very likely true for
most of the entropies which have been proposed so far, but
a detailed check will be performed in a further work. We
stress that this point is crucial because, although these
generalized entropies have corresponding temperatures
[11], we cannot justify all of these temperatures from
quantum field theory since we do not know any physical
processes linked to quantum fluctuations on the horizon
related to these temperatures. However, quantum field
theory justifies the Hawking temperature.

IV. GENERALIZED ENTROPIC FORCE MODELS

To introduce the entropic force terms from Sn, one can
easily derive the following expressions for entropic force
Fn and entropic pressure pn,

Fn ¼ −γn
c4

G
Ln−1; pn ¼ −γn

c4

4πG
Ln−3: ð4Þ
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The generalized entropic pressure pn can be written in
two ways,

pn ¼ −c2ρn and pγ
n ¼ −c2nργn; ð5Þ

noting that in the second case, n could play the role of an
equation of state parameter for the entropic term, and that
the entropic energy density definitions ρn and ργn which
follow are

ρn ¼ γ
ncn−1

4πG
H3−n and ργn ¼ γ

cn−1

4πG
H3−n: ð6Þ

In order to introduce the entropic contributions in the
Friedmann, acceleration, and continuity equations, we
follow the formalism of [26,27], for which we have

H2 ¼ 8πG
3

X
i

ρi þ fðtÞ; ð7Þ

ä
a
¼ −

4πG
3

X
i

�
ρi þ

3pi

c2

�
þ gðtÞ; ð8Þ

X
i

�
ρ̇i þ 3H

�
ρi þ

pi

c2

��
¼ 3H

4πG

�
−fðtÞ − ḟðtÞ

2H
þ gðtÞ

�
;

ð9Þ

with the functions fðtÞ and gðtÞ playing the roles of the
entropic terms in our case. We focus here on the so-called
ΛðtÞ models [26], assuming fðtÞ ¼ gðtÞ, so that we have

fðtÞ ¼ 8πG
3

ρn and fðtÞ ¼ 4πG
3

ργnð3n − 1Þ; ð10Þ

respectively for the two cases we introduced above. The
continuity equations will read as

X
i

ρ̇i þ 3H
X

ρið1þ wiÞ ¼ −ρ̇n; ð11Þ

X
i

ρ̇i þ 3H
X

ρið1þ wiÞ ¼
3n − 1

2
ρ̇γn; ð12Þ

where we have used the barotropic equation of state, pi ¼
wic2ρi for matter ðwm ¼ 0Þ and radiation ðwr ¼ 1=3Þ.
We can actually rewrite Eqs. (11) and (12). For the first
scenario, from Eq. (6), we have

ρ̇n ¼ CnH2−nḢ; ð13Þ

with Cn ¼ ð3 − nÞn γ cn−1=ð4πGÞ. From Eqs. (7) and (9)
we can calculate Ḣ ¼ −4πGðρm þ 4

3
ρrÞ and using it in

Eq. (13), we have

ρ̇n ¼ −AmH2−nρm − ArH2−nρr; ð14Þ

where Am ¼ 4πGCn and Ar ¼ 16πG=3Cn. Using Eq. (14)
we can further separate Eq. (11) for matter and radiation,

aρ0i þ 3ρið1þ weff;iÞ ¼ 0; ð15Þ

weff;i ¼ wi −
Ai

3
H1−n: ð16Þ

In a similar manner, we can write the continuity equations
for the second case as

ρ̇γn ¼ −Aγ
mH2−nρm − Aγ

rH2−nρr; ð17Þ

aρ0i þ 3ρið1þ wγ
eff;iÞ ¼ 0; ð18Þ

wγ
eff;i ¼ wi −

3n − 1

6
AiH1−n; ð19Þ

where Cγ
n ¼ ð3 − nÞγcn−1=ð4πGÞ, Aγ

m ¼ 4πGCγ
n and Aγ

r ¼
16πG=3Cγ

n. We will solve numerically the system of
differential equations, Eqs. (14), (15), (17), and (18) in
order to perform the comparison with data.

V. DATA

We have used the Type Ia Supernovae (SNeIa)
Pantheonþ sample [28–31] covering the redshift
range 0.001 < z < 2.26. The χ2SN is defined as χ2SN ¼
ΔμSN ·C−1

SN · ΔμSN, where Δμ ¼ μtheo − μobs is the differ-
ence between the theoretical and the observed value of the
distance modulus for each SNeIa and CSN is the total
(statistical plus systematic) covariance matrix.
The theoretical distance modulus is calculated as

μtheoðzhel; zHD; pÞ ¼ 25þ 5log10½dLðzhel; zHD; pÞ�; ð20Þ

where dL is the luminosity distance (in Mpc),

dLðzhel; zHD; pÞ ¼ ð1þ zhelÞ
Z

zHD

0

cdz0

Hðz0; pÞ ; ð21Þ

with zhel the heliocentric redshift, zHD the Hubble diagram
redshift [30], and p the vector of cosmological parameters.
The observed distance modulus is μobs ¼ mB −M, with
mB the standardized SNeIa blue apparent magnitude and
M the fiducial absolute magnitude calibrated by using
primary distance anchors such as Cepheids. In general H0

and M are degenerate when SNeIa alone are used but the
Pantheonþ sample includes 77 SNeIa located in galactic
hosts for which the distance moduli can be measured from
primary anchors (Cepheids), which means that the degen-
eracy can be broken and H0 and M can be constrained
separately. Thus, the vector Δμ will be
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Δμ ¼
�
mB;i −M − μCeph;i i∈Cepheid hosts

mB;i −M − μtheo;i otherwise;
ð22Þ

with μCeph being the Cepheid calibrated host-galaxy dis-
tance provided by the Pantheonþ team.
We use the cosmic chronometers (CC) [32–36],

early-type galaxies which undergo passive evolution
and have a characteristic feature in their spectra, the
4000 Å break, from which the Hubble parameter HðzÞ
can be measured [37–43]. The most updated sample is
from [43] and spans the redshift range 0 < z < 1.965. The
corresponding χ2H is written as χ2H ¼ ΔH ·C−1

H · ΔH
where ΔH ¼ Htheo −Hdata is the difference between the
theoretical and observed Hubble parameter, and CH is the
total (statistical plus systematics) covariance matrix cal-
culated following prescriptions from [35].
We include the gamma ray bursts “Mayflower”

sample [44], calibrated in a robust cosmological model-
independent way and covering the interval 1.44 < z < 8.1.
The χ2G is defined like for SNeIa, but now we cannot
disentangle the H0 and the absolute magnitude, so that we
have to marginalize over them, following [45].
The cosmic microwave background (CMB) analysis is

performed using the compressed likelihood based on the
shift parameters defined in [46] and updated in [47] to
the latest Planck 2018 data release [48]. The χ2CMB is
defined as χ2CMB ¼ ΔFCMB ·C−1

CMB · ΔFCMB where the
vector FCMB corresponds to the quantities,

RðpÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩmH2

0

q
rðz�; pÞ=c; ð23Þ

laðpÞ≡ πrðz�; pÞ=rsðz�; pÞ; ð24Þ

in addition to constraints on the baryonic content, Ωbh2,
and on the dark matter content, ðΩm − ΩbÞh2. The photon-
decoupling redshift z� is evaluated using the fitting formula
from [49] and rðz�; pÞ is the comoving distance at decou-
pling, i.e., using the definition of the comoving distance,

DMðz; pÞ ¼
Z

z

0

cdz0

Hðz0; pÞ ; ð25Þ

where we set rðz�; pÞ ¼ DMðz�; pÞ. Moreover, rsðz�Þ is the
comoving sound horizon evaluated at the photon-decou-
pling redshift,

rsðz; pÞ ¼
Z

∞

z

csðz0Þ
Hðz0; pÞ dz

0; ð26Þ

with the sound speed given by

csðzÞ ¼ c=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ R̄bð1þ zÞ−1Þ

q
ð27Þ

and the baryon-to-photon density ratio parameter defined as
R̄b ¼ 31500Ωb h2ðTCMB=2.7Þ−4 and TCMB ¼ 2.726 K.
Actually, the sound speed formula, Eq. (27), should

be generalized because it only holds if baryons scale
∝ a−3 and radiation ∝ a−4, i.e., if their equations of state
parameters wi are, respectively, 0 and 1=3. In our entropic
cosmologies the continuity equations are modified through
the effective equations of state parameters, weff;i, which
may differ from the standard values. The baryon-to-photon
ratio is defined as

Rb ≡ ρb þ pb

ργ þ pγ
¼ ρbð1þ wbÞ

ργð1þ wγÞ
ð28Þ

which, if wb ¼ 0 and wγ ¼ 1=3, becomes the standard

Rb ¼
3

4

ρb;0ð1þ zÞ3
ργ;0ð1þ zÞ4 ¼

3

4

Ωb

Ωγ
ð1þ zÞ−1; ð29Þ

with R̄b and its numerical factors coming from Ωγ ¼
Ωr=ð1þ 0.2271NeffÞ ≈ 2.469 × 10−5h−2 [50].
For our entropic models, the baryon-to-photon ratio

should be written in a more general way as

Rb ¼
ð1þ weff;bÞ
ð1þ weff;γÞ

Ωb

Ωγ

F bðzÞ
F γðzÞ

; ð30Þ

where weff;b and weff;γ are given in Eqs. (16) and (19), and
the redshift dependences of the densities cannot be written
as analytical expressions but are derived by solving the
systems of continuity equations [Eqs. (14), (15), (17),
and (18)]. Of course, early-time physics is quite well and
strongly constrained by multiple probes, and we are aware
that changes in this regime may lead to quite out-of-standard
results but we are not simply going to make theoretical
qualitative statements; we are going to test these equations
directly with data, so that any constraint which should come
out will be interpreted statistically as consistent or not
with them.
For baryon acoustic oscillations (BAOs) we use multiple

data sets from different surveys. In general, the χ2BAO is
defined as χ2BAO ¼ ΔFBAO ·C−1

BAO · ΔFBAO with the
observables FBAO which change from survey to survey.
The WiggleZ Dark Energy Survey [51] provides, at

redshifts z ¼ f0.44; 0.6; 0.73g, the acoustic parameter

Aðz; pÞ ¼ 100

ffiffiffiffiffiffiffiffiffiffiffi
Ωmh2

q
DVðz; pÞ=ðczÞ; ð31Þ

where h ¼ H0=100, and the Alcock-Paczynski distortion
parameter

Fðz; pÞ ¼ ð1þ zÞDAðz; pÞHðz; pÞ=c; ð32Þ
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where DA is the angular diameter distance defined as DA¼
DM=ð1þzÞ and DVðz;pÞ¼ ½czð1þzÞ2D2

Aðz;pÞ=Hðz;pÞ�1=3
is the geometric mean of the radial and tangential
BAO modes.
The latest release of the Sloan Digital Sky Survey (SDSS)

extended Baryon Oscillation Spectroscopic Survey (eBOSS)
observations [52–60] provides DMðz; pÞ=rsðzd; pÞ and
c=ðHðz; pÞrsðzd; pÞÞ, where the sound horizon is evaluated
at the dragging redshift zd. The dragging redshift is
estimated using the analytical approximation provided
in [61]. Data from [62] are instead expressed in terms of
DAðz; pÞrfids ðzd; Þ=rsðzd; pÞ and Hðz; pÞrsðzd; pÞ=rfids ðzd; pÞ,
where rfids ðzdÞ is the sound horizon at dragging redshift
calculated for the given fiducial cosmological model con-
sidered in [62], which is equal to 147.78 Mpc.
The total χ2 is minimized using our own code for

Monte Carlo Markov chains, whose convergence is checked
using the method of [63]. To establish the reliability of our
MHR with respect to the standard ΛCDM scenario, we
calculate the Bayes factor [64], Bi

j, defined as the ratio
between the Bayesian evidences of our entropic models
ðMiÞ and ΛCDM model ðMjÞ. The evidence is calculated
numerically using our own code implementing nested
sampling [65]. Finally, the interpretation of the Bayes factor
is conducted using the empirical Jeffrey’s scale [66].

VI. DISCUSSION

Performing a fit leaving both the parameters of interest,
n and γ, free has revealed to be tricky because for many
combinations of ðn; log γÞ the solutions to our sets of
coupled continuity equations are not physical (e.g., time-
growing matter or radiation densities or even negative
densities). For these reasons, in order to grasp more
information about the χ2 landscape and the parameter
space, we have performed separate fits by fixing one of the
parameters and leaving the remaining one free to vary.

A. Case n= 3

A first intriguing consideration comes out of noting that
when n ¼ 3; the new entropy scales ∝ L4, the mass scales
with the volume ðM ∝ L3Þ, the entropic densities ρn and ργn
are constant, and the entropic models, from Eqs. (7)–(9),
are fully equivalent to a ΛCDM model. This is also clear
from Table I, where we show results from fits using ΛCDM
model and with our entropic models, fixing n ¼ 3. We can
see how the cosmological parameters are perfectly in
agreement between the two cases. The condition n ¼ 3
implies that no direct constraint is possible on γ, because
Cn ¼ Am ¼ Ar ¼ Cγ

n ¼ Aγ
m ¼ Aγ

r ¼ 0. But we can get it
indirectly from the estimated value of ρnðz ¼ 0Þ and
ργnðz ¼ 0Þ, which is an initial condition in the continuity
equations set. We get that log γ ∼ −46 (with γ expressed in
units which provide the density in kgm−3) is consistent
with the observed cosmological constant value.

B. Case n= 1

Another interesting case is when n ¼ 1; the new entropy
reduces to Bekenstein entropy; the mass scales linearly
with the horizon; and the entropic densities are ∝ H2. Thus,
if γ ¼ 1, this case would be totally equivalent to the
standard Bekenstein-Hawking entropic model, and unable
to explain universe dynamics at cosmological scales, but in
our scenario, the γ parameter plays a crucial role in making
things work; if γ is small enough, we have an exchange of
energy between matter/radiation and the entropic fluid,
with the latter behaving like a very slowly varying
cosmological constant. Actually, in Table I we show the
quantity Δρn defined as the percentage relative difference
between ρn at z ¼ 0 and ρn evaluated at z ¼ 1, where most
of the low-redshift data are located, and at z ¼ 1100, the
typical CMB redshift. We can easily verify that variations
in ρn are consistent with zero and point toward higher
entropic density at early than late times. Moreover, we can
also see how the factors Am=A

γ
m and Ar=A

γ
r, which enter the

continuity equation for the entropic densities, should satisfy
the limit logAi < −10 in order to have our models perform
as well as a standard ΛCDM model, as it is also confirmed
by the value of the χ2. We can thus conclude that such small
values of all the quantities involved in the model, lead to
highly negligible deviations from the standard cosmologi-
cal picture, but are large enough to solve many of the
observational problems of classical Bekenstein-Hawking
entropic cosmology.

C. Cases n= 2 and n= 0.5

These scenarios would correspond respectively to a mass
scaling proportional to the horizon surface ðL2Þ and to L0.5,
and with an entropy Sn scaling with the volume ðL3Þ and
with L1.5.
We also want to stress that γ has been introduced and

used wrongly (as discussed in [19]) in the literature so far
and has never been constrained before. We can note that
when we fix γ, leaving n free, we easily see how values of
log γ > −3 quickly degrade the quality of the fit, inde-
pendently of the value of n. From this point of view,
we indirectly recover the result from literature for which
γ ¼ 1ðlog γ ¼ 0Þ is discarded by data.
Thus, in all cases in which log γ < −3, quite irrespective

of the value of n, there is no statistically significant shift in
the cosmological parameters, and the χ2 stays basically
unchanged. Also from a Bayesian point of view, looking at
the Bayes Factor, we see that our models fall in the
inconclusive evidence region but we think that here the
main motivation to show such results is of a physical nature
and not statistical; we are introducing a new physical
mechanism that, in the context of entropic cosmologies, can
perform as well as ΛCDM, providing at the same time a
physical mechanism and origin for the cosmological
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Ã
r
−
lo
g
Ã
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constant itself (when n ¼ 3), or any dark energy fluid
(when n ≠ 3).

VII. CONCLUSIONS

Based on a newly postulated generalized mass to horizon
relation, we have introduced a new generalized horizon
entropy that is thermodynamically consistent with Hawking
temperature via the Clausius relation. We have demon-
strated how, by parametrizing various values of n, the newly
generalized horizon entropy reduces to other nonstandard
entropies. We used this entropy in the context of entropic
cosmology to investigate the entropic origins of the uni-
verse’s accelerated expansion.

Of course, we are aware that in this work we have
analyzed only one aspect of the cosmological evolution,
which is the geometrical background. More tests are
needed, related to the growth of cosmological perturba-
tions. Although the results we get seem to point to very
small, highly negligible changes with respect to the
standard cosmological picture, we will not expect impor-
tant changes in this aspect. A more detailed analysis is left
for future works, but we want to stress here that the main
lesson of our study is that a different theoretical inter-
pretation can be given to the cosmological constant,
within the context of entropic cosmology, as successful
as the standard model.
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