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We develop the first model for extreme mass-ratio inspirals with misaligned angular momentum and
primary spin, and zero eccentricity—also known as quasispherical inspirals—evolving under the influence
of the first-order in mass-ratio gravitational self-force. The forcing terms are provided by an efficient
spectral interpolation of the first-order gravitational self-force in the outgoing radiation gauge. In order to
speed up the calculation of the inspiral, we apply a near-identity (averaging) transformation to eliminate all
dependence of the orbital phases from the equations of motion while maintaining all secular effects of the
first-order gravitational self-force at postadiabatic order. The resulting solutions are defined with respect to
“Mino time”; thus, we perform a second averaging transformation, so the inspiral is parametrized in terms
of Boyer-Lindquist time, which is more convent for LISA data analysis. We also perform a similar analysis
using the two-timescale expansion and find that using either approach yields self-forced inspirals that can
be evolved to subradian accuracy in less than a second. The dominant contribution to the inspiral phase
comes from the adiabatic contributions, so we further refine our self-force model using information from
gravitational wave flux calculations. The significant dephasing we observe between the lower and higher
accuracy models highlights the importance of accurately capturing adiabatic contributions to the phase
evolution.
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I. INTRODUCTION

With the advent of spaced-based gravitational wave
(GW) detectors—such as Laser Interferometer Space
Antenna (LISA) [1], TianQin [2], and Taiji [3] in the
2030s—comes the need to model sources in the millihertz
frequency range. A prime source for these future detectors
are extreme mass-ratio inspirals (EMRIs). These systems
consist of a massive black hole (MBH) primary with mass
M and a stellar-mass compact object secondary with mass
μ (e.g., a stellar-mass black hole or neutron star). These
space-based detectors will be sensitive to EMRIs with
mass ratios ϵ ¼ μ=M ∼ 10−4–10−7. Gravitational waves
from these systems are expected to stay in the LISA band
for months to years, with the secondary completing
∼1=ϵ ¼ 104–107 orbits spiraling around the primary
before merging under the influence of gravitational
radiation reaction. Accurately modeling these systems

through such a large number of orbital cycles to subradian
accuracy with methods efficient enough for parameter
estimation remains an open challenge but one that will
grant precise parameter estimation for MBHs, along with
some of the most sensitive probes for new physics beyond
general relativity [4–6].
In this work, we look at the subclass of these systems

which have zero eccentricity and misaligned orbital angular
momentum and primary spin. In the strong field regime this
will cause the orbital plane to rapidly precess around the
primary’s spin, ergodically filling (part of) a sphere, if we
were to ignore orbital evolution due the emission of
gravitational waves. Consequently, such systems are also
known as quasispherical inspirals. One probable EMRI
formation channel is the tidal disruption of a comparable
mass black hole binary by a nearby MBH which will result
in a circular and arbitrarily inclined inspiral by the time it
enters the LISA band [7–9]. While the primary EMRI
formation channel of direct capture is expected to produce
LISA band inspirals with eccentricity and inclination,
radiation reaction will cause an EMRI to circularize (except
right before the last stable orbit) [10] and cause its
inclination to slowly increase [11]. Thus, an EMRI with
any amount of inclination but low eccentricity is likely to
evolve into a quasispherical inspiral before plunge.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.

PHYSICAL REVIEW D 109, 084072 (2024)

2470-0010=2024=109(8)=084072(27) 084072-1 Published by the American Physical Society

https://orcid.org/0000-0003-4070-7150
https://orcid.org/0000-0002-0242-2464
https://orcid.org/0000-0003-0914-8645
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.084072&domain=pdf&date_stamp=2024-04-30
https://doi.org/10.1103/PhysRevD.109.084072
https://doi.org/10.1103/PhysRevD.109.084072
https://doi.org/10.1103/PhysRevD.109.084072
https://doi.org/10.1103/PhysRevD.109.084072
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


The leading-order behavior of quasispherical EMRIs
have been modeled by calculating the asymptotic fluxes at
infinity and through the horizon of the primary and relating
these to the averaged rate of change of energy, angular
momentum, and Carter constant of the system [12–14].
This same approach has recently been generalized to
inspirals with inclination and eccentricity [14]. While such
inspiral calculations are numerically efficient and may be
accurate enough for detection of loud EMRI signals, the
resulting adiabatic (0PA) inspirals do not reach the sub-
radian accuracy requirement needed to reach all of LISA’s
science goals [15].
Thus, one must understand the subleading order in mass-

ratio behavior and compute postadiabatic (1PA) inspirals.
This will require knowledge of the local force on the
secondary due to the presence of its own gravitational field,
i.e., its gravitational self-force (GSF). This is computed by
expanding the metric of the binary as the Kerr metric of the
primary plus perturbations which are expressed as a power
series of the small mass ratio ϵ [16–18]. Using a two-
timescale analysis, it has been determined that to reach
subradian accuracy across the inspiral, one will need to
know all first-order in the mass-ratio effects of the GSF as
well as the orbit averaged dissipative contribution from the
second-order in the mass-ratio GSF [19]. While second-
order results for Schwarzschild spacetime are now emerg-
ing [20–24], calculations for inspirals in Kerr spacetime are
likely still a few years away. As such, we do not include
them in this work, but they can be incorporated into our
computations once they are known. However, we use a
code that computes first-order GSF in Kerr spacetime for
both eccentric equatorial orbits [25] and generic orbits [26]
in the outgoing radiation gauge. We have adapted our code
to compute the first ever GSF results for spherical orbits.
In order to drive inspirals, we require a model for the

GSF that can be rapidly evaluated for any point in the
parameter space. This is typically done by calculating
the GSF at many points and then fitting or interpolating the
resulting data [27,28]. We opt to interpolate our self-force
data using Chebyshev polynomials, a technique which has
proven to be very effective for EMRI calculations [29,30].
We grid the parameter space on 18 × 9 Chebyshev nodes
for prograde orbits where the primary spin is 0.9M and for
inclination angles up to 45° with respect to the equatorial
plane, and we interpolate the data using Chebyshev
polynomials to subpercent accuracy.
With an interpolated model in hand, we can then

compute the inspiral trajectory using the method of
osculating geodesics (OG) [31,32]. We note that the OG
equations for generic Kerr inspirals derived in either
Ref. [29] or [32] become singular in the spherical case.
This is not a physical singularity, and in this work we derive
OG equations in this limit that are finite (see Appendix A).
In this paper we explicitly assume the eccentricity is always
zero so that the resulting inspiral model depends only on

spherical-geodesic, first-order GSF data. Neglecting terms
proportional to eccentricity in our model incurs an error
at 1PA order in the waveform phase, but this is acceptable
as we exclude other terms that contribute at this order,
such as the currently unknown second-order GSF. The
main goal for this work is not to produce a complete 1PA
inspiral model but to demonstrate how such a model can be
made computationally efficient without significant loss of
accuracy.
Using OG equations, it can take minutes to hours just

to compute a single inspiral, which is prohibitively slow
for LISA data analysis. This is due to the OG equations’
dependence on the rapidly oscillating orbital phases,
which forces a numerical solver to take small time steps
to resolve all ∼104–107 orbital cycles of a typical EMRI.
To overcome this, we employ the technique of near-
identity (averaging) transformations (NITs) to find equa-
tions of motion that average out the dependence on the
orbital phases while faithfully capturing the long-term
behavior of the binary. This framework was first sketched
out for generic EMRI systems and applied to eccentric
Schwarzschild inspirals in Ref. [33], hereafter paper I, and
then extended to equatorial, eccentric Kerr inspirals in
Ref. [29], hereafter paper II. In both cases, the resulting
inspirals retained subradian accuracy when compared to
the OG equations and could be computed in less than a
second. However, in both of these works, the resulting
inspirals were not parametrized in terms of Boyer-
Lindquist coordinate time t (the time of an asymptotic
observer), which is much more convenient for data
analysis as this is directly related to the time at the
detector. Overcoming this requires an additional interpo-
lation step which increases the overall computation time.
Following a procedure presented in Ref. [18], one can
parametrize the averaged equations of motion in terms of
t by performing an additional averaging transformation.
We apply this improved NIT to the case of quasispherical
Kerr inspirals and find that the inspiral calculation retains
subradian accuracy and subsecond computation time
while being parametrized in a form that is more conven-
ient for practical waveform production.
Much of the work done to model EMRIs to postadiabatic

order makes use of the two-timescale framework [18,19,34]
which has long been known to operate in an almost
equivalent way to NITs [35] when applied to the equations
of motion. Inspired by Ref. [18], we perform a two-
timescale expansion (TTE) on the NIT equations of motion
and show that the TTE equations of motion also produce
fast inspirals that are accurate to postadiabatic order but
with the drawback of doubling the number of equations to
numerically solve. On the other hand, these equations are
independent of the mass ratio and so, after being solved
once (in under a second), inspirals for any mass ratio can
be generated in a fraction of a second. This could provide
extra efficiency for an appropriately designed search or

LYNCH, VAN DE MEENT, and WARBURTON PHYS. REV. D 109, 084072 (2024)

084072-2



parameter estimation algorithm. The TTE equations of
motion can also be used in conjunction with the two-
timescale expansion of the field equations to produce
complete postadiabatic waveforms [23].
Unlike the OG equations, both the NIT and TTE

equations of motion cleanly separate the adiabatic and
postadiabatic contributions. As such, it is straightforward to
increase the overall accuracy of the inspiral by calculating
the adiabatic contributions from computationally cheaper,
and generally more accurate, gravitational wave flux
calculations and interpolating them to higher precision.
Since this is the leading-order contribution to the inspiral
evolution, it will need to be known with a fractional
accuracy of ∼ϵ [28,36]. We achieve this using a 18 × 19
Chebyshev grid which covers all inclinations and reaches a
fractional accuracy in the adiabatic pieces of ≲10−5. Using
these higher precision interpolants for the adiabatic pieces
along with the GSF model for the postadiabatic pieces
results in an improvement to the phase ranging from
10–104 radians, highlighting just how important high
precision flux calculations are to both adiabatic and
postadiabatic inspirals [14,37].
With our more accurate quasispherical inspiral model,

we examine the effects of the self-force on quasispherical
Kerr inspirals. We find that the evolution is consistent with
what was known at adiabatic order and that the postadia-
batic contributions of the first-order GSF become more
important as the inclination of the orbit increases.
This paper is organized as follows. In Sec. II, we

introduce spherical geodesic orbits before giving an over-
view of the method of osculating geodesics. In Sec. III, we
briefly review the gravitational self-force approach, discuss
the modifications made to the Kerr GSF code of Ref. [26]
for spherical orbits, and outline our interpolation scheme
for both the gravitational wave fluxes and the GSF. In
Sec. IV, we review the technique of NITs for generic EMRI
systems before describing an additional averaging trans-
formation used to obtain averaged equations of motion
parametrized by t. We then perform a two-timescale
expansion on these averaged equations of motion before
applying these frameworks to the case of quasispherical
inspirals. In Sec. V, we outline our numerical implementa-
tion for calculating and using these averaged equations of
motion. We demonstrate the results of this implementation
in Sec. V, where we start by comparing inspirals and
waveforms calculated using either OG, NIT, or TTE
equations of motion. We then show the effect of using
higher precision adiabatic pieces from flux calculations
before finally exploring the effects of the self-force across a
subsection of the spherical Kerr parameter space. We
conclude with some discussion in Sec. VII. We detail
how one can derive OG equations in the quasispherical
limit in Appendix A and how the phases used in the t
parametrized equations of motion relate to the waveform
phases in Appendix B.

Throughout this paper we work in geometrical units
where G ¼ c ¼ 1.

II. QUASISPHERICAL INSPIRALS AROUND
A ROTATING BLACK HOLE

In this section we describe the motion of a nonspinning
compact object of mass μ on a spherical orbit of Boyer-
Lindquist radius rp, with arbitrary inclination zp ¼ cos θp
in the Kerr spacetime under the influence of some arbitrary
force. We model the secondary as a point particle with a
position given in modified Boyer-Lindquist coordinates by
xαp ¼ ftp; rp; zp;ϕpg. Note that hereafter, we use a sub-
script “p” to denote a quantity evaluated at the particle’s
location. Later in this work, we will take this perturbing
force to be the self-force experienced by the secondary due
to its interaction with its own metric perturbation. We
denote the mass of the primary by M and parametrize its
spin by a ¼ jJj=M, where J is the angular momentum of
the black hole. The Kerr metric can then be written as

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ Σ

Δ
dr2

þ Σ
1 − z2

dz2 −
4Marð1 − z2Þ

Σ
dtdϕ

þ 1 − z2

Σ
ð2a2rð1 − z2Þ þ Σϖ2Þdϕ2; ð1Þ

where Δ ≔ r2 þ a2 − 2Mr, Σ ≔ r2 þ a2z2, and
ϖ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
. If a force acts upon the secondary, its

motion can be described by the forced geodesic equation

uβ∇βuα ¼ aα; ð2Þ

where uα ¼ dxα=dτ is the secondary’s four-velocity, ∇β is
the covariant derivative with respect to the Kerr metric, and
aα is the secondary’s four-acceleration. We seek to recast
Eq. (2) into a form that is useful for applying the near-
identity transformations. Before considering the forced
equation, it is useful to first examine the geodesic limit.

A. Geodesic motion and orbital parametrization

In the absence of any perturbing force, the secondary will
follow a geodesic, i.e.,

uβ∇βuα ¼ 0: ð3Þ

The symmetries of the Kerr spacetime allow for the
identification of integrals of motion given by

E ¼ −ut; ð4aÞ

Lz ¼ uϕ; ð4bÞ
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Q ¼ u2z þ z2p

�
Aþ Lz

2

1 − z2p
− u2z

�
; ð4cÞ

where E is the orbital energy per unit rest mass μ, Lz is the z
component of the angular momentum divided by μ,Q is the
Carter constant divided by μ2 [38], and A ¼ a2ð1 − E2Þ.
This definition of the Carter constant is related to another
common definition of the Carter constant, K, by

K ¼ Qþ ðLz − aEÞ2: ð5Þ
The geodesic equation can be written explicitly in terms

of these integrals of motion [38,39]:

�
drp
dλ

�
2

≔ Vr ¼ B2
p − Δpðr2p þKÞ ¼ 0; ð6aÞ

�
dzp
dλ

�
2

≔ Vz ¼ Q − z2pðAð1 − z2pÞ þ Lz
2 þQÞ

¼ ðz2p − z2−ÞðAz2p − z2þÞ; ð6bÞ

dtp
dλ

≔ fð0Þt ¼ ϖ2
p

Δp
Bp − a2Eð1 − z2pÞ þ aLz; ð6cÞ

dϕp

dλ
≔ fð0Þϕ ¼ a

Δp
Bp þ

Lz

1 − z2p
− aE; ð6dÞ

where B ¼ Eϖ2 − aLz, the radial potential Vr ¼ 0 for
spherical and circular orbits, and zþ > z− are the roots of
the polar potential Vz. We make use of (Carter-)Mino time λ
which is related to the secondary’s proper time τ by
dτ=dλ ¼ Σp, as this decouples the radial and polar equa-
tions [40]. While this is not strictly necessary in the
spherical case as there is no radial motion, using λ as
our time parameter allows us to take advantage of the
analytic solutions for generic Kerr geodesics derived in
Ref. [41], and it allows for a more uniform treatment with
paper II and the generic case in the future.
Rather than parametrize an orbit using the integrals of

motion J⃗ ¼ fE;Lz;Kg, we find it more convenient to
work with the constants P⃗ ¼ frp; e ¼ 0; xg. Here, x is a
measure of the orbital inclination given by x ¼ cos θinc. The
inclination angle θinc is related to θmin (the minimum value
of θp measured with respect to the primary’s spin axis) by
θinc ¼ π=2 − sgnðLzÞθmin. Explicit relationships between
the integrals of motion J⃗ in terms of P⃗ for spherical orbits
are too lengthy to be expressed here, but they were first
derived in Ref. [12] and can be found in the KerrGeodesics

package as part of the Black Hole Perturbation Toolkit [42].
There are other common choices for inclination in

the literature such as the inclination angle ι [11–13,43]
given by cos ι ¼ Lz=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lz

2 þQ
p

. Both inclination angles
smoothly parametrize all inclinations between prograde

equatorial motion where x ¼ 1 ¼ cos ι to retrograde equa-
torial motion where x ¼ −1 ¼ cos ι. However, we opt to
use x as it has a simple relation to the roots of the polar
potential Vz via

z− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
; ð7Þ

zþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ Lz

2=x2
q

: ð8Þ

It is worth noting that not all values of frp; xg
correspond to bound geodesics, and we denote the posi-
tion of the innermost stable spherical orbit (ISSO) as
rISSOða; xÞ [10,44].
In order to later apply the near-identity (averaging)

transformations, it will be useful to employ action-angle
formulation to parametrize the geodesic motion [41,45,46].
In this description the orbital phase q⃗ ¼ fqzg is such that
the geodesic equations can written in the form

dPj

dλ
¼ 0 and ð9aÞ

dqz
dλ

¼ ϒð0Þ
z ðP⃗Þ; ð9bÞ

where ϒz is the Mino time fundamental polar frequency.
This is known analytically [41] and is given by

ϒð0Þ
z ¼ πzþ

2KðkzÞ
; ð10Þ

where kz ¼ Az2−=z2þ, K is the complete elliptic integral
of the first kind with KðmÞ ¼ Fðπ=2jmÞ, and F is the
incomplete elliptic integral of the first kind given by

FðϕjmÞ ¼
Z

ϕ

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m sin2 θ

p : ð11Þ

One can also analytically express the polar coordinate z
in terms of r, x, and qz via

zpðqzÞ ¼ z−sn

�
KðkzÞ

2ðqz þ π
2
Þ

π

����kz
�
; ð12Þ

where sn is the Jacobi elliptic sine function given by
snðujmÞ ¼ sinðamðujmÞÞ and the Jacobi amplitude am is
the inverse function of F.
At this point we note that it is also common in the

literature [47,48] to express this polar coordinate in terms
of a quasi-Keplerian angle χz, via

zpðχzÞ ¼ z− cosðχzÞ: ð13Þ

However, the rate of change of χz depends on χz itself,
which will be inconvenient in later sections as we look to
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derive averaged equations of motion that have no depend-
ence on the orbital phases.

B. Osculating geodesics for quasispherical inspirals

To go beyond the geodesic orbits and describe quasi-
spherical inspirals, we make use of the method of osculat-
ing orbital elements (or osculating geodesics) [31,32] to
recast the equations of motion of a body under the influence
of a force obeying Eq. (2).
We chose a set of parameters that uniquely specify a

geodesic orbit, such as the integrals of motion P⃗, along
with the initial values of the orbital phases of the
geodesic orbit q⃗0, and designate them as a set of “orbital
elements” I⃗ ¼ fP⃗; q⃗0g.1 For spherical geodesics, we chose
I⃗ ¼ ðrp; x; qz;0Þ. For accelerated orbits, these orbital ele-
ments are promoted from constants to functions of time.
Here we are implicitly assuming that the eccentricity e

stays zero throughout the inspiral of an initially spherical
system. While this has been shown to be valid at 0PA order
[11,49], at 1PA this becomes a subtle issue [50,51].
Whether the eccentricity remains zero throughout the
postadiabatic evolution is intimately related to the exact
setup for the calculation of other postadiabatic corrections
such as the second-order fluxes [21]. For the sake of
simplicity, and to have an inspiral model that depends only
on spherical-geodesic first-order GSF data, in this paper we
explicitly assume the eccentricity is always zero. In doing
so, we are neglecting terms that contribute at the same order
as the currently unknown second-order GSF.
To produce waveforms, we will also require the evolu-

tion of certain “extrinsic quantities” S⃗ ¼ ftp;ϕpg, which
are the secondary’s Boyer-Lindquist time and azimuthal
coordinates, respectively. The combined osculating geo-
desic evolution equations take the following form:

dPj

dλ
¼ FjðP⃗; q⃗Þ; ð14aÞ

dqi
dλ

¼ ϒð0Þ
i ðP⃗Þ þ fiðP⃗; q⃗Þ; ð14bÞ

dSk
dλ

¼ fð0Þk ðP⃗; q⃗Þ; ð14cÞ

where fi ¼ dq0;i=dλ.
For generic Kerr inspirals, this was implemented in

Ref. [32] using quasi-Keplerian angles (e.g., χ) as the
orbital phases. In order to derive averaged equations of
motion, we implemented an alternative version in paper II
[29] which makes use of geodesic action angles q⃗ for the
orbital phases and the integrals of motion. In Appendix A,

we derive the explicit expressions for spherical inspirals.
Combining these modified evolution equations with the rest
of the evolution equations derived in paper II [29] gives us
equations of motion for quasispherical inspirals under the
influence of the gravitational self-force with the form

drp
dλ

¼ ϵFð1Þ
r ðrp; x; qzÞ þ ϵ2Fð2Þ

r ðrp; x; qzÞ þOðϵ3Þ; ð15aÞ

dx
dλ

¼ ϵFð1Þ
x ðrp; x; qzÞ þ ϵ2Fð2Þ

x ðrp; x; qzÞ þOðϵ3Þ; ð15bÞ

dqz
dλ

¼ ϒð0Þ
z ðrp; xÞ þ ϵfð1Þz ðrp; x; qzÞ þOðϵ2Þ; ð15cÞ

dt
dλ

¼ fð0Þt ðrp; x; qzÞ; ð15dÞ

dϕ
dλ

¼ fð0Þϕ ðrp; x; qzÞ: ð15eÞ

III. GRAVITATIONAL SELF-FORCE FOR
QUASISPHERICAL KERR INSPIRALS

The gravitational self-force approach consists of expand-
ing the metric of the binary around the metric of the

primary, i.e., gμν ¼ ḡμν þ ϵhð1Þμν þ ϵ2hð2Þμν þ � � � where ḡμν is
the Kerr metric and the hðnÞμν are the nth order perturbations
to the spacetime due to the presence of the secondary.
Using matched asymptotic expansions, one can then derive
how the interaction between these metric perturbations and
their source effects the motion of the secondary [17].

A. Gravitational self-force for spherical orbits

This work represents the first calculation of the gravi-
tational self-force for spherical orbits in Kerr spacetime.
While the gravitational self-force had been previously
calculated for generic (eccentric and inclined) orbits in
Kerr in [26], building on previous developments in [25,52–
54], and the scalar self-force for spherical orbits had been
calculated in [55], the case of the gravitational self-force for
spherical orbits has not been explored before now.
To calculate the gravitational self-force for spherical

orbits, we follow the same method as was used in the
generic orbit case in [26], which can be adapted without
major adjustments. We summarize our method here. We
start by solving the Teukolsky equation for the Weyl scalar
ψ4 in the frequency domain using a numerical implemen-
tation [56,57] of the semianalytical Mano-Suzuki-Takasugi
method [58,59]. From ψ4, we obtain the Hertz potential by
algebraically inverting the fourth-order differential equa-
tion relating it to ψ4 [54,60] mode by mode. From the
modes of the Hertz potential we can reconstruct the modes
of the local metric perturbation in the outgoing radiation
gauge [61–63], from which, in turn, we obtain the modes of

1Note that for inspiral trajectories, the orbital elements q⃗0ðλÞ
are different quantities from the values of q⃗ evaluated at λ ¼ 0,
i.e., q⃗ð0Þ.
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the gravitational self-force. Initially these modes are
expressed in spin-weighted spheroidal harmonics and their
derivatives. To facilitate calculating the regular part of the
GSF modes using mode-sum regularization [64–67], the
spheroidal harmonics are first projected to spin-weighted
spherical harmonics using the method introduced in [12]
and, in turn, are projected onto scalar spherical harmonics
[25,26,54]. The mode sum is accelerated by a tail fitting
procedure leading to an exponential convergence of the
mode sum [54].
The above metric reconstruction procedure captures

most of the metric perturbation, except for a perturbation
of the background Kerr spacetime’s mass and spin, and a
purely gauge contribution. The mass and spin completions
are directly related to the energy and angular momentum of
the orbit [68,69]. The gauge completion is more involved.
The version of the outgoing radiation gauge used for the
GSF calculation, the no-string gauge [53], has a distribu-
tional singularity on the sphere of the orbit. Recently,
Ref. [70] proposed a generalization of our method that
produces the metric perturbation in a gauge that is
sufficiently smooth to allow it to be used as a source for
a second-order calculation. Here we strive for a less lofty
goal and add the minimal gauge completion needed to
ensure orbit averaged observables like the frequency shifts
are invariant. This involves fixing a two-parameter gauge
freedom representing a rescaling of time and time-depen-
dent coordinate rotations inside the orbit. In [70] a nice
derivation of the needed coefficients was given. However,
for this work we used an implementation [71] of a
generalization of the method used for the mass and spin
completion in Ref. [68]. The gauge vector representing this
freedom is given by

ξμ ¼ fαt; 0; 0; βtg; ð16Þ

with the gauge fixing parameters α and β given by

α ¼ 1

2πϒt

Z
2π

0

IαðzpÞ
3Δ2

pΣ2
pðr2p þ a2Þð1 − z2pÞ2

dqz; ð17Þ

β ¼ 1

2πϒt

Z
2π

0

IβðzpÞ
3arpΔ2

pΣ2
pðr2p þ a2Þð1 − z2pÞ2

dqz; ð18Þ

where the numerators of the integrands Iα and Iβ are given
in Appendix C, and Δp and Σp denote Δ and Σ evaluated at
the particle location.
It is useful to split the self-force into dissipative (time-

antisymmetric) and conservative (time-symmetric) contri-
butions [67]. The dissipative pieces cause the orbit to shrink
until the secondary plunges into the primary. They also
have a small effect on the orbital inclination, causing the
orbit to become more inclined over time [11–13,43]. To
produce adiabatic waveforms, we only require knowledge
of the orbit averaged dissipative pieces of the first-order

self-force. These can be related, via balance laws, to the
fluxes of GWs to infinity and down the event horizon. Since
calculating fluxes avoids regularization of the metric
perturbation, adiabatic inspirals are typically calculated
via flux balance laws [10,14,37,72,73]. The conservative
pieces have more subtle effects on the inspiral, such as
altering the rate of periapsis advance, the rate of nodal
precession, and the location of the innermost stable circular
orbit [74–80].
Computing postadiabatic inspirals requires knowledge

of both the dissipative and conservatives pieces of the first-
order self-force and the orbit average piece of the second-
order self-force [19]. There are as yet no calculations of
the latter in Kerr spacetime, so we will make do with only
the first-order gravitational wave fluxes and the first-order
self-force in this work, though this means that the resulting
“postadiabatic” inspirals and waveforms will be gauge
dependent until the missing second-order contributions are
added [29].
In order to drive the OG equations of motion to calculate

the inspiral, we require a model for the GSF that can be
rapidly evaluated at each time step during the inspiral. This
is typically done by tiling the parameter space with GSF
data, which are then either fitted to a model or interpolated.
While this has been done in a variety of ways for eccentric
orbits in Schwarzschild [27,28] and Kerr [29], we will now
describe the first interpolated GSF model for quasispherical
Kerr inspirals.

B. Interpolated gravitational wave fluxes
for quasispherical Kerr inspirals

To introduce our interpolation procedure, we will first
interpolate the energy and angular momentum fluxes for
spherical orbits. Since flux calculations, which can be
obtained directly from ψ4, are significantly cheaper than
calculating the GSF, it is much more feasible to densely tile
a large section of the parameter space with flux data. This
in turn will result in more accurate interpolation of the
leading-order, adiabatic effects. It will also allow us to carry
out consistency checks on our GSF model by comparing
the fluxes with the orbit averaged GSF.
We start by fixing the value of the spin parameter of the

primary, which we choose to be a ¼ 0.9M. This reduces
our parameter space to two parameters: the orbital radius rp
and the inclination x. We then define a parameter y using
rp and the position of the innermost stable spherical orbit
rISSO. We choose y to be

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rISSOða; xÞ

rp

s
: ð19Þ

Tiling the parameter space with y instead of rp will
concentrate more points near the ISSO where the fluxes and
the GSF experience the most variation. We let y range from
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0 to 1 and x range from −1 to 1, thus covering all
inclinations for both prograde and retrograde orbits.
This parametrization is convenient when using

Chebyshev polynomials of the first kind, where the order
n polynomial is defined by TnðcosϑÞ ≔ cosðnϑÞ. The
Chebyshev nodes are the roots of these polynomials,
and the location of the kth root of the nth polynomial is
given by

Nðn; kÞ ¼ cos

�
2k − 1

2n
π

�
: ð20Þ

We then calculate the fluxes on a 18 × 19 grid of
Chebyshev nodes, with the y values given by the roots
of the 18th-order Chebyshev polynomial and the x values
given by the roots of the 19th-order Chebyshev polynomial.
The size of this grid was chosen empirically until the
interpolant reached the desired accuracy across the param-
eter space.
At each point on this grid, we calculate the energy and

angular momentum flux both at infinity and at the event
horizon. From these, one can calculate the leading-order
orbit averaged rate of change of the energy and angular
momentum of the secondary via the following balance laws
[40,81–84]:

�
dE
dt

�
¼ −ϵðF∞

E þ FH
E Þ þOðϵ2Þ; ð21aÞ

�
dLz

dt

�
¼ −ϵðF∞

Lz
þ FH

Lz
Þ þOðϵ2Þ; ð21bÞ

where the orbit average of a quantity A is given by

hAiðP⃗Þ ¼ 1

2π

Z
2π

0

AðP⃗; qzÞdqz: ð22Þ

We could interpolate the rates of change of energy and
angular momentum, but we find it more convenient to work
with the orbital elements rp and x. As such, we find their
rates of change via the chain rule:

�
drp
dt

�
¼ ∂rp

∂E

�
dE
dt

�
þ ∂rp
∂Lz

�
dLz

dt

�
þOðϵ2Þ

¼ ϵΓð1Þ
r þOðϵ2Þ; ð23aÞ

�
dx
dt

�
¼ ∂x

∂E

�
dE
dt

�
þ ∂x
∂Lz

�
dLz

dt

�
þOðϵ2Þ

¼ ϵΓð1Þ
x þOðϵ2Þ: ð23bÞ

The partial derivatives can be found using the analytic
expressions for Eðrp; xÞ and Lzðrp; xÞ from Ref. [12] to
construct the Jacobian

J ¼

2
64

dE
drp

dE
dx

dLz
drp

dLz
dx

3
75: ð24Þ

This can then be inverted to give

J−1 ¼

2
64

drp
dE

drp
dLz

dx
dE

dx
dLz

3
75 ¼ 1

det J

2
64

dLz
dx − dE

dx

− dLz
drp

dE
drp

3
75: ð25Þ

To improve the accuracy of our interpolation, we rescale

the data for Γð1Þ
r and Γð1Þ

x by a factor of r3pð1 − yÞ and

r11=2p ð1 − x2Þ, respectively. This scaling comes from the

leading-order PN terms for Γð1Þ
r and Γð1Þ

x , times a term that is
zero for the limiting cases of either the separatrix or the
equatorial plane, respectively. Finally, we take a discrete
cosine transformation of the data on our Chebyshev grid to
obtain the Chebyshev polynomial coefficients Cij

rp=x
.

Summing these coefficients together with Chebyshev

polynomials gives us the following interpolants for Γð1Þ
r

and Γð1Þ
x :

Γð1Þ
r ¼ 1

r3pð1 − yÞ
X17
i¼0

X18
j¼0

Cij
pTið2y − 1ÞTjðxÞ; ð26aÞ

Γð1Þ
x ¼ 1

r11=2p ð1 − x2Þ
X17
i¼0

X18
j¼0

Cij
x Tið2y − 1ÞTjðxÞ: ð26bÞ

Using the largest coefficient for i ¼ 17 and j ¼ 18 to
estimate the relative error, we infer that these interpolants
should have a relative error of ∼10−6.
To test the accuracy of this interpolation, we

compare the interpolants to data on a grid that were not
used for the interpolation while using the relations F∞

E þ
FH

E ¼ −ð∂E=∂pÞΓð1Þ
p − ð∂E=∂xÞΓð1Þ

x and F∞
Lz

þ FH
Lz

¼
−ð∂Lz=∂pÞΓð1Þ

p − ð∂Lz=∂xÞΓð1Þ
x . In Fig. 1, we see that

the interpolants match the energy and angular momentum
fluxes to a relative error of ≲10−5, with the exception of
points very close to the ISSO. In principle, this model
interpolates out to rp ¼ ∞, and the leading PN scaling
should give it the right behavior in the weak field. We
would expect the model to retain a comparable level of
accuracy at large rp, but it has not been tested beyond rp ∼
30 as we are more interested in the strong field dynamics.

C. Interpolated gravitational self-force model
for quasispherical Kerr inspirals

We now use a similar interpolation scheme to create a
model for the gravitational self-force that is continuous
throughout the parameter space and fast to evaluate, which
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can be used with the osculating geodesic equations to
describe quasispherical Kerr inspirals.
However, given the cost of our GSF code—the compu-

tation of the GSF on a single geodesic can take hundreds of
CPU hours—we restrict ourselves to a 2D slice of the
EMRI parameter space using only a few hundred points.
Once again, we restrict a ¼ 0.9M and let y range from
ymin ¼ 0.1 to ymax ¼ 1, but instead of x, we opt to tile in
z2− ¼ 1 − x2 and let z2−;min ¼ 0 to z2−;max ¼ 0.5. This allows

us to cover inclination angles in the range 0° ≤ θinc ≤ 45°,
in a way that is easy to rescale for Chebyshev interpolation.
We define parameters u and v, which cover this

parameter space as they range from ð−1; 1Þ,

u ≔
y − ðymin þ ymaxÞ=2
ðymin − ymaxÞ=2

; ð27aÞ

v ≔
z2− − ðz2−;min þ z2−;maxÞ=2

ðz2−;min − z2−;maxÞ=2
: ð27bÞ

We then calculate the GSF on a 18 × 9 grid of
Chebyshev nodes, with the u values given by the roots
of the 18th-order polynomial and the v values given by the
roots of the 9th-order polynomial. At each point on our
grid, we Fourier decompose each component of the force
with respect to the polar action angle qz. As inclination
increases, more and more Fourier modes of the GSF
become relevant. However, the number of relevant modes
stays finite even for polar orbits. To build a Chebyshev
interpolant, we need to resolve all Fourier modes at all grid
points. Resolving the higher-order harmonics at low
inclination grid points is numerically challenging and
therefore computationally expensive. This is the main
reason for limiting the range of inclinations to 0° ≤ θinc ≤
45° as this limits the number of Fourier modes that need to
be resolved.
To smooth the behavior of the force near the separatrix

and improve the accuracy of our interpolation, we then
multiply the data for each Fourier coefficient by a factor of
ð1 − yÞ2. Next, we use Chebyshev polynomials to inter-
polate each Fourier coefficient across the ðu; vÞ grid. We
then sum the modes to reconstruct our interpolated gravi-
tational self-force model:

aμ ¼
X24
κ¼0

Aκ
μðy; z2−Þ cosðκqzÞ þ Bκ

μðy; z2−Þ sinðκqzÞ
ð1 − yÞ2 ; ð28aÞ

Aκ
μðy; eÞ ¼

X17
i¼0

X8
j¼0

Aκij
μ TiðuÞTjðvÞ; ð28bÞ

Bκ
μðy; eÞ ¼

X17
i¼0

X8
j¼0

Bκij
μ TiðuÞTjðvÞ: ð28cÞ

We note that this choice of rescaling forces each
component to become singular at the ISSO, and while
the components of the GSF change rapidly as one
approaches the ISSO, we still expect them to be finite at
the ISSO. A greater understanding of the analytic structure
of the GSF in this region would greatly improve this and
any future interpolated GSF models.
We also note that the GSF should satisfy the orthogon-

ality condition with the geodesic four-velocity, i.e.,

FIG. 1. Relative error in the rate of energy (a) and angular
momentum (b) loss between the interpolated fluxes and the fluxes
calculated with a grid of verification points that were not used for
the interpolation. The white dots indicate the locations of the data
points that were interpolated to produce the model, and the green
crosses indicate the positions of verification data. The relative
error is always < 10−5 with the exception of orbits that are very
close to the ISSO.
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aμuμ ¼ 0. Interpolation will bring with it a certain amount
of error which can cause this condition to be violated. Since
the OG equations are derived assuming this condition to be
true [29,32], we project the force so that this condition is
always satisfied, i.e.,

a⊥μ ¼ aμ þ aνuνuμ: ð29Þ

To verify the accuracy of our interpolated model, we
employ the flux balance laws to compare the local energy
and angular momentum lost by the secondary against the
energy and angular momentum fluxes radiated at infinity
and down the horizon:

ϒð0Þ
τ

ϒð0Þ
t

ha⊥t i ¼ ðFE;∞ þ FE;HÞ; ð30aÞ

ϒð0Þ
τ

ϒð0Þ
t

ha⊥ϕ i ¼ −ðFLz;∞ þ FLz;HÞ; ð30bÞ

where ϒð0Þ
t ¼ hfð0Þt i and ϒð0Þ

τ ¼ hΣpi are the fundamental
Mino time frequencies for the secondary’s Boyer-Lindquist
time coordinate and proper time with analytic expressions
found in Ref. [41] and Appendix C of Ref. [46],
respectively.
Figure 2 shows the relative error in the fluxes across the

parameter space. The white circles indicate the points used
to generate the interpolated GSF model, whereas the green
crosses indicate the points in the parameter space where the
fluxes were calculated and thus where the comparisons
were made. We find that the relative error in the fluxes only
rises to ∼10−2 when close to the ISSO, and it is typically of
the order ∼10−3 − 10−5. This is comparable to previous
methods which required tens of thousands of points to
achieve the same level of accuracy [27,28]. While this
would not be sufficiently accurate for LISA data analysis,
which would require fluxes accurate to ∼ϵ, such an
interpolating error may be permissible for the postadiabatic
contributions of the first-order GSF [28,36]. We will
improve this model by incorporating the higher precision
flux interpolants in Sec. VI C.
We can now use this model in conjunction with the OG

equations of motion (15) to calculate inspiral trajectories.
However, we find these trajectories take minutes to hours to
compute, due to the need to resolve hundreds of thousands
of orbital cycles. We will now look to leverage averaging
transformations which can remove the dependence of the
orbital phases from the equations of motion while retaining
the accuracy required to produce postadiabatic EMRI
waveforms.

IV. AVERAGING TECHNIQUES FOR EMRI
EQUATIONS OF MOTION

NITs are a well-known technique in applied mathematics
and celestial mechanics [35]. This approach involves
making small transformations to the equations of motion,
such that the short timescale physics is averaged over, while
retaining information about the long-term evolution of a
system. In paper I [33], these transformations were derived

FIG. 2. Relative error in the rate of energy (a) and angular
momentum (b) loss between the asymptotic fluxes and the
interpolated GSF model. The white dots indicate the locations
of the data points the model is interpolating. The green crosses
indicate the locations of the flux calculations and thus where the
comparisons are made. The relative error only rises to ∼10−2
when close to the ISSO and is otherwise typically of the order
∼10−3–10−5.
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for a generic EMRI system, which we review in
Sec. IVA below.
As we have seen above, for Kerr geodesics, it is helpful

to parametrize the motion by Mino time, λ. However, for
data analysis one requires the final waveforms to be
parametrized by the time at the detector. Naively, trans-
forming back to Boyer-Lindquist time t requires either
numerically interpolating λðtÞ or adding orbital timescale
oscillations back into our NIT equations of motion. The
former additional step is unwelcome in the pursuit of fast
waveform generation, and the latter would remove all the
benefit of the averaging transformation. Fortunately, it was
noted in Ref. [18] that these oscillations can be averaged
out if one performs an additional averaging transformation.
We outline the details of this procedure in Sec. IV B.
NITs are not the only averaging procedure that can be

used to accelerate the inspiral calculation. In Sec. IV C we
present a two-timescale expansion of the equations of
motion. One advantage of this approach is that the adiabatic
and postadiabatic inspirals can be computed offline. Given
a particular mass ratio, the true inspiral can then be
computed from interpolating functions as a very fast online
step. It may be advantageous to design data analysis
pipelines to leverage this additional speedup.
We conclude this section by presenting averaged equa-

tions of motion for the case of quasispherical Kerr inspirals
in Sec. IV D.

A. Review of near-identity transformations
for generic EMRI systems

The NIT variables P̃j, q̃i, and S̃k, are related to the OG
variables Pj, qi, and Sk via

P̃j ¼ Pj þ ϵYð1Þ
j ðP⃗; q⃗Þ þ ϵ2Yð2Þ

j ðP⃗; q⃗Þ þOðϵ3Þ; ð31aÞ

q̃i ¼ qi þ ϵXð1Þ
i ðP⃗; q⃗Þ þ ϵ2Xð2Þ

i ðP⃗; q⃗Þ þOðϵ3Þ; ð31bÞ

S̃k ¼ Sk þ Zð0Þ
k ðP⃗; q⃗Þ þ ϵZð1Þ

k ðP⃗; q⃗Þ þOðϵ2Þ: ð31cÞ

Here, the transformation functions YðnÞ
j , XðnÞ

i , and ZðnÞ
k

are required to be smooth, periodic functions of the orbital
phases q⃗. At leading order, Eq. (31) are identity trans-
formations for Pk and qi but not for Sk due to the presence

of a zeroth-order transformation term Zð0Þ
k .

The inverse transformations can be found for Pk and qi
by requiring that their composition with the transformations
in Eq. (31) must give the identity transformation. To first
order in ϵ, this gives us

Pj ¼ P̃j − ϵYð1Þ
j ð ⃗P̃; ⃗q̃Þ þOðϵ2Þ; ð32aÞ

qi ¼ q̃i − ϵXð1Þ
i ð ⃗P̃; ⃗q̃Þ þOðϵ2Þ: ð32bÞ

It will be useful to decompose various functions into
Fourier series where we use the convention

AðP⃗; q⃗Þ ¼
X
κ⃗∈ZN

Aκ⃗ðP⃗Þeiκ⃗·q⃗; ð33Þ

where N is the number of orbital phases. Based on this, we
can split the function into an averaged piece hAiðP⃗Þ and an
oscillating piece

ĂðP⃗; q⃗Þ ¼ AðP⃗; q⃗Þ − hAiðP⃗Þ ¼
X
κ⃗≠0⃗

Aκ⃗ðP⃗Þeiκ⃗·q⃗: ð34Þ

Using the above transformations along with the equations
of motion, and working order by order in ϵ, we

can choose values for the transformation functions Yð1Þ
j ;

Yð2Þ
j ; Xð1Þ

i ; Xð2Þ
i ; Zð0Þ

k , and Zð1Þ
k such that the resulting equa-

tions of motion for P̃j; q̃i, and S̃k take the following form:

dP̃j

dλ
¼ ϵF̃ð1Þ

j ð ⃗P̃Þ þ ϵ2F̃ð2Þ
j ð ⃗P̃Þ þOðϵ3Þ; ð35aÞ

dq̃i
dλ

¼ ϒð0Þ
i ð ⃗P̃Þ þ ϵϒð1Þ

i ð ⃗P̃Þ þOðϵ2Þ; ð35bÞ

dS̃k
dλ

¼ ϒð0Þ
k ð ⃗P̃Þ þ ϵϒð1Þ

k ð ⃗P̃Þ þOðϵ2Þ: ð35cÞ

Crucially, these equations of motion are now indepen-
dent of the orbital phases q⃗. Deriving the relationship

between the transformed forcing functions, F̃ð1Þ
j ; F̃ð2Þ

j ;ϒð0Þ
α ,

and ϒð1Þ
α , and the original forcing functions is quite an

involved process with several freedoms and choices, each
with its own merits and drawbacks. This is discussed at
length in paper I, so for brevity we will summarize the
results and the particular choices we have made in this
work. The transformed forcing functions are related to the
original functions by

F̃ð1Þ
j ¼hFð1Þ

j i; ð36aÞ

ϒð1Þ
i ¼hfð1Þi i; ð36bÞ

ϒð0Þ
k ¼hfð0Þk i; ð36cÞ

F̃ð2Þ
j ¼ hFð2Þ

j i þ
�
∂Y̆ð1Þ

j

∂q̃i
f̆ð1Þi

�
þ
�
∂Y̆ð1Þ

j

∂P̃k
F̆ð1Þ
k

�
; ð36dÞ

ϒð1Þ
k ¼ −

�
∂f̆ð0Þk

∂P̃j
Y̆ð1Þ
j

�
−
�
∂f̆ð0Þk

∂q̃i
X̆ð1Þ
i

�
: ð36eÞ

Note that since we currently lack second-order in mass-
ratio contributions, we will set hFð2Þ

j i ¼ 0. In deriving these
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equations of motion, we have constrained the oscillating
pieces of the NIT transformation functions to be

Y̆ð1Þ
j ≡X

κ⃗≠0⃗

i

κ⃗ · ϒ⃗ð0Þ F
ð1Þ
j;κ⃗ e

iκ⃗·q⃗; ð37Þ

X̆ð1Þ
i ≡X

κ⃗≠0⃗

�
i

κ⃗ · ϒ⃗ð0Þ f
ð1Þ
i;κ⃗ þ 1

ðκ⃗ · ϒ⃗ð0ÞÞ2
∂ϒð0Þ

i

∂Pj
Fð1Þ
j;κ⃗

�
eiκ⃗·q⃗;

ð38Þ

and Z̆ð0Þ
k is found by solving

f̆ð0Þk þ ∂Z̆ð0Þ
k

∂q̃i
ϒð0Þ

i ¼ 0: ð39Þ

This equation is satisfied by the oscillating pieces for the
analytic solutions for the geodesic motion of t and ϕ,

Z̆ð0Þ
k ¼ −S̆k;rðqrÞ − S̆k;zðqzÞ: ð40Þ

We have chosen the averaged pieces hYð1Þ
j i¼ hYð2Þ

j i¼
hXð1Þ

i i¼ hXð2Þ
i i¼ hZð0Þ

k i¼ hZð1Þ
k i¼ 0 for simplicity, though

one could make other choices like in Ref. [18]. In order to
generate waveforms, one only needs to know the trans-
formations in Eq. (31) to zeroth order in the mass ratio, i.e.,

Pj ¼ P̃j þOðϵÞ; ð41aÞ

qi ¼ q̃i þOðϵÞ; ð41bÞ

Sk ¼ S̃k − Zð0Þ
k ð ⃗P̃; ⃗q̃Þ þOðϵÞ: ð41cÞ

Furthermore, to be able to directly compare between OG
and NIT inspirals, we will need to match their initial
conditions to sufficient accuracy. To maintain an overall
phase difference of OðϵÞ throughout an inspiral, this
requires the transformation of the Pj’s in Eq. (31a) to
linear order in ϵ, while it is sufficient to know the rest of
Eq. (31) to zeroth order.

B. Averaging transformations for motion parametrized
by Boyer-Lindquist coordinate time

Solving the above equations results in solutions for ˜P⃗, ˜q⃗,

and ˜S⃗ as functions of Mino time λ. While this would include
tðλÞ, the transformation to λðtÞ is nontrivial, and in practice,
it is done via interpolation, which can be costly for long
inspirals. It would be significantly more convenient for the
solutions to be functions of t from the start so that one can
produce waveforms for data analysis without this post-
processing step. This can be accomplished for the OG
equations by simply using the chain rule:

dPj

dt
¼ 1

fð0Þt ðP⃗; q⃗Þ
ðϵFð1Þ

j ðP⃗ÞÞ; ð42aÞ

dqi
dt

¼ 1

fð0Þt ðP⃗; q⃗Þ
ðϒiðP⃗Þ þ ϵfiðP⃗; q⃗ÞÞ; ð42bÞ

dϕ
dt

¼ 1

fð0Þt ðP⃗; q⃗Þ
ðfð0Þϕ ðP⃗; q⃗ÞÞ: ð42cÞ

Notice that we have one less equation of motion to solve.
However, using the same approach to the NIT equations of
motion results in

dP̃j

dt
¼ 1

fð0Þt ðP⃗; q⃗Þ
ðϵF̃ð1Þ

j ð ⃗P̃Þ þ ϵ2F̃ð2Þ
j ð ⃗P̃ÞÞ; ð43aÞ

dq̃i
dt

¼ 1

fð0Þt ðP⃗; q⃗Þ
ðϒið ⃗P̃Þ þ ϵϒð1Þ

i ð ⃗P̃ÞÞ; ð43bÞ

dϕ̃
dt

¼ 1

fð0Þt ðP⃗; q⃗Þ
ðϒϕð ⃗P̃Þ þ ϵϒð1Þ

ϕ ð ⃗P̃ÞÞ: ð43cÞ

As we can see, we have now reintroduced a dependence
on the orbital phases q⃗, defeating the purpose of our
original NIT. Thankfully, as outlined in Ref. [18], these
oscillations can also be averaged out by performing another
transformation:

Pj ¼ P̃j þ ϵΠð1Þ
j ð ⃗P̃; ⃗q̃Þ þ ϵ2Πð2Þ

j ð ⃗P̃; ⃗q̃Þ þOðϵ3Þ; ð44aÞ

φα ¼ Q̃α þ Δφα þ ϵΦð1Þ
α ð ⃗P̃; ⃗q̃Þ þOðϵ2Þ; ð44bÞ

where Q⃗ ¼ f ⃗q̃; ϕ̃g, Δφα ¼ Ωð0Þ
α ð ⃗P̃ÞΔtð0Þ, and Ωð0Þ

α is the
Boyer-Lindquist fundamental frequency of the tangent
geodesic.
To obtain the equations of motion for Pj and φi, we take

the time derivative of Eq. (44), substitute in the expression
for the NIT equations of motion, and then use the inverse
transformation of Eq. (44) to ensure that all functions are
expressed in terms of P⃗ and ⃗q̃ and expanding order by order

in ϵ. We then choose the oscillatory functions Δt, Φð1Þ
i ,

Πð1Þ
j , and Πð2Þ

j to cancel out any oscillatory terms that
appear at each order in ϵ.
This results in averaged equations of motion that take the

following form:

dPj

dt
¼ ϵΓð1Þ

j ðP⃗Þ þ ϵ2Γð2Þ
j ðP⃗Þ þOðϵ3Þ; ð45aÞ

dφα

dt
¼ Ωð0Þ

α ðP⃗Þ þ ϵΩð1Þ
α ðP⃗Þ þOðϵ2Þ: ð45bÞ
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These equations of motion are related to the Mino time
averaged equations of motion, Eq. (35), where the adiabatic
terms are given by

Γð1Þ
j ¼ F̃ð0Þ

j

ϒð0Þ
t

; ð46aÞ

Ωð0Þ
α ¼ ϒð0Þ

α

ϒð0Þ
t

; ð46bÞ

and the postadiabatic terms are given by

Γð2Þ
j ¼ 1

ϒt

�
F̃ð2Þ
j þ F̃ð1Þ ∂

∂Pj
hΠð1Þ

j i

− hfð0Þt Πð1Þ
k i ∂Γ

ð1Þ
j

∂Pk
−ϒð1Þ

t Γð1Þ
j

�
; ð47aÞ

Ωð1Þ
α ¼ 1

ϒð0Þ
t

�
ϒð1Þ

α þ F̃ð1Þ
j

�
∂Δφα

∂Pj

�

− hfð0Þt Πð1Þ
k i ∂Ω

ð0Þ
α

∂Pk
−ϒð1Þ

t Ωð1Þ
i

�
: ð47bÞ

This constrains the oscillating pieces of our transforma-
tion to be

Δt ¼
X
κ≠0

fð0Þt;κ⃗

−iκ⃗ · ϒ⃗ð0Þ ¼ −Z̆t; ð48aÞ

Π̆ð1Þ
j ¼

X
κ≠0

fð0Þt;κ⃗

−iκ⃗ · ϒ⃗ð0Þ Γ
ð1Þ
j ¼ −Z̆tΓ

ð1Þ
j ; ð48bÞ

Φð1Þ
α;κ⃗ ¼

i

κ⃗ · ϒ⃗ð0Þ

�
∂Δφα;κ⃗

∂Pj
F̃ð1Þ
j −

fð0Þt;κ⃗

ϒð0Þ
t

ϒð1Þ
t Ωð0Þ

t

þ
X
κ⃗0≠0⃗

��
iκ⃗0 · X⃗ð1Þ

κ⃗−κ⃗0f
ð0Þ
t;κ⃗0 þ Yð1Þ

j;κ⃗−κ⃗0
∂fð0Þt;κ⃗0

∂Pj

�
Ωð0Þ

α

− Πð1Þ
j;κ⃗−κ⃗0f

ð0Þ
t;κ⃗0

∂Ωð0Þ
α

∂Pj

	�
: ð48cÞ

We are free to chose the averaged pieces of Πð1Þ
j , and we

make the simplification that hΠð1Þ
j i ¼ 0. With this and the

identity hfð0Þt ðR fð0Þt dq⃗Þi ¼ 0, we get the further simplifi-

cation hfð0Þt Πð1Þ
j i ¼ 0. Thus, the expressions for Γð2Þ

j and

Ωð1Þ
α simplify to

Γð2Þ
j ¼ 1

ϒð0Þ
t

ðF̃ð2Þ
j −ϒð1Þ

t Γð1Þ
j Þ; ð49aÞ

Ωð1Þ
α ¼ 1

ϒð0Þ
t

ðϒð1Þ
α −ϒð1Þ

t Ωð0Þ
α Þ: ð49bÞ

What is most useful about these equations of motion is
that their solutions P⃗ðtÞ and φ⃗ðtÞ are exactly what is
required to feed into waveform generating schemes. We
show the equivalence between φ⃗ðtÞ and the relationship
derived in Ref. [85] between the solutions to the original
NIT equations of motion and the waveform phases Φmn in
Appendix B.

C. Two-timescale expansion

There is a related way of obtaining the above solutions
via the TTE. We exploit the difference between the time-
scales of the system by defining T ≔ ϵt as the slow time
which governs the long-term, secular behavior of the
system and defining t as the fast time of the system that
governs the short-term, orbital dynamics, and treating these
two times as independent variables.
As such, we expand the transformed variables as

PjðT ; ϵÞ ¼ Pð0Þ
j ðT Þ þ ϵPð1Þ

j ðT Þ þOðϵ2Þ; ð50aÞ

φαðT ; ϵÞ ¼ 1

ϵ
½φð0Þ

α ðT Þ þ ϵφð1Þ
α ðT Þ� þOðϵ1Þ: ð50bÞ

Applying this expansion to the t parametrized NIT
equations of motion, one finds that the equations of motion
for the two-timescale expanded variables takes the form

dPð0Þ
j

dT
¼ Γð0Þ

j ðP⃗ð0ÞÞ; ð51aÞ

dφð0Þ
α

dT
¼ Ωð0Þ

α ðP⃗ð0ÞÞ; ð51bÞ

dPð1Þ
j

dT
¼ Γð2Þ

j ðP⃗ð0ÞÞ þ Pð1Þ
k

�
∂Γð1Þ

j

∂Pk
ðP⃗ð0ÞÞ

�
; ð51cÞ

dφð1Þ
α

dT
¼ Ωð1Þ

α ðP⃗ð0ÞÞ þ Pð1Þ
k

�
∂Ωð0Þ

α

∂Pk
ðP⃗ð0ÞÞ

�
: ð51dÞ

There is a trade-off for solving these equations of
motion. We now have to solve a system of coupled
differential equations that is twice the size and thus is
more expensive to solve numerically, but the solutions are
independent of ϵ and one can construct a solution for any
given value of ϵ using Eq. (50). Thus, if one wants to
compute multiple inspirals with varying mass ratios, the
TTE can be more efficient overall. However, there is also an
issue where the inspiral will stop earlier, as the variables

Pð0Þ
j typically reach values which correspond to the ISSO

before Pj. In this regime, one should instead employ a
transition to plunge as this is where the adiabaticity
assumptions of the OG equations and the two-timescale
expansion are expected to break down. As such we will use
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both the NIT and the TTE equations of motion to produce
waveforms and compare them to waveforms generated
using the OG equations to assess which is the more
practical framework for producing postadiabatic EMRI
waveforms.

D. Averaged equations of motion for quasispherical
Kerr inspirals

We now specialize the above results to the case of
quasispherical inspirals into a Kerr black hole. The NIT
equations of motion parametrized by Mino time take the
form

dr̃p
dλ

¼ ϵF̃ð1Þ
r ða; r̃p; x̃Þ þ ϵ2F̃ð2Þ

r ða; r̃p; x̃Þ; ð52aÞ

dx̃
dλ

¼ ϵF̃ð1Þ
x ða; r̃p; x̃Þ þ ϵ2F̃ð2Þ

x ða; r̃p; x̃Þ; ð52bÞ

dq̃z
dλ

¼ ϒð0Þ
z ða; r̃p; x̃Þ þ ϵϒð1Þ

z ða; r̃px̃Þ; ð52cÞ

dt̃
dλ

¼ ϒð0Þ
t ða; r̃p; x̃Þ þ ϵϒð1Þ

t ða; r̃p; x̃Þ; ð52dÞ

dϕ̃
dλ

¼ ϒð0Þ
ϕ ða; r̃p; x̃Þ þ ϵϒð1Þ

ϕ ða; r̃p; x̃Þ: ð52eÞ

The leading-order terms in each equation of motion are
simply the original functions, derived in Appendix A and
paper II, averaged over a single geodesic orbit, i.e.,

F̃ð1Þ
r ¼ hFð1Þ

r i; ð53aÞ

F̃ð1Þ
x ¼ hFð1Þ

x i; ð53bÞ

ϒð1Þ
z ¼ hfð1Þz i; ð53cÞ

ϒð0Þ
t ¼ hfð0Þt i; ð53dÞ

ϒð0Þ
ϕ ¼ hfð0Þϕ i; ð53eÞ

whereϒð0Þ
t andϒð0Þ

ϕ are the Mino time t and ϕ fundamental
frequencies which are known analytically [41]. The remain-
ing terms are more complicated and require Fourier
decomposing the original functions and their derivatives
with respect to the orbital elements ðrp; xÞ. To express the
result, for any function

Aða; rp; x; qzÞ ¼
X
κ

Aκða; rp; xÞeiκqz ; ð54Þ

we define the operator

N ðAÞ ¼
X
κ≠0

−1

ϒð0Þ
z

�
Aκf

ð1Þ
z;−κ −

i
κ

�
∂Aκ

∂r̃p
Fr;−κ þ

∂Aκ

∂x̃
Fx;−κ

−
Aκ

ϒð0Þ
z

�
∂ϒð0Þ

z

∂r̃p
Fr;−κ þ

∂ϒð0Þ
z

∂x̃
Fx;−κ

��	
: ð55Þ

With this in hand, the remaining terms in the equations of
motion are found to be

F̃ð2Þ
r ¼ N ðFð1Þ

r Þ; ð56aÞ

F̃ð2Þ
x ¼ N ðFð1Þ

x Þ; ð56bÞ

ϒð1Þ
t ¼ N ðfð0Þt Þ; ð56cÞ

ϒð1Þ
ϕ ¼ N ðfð0Þϕ Þ: ð56dÞ

Combining these results with Eq. (45), one can find the NIT
equations of motion parametrized by Boyer-Lindquist time
t for the phases φ⃗ ¼ fφz;φϕg and orbital elements P⃗ ¼
frφ; xφg in the form

drφ
dt

¼ ϵΓð1Þ
r ða; rφ; xφÞ þ ϵ2Γð2Þ

r ða; rφ; xφÞ; ð57aÞ

dxφ
dt

¼ ϵΓð1Þ
x ða; rφ; xφÞ þ ϵ2Γð2Þ

x ða; rφ; xφÞ; ð57bÞ

dφz

dt
¼ Ωð0Þ

z ða; rφ; xφÞ þ ϵΩð1Þ
z ða; rφ; xφÞ; ð57cÞ

dφϕ

dt
¼ Ωð0Þ

ϕ ða; rφ; xφÞ þ ϵΩð1Þ
ϕ ða; rφ; xφÞ: ð57dÞ

The leading-order terms in these equations are given by

Γð1Þ
r ¼ F̃ð1Þ

r =ϒð0Þ
t ; ð58aÞ

Γð1Þ
x ¼ F̃ð1Þ

x =ϒð0Þ
t ; ð58bÞ

Ωð0Þ
z ¼ ϒð0Þ

z =ϒð0Þ
t ; ð58cÞ

Ωð0Þ
ϕ ¼ ϒð0Þ

ϕ =ϒð0Þ
t : ð58dÞ

The subleading terms are given by

Γð2Þ
r ¼ 1

ϒð0Þ
t

ðF̃ð2Þ
r −ϒð1Þ

t Γð1Þ
r Þ; ð59aÞ

Γð2Þ
x ¼ 1

ϒð0Þ
t

ðF̃ð2Þ
x −ϒð1Þ

t Γð1Þ
x Þ; ð59bÞ

Ωð1Þ
z ¼ 1

ϒð0Þ
t

ðϒð1Þ
z −ϒð1Þ

t Ωð0Þ
z Þ; ð59cÞ
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Ωð1Þ
ϕ ¼ 1

ϒð0Þ
t

ðϒð1Þ
ϕ −ϒð1Þ

t Ωð0Þ
ϕ Þ: ð59dÞ

Finally, using the two-timescale expansion, the adiabatic
equations of motion are given by

drð0Þφ

dT
¼ Γð1Þ

r ; ð60aÞ

dxð0Þφ

dT
¼ Γð1Þ

x ; ð60bÞ

dφð0Þ
z

dT
¼ Ωð0Þ

z ; ð60cÞ

dφð0Þ
ϕ

dT
¼ Ωð0Þ

ϕ : ð60dÞ

The postadiabatic contributions to the equations of motion
are given by

drð1Þφ

dT
¼ Γð2Þ

r þ rð1Þφ
∂Γð1Þ

r

∂rð0Þφ

þ xð1Þφ
∂Γð1Þ

r

∂xð0Þφ

; ð61aÞ

dxð1Þφ

dT
¼ Γð2Þ

x þ rð1Þφ
∂Γð1Þ

x

∂rð0Þφ

þ xð1Þφ
∂Γð1Þ

x

∂xð0Þφ

; ð61bÞ

dφð1Þ
z

dT
¼ Ωð1Þ

p þ rð1Þφ
∂Ωð0Þ

z

∂rð0Þφ

þ xð1Þφ
∂Ωð0Þ

z

∂xð0Þφ

; ð61cÞ

dφð1Þ
ϕ

dT
¼ Ωð1Þ

ϕ þ rð1Þφ

∂Ωð0Þ
ϕ

∂rð0Þφ

þ xð1Þφ

∂Ωð0Þ
ϕ

∂xð0Þφ

: ð61dÞ

Solutions for postadiabatic inspirals can be obtained by
solving Eqs. (60) and (61) simultaneously and using
Eq. (50) along with a value for the mass ratio ϵ to recover
rφðtÞ; xφðtÞ;φzðtÞ, and φzðtÞ.
With the averaged equations for quasispherical Kerr

inspirals in hand, we will now outline our numerical
implementation for rapidly computing quasispherical
self-forced inspirals.

V. IMPLEMENTATION

Combining the interpolated GSF model along with our
action-angle formulation of the OG equations provides us
with all the information required to calculate the NIT and
TTE equations of motion. We first evaluate and interpolate
the various terms in the NIT and TTE equations of motion
across the parameter space. While this offline process can
be expensive, it only needs to be completed once. Then, the
online process of calculating self-forced inspirals can be
completed in less than a second. This procedure is very

similar to papers I and II, though now we also export
interpolating functions for the partial derivatives needed for
the TTE equations of motion.

A. Offline steps

The offline calculation consists of the following steps.
(1) We start by selecting a grid which covers the

parameter space. We choose y values between
0.099 and 0.999 in 451 equally spaced steps and
z2− values from 0.002 to 0.5 in 250 equally spaced
steps (giving a total of 112,750 points).2

(2) For each point in the parameter space ða; y; z2−Þ, we
evaluate the functions Fð1Þ

rnx, f
ð1Þ
z , and fð0Þtnϕ along with

their derivatives with respect to rp and x for 49
equally spaced values of qz from 0 to 2π.

(3) We then perform a fast Fourier transform on the
output data to obtain the Fourier coefficients of the
forcing functions and their analytical derivatives
with respect to rp and x.

(4) With these, we then use Eqs. (53a)–(53e), (55),

and (56a)–(56d) to construct F̃ð1n2Þ
rnx , ∂F̃ð1Þ

rnx=∂rp,

∂F̃ð1Þ
rnx=∂x, and ϒð1Þ

tnznϕ at that point in parameter
space. All other terms needed for the NIT and
TTE can be derived from these terms or are already
known analytically.

(5) We also use Eq. (37) to construct the Fourier
coefficients of the first-order transformation func-

tions Yð1Þ
rnx. These are needed when comparing NIT

and OG/TTE inspirals, to ensure that the initial
conditions are comparable. Otherwise this step can
be skipped.

(6) We then repeat this procedure across the parameter
space for each point in our grid.

(7) Finally, we interpolate the values for F̃ð1n2Þ
rnx ,

∂F̃ð1Þ
rnx=∂rp, ∂F̃ð1Þ

rnx=∂p, and ϒð1Þ
tnznϕ along with the

coefficients of Yð1Þ
rnx across this grid using Hermite

interpolation and store the interpolants for fu-
ture use.

We implement the above algorithm in Mathematica 12.2
and find the calculation takes about 5 hours to complete
when parallelized across 20 CPU cores. Since these offline
steps need only be completed once, this is a comparatively
small price to pay.

2Evaluating the NIT functions is computationally cheap, so
using a dense grid does not significantly increase the computa-
tional burden. Using an equally spaced grid also allows us to use
Mathematica’s default Hermite polynomial interpolation method
for convenience of implementation. The grid spacing is chosen to
be sufficiently dense such that the interpolation error is a
negligible source of error for our comparisons between the
OG, NIT, and TTE inspirals, though a less dense grid may also
achieve this.
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B. Online steps

By contrast, the online steps are required for every
inspiral calculation but are computationally inexpensive.
The online steps for computing a NITor TTE inspiral are as
follows.
(1) We load in the interpolants for F̃ð1n2Þ

rnx andϒð1Þ
tnznϕ, and

define the NIT equations of motion. For TTE
inspirals, one also needs to load in the interpolated

derivatives ∂F̃ð1Þ
rnx=∂rp and ∂F̃ð1Þ

rnx=∂x and then define
the TTE equations of motion.

(2) In order to facilitate comparisons between OG, NIT,
and TTE inspirals, we also load interpolants of the

Fourier coefficients of Y̆ð1Þ
r=x and Eqs. (31), (44), and

(48b) to construct first-order near-identity trans-
formations.

(3) We state the initial conditions of the inspiral
ðrpð0Þ; xð0Þ; qzð0ÞÞ and use the NIT to leading order
in the mass ratio to transform these into initial
conditions for the NIT/TTE equations of motion,
i.e., ðrφð0Þ; xφð0Þ;φzð0ÞÞ.

(4) We then evolve the NIT or TTE equations of motion
using an ODE solver (in our case, Mathematica’s
NDSolve).

As with the offline steps, we implement the online steps
in Mathematica. Note that steps (ii) and (iii) are only
necessary because we want to make direct comparisons
between NIT and OG inspirals with the same initial
conditions. In general, the difference between the NIT
and OG variables will always be OðϵÞ, so performing the
NIT transformation or inverse transformation to greater
than zeroth order in mass ratio will not be necessary when
producing waveforms to postadiabatic order, i.e., with
phases accurate to OðϵÞ.

C. Waveform generation

With a trajectory in hand, we can now generate the
gravitational waveform. Ideally, this would be done using
interpolated Teukolsky fluxes as implemented by, e.g., the
FastEMRIWaveform package for eccentric Schwarzschild
inspirals [86,87]. Unfortunately, such a model is not
currently available for quasispherical Kerr inspirals, so
we generate all of our waveforms using the “semirelativ-
istic” approximation used by the numerical kludge models
[88]. In this approach the Boyer-Lindquist coordinates of
the particle are mapped to flat spacetime coordinates which
are fed into the quadrupole formula that is used to produce
the final waveform strain h ¼ hþ þ ih×. This approxima-
tion fairs surprisingly well compared to Teukolsky snap-
shot waveforms, even in the strong field regime. What is
most important for our purposes is that all waveforms are
calculated using the same kludge formula so that any
differences in the waveforms are due to differences in the
calculations of the inspiral trajectory. For our implementa-
tion, we sample every tstep ¼ 2M and calculate the

waveform strain at each time step to produce our numerical
waveforms.
In order to calculate the fractional overlap Oðh1; h2Þ

between two time-domain waveform strains h1 and h2, we
first define the noise weighted inner product of these two
waveforms as

hh1jh2i ¼ 2

Z
∞

0

h̃�1ðfÞh̃2ðfÞ þ h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df; ð62Þ

where h̃ðfÞ denotes the Fourier transform of the time
domain waveform hðtÞ and h� is the complex conjugate of
h. We take the power spectral density (PSD) of the detector
noise SnðfÞ to be a flat noise curve.
From this, one can calculate the fractional waveform

overlap O via

O ¼ hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i
p : ð63Þ

This overlap ranges from 1, when the two waveforms are
identical, to 0, when the waveforms are perfectly orthogo-
nal. When dealing with waveform overlaps close to 1, it is
often useful to talk in terms of the fractional waveform
mismatch M ¼ 1 −O. In practice, we make use of the
WaveformMatch function from the SimulationTools package to
calculate waveform overlaps [89].

VI. RESULTS

A. OG vs NIT and TTE inspirals

To test the accuracy of our NIT and TTE implementa-
tions, we compare inspirals calculated using the OG
equations of motion against inspirals calculated using
the NIT or TTE equations of motion. We use a case study
of a typical system EMRI with a primary of mass
M ¼ 106M⊙. We choose the initial conditions for this
inspiral to have an inclination of x ¼ 0.75 and radius
rp ¼ 7.75M. This highly inclined, strong field inspiral
provides a good test of our numerical implementations. We
see similar results for other initial conditions. We also set
the initial phases qzð0Þ ¼ ϕð0Þ ¼ 0 for simplicity.
Figure 3 demonstrates the difference in the trajectories

produced by each method. We have purposely chosen an
unusually large mass ratio for an EMRI of ϵ ¼ 10−2 so that
the orbital timescale oscillations are clearly visible on the
plot. We see that for all trajectories the orbital separation
decreases substantially, while the orbit becomes slightly
more inclined. This is consistent with previous results for
adiabatic quasispherical inspirals [11–13]. The OG trajec-
tory oscillates on the orbital timescale, while the NIT and
TTE trajectories faithfully capture the average evolution of
the trajectory. While the NIT and TTE trajectories may
appear, at first glance, to be identical, it is important to note
that the TTE equations of motion break down sooner than
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the NIT equations of motion. This is due to the evolution of

rð0Þφ and xð0Þφ reaching the location of the ISSO sooner than
rφ and xφ. This is not as important of an issue as one might
expect, as this close to the ISSO, one should swap over to a
“transition to plunge” scheme [90–93].
Figure 4 shows the difference in the phases between the

OG trajectory and the NIT and TTE trajectories for a year-
long inspiral with a primary of massM ¼ 106M⊙ and mass
ratio of ϵ ¼ 10−5. In both cases, we find that the difference
in the phases stays below ∼10−3 throughout the inspiral,
spiking only when the inspiral approaches the ISSO where
the adiabatic assumption implicit in the OG, NIT, and TTE
equations of motion starts to break down. Even then, the
difference in the phases is substantially lower than the
subradian accuracy requirement needed for LISA data
analysis. We also find that the growth in the error over
time is most closely correlated with the interpolation error
for the terms in the NIT and TTE equations of motion, so
interpolating on a denser grid should reduce this error
even more.
We note that, formally, both the NIT and the TTE should

induce an error, in both the phases and the orbital elements,
that scales linearly with the mass ratio. To ensure that our
implementation is converging correctly, we evolve inspirals
from initial conditions rpð0Þ ¼ 5M and xð0Þ ¼ 0.75 until
they reach rp ¼ 4M with different values of the mass ratio.
Since the OG quantities will have oscillations of OðϵÞ,
sampling the error at only the final time step would make it
difficult to determine the convergence with the mass ratio.

As such, we calculate the error at several time steps in the
last three orbital cycles and report the largest error. The
results of this test can be seen in Fig. 5. We see that for
larger mass ratios the errors converge linearly, as expected.
However, for mass ratios≲10−4, the formal error in the NIT
and TTE is no longer the dominant source of error for the
evolution of the phases. Instead, the error is dominated by
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FIG. 3. Trajectory through ðrp; θincÞ space for an inspiral with
ϵ ¼ 10−2, a ¼ 0.9M, and initial conditions rpð0Þ ¼ 7.75M;
xð0Þ ¼ 0.75. We use such a large mass ratio to highlight the
orbital timescale oscillations one encounters when using the OG
equations. Using the NIT or TTE equations of motion averages
out these oscillations and results in almost identical inspirals. We
also see that the TTE equations of motion break down further
from the ISSO than the OG or NIT equations of motion.
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FIG. 4. Difference in the orbital phases for a quasispherical
Kerr inspiral with M ¼ 106M⊙, ϵ ¼ 10−5, and a ¼ 0.9M when
using the OG equations versus the NIT or TTE equations of
motion. In both cases, the difference stays small throughout the
inspiral, only becoming large as the secondary approaches the
ISSO when the adiabatic assumption breaks down.
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FIG. 5. Absolute difference in the quantities of a prograde
inspiral with a ¼ 0.9M and an initial inclination of x0 ¼ 0.75
after evolving from rp ¼ 5M to rp ¼ 4M when using different
evolution equations. The solid lines show the difference between
OG and NIT equations of motion, and the dashed lines show the
difference between using the OG and TTE equations of motion.
We see that the differences generally follow the black ϵ curve, so
they converge linearly with the mass ratio until we reach mass
ratios ≤ 10−3 where the error in the phases becomes dominated
by interpolation and numerical error.
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either the interpolation error or the error in the ODE
solver when solving the OG equations, as we have
found empirically that this error is reduced by increasing
the number of grid points used for interpolation and
decreasing the relative tolerance of the integrator. While
both of these sources can be further suppressed at the cost
of more expensive offline and online steps, respectively,
we show in Sec. VI B that it is not necessary for
producing trajectories accurate enough for LISA data
science.
Now that we have established that our averaging

procedure does not change the accuracy of our model,
we demonstrate the speedup that one enjoys from using
either the NITor TTE equations of motion instead of using
the OG equations of motion in Table. I. For each of these
calculations, the initial conditions are set to rpð0Þ ¼
7.75M and xð0Þ ¼ 0.75, and the inspirals are evolved to
just before the ISSO, when yðrp; xÞ ¼ 0.998. All calcu-
lations were done using machine precision arithmetic and
an accuracy goal of 7 digits for Mathematica’s NDSolve
function. We find that using the OG inspiral calculation
takes longer as the mass ratio gets smaller since the solver
will have to resolve many more orbital cycles before the
inspiral reaches the ISSO. However, the NIT inspirals take
roughly the same amount of time regardless of the mass
ratio. The TTE inspiral takes slightly longer than the NIT
inspiral, as one has to solve for twice as many equations.
However, once this step is complete, inspirals with the
same initial conditions but any mass ratio can be com-
puted extremely rapidly by evaluating the resulting
interpolating functions.

B. Waveform mismatches

To generate waveforms, we use a semirelativistic
approximation to produce quadrupole waveforms, which
can be seen in Figs. 6(a) and 6(b) [88]. These figures show
the first and last 3.5 hours of the waveforms produced by
the OG, NIT, and TTE trajectories, respectively, sampled
once every 10 s. The source is viewed edge on; i.e., the
detector is located at a latitude Θ ¼ π=2 and an azimuth
of Φ ¼ 0 with respect to the source. From the plots it is
clear that the two waveforms overlap significantly. The

waveform mismatch between the OG waveforms and both
the NIT and TTE waveforms is ∼2.5 × 10−8. This means
that they meet the indistinguishability criteria [94–96] from
the OG waveforms for signal-to-noise ratios (SNRs) of up
to at least 4500.
Intuitively, one would expect the error in our averaging

procedure to scale with the size of the orbital timescale
oscillations, which themselves scale with the mass ratio
and the orbital inclination. As such, we wish determine
the section of the parameter spacewhere the difference in the
waveforms between the OG and the NIT/TTE inspirals
would be small enough not to matter for LISA data science.
To do this, we first fix the mass of the primary to be 106M⊙
and create a function which uses adiabatic inspirals and root
finding to numerically compute the initial orbital separation
for an inspiral which will take one year to reach the ISSO
for a given inclination and mass ratio. We then create a grid
of mass ratios ϵ ¼ f1; 10−1=2; 10−1; 10−3=2; 10−2; 10−5=2;
10−3; 10−7=2; 10−4g and inclinations x ¼ f0.74; 0.79; 0.84;
0.89; 0.94; 0.99g. For each point on this grid, we calculate
a year-long inspiral using the OG equations of motion, the
NIT equations of motion, and the TTE equations of motion,
and then generate a waveform from each.
The waveform mismatch between the OG and NIT or

TTE waveforms is displayed in Fig. 7. From these plots
we see that there does not seem to be a substantial
difference in terms of accuracy from using either the
NIT or TTE equations of motion. While there may be
some correlation between mismatch and inclination, this
does not appear to be a strong effect for θinc ≤ 45°. The
strongest effect on the waveform mismatch comes from
the mass ratio. It is worth noting that 3 × 10−2 is a
commonly chosen maximum mismatch for a waveform
template bank that corresponds to a 90%-ideal observed
event rate [97]. Our results suggest that one could, in
principle, produce such a template bank of quasispherical
inspirals using NIT or TTE waveforms even for mass
ratios as large as ϵ ≈ 0.5. In practice, we are still missing
important postadiabatic contributions such as second-
order effects and contributions from the spin of the
secondary; thus, such a template bank would have sub-
stantial systematic biases. Also note that, formally, when

TABLE I. Computational time required to evolve an inspiral from its initial conditions of rpð0Þ ¼ 7.75M and xð0Þ ¼ 0.75 to the last
stable orbit for different values of the mass ratio, as calculated in Mathematica 13 on a 2.2-GHz Intel Core i7. The computational time
for the OG inspiral scales inversely with the mass ratio, whereas the computational time for NIT inspirals is independent of the mass
ratio. The computation for the TTE inspiral is 0.53s, which is slightly longer than any of the NIT inspirals. However, if we consider the
TTE calculation as an offline step, one can then immediately recover the solution for any value of ϵ in a matter of milliseconds.

ϵ OG NIT (s) Speedup TTE (ms) Speedup

10−2 24.7 s 0.48 ∼51 22 ∼1.1 × 106

10−3 4 m 20 s 0.17 ∼1530 39 ∼6.7 × 106

10−4 43 m 19 s 0.43 ∼6044 27 ∼9.6 × 107

10−5 7 hrs 42 m 0.49 ∼54380 22 ∼1.2 × 109
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all postadiabatic corrections are included, the OG, NIT,
and TTE inspirals have the same accuracy in terms of
powers of the mass ratio. Consequently, we cannot say
a priori which will be more faithful to nature.

C. Using higher precision fluxes

Now that we can compute fast and accurate inspirals, it is
worth recalling that the relative accuracy of our interpolated
GSF model is currently too low for production-level wave-
forms. This is primarily due to the harsh relative accuracy
requirements for the adiabatic pieces of ≲ϵ for subradian
accuracy in the phases. This can be improved by incorporating
information from the asymptotic fluxes, which can be
interpolated to a much higher accuracy across the parameter
space due to the much cheaper cost of flux calculations
compared to GSF calculations. This is why our interpolated
flux model is accurate to ∼10−6 while our interpolated GSF
model is only accurate to ∼10−3. Such information can be

incorporated into theGSFmodel itself to improve the accuracy
of the OG inspirals as well as the resulting NIT and TTE
inspirals [28]. However, since the NIT and TTE equations of
motion are naturally split into adiabatic and postadiabatic

pieces, one can calculate Γð1Þ
j directly from the fluxes via

Eqs. (21) and (23), interpolate them to higher precision than
using a GSF model, and then substitute these improved
adiabatic terms into the averaged equations of motion.
To test the difference this would make to the overall

accuracy of our postadiabatic inspirals, we looked at the
final error in the φϕ phase when evolved from one point in
the parameter space to the ISSO when using the fluxþ
GSF model versus using only the GSF model for inspirals
with ϵ ¼ 10−5. From Fig. 8, we see that improving the
adiabatic pieces results in a phase difference that can range
from tens to tens of thousands of radians for multi-year-
long inspirals, and this difference gets larger as one moves
away from the ISSO.

30 60 90 120 150 180 210

�1.0

�0.5

0.0

0.5

1.0

30 60 90 120 150 180 210

�1.0

�0.5

0.0

0.5

1.0

FIG. 6. “Semirelativistic” quadrupole waveform strains for an EMRI with M ¼ 106M⊙, ϵ ¼ 10−5, rpð0Þ ¼ 7.75M, and xð0Þ ¼ 0.75
as viewed edge on (i.e., with the detector at a latitude of Θ ¼ π=2 with respect to the source’s frame), sampled once every 10 s. The
waveform strain is normalized by the luminosity distance from the source to the detector D and the mass of the secondary μ. Panel
(a) shows the first 3.5 hours, and panel (b) shows the last 3.5 hours of this year-long waveform. The blue curve is the waveform
generated from the OG inspiral, the dashed yellow curve is the waveform generated from the NIT inspiral, and the purple dotted curve is
the waveform generated from the TTE inspiral.
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As such, using high precision fluxes for the adiabatic
contributions to the equations of motion is vital for
obtaining accurate adiabatic and postadiabatic inspirals.

D. Impact of the self-force on spherical inspirals

Since this is the first time that the full first-order self-
force has been computed for quasispherical Kerr inspirals,
we examine the impact that the adiabatic and postadiabatic
contributions have on the inspiral in Fig. 9. The blue

curves show typical adiabatic trajectories through frp; θincg
space. From this we see that the self-force causes the
orbital radius to decrease over time but also causes the
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FIG. 7. Mismatch between year-long OG and NIT/TTE wave-
forms as a function of orbital inclination and mass ratio. We do
not see a substantial difference in accuracy between using either
NIT or TTE waveforms. We also see that the mismatch remains
smaller than 0.03 for mass ratios as large as ϵ ≈ 0.5. (a) Mismatch
between OG and NITwaveforms. (b) Mismatch between OG and
TTE waveforms.
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FIG. 8. Absolute difference inφϕ for aNIT inspiral evolved from
a point in the parameter space to the ISSO with a typical EMRI
mass ratio of ϵ ¼ 10−5, depending on whether one incorporates
high precision fluxes or not. Using the high precision fluxes results
in a more faithful inspiral, with phase differences with respect to
the lower accuracy model in the range ∼10–104 radians. As such,
interpolating the adiabatic contributions to the averaged equations
of motion to high precision is vitally important for accurate
adiabatic and postadiabatic EMRI waveforms.
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FIG. 9. The blue curves show the adiabatic trajectories through
frp; θincg space, while the orange contours denote the final value

of φð1Þ
ϕ when evolved from that point in the parameter space

to the ISSO.
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inclination angle to increase slightly throughout the inspi-
ral. This is consistent with previous work on adiabatic
quasispherical inspirals [11,13]. The postadiabatic contri-
butions to the solutions for rp and θinc do not change this
trend in any significant way since their contribution to the
orbital elements is OðϵÞ. However, the postadiabatic con-
tribution to the orbital phases is of order Oðϵ0Þ and is thus
very significant. This is demonstrated by the dashed
contours in Fig. 9, which indicate the final value of the

postadiabatic piece of the azimuthal phase φð1Þ
ϕ , when

evolved from a given point in the parameter space to the
ISSO. Since it is the azimuthal phase that most strongly
impacts the final waveform phase, this gives a good
estimate of how many radians one can expect the waveform
to be out of phase in the absence of postadiabatic
contributions. It is worth restating that this does not include

the second-order GSF contributions to φð1Þ
ϕ as these are not

currently known.

VII. DISCUSSION

This paper presents the first calculations of the first-order
gravitational self-force in the radiation gauge for spherical
orbits in Kerr spacetime by utilizing a modified version of
the code found in Refs. [25,26,54]. The main new element
in this calculation is the inclusion of the gauge completion
piece that puts the result in the correct asymptotically
flat gauge.
To produce a continuous model, these data are interpo-

lated using Fourier decomposition and Chebyshev inter-
polation. Using only 162 points we obtain a model with
subpercent accuracy for inclinations up to 0° ≤ θinc ≤ 45°.
This same method also allows interpolation of the orbit
averaged rate of change of energy and angular momentum
from the asymptotic fluxes for all inclinations (both
prograde and retrograde) with an accuracy of ∼10−6 using
only 342 points. This is a significant improvement over
other interpolation methods found in the literature which
require at least an order of magnitude more points to
achieve a comparable level of accuracy [27,28]. This could
be further improved with a better choice when rescaling the
data before interpolation, ideally choosing a function
informed by the leading-order PN contributions in the
weak fields and/or the analytic structure of the GSF near the
ISSO. So far this model is only valid for orbits where
the primary’s spin is a ¼ 0.9M, so interpolating over the
other values of spin is left for future work. However, this
work, along with paper II and Ref. [30], shows that the
Chebyshev interpolation methods are a promising approach
for interpolating information from expensive GSF and flux
codes across the vast four-dimensional parameter space of
generic Kerr inspirals.
Using our interpolated GSF model with the OG formu-

lation outlined in Ref. [32] and paper II, along with the
spherical limit derived in Appendix A, allows us to

calculate the first ever quasispherical self-force inspirals
around a Kerr black hole. Our Mathematica implementa-
tion of this will be made publicly available on the Black
Hole Perturbation Toolkit [42]. However, for a binary with
a small mass ratio ϵ, numerically evolving these inspirals
can take minutes to hours due to the need to resolve the
∼1=ϵ orbital oscillations.
We overcome this by employing the technique of NITs,

as outlined in papers I and II, which produce equations of
motion that capture the correct long-term secular evolution
of the binary but can also be rapidly solved numerically.
Following the methodology of Ref. [18], we improve upon
this formulation by employing a second averaging trans-
formation such that the solutions to our equations of motion
are parametrized by Boyer-Lindquist coordinate time
instead of Mino time. Since Boyer-Lindquist time can
be related to the time at the detector, this improved NIT
procedure is much more convenient for generating wave-
forms and for data analysis. We also employ a TTE of the
NIT equations of motion which factors out the dependence
of the mass ratio, at the cost of doubling the number of
equations to be solved.
The quantities calculated from either the NIT or TTE

equations of motion remain close to the OG evolution
variables throughout the inspiral to the expected order in
the mass ratio, scaling similarly as the error expected from
omitted higher-order postadiabatic corrections. These aver-
aging schemes work particularly well for quasispherical
inspirals as we find that the mismatch between waveforms
calculated from NIT or TTE inspirals and waveforms
calculated from OG inspirals is ≤ 10−3, even for binaries
with ϵ ∼ 10−1.
With our efficient inspiral trajectories, we investigate the

effect of first-order self-force on inspirals across the
spherical Kerr parameter space. We find that the orbital
separation decreases with time while the orbit becomes
more inclined over time, which is consistent with the
findings of adiabatic evolutions of quasispherical Kerr
inspirals. We also find that neglecting the conservative
effects can result in an Oðϵ0Þ radian dephasing in the
azimuthal phase, with this effect becoming larger with the
inclination angle of the orbit.
We note that both NIT and TTE equations of motion

allow us to further improve the accuracy of our waveforms
by replacing the adiabatic terms with higher accuracy
interpolants calculated from the asymptotic energy and
angular momentum fluxes. Making this improvement can
result in phase differences ranging from tens to tens of
thousands of radians for multi-year-long EMRIs. This
highlights the necessity of efficient gravitational wave flux
codes for both adiabatic and postadiabatic EMRI wave-
forms [14].
This work only incorporates first-order GSF results.

Postadiabatic waveforms will require second-order results
not only to reach Oðϵ0Þ accuracy in the phases [19] but
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also, as was noted in paper II, to produce gauge-invariant
waveforms [29]. As such, the inspirals and waveforms
produced here are only representative of the outgoing
radiation gauge.
Thus, when second-order effects are available for Kerr

orbits, they should be folded into our framework. However,
care should be taken as current second-order calculations
are produced assuming two-timescale expanded equations
of motion and not assuming osculating geodesics and then
performing the two-timescale expansion, as we have done.
We are also missing any postadiabatic contributions due

to the spin of the secondary [98–106]. Incorporating the
linear-in-spin contribution to the energy and angular
momentum fluxes into our averaged equations should be
straightforward. However, incorporating the conservative
effects from the Mathisson-Papapetrou-Dixon equations
will require careful consideration and will be the subject of
future work.
We plan to extend this framework to the case of generic

Kerr inspirals, but there are two challenges standing in our
way. The first is the computational cost of the generic Kerr
GSF code coupled with the four-dimensional parameter
space, which makes interpolating a GSF model impractical
for now. The second challenge is the presence of transient
self-force resonances where our NIT equations are formally
singular, which will force us to apply an alternate averaging
procedure in their vicinity [107]. There has been a lot of
work covering the effects of transient resonances on EMRI
trajectories due to the self-force [108–114] or an external
third body [115,116]. However, evolving through self-force
resonances while incorporating all self-force effects and
retaining the subradian accuracy requirement remains an
open problem.
Finally, we note we have used the semirelativistic

quadrupole formula to generate the waveforms from the
OG, NIT, and TTE inspirals. This is sufficient for this
work as we only wish to compare the difference in the
waveforms caused by different inspiral calculations.
However, LISA data analysis will require fully relativistic
waveform amplitudes such as those currently in the
FastEMRIWaveforms (FEW) package for Schwarzschild inspi-
rals [86]. Currently, FEW only uses adiabatic inspirals,
but this can be improved by employing either our NIT or
TTE equations of motion. Once the waveform amplitudes
have been interpolated for Kerr inspirals, they can be
combined immediately with the implementation presented
in this work.
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APPENDIX A: OSCULATING GEODESIC
EQUATIONS FOR SPHERICAL ORBITS

In this appendix we derive the evolution equation for the
orbital radius rp in the spherical limit due to the presence of
a perturbing acceleration fat; ar; az; aϕg. Using the chain
rule, we obtain

drp
dλ

¼ ∂rp
∂J j

dJ j

dλ
: ðA1Þ

Recalling the expressions for the evolution equations
for the integrals of motion J⃗ ¼ fE;Lz;Kg given in
Appendix B of paper II,

dE
dλ

¼ −Σpat; ðA2aÞ

dLz

dλ
¼ Σpaϕ; ðA2bÞ

dK
dλ

¼ −
2Σp

Δp
ðϖ2

pBpat þ aBpaϕ þ Δ2
purarÞ: ðA2cÞ

To find the partial derivatives ∂rp=∂J j, we make use of
the value of the radial potential Vr defined as

VrðrÞ ¼ B2 − Δðr2 þKÞ
¼ −ð1 − E2Þðr − r1Þðr − r2Þðr − r3Þðr − r4Þ
¼ −ð1 − E2Þðr − rpÞ2ðr − r3Þðr − r4Þ; ðA3Þ

where r1, r2, r3, r4 are the roots of Vr, and in the spherical
case r1 ¼ r2 ¼ rp. We then define the derivative of Vr with
respect to r as

κ ≔
dVr

dr
¼ 4EBr − 2Δr − 2ðr −MÞðr2 þ KÞ
¼ −2ð1 − E2Þ½ðr − r3Þðr − r4Þ
þ ðr − rpÞðr − r4Þ þ ðr − rpÞðr − r3Þ�: ðA4Þ
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If we take the derivative of κ with respect to r and evaluate
at r ¼ rp, we obtain

dκp
dr

¼ −2ð1 − E2Þðrp − r3Þðrp − r4Þ: ðA5Þ

However, if we now take the partial derivatives of κ with
respect to J⃗ and evaluate at r ¼ rp, we are left with

∂κp
∂J j

¼ 2ð1 − E2Þðrp − r3Þðrp − r4Þ
∂rp
∂J j

¼ −
dκp
dr

∂rp
∂J j

: ðA6Þ

Substituting the above result into Eq. (A1), explicitly
calculating ∂κ=∂J j using Eq. (A4), evaluating at r ¼ rp,
and simplifying gives us our final result:

drp
dλ

¼ −4rp
ðBp þϖ2

pEÞ dEdλ − aE dLz
dλ þ M−rp

2rp
dK
dλ

dκp
dr

≔ Fð1Þ
r : ðA7Þ

The above relationship is finite for all bound stable
spherical orbits and only becomes ill-defined when
dκp=dr ¼ 0, which only occurs when rp ¼ r3, i.e., when
rp ¼ rISSO.

APPENDIX B: EQUIVALENCE BETWEEN
φ⃗ AND WAVEFORM VOICES

In this appendix, we wish to establish a relationship
between the solutions for the inspiral quantities and the
waveform. We start by assigning the origin of our coor-
dinate scheme to be the position of the primary MBH. We
then set the Cartesian coordinates of our observer to be
x ¼ ðtret; x⃗Þ. It is useful to express the observer’s coordi-
nates in terms of spherical coordinates ðR; θ;ΦÞ, where R is
the distance from the observer to the origin given by
R2 ¼ x⃗ · x⃗, Θ is the observer’s latitude, and Φ is the
observer’s azimuth. We assign the Cartesian coordinates
of the secondary, which we model as a point particle, to be
xp ¼ ðtp; x⃗pÞ. As such, we can express the retarded time as
measured by the observer in terms of Boyer-Lindquist
coordinate time t via tret ¼ t − jx⃗ − x⃗pj ≈ t − R in the limit
where R is large. The complex waveform strain can be
decomposed onto a basis of spin-weighted spherical
harmonics −2Ylm given by

hðtretÞ ¼ hþ − ih× ¼ 1

R

X
lm

HlmðtretÞ−2YlmðΘ;ΦÞ: ðB1Þ

If we assume the secondary is moving on a geodesic, the
waveform modes Hlm exhibit a discrete frequency spec-
trum and so can be Fourier decomposed into

HlmðtretÞ ¼
X
ðn;kÞ

AlmnkðP⃗Þe−iðmΩð0Þ
ϕ þnΩð0Þ

r þkΩð0Þ
z Þtret ; ðB2Þ

where the complex amplitudes Almnk can be related to
nonhomogeneous Teukolsky amplitudes, which can be
precomputed for a given set of orbital elements P⃗ [14].
Such waveforms are known as “snapshot” waveforms, as
they only capture a small section of the total wave-
form [117].
For a full EMRI waveform, one needs to account for the

fact that the frequencies and the orbital elements will
slowly evolve with time, resulting in a continuous fre-
quency spectrum. As such, this Fourier mode decomposi-
tion becomes a “multivoice” decomposition [14]:

HlmðtretÞ ¼
X
ðn;kÞ

AlmnkðP⃗ðtretÞÞe−iΦmnkðtretÞ; ðB3Þ

where the waveform “voices” Φmnk are given by

Φmnk ¼ m
Z

t

0

ΩϕðtÞdtþ n
Z

t

0

ΩrðtÞdtþ k
Z

t

0

ΩzðtÞdt:

ðB4Þ

Let us recall the equations of motion for the orbital phases
obtained after performing the NIT and the additional
transformation such that our solutions are in terms of
Boyer-Lindquist time (45). When we express this in
integral form, one obtains

φα ¼
Z

t

0

ðΩð0Þ
α ðtÞ þ ϵΩð1Þ

α ðtÞ þOðϵ2ÞÞdt

¼
Z

t

0

ΩαðtÞdtþOðϵÞ: ðB5Þ

As such we can see that to leading order in ϵ, these phases
are directly related to the waveform voices:

Φmnk ¼ mφϕ þ nφr þ kφz þOðϵÞ: ðB6Þ

This is further supported by Ref. [85], where a relationship
between the waveform phases and the NIT phases ⃗q̃ was
independently derived. When expressed in our notation
with polar motion included, this relationship is given by

Φmnk ¼ mϕ̃þ nq̃r þ kq̃z

þ ðmΩð0Þ
ϕ þ nΩð0Þ

r þ kΩð0Þ
z Þðt − t̃Þ þOðϵÞ: ðB7Þ

Using the relationship between t and t̃ given by Eq. (41c),
the result for Δt given by Eq. (48a), and the relationship
between the NIT action angles given by Eq. (45b), one can
obtain, to leading order in ϵ,
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Φmnk ¼ mðϕ̃ − Ωð0Þ
ϕ ðt − t̃ÞÞ þ nðq̃r −Ωð0Þ

r ðt − t̃ÞÞ þ kðq̃z − Ωzðt − t̃ÞÞ þOðϵÞ
¼ mðϕ̃ − Ωð0Þ

ϕ Zð0Þ
t Þ þ nðq̃r −Ωð0Þ

r Zð0Þ
t Þ þ kðq̃z −Ωð0Þ

z Zð0Þ
t þOðϵÞÞ

¼ mðϕ̃þ Ωð0Þ
ϕ ΔtÞ þ nðq̃r þ Ωð0Þ

r ΔtÞ þ kðq̃z þΩð0Þ
z ΔtÞ þOðϵÞ

¼ mðϕ̃þ ΔφϕÞ þ nðq̃r þ ΔφrÞ þ kðq̃z þ ΔφzÞ þOðϵÞ
¼ mφϕ þ nφr þ kφz þOðϵÞ: ðB8Þ

One can also freely replace the dependence of the evolving orbital elements P⃗ðtÞwith either ⃗P̃ðtÞ or P⃗ðtÞ, as at leading order
in ϵ they are identical. As a result, we can now relate a solution to the EMRI’s inspiral trajectory to its associated Teukolsky
based waveform.

APPENDIX C: GAUGE COMPLETION INTEGRANDS

Here we give the explicit integrands for the gauge completion integrals (17) and (18),

Iα ¼ E2rpð1 − z2pÞ½3r10p þ 3r9pð1 − z2pÞ − 6r8pa2ð1þ z2p − 3z4pÞ − 2r7pa2ð5þ 4z2p þ 3z4pÞ
− r6pa2ð3a2 − ð48 − 31a2Þz2p þ ð24 − 47a2Þz4p − 3a2z6pÞ − r5pa4ð5 − 9z2p þ 41z4p þ 3z6pÞ
− 2r4pa4z2pð2ð1þ 2a2Þ − ð4þ 21a2Þz2p − ða2 þ 12Þz4pÞ þ 2r3pa6z2pð11 − 16z2p þ z4pÞ
− r2pa6z2pð10a2 − 15a2z2p þ 5a2z4p þ 8z4pÞ − rpa8z4pð5 − 13z2pÞ − 2a10z4pð1 − 2z2pÞð1 − z2pÞ�
þ ðLz − aEÞ2ð1 − z2pÞ2½3r8p − 3r7pð4 − a2 þ 5a2z2pÞ − 6r6pa2ð3þ z2pÞ
þ r5pa2ð4þ 6a2 þ 3ð12 − 13a2Þz2p − 3a2z4pÞ − r4pa4ð13 − 12z2p þ 9z4pÞ
þ 3r3pa4ða2 − ð4þ 11a2Þz2p − 2a2z4pÞ þ 2r2pa6z2pð9 − z2pÞ − 3rpa8z2pð3þ z2pÞ − a8z4p�
− Lz

2rp½3r8pð1þ z2pÞ2 − 3r7pð1þ 3z2pÞð3þ z2pÞ − r6pða2 − ð48 − 2a2Þz2p − 47a2z4p þ 12a2z6pÞ
− r5pa2ð5 − 8z2p þ 65z4p þ 18z6pÞ − r4pa2z2pð16þ 26a2 − 57a2z2p − ð48 − 4a2Þz4p þ 3a2z6pÞ
þ r3pa4z2pð22 − 21z2p − 8z4p − 9z6pÞ − r2pa4z2pð10a2 − 15a2z2p þ 8ð2þ a2Þz4p − 3a2z6pÞ
− rpa6z4pð1 − 5z2pÞð5 − z2pÞ þ 2a8z4pð1 − 4z2p þ z4pÞ� − rpð3r2p − a2Þð1 − z4pÞða2z2p −QÞΔ2

pΣp; ðC1Þ

and

Iβ ¼ E2a2rpð1 − z2pÞ½r9pð1 − z2pÞð1 − 9z2pÞ − r8pð6 − ð18þ a2Þz2p þ ð12 − a2Þz4pÞ
− r7pa2ð2þ 35z2p − 32z4p þ 3z6pÞ − r6pa2ð6 − ð46þ a2Þz2p þ 2ð22 − a2Þz4p − ð12þ a2Þz6pÞ
þ r5pa4ð1 − 28z2p þ 33z4p − 14z6pÞ − r4pa4z2pð1 − z2pÞð4þ a2 þ ð26þ a2Þz2pÞ
þ r3pa6z2pð1þ 18z2p − 11z4pÞ − r2pa6z2pða2 þ 2ð3þ a2Þz2p þ ð2þ a2Þz4pÞ þ ð4rp − a2Þa8z4pð1þ z2pÞ�
þ ðLz − aEÞ2ð1 − z2pÞ2½3ðrp − 2Þr9p þ 3r8pa2ð4 − 3z2pÞ − 2r7pa2ð11 − 6z2pÞ þ r6pa4ð7 − 33z2pÞ
− 2r5pa4ð4 − 18z2p þ 3z4pÞ þ r4pa6ð2 − 27z2p − z4pÞ − 6r3pa6z4p − r2pa8z2pð3 − 2z2pÞ − z4pa10�
− Lz

2rp½3r9pð1 − z2pÞ2 − r8pð6 − a2 − 2ð6þ a2Þz2p þ ð6 − a2Þz4pÞ þ r7pa2ð2 − 29z2p þ 20z4p − 9z6pÞ
− r6pa2ð6þ a2 − ð40þ 3a2Þz2p þ 5ð6 − a2Þz4p − ð12þ a2Þz6pÞ þ r5pa4ð1 − 14z2p þ 25z4p − 28z6pÞ
− 2r4pa4z2pð1 − z2pÞð2þ 2a2 þ ð17þ 2a2Þz2p − 3z4pÞ þ r3pa6z2pð2z6p − 19z4p þ 32z2p þ 1Þ
− r2pa6z2pða2 þ ð6þ 5a2Þz2p þ ð4þ 3a2Þz4p þ ð6 − a2Þz6pÞ þ ð4rp − a2Þa8z4pð1þ z2pÞ2�
− a2rpðr2p − a2Þð1 − z4pÞða2z2p −QÞΔ2

pΣp: ðC2Þ
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