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Relativistic jets accompany the collapse of massive stars, the merger of compact objects, or the accretion
of gas in active galactic nuclei. They carry information about the central engine and generate electromagnetic
radiation. No self-consistent simulations have been able to follow these jets from their birth at the black hole
scale to the Newtonian dissipation phase, making the inference of central engine property through
astronomical observations undetermined. We present the general relativistic moving-mesh framework to
achieve the continuity of jet simulations throughout space and time. We implement the general relativistic
extension for the moving-mesh relativistic hydrodynamic code, JET, and develop a tetrad formulation to
utilize the Harten-Lax-van Leer Contact Riemann solver in the general relativistic moving-mesh code. The
new framework is able to trace the radial movement of relativistic jets from central regions where strong
gravity holds all the way to distances of jet dissipation.
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I. INTRODUCTION

Relativistic collimated outflows, known as jets, are
associated with many astrophysical systems of vastly differ-
ent scales, from stellar to galactic and even to extra-galactic
levels. Phenomena like microquasars, young stellar objects,
gamma-ray bursts (GRBs), active galactic nuclei (AGN),
and quasars demonstrate the prevalence of relativistic jets
and highlight the ubiquity of the underlying physical
processes that give rise to these phenomena.
A central aspect shared by these varied astrophysical

systems is the phenomenon of accretion, in which matter is
attracted and pulled into a dense celestial body, like a black
hole or neutron star. As matter falls onto these objects,
gravitational and magnetic forces play crucial roles in
launching and collimating the relativistic jets. Studying
relativistic jets across different scales provides astronomers
with a unique opportunity to probe fundamental astrophysi-
cal processes and test our understanding of high-energy
physics in extreme environments.
Commencing with the Penrose process [1,2], numerous

theoretical investigations have been undertaken to explore

jets and mass outflows near black holes. The Penrose
process initially elucidates energy extraction from infalling
matter into a rotating black hole. Subsequently, the seminal
work by Blandford and Znajek (BZ) [3] demonstrated that
jet energy could be extracted from the rotational energy of
large-scale magnetic fields surrounding spinning black
holes. Later, Blandford and Payne (BP) [4] highlighted
that matter could also depart from the surface of the
accretion disk due to magneto-centrifugal acceleration.
One of the fundamental questions in accretion disk

physics is how the angular momentum transfers within the
disk. Initially, Shakura and Sunyaev [5] introduced the “α-
disc”model. However, the source of the ad hoc viscosity in
this model remains questionable. In contrast, recent years
have seen widespread acceptance of magneto-rotational
instability (MRI; Balbus and Hawley [6]) as the primary
mechanism for angular momentum transport in accre-
tion flows.
Another fundamental question in accretion disk physics

is the generation of the large poloidal magnetic field as it is
pretty natural to assume a toroidal field configuration for
accretion flows. To begin with, the orbital differential shear
would predominantly amplify the toroidal magnetic field by
the shearing of seed poloidal magnetic field, the so-called Ω
effect. It took simulators many years to achieve the
necessary resolutions and finally report the self generation
of the large-scale poloidal magnetic field in black hole
accretion disk due to the α-effect (which relies on the
buoyancy and Coriolis forces to convert toroidal into
poloidal magnetic flux) [7,8]. The general mean-field
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dynamo theory (see, e.g., [9–13]) has been widely used to
investigate the generation of large-scale magnetic fields
from small-scale turbulence.
Recent long-term general-relativistic (GR) neutrino-

radiation magnetohydrodynamics (MHD) simulations of
the merger of the binary neutron star and black hole neutron
star have shown that effective viscous processes, α − Ω
magnetic dynamo can lead to the generation of large-scale
magnetic field, and post-merger mass ejection [14–16]. The
analysis of the binary neutron star (BNS) merger remnant
and post-merger ejecta has been investigated in detail (see,
e.g., [17–19]). Still, the process of successfully launching a
relativistic jet is undoubtedly complex. For a comprehen-
sive understanding of the launching mechanism, general
relativistic magnetohydrodynamic (GRMHD) simulations
that integrate intricate microphysical processes are imper-
ative. On the other hand, relativistic outflows play a pivotal
role in a multitude of astronomical phenomena. For exam-
ple, it has been speculated that the BNS merger remnants
and relativistic ejecta are the central engines of gamma-ray
bursts [20–23] and kilo-nova [24–29]. Relativistic outflows
or jets are instrumental in shaping the emission profiles and
contributing significantly to the high-energy radiation
observed. Understanding these electromagnetic observa-
tions requires tracking the propagation of relativistic jets
and their interaction with the ambient medium for a long
period of time. However, simulating the complete journey of
relativistic jets and the related emission process is numeri-
cally challenging. Studies in literature split focus on various
parts of the whole process. Many studies conduct MHD/
GRMHD simulations to investigate the jet launching
process and early propagation (see, e.g., [30–41]). Some
other studies use special relativistic MHD/HD simulations
to investigate the jet’s interaction with the ambient medium,
away from the central compact region (see, e.g., [42–53]). In
this study, we propose a formulation to achieve the
continuum of jet simulations throughout space and
time and potentially bridge these research domains. The
formulation is built upon the development of the moving-
mesh technique [54–62], which has demonstrated its
efficiency in simulating ultrarelativistic jets (see, e.g.,
[51,63,64]). The extension of the moving-mesh technique
to the general relativistic hydrodynamics only appears in
recent years. We have seen several moving-mesh codes
been extended to include GR effects [60,62,65]. Most of
these moving-mesh codes use the Harten-Lax-van Leer
(HLL)/Harten-Lax-van Leer-Einfeldt (HLLE) Riemann
solver [66,67]. However, the Harten-Lax-van Leer
Contact (HLLC) approximate Riemann solver [68]
resolves not only the extremal waves but also the contact
discontinuity in the Riemann fan and is useful for
maintaining contact discontinuities with high precision.
Its implementation in fixed-mesh GR employs a local
frame transformation [69,70]. In this study, we provide the
mathematical formulation of incorporating the HLLC

Riemann solver into a general relativistic moving-mesh
code and demonstrate its robustness in simulating fluid
flows under strong gravity. In Sec. II, we implement the
general relativistic extension to the special relativistic
moving-mesh hydrodynamic code JET [57] using the
reference metric formulation [71–74]. In Sec. III, we
illustrate the tetrad formulation for solving the HLLC
Riemann problem in general relativity and the procedures
to incorporate it into the moving-mesh framework.
Section IV presents several code implementation tech-
niques. In Sec. V, we conduct several simulations with
fixed mesh to test the robustness of the GR extension in
the code. In Sec. VI, we conduct numerical tests with the
moving-mesh grid demonstrating the code’s capability to
track and resolve the relativistic outflow. For the first time
in literature, we successfully launch a relativistic jet from
the black hole-torus system and simulate its complete
propagation to the dissipation distance. Such simulation
provides additional evidence supporting the feasibility of
full-time-domain jet simulations, as discussed in our
earlier research [64]. Conclusions and future work are
discussed in Sec. VII.
Throughout this paper, we use the Greek indices

ðα; β; μ; ν;…Þ running from 0 to 3 to denote the spacetime
components, and the Latin indices ði; j; k;…Þ running from
1 to 3 to denote the space components. We adopt the
geometric units G ¼ c ¼ M⊙ ¼ 1 throughout this paper.
All the length scales and timescales are expressed in units
of the gravitational radius rg ¼ GM⊙=c2 and tg ¼ rg=c,
respectively, unless stated otherwise.

II. GENERAL RELATIVISTIC HYDRODYNAMICS
IN A REFERENCE METRIC FORMULATION

The 2D special relativistic moving-mesh hydrodynamic
code JET adopts spherical coordinates assuming axisym-
metry. The cell interfaces orthogonal to the radial direction
are allowed to move radially. The code is essentially
Lagrangian in the radial direction, coupled laterally by
transverse flux. This setup is particularly suitable for
modeling relativistic radial outflows [55]. To minimize the
modifications for the code, we derive the general relativ-
istic hydrodynamic equations in a way that resembles the
special relativistic counterparts. In the following, we lay
out the implementation steps for clarity. Despite of the
axisymmetry property of the JET code, throughout this
paper we will show all the derivations without imposing
any symmetry for completeness.
In the standard 3þ 1 decomposition (see, e.g., [75–77]),

the spacetime is foliated by a family of spatial hypersurface
Σt with future-pointing timelike unit normal vector denoted
by nμ, which decomposes the line element as

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ ð1Þ
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where α is the lapse function, βi is the shift vector, and γij is
the spatial metric induced on Σt. In terms of the lapse and
shift, the normal vector nμ can be expressed as

nμ ¼ ð−α; 0; 0; 0Þ; nμ ¼ ð1=α;−βi=αÞ: ð2Þ

We adopt a conformal decomposition of the spatial
metric γij

γij ¼ ψ4γ̄ij; γij ¼ ψ−4γ̄ij ð3Þ

where ψ ≔ ðγ=γ̄Þ1=12 is the conformal factor, γ̄ij is the
conformal spatial metric, and γ and γ̄ are the determinants
of γij and γ̄ij respectively. Following the reference-metric
formulation (as shown in [78]), we define the residual
metric ϵij as

ϵij ≔ γ̄ij − γ̂ij; ð4Þ

where γ̂ij is a time-independent background reference
metric. For our purpose, we specialize γ̂ij to be a flat
metric in spherical coordinate ðr; θ;ϕÞ as γ̂ij ≔ diagð1; r2;
r2 sin2 θÞ. To make the conformal scaling unique, we set
γ̄ ¼ γ̂ ≔ detðγ̂ijÞ (see, e.g., [79]). We denote∇μ,Di, D̄i, and
D̂i as the covariant derivatives of spacetime metric gμν, γij,
γ̄ij, and γ̂ij respectively.
The equations of relativistic hydrodynamics are based on

conservation of rest mass

∇μðρuμÞ ¼ 0; ð5Þ

and conservation of energy-momentum

∇νðTμνÞ ¼ 0; ð6Þ

where ρ is the rest-mass density and uμ is the fluid four-
velocity and Tμν is the stress-energy tensor. Here we
assume perfect fluid for Tμν in the form

Tμν ¼ ρhuμuν þ Pgμν; ð7Þ

where P is the pressure, ε is the specific internal energy, and
h ≔ 1þ εþ P=ρ is the specific enthalpy. In 3þ 1 decom-
position, Tμν can be decomposed as

S0 ≔ nμnνTμν ¼ ρhW2 − P; ð8aÞ

Sj ≔ −γiμnνTμν ¼ ρhW2vi; ð8bÞ

Sij ≔ γiμγ
j
νTμν ¼ ρhW2vivj þ Pγij; ð8cÞ

where W ≔ αut is the Lorentz factor and vi ≔ ui=W þ
βi=α is the fluid velocity measured by the normal observer.

We adopt the Valencia formulation in reference metric
formulation following [72,80] to rewrite the hydrodynam-
ics equations in conservative form as

∂tqþ
1ffiffiffî
γ

p ∂j½
ffiffiffî
γ

p
f j� ¼ s ð9Þ

with state vectors q being the conserved variables

q ¼

0
B@

qD
qSi
qτ

1
CA ¼ ψ6

ffiffiffiffiffiffiffi
γ̄=γ̂

p
0
B@

D

Si
τ

1
CA; ð10Þ

where ðD; Si; τÞ ≔ ðρW; ρhWui; ρhW2 − P −DÞ are the
density, momentum density, and energy density variables
in Valencia form respectively. f j and s represent the flux
and source terms respectively written as

f j ¼

0
B@

ðfDÞj
ðfSiÞj
ðfτÞj

1
CA; s ¼

0
B@

0

sSi
sτ

1
CA: ð11Þ

The detailed derivation is shown in Appendix A for the
readers’ interests.
One key ingredient of the reference metric method is to

evolve tensorial quantities in an orthonormal basis with
respect to the background metric. In this way, all tensor
components are explicitly free of coordinate singularities.
We will follow the notation of [80] to distinguish between
coordinate-basis and orthonormal-basis components. The
plain Latin indices represent the tensor components in the
standard coordinate basis, while the Latin indices sur-
rounded with curly braces denote the components in the
background orthonormal basis. We also introduce a set of
basis vector êfkgi that are orthonormal with respect to the
background metric γ̂ij,

γ̂ij ¼ δfkgflgê
fkg
i êflgj : ð12Þ

For the flat background metric in spherical coordinates,
this leads to

êfkgi ¼ diagð1; r; r sin θÞ; ð13Þ

êkfig ¼ diagð1; 1=r; 1=ðr sin θÞÞ: ð14Þ

So any tensor Ai
j defined in the standard coordinate

basis can be decomposed into its orthonormal basis
counterpart Afigfjg as

Ai
j ¼ Afkgflgêifkgê

flg
j : ð15Þ

As an example, the residual metric ϵij can be expressed

in terms of the components in the orthonormal basis êfkgi as
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ϵij ¼

0
B@

ϵfrgfrg rϵfrgfθg r sin θϵfrgfϕg
rϵfrgfθg r2ϵfθgfθg r2 sin θϵfθgfϕg

r sin θϵfrgfϕg r2 sin θϵfθgfϕg r2 sin2 θϵfϕgfϕg

1
CA; ð16Þ

while for the conserved momentum we have ðqSr ; qSθ ; qSϕÞ ¼ ψ6
ffiffiffiffiffiffiffi
γ̄=γ̂

p ðSfrg; rSfθg; r sin θSfϕgÞ.
The complete set of general relativistic hydrodynamic equations in 3D spherical coordinates under reference metric

formalism (9) can be derived as:

∂

∂t
ðMDÞ þ 1

r2
∂

∂r
½r2αMDv̄frg� þ 1

r sin θ
∂

∂θ
½sin θαMDv̄fθg� þ 1

r sin θ
∂

∂ϕ
½αMDv̄fϕg� ¼ 0 ð17aÞ

∂

∂t
ðMSfrgÞ þ

1

r2
∂

∂r
½r2ðαMðSfrgv̄frg þ PÞÞ� þ 1

r sin θ
∂

∂θ
½sin θðαMSfrgv̄fθgÞ� þ

1

r sin θ
∂

∂ϕ
½αMSfrgv̄fϕg�

¼ M
�
α

�
2P
r

�
γ̄fθgfθg þ γ̄fϕgfϕg

2

�
þ ψ4ρhW2

r
ðvfθg2 þ vfϕg2Þ þ 1

2
ψ4Sjk∂rϵjk

þ 2ðρhðW2 − 1Þ þ 3PÞ∂r lnψ
�
− S0∂rαþ Sfig∂rβfig −

1

r
ðSfθgβfθg þ SfϕgβfϕgÞ

�
ð17bÞ

∂

∂t
ðrMSfθgÞ þ

1

r2
∂

∂r
½r2αðrMSfθgÞv̄r� þ

1

r sin θ
∂

∂θ
½r sin θαMðSfθgv̄fθg þ PÞ� þ 1

r sin θ
∂

∂ϕ
½rαMSfθgv̄fϕg�

¼ M
�
α

�
ðPγ̄fϕgfϕg þ ψ4ρhW2vfϕg2Þ cot θ þ 1

2
ψ4Sjk∂θϵjk þ 2ðρhðW2 − 1Þ þ 3PÞ∂θ lnψ

�

− S0∂θαþ Sfig∂θβfig − Sfϕgβfϕg cot θ
�

ð17cÞ

∂

∂t
ðr sin θMSfϕgÞ þ

1

r2
∂

∂r
½r2αðr sin θMSfϕgÞv̄r� þ

1

r sin θ
∂

∂θ
½sin θαðr sin θMSfϕgÞv̄fθg�

þ 1

r sin θ
∂

∂ϕ
½r sin θαMðSfϕgv̄fϕg þ PÞ�

¼ M
�
α

�
2ðρhðW2 − 1Þ þ 3PÞ∂ϕ lnψ þ 1

2
ψ4Sjk∂ϕϵjk

�
− S0∂ϕαþ Sfig∂ϕβfig

�
ð17dÞ

∂

∂t
ðMτÞ þ 1

r2
∂

∂r
½r2αMðτv̄frg þ PvfrgÞ� þ 1

r sin θ
∂

∂θ
½sin θαMðτv̄fθg þ PvfθgÞ�

þ 1

r sin θ
∂

∂ϕ
½αMðτv̄fϕg þ PvfϕgÞ�

¼ αM½T00ðβiβjKij − βi∂iαÞ þ T0ið2βjKij − ∂iαÞ þ TijKij� ð17eÞ

where Kij is the extrinsic curvature, M ≔ ψ6
ffiffiffiffiffiffiffi
γ̄=γ̂

p
and v̄fig ≔ vfig − βfig=α, alongside with the special relativistic

Eq. (A25) in Appendix A 4 for comparison (see also [81]). Noted that in practice we compute ∂kϵfigfjg numerically in source
terms instead of ∂kϵij as

∂kϵij ¼ êflgi êfmg
j ∂kϵflgfmg þ ϵflgfmg∂kðêflgi êfmg

j Þ; ð18Þ

while the second term ∂kðêflgi êfmg
j Þ is evaluated analytically.

III. TETRAD FORMATION AND THE HLLC RIEMANN SOLVER

To evaluate the numerical flux through cell interfaces, HLL-type (HLLE/HLLC) Riemann solvers have been designed
for relativistic hydrodynamics in Minkowski spacetime [68,82]. Most of the GRHD/GRMHD codes in the literature use
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the HLLE Riemann solver in curved spacetime (see, e.g.,
[83–86]). The HLLC Riemann solver that captures the
contact discontinuity in the wave fan has recently been
added for GR codes [69,70,87]. We follow previous works
for the implementation of the HLLC Riemann solver in
general relativity [69,70,88]. The basic idea is based on the
equivalence principle: physical laws in a local inertial
frame of a curved spacetime have the same form as in
special relativity. When we define such inertial frame, we
can then use the solution of Riemann problems in a local
Minkowskian frame to construct the corresponding sol-
ution in curved spacetime. The previous section derives the
general relativistic hydrodynamic equations in a reference
metric formulation. For the benefit of the coming dis-
cussion, we will revert to the original formulation [84] in
this section,

1ffiffiffiffiffiffi−gp
�
∂

ffiffiffiffiffiffi−gp
F0

∂x0
þ ∂

ffiffiffiffiffiffi−gp
Fi

∂xi

�
¼ S ð19Þ

with g ¼ detðgμνÞ satisfying ffiffiffiffiffiffi−gp ¼ α
ffiffiffi
γ

p
. The state vector

F0 and the flux vector Fi are given by

Fμ ¼ ðρuμ; Tμ
j ;−nνTνμ − ρuμÞ

¼ ðρuμ; ρhuμuj þ Pδμj ; ρhWuμ − Pnμ − ρuμÞ; ð20Þ

and the source term in this formulation is denoted by S.
Since the source is irrelevant to the tetrad formulation in
following discussions, we here omit the explicit form of S.
Let us consider a single computational cell of our discrete

spacetime Ω, bounded by a closed three-dimensional sur-
face ∂Ω. We take the 3-surface ∂Ω as the standard-oriented
geometric object made up of two spacelike surfaces
fΣx0 ;Σx0þΔx0g plus timelike surfaces fΣxi− ;Σxiþg that join

the two temporal slices together, where xi� are the cell
boundaries of Ω in �xi directions. The integral form of the
system (19) is

Z
Ω

1ffiffiffiffiffiffi−gp ∂
ffiffiffiffiffiffi−gp

F0

∂x0
dΩþ

Z
Ω

1ffiffiffiffiffiffi−gp ∂
ffiffiffiffiffiffi−gp

Fi

∂xi
dΩ ¼

Z
Ω
SdΩ;

ð21Þ

where

dΩ ≔
ffiffiffiffiffiffi
−g

p
dx0 ∧ dx1 ∧ dx2 ∧ dx3 ð22Þ

is the volume element of cell Ω. From now we will drop the
wedge symbol ∧ for simplicity. The integral form (21) can
be rewritten in the following conservation form

ðF̄0Þx0þΔx0 − ðF̄0Þx0 ¼ −
X
i

ðF iþ − F i
−Þ þ

Z
Ω
SdΩ ð23Þ

where ðF̄0Þx0 is the volume integral of F0 at x0 given by

ðF̄0Þx0 ≔
Z
Σx0

ffiffiffiffiffiffi
−g

p
F0dx1dx2dx3; ð24Þ

and F i
� is the integrated spatial flux across the cell

interfaces xi� given by

F i
� ≔

Z
Σxi�

ffiffiffiffiffiffi
−g

p
Fidx0

Y
j≠i

dxj: ð25Þ

A. Tetrad formulation

Instead of attempting a direct resolution of the Riemann
problem within the curved spacetime, our approach entails
deliberately converting the left and right states at a given
interface into a local Minkowskian frame of reference. This
methodology enables the utilization of developments in the
realm of special relativistic Riemann problems, as proposed
by [88,89].
To begin with, we define a new tetrad basis eðμ̂Þ that

satisfies a list of properties as shown in [69]:
(1) eðμ̂Þ must be orthogonal to eðν̂Þ for all μ ≠ ν.
(2) Each eðμ̂Þ must be normalized to have an inner

product of �1 with itself, with eð0̂Þ being timelike
and eðîÞ being spacelike.

(3) eð0̂Þ must be orthogonal to surfaces of constant x0.
(4) The projection of eðîÞ onto to the surfaces of constant

x0 is orthogonal to the surface of constant xi within
that submanifold.

Without loss of generality, let us only consider the con-
version of the volume integral ðF̄0Þx0 in Eq. (24) and the
first spatial flux integral F 1þ in Eq. (23).
We define the following tetrad basis in the spherical

coordinates with xμ ¼ ðt; r; θ;ϕÞ (the detailed derivation
can be found in Appendix of [69,70]) as

eðt̂Þμ ¼ nμ;

eðr̂Þμ ¼ B̂ð0; γrr; γrθ; γrϕÞ;
eðθ̂Þ

μ ¼ D̂ð0; 0; γϕϕ;−γθϕÞ;
eðϕ̂Þ

μ ¼ Ĉð0; 0; 0; 1Þ; ð26Þ
where the coefficients are given by

B̂ ¼ 1ffiffiffiffiffiffi
γrr

p ;

Ĉ ¼ 1ffiffiffiffiffiffiffi
γϕϕ

p ;

D̂ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γϕϕðγθθγϕϕ − γ2θϕÞ

q : ð27Þ

The covariant components of the tetrad basis are given
by eðμ̂Þμ ¼ gμνeðμ̂Þν. Specifically
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eðt̂Þμ ¼ nμ;

eðr̂Þμ ¼ B̂ðβr; 1; 0; 0Þ;
eðθ̂Þμ ¼ D̂ðβθγϕϕ − βϕγθϕ; γrθγϕϕ − γrϕγθϕ;

γθθγϕϕ − γ2θϕ; 0Þ;
eðϕ̂Þμ ¼ Ĉðβϕ; γrϕ; γθϕ; γϕϕÞ: ð28Þ

The transformation of vector and tensor between the
tetrad frame and the original Eulerian observer frame
follows

Vðμ̂Þ ¼ eðμ̂ÞμVμ;

Qðμ̂Þðν̂Þ ¼ eðμ̂Þμeðν̂ÞνQμν; ð29Þ

and

Vμ ¼ eðμ̂ÞμVðμ̂Þ;

Qμν ¼ eðμ̂Þμeðν̂ÞνQðμ̂Þðν̂Þ: ð30Þ

Note that the upper and lower spatial tetrad components
are the same VðîÞ ¼ VðîÞ while we have Vðt̂Þ ¼ −Vðt̂Þ
for temporal component in the local Minkowskian
frame η̂ðμ̂Þðν̂Þ ≔ eðμ̂Þμeðν̂Þνgμν ¼ diagð−1; 1; 1; 1Þ.
Therefore, we can define F̂ðμ̂Þ as the tetrad transforma-

tion of Fμ in the form

F̂ðμ̂Þ ¼

0
B@

ðF̂DÞðμ̂Þ
ðF̂SðĵÞ Þðμ̂Þ

ðF̂τÞðμ̂Þ

1
CA¼eðμ̂Þμ

0
B@

ρuμ

eðĵÞ
νðρhuμuνþPδμνÞ

ρhWuμ−Pnμ−ρuμ

1
CA: ð31Þ

Here for momentum components ðF̂SðĵÞ Þðμ̂Þ of F̂ðμ̂Þ we
need to perform one more tetrad transformation due to its
tensorial nature. Since we only focus on the flux along r
direction, the components F̂ðt̂Þ and F̂ðr̂Þ are written as

F̂ðt̂Þ ¼ ðD; SðĵÞ; τÞ; ð32aÞ

F̂ðr̂Þ ¼

0
B@D

uðr̂Þ

W
; SðĵÞ

uðr̂Þ

W
þ Pδðr̂ÞðĵÞ; ðτ þ PÞ u

ðr̂Þ

W

1
CA

¼ ðDv̄ðr̂Þ; SðĵÞv̄
ðr̂Þ þ Pδðr̂ÞðĵÞ; ðτ þ PÞv̄ðr̂ÞÞ; ð32bÞ

where

uðt̂Þ ¼ eðt̂Þνuν ¼ −eðt̂Þtut ¼ αut ¼ W ð33Þ

uðĵÞ ¼ eðĵÞ
μuμ

¼ ðWvr=
ffiffiffiffiffiffi
γrr

p
; D̂ðuθγϕϕ − uϕγθϕÞ; ĈuϕÞ ð34Þ

SðĵÞ ¼ ρhWuðĵÞ; ð35Þ

v̄ðr̂Þ ≔
uðr̂Þ

W
¼ vðr̂Þ − βðr̂Þ=α ¼ vrffiffiffiffiffiffi

γrr
p ; ð36Þ

δðr̂ÞðĵÞ ¼ 1 for ðr̂Þ ¼ ðĵÞ; otherwise 0: ð37Þ

The inverse transformation is given by

Fμ ¼ eðμ̂Þμ

0
BB@

ðF̂DÞðμ̂Þ
eðĵÞjðF̂SðĵÞ Þðμ̂Þ

ðF̂τÞðμ̂Þ

1
CCA; ð38Þ

which gives

Ft ¼ 1

α

0
BB@

ðF̂DÞðt̂Þ
eðĵÞjðF̂SðĵÞ Þðt̂Þ

ðF̂τÞðt̂Þ

1
CCA; ð39Þ

Fr ¼
ffiffiffiffiffiffi
γrr

p
2
664−βðr̂Þ

α

0
BB@

ðF̂DÞðt̂Þ
eðĵÞjðF̂SðĵÞ Þðt̂Þ

ðF̂τÞðt̂Þ

1
CCAþ

0
BB@

ðF̂DÞðr̂Þ
eðĵÞjðF̂SðĵÞ Þðr̂Þ

ðF̂τÞðr̂Þ

1
CCA
3
775:

ð40Þ

In addition, we can reformulate the conservation form
Eqs. (24) and (25) with the tetrad basis. Note that the
indexes ðt; r; θ;ϕÞ and ðt̂; r̂; θ̂; ϕ̂Þ are interchangeable
with ðx0; x1; x2; x3Þ and ðxð0̂Þ; xð1̂Þ; xð2̂Þ; xð3̂ÞÞ respectively.
Making use of the following invariance property

Z
Ω

ffiffiffiffiffiffi
−g

p
dtdrdθdϕ ¼

Z
Ω̂

ffiffiffiffiffiffi
−ĝ

p
dt̂dr̂dθ̂dϕ̂ ð41Þ

and transformation rule

dxμ ¼ eðν̂Þμdxðν̂Þ; ð42Þ

we can get (see also [84])

Z
Σt̂

ffiffiffiffiffiffi
−ĝ

p
dr̂dθ̂dϕ̂ ¼

Z
Σt

1

α

ffiffiffiffiffiffi
−g

p
drdθdϕ; ð43aÞ

Z
Σr̂�

ffiffiffiffiffiffi
−ĝ

p
dt̂dθ̂dϕ̂ ¼

Z
Σr�

ffiffiffiffiffiffi
γrr

p ffiffiffiffiffiffi
−g

p
dtdθdϕ; ð43bÞ

where ĝ ≔ detðη̂ijÞ ¼ −1. This gives the volume integral of
Ft (24) and integrated spatial flux of Fr (25) in local tetrad
basis as
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ðF̄0Þx0 ¼
Z
Σx0

0
BB@

ðF̂DÞðt̂Þ
eðĵÞjðF̂SðĵÞ Þðt̂Þ

ðF̂τÞðt̂Þ

1
CCAdr̂dθ̂dϕ̂; ð44Þ

F r
� ¼

Z
Σr�

dr̂dθ̂dϕ̂

2
664− βðr̂Þ

α

0
BB@

ðF̂DÞðt̂Þ
eðĵÞjðF̂SðĵÞ Þðt̂Þ

ðF̂τÞðt̂Þ

1
CCA

þ

0
BB@

ðF̂DÞðr̂Þ
eðĵÞjðF̂SðĵÞ Þðr̂Þ

ðF̂τÞðr̂Þ

1
CCA
3
775; ð45Þ

with nonzero interface velocity

Vðr̂Þ
interface ≔

dr̂
dt̂

¼ βðr̂Þ

α
¼ βr

α
ffiffiffiffiffiffi
γrr

p ; ð46Þ

from a nonzero drift in the direction of interest, in agree-
ment with [69,88].
With tetrad basis formulation, the procedure to obtain the

numerical flux across the first spatial direction involves the
following steps:
(1) Obtain the values of the primitive variables ðρ; P; uiÞ

and tetrad basis eðν̂Þμ at Σx1�
.

(2) Construct the conserved variable F̂ð0̂Þ and flux F̂ð1̂Þ

for the left and right state in the tetrad frame.
(3) Solve the Riemann problem in the tetrad frame with

a nonzero interface velocity Vðr̂Þ
interface.

(4) Once we have the updated solution of F̂ð0̂Þ and F̂ð1̂Þ,
we can obtain the numerical flux across the first
spatial direction in the Eulerian observer frame
according to Eq. (40).

B. HLLC Riemann solver in the tetrad frame

We solve the Riemann problem in the tetrad frame
by adopting a special relativity form. We calculate the
HLLC flux F̂ðr̂Þ by solving the one-dimensional conser-
vation law [70]:

∂ðt̂ÞÛþ ∂ðr̂ÞF̂
ðr̂Þ ¼ 0; ð47Þ

with

Û≔ F̂ðt̂Þ ¼

0
B@

D

SðĵÞ
τ

1
CA; F̂ðr̂Þ ¼

0
BB@

Dv̄ðr̂Þ

ðSðĵÞv̄ðr̂Þ þPδðr̂ÞðĵÞÞ
ðτþPÞv̄ðr̂ÞÞ

1
CCA: ð48Þ

Given an initial condition at cell interface r̂jþ1
2

described by

Ûðr̂; 0Þ ¼
8<
:

ÛL if r̂ < r̂jþ1
2

ÛR if r̂ > r̂jþ1
2

; ð49Þ

three characteristic waves and four states will be estab-
lished inside the Riemann fan as

Ûð0; t̂Þ ¼

8>>>>>><
>>>>>>:

ÛL if λ̂L ≥ Vðr̂Þ
interface

Û�
L if λ̂L < Vðr̂Þ

interface ≤ λ̂�

Û�
R if λ̂� < Vðr̂Þ

interface < λ̂R

ÛR if λ̂R ≤ Vðr̂Þ
interface

; ð50Þ

and the corresponding numerical flux across interface
r̂jþ1

2
is

ðF̂ðr̂ÞÞjþ1
2
¼

8>>>>>><
>>>>>>:

ðF̂ðr̂ÞÞL if λ̂L ≥ Vðr̂Þ
interface

ðF̂ðr̂ÞÞ�L if λ̂L < Vðr̂Þ
interface ≤ λ̂�

ðF̂ðr̂ÞÞ�R if λ̂� < Vðr̂Þ
interface < λ̂R

ðF̂ðr̂ÞÞR if λ̂R ≤ Vðr̂Þ
interface

; ð51Þ

where λ̂L=R is the characteristic speed of the left/right going

nonlinear wave and ðF̂ðr̂ÞÞL=R ≔ F̂ðr̂ÞðÛL=RÞ. The inter-

mediate state flux ðF̂ðr̂ÞÞ�L=R may be expressed in terms

of Û�
L=R through the jump condition

ðF̂ðr̂ÞÞ�L=R ¼ ðF̂ðr̂ÞÞL=R þ λ̂L=RðÛ�
L=R − ÛL=RÞ: ð52Þ

Explicitly, we have the left or right state as

D�ðλ̂ − λ̂�Þ ¼ Dðλ̂ − v̄ðr̂ÞÞ; ð53aÞ

S�ðr̂Þðλ̂ − λ̂�Þ ¼ Sðr̂Þðλ̂ − v̄ðr̂ÞÞ þ P� − P; ð53bÞ

S�ðθ̂Þðλ̂ − λ̂�Þ ¼ Sðθ̂Þðλ̂ − v̄ðr̂ÞÞ; ð53cÞ

S�ðϕ̂Þðλ̂ − λ̂�Þ ¼ Sðϕ̂Þðλ̂ − v̄ðr̂ÞÞ; ð53dÞ

τ�ðλ̂ − λ̂�Þ ¼ τðλ̂ − v̄ðr̂ÞÞ þ P�λ̂� − Pv̄ðr̂Þ: ð53eÞ

To reduce the number of unknowns and have a well-
posed problem, we assume that S�ðr̂Þ ¼ ðτ� þ P� þD�Þλ̂�
(see [68]). If one defines E ≔ τ þD, one will get the
following expression, giving λ̂� in terms of P� [68]:
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ðλ̂E − Sðr̂Þ þ λ̂P�Þλ̂� ¼ Sðr̂Þðλ̂ − v̄ðr̂ÞÞ − Pþ P�: ð54Þ

By imposing P�
L ¼ P�

R across the contact discontinuity,
we find the following quadratic equation for λ̂�

FHLL
E ðλ̂�Þ2 − ðEHLL þ FHLL

Sðr̂Þ Þλ̂� þ SHLLðr̂Þ ¼ 0; ð55Þ

where

SHLLðr̂Þ ¼
λ̂RSRðr̂Þ − λ̂LSLðr̂Þ þ F̂ðr̂Þ

D;L − F̂ðr̂Þ
D;R

λ̂R − λ̂L
; ð56aÞ

EHLL ¼ λ̂RER − λ̂LEL þ F̂ðr̂Þ
E;L − F̂ðr̂Þ

E;R

λ̂R − λ̂L
; ð56bÞ

FHLL
Sðr̂Þ ¼

λ̂RF̂
ðr̂Þ
Sðr̂Þ;L − λ̂LF̂

ðr̂Þ
Sðr̂Þ;R þ λ̂Rλ̂L

	
SRðr̂Þ − SLðr̂Þ



λ̂R − λ̂L

; ð56cÞ

FHLL
E ¼ λ̂RF̂

ðr̂Þ
E;L − λ̂LF̂

ðr̂Þ
E;R þ λ̂Rλ̂LðER − ELÞ
λ̂R − λ̂L

; ð56dÞ

F̂ðr̂Þ
E;L=R ≔ F̂ðr̂Þ

D;L=R þ F̂ðr̂Þ
τ;L=R: ð56eÞ

Once we obtain the speed of the contact discontinuity λ̂�,
P� can be obtained from Eq. (54). The conserved quantities
in the intermediate states are given by

D�
L=R ¼ DL=Rðλ̂L=R − v̄ðr̂ÞL=RÞ

λ̂L=R − λ̂�
; ð57aÞ

ðSðĵÞÞ�L=R ¼ 1

λ̂L=R − λ̂�
ð57bÞ

×
h
ðSðĵÞÞL=R

	
λ̂L=R − v̄ðr̂ÞL=R



þ ðP� − PL=RÞδðr̂ÞðĵÞ

i
;

ð57cÞ

E�
L=R ¼ EL=Rðλ̂L=R − v̄ðr̂ÞL=RÞ þ P�λ̂� − PL=Rv̄

ðr̂Þ
L=R

λ̂L=R − λ̂�
; ð57dÞ

τ�L=R ¼ E�
L=R −D�

L=R: ð57eÞ

The left and right characteristic speeds λ̂L=R follow
Davis’s estimate [68]

λ̂L ¼ minðλ̂−ðÛLÞ; λ̂−ðÛRÞÞ; ð58Þ

λ̂R ¼ maxðλ̂þðÛLÞ; λ̂þðÛRÞÞ; ð59Þ

with

λ̂� ¼ 1

1 − v2c2s

h
v̄ðr̂Þð1 − c2sÞ

�cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − v2Þð1 − v2c2s − ð1 − c2sÞðv̄ðr̂ÞÞ2Þ

q i
; ð60Þ

where v2 ¼ v̄ðîÞv̄ðîÞ and cs is the speed of sound

c2s ¼
1

h

�
∂P
∂ρ

����
ε

þ P
ρ2

∂P
∂ε

����
ρ

�
: ð61Þ

Equivalent expressions for the ðθ;ϕÞ directions can be
easily obtained. In the Eulerian observer frame, the mini-
mum and maximum characteristic speeds λ� are given by
[84,90,91]:

λ� ¼ −βr þ α

1 − v2c2s

h
vrð1 − c2sÞ

�cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − v2Þ½γrrð1 − v2c2sÞ − vrvrð1 − c2sÞ�

q i
: ð62Þ

Making use of Eqs. (36) and (60), we can get the
following relation:

λ� ¼ −βr þ α
ffiffiffiffiffiffi
γrr

p
λ̂�: ð63Þ

Note that Eqs. (60) and (62) are derived in the special
relativistic and general relativistic setting, respectively.
Equation (63) establishes their relationship with the tetrad
method consistently.
In addition, we implement the HLLE Riemann solver

[67,92] for comparison. We adopt the same tetrad formu-
lation. The HLLE Riemann solver is constructed by
assuming an average intermediate state between the fastest
and slowest waves in the tetrad frame. The two character-
istic waves and three states inside the Riemann fan become:

Ûð0; t̂Þ ¼

8>>><
>>>:

ÛL if λ̂L ≥ Vðr̂Þ
interface

Û� if λ̂L < Vðr̂Þ
interface < λ̂R

ÛR if λ̂R ≤ Vðr̂Þ
interface:

ð64Þ

The corresponding numerical flux across interface
r̂jþ1

2
is:

ðF̂ðr̂ÞÞjþ1
2
¼

8>>><
>>>:

ðF̂ðr̂ÞÞL if λ̂L ≥ Vðr̂Þ
interface

ðF̂ðr̂ÞÞ� if λ̂L < Vðr̂Þ
interface < λ̂R

ðF̂ðr̂ÞÞR if λ̂R ≤ Vðr̂Þ
interface

; ð65Þ

where Û� and ðF̂ðr̂ÞÞ� are the intermediate state and
flux. They can be derived from the jump condition [see
Eq. (52)] as:
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Û� ¼ λ̂RÛR − λ̂LÛL − ðF̂ðr̂ÞÞR þ ðF̂ðr̂ÞÞL
λ̂R − λ̂L

; ð66Þ

and

ðF̂ðr̂ÞÞ� ¼ λ̂RðF̂ðr̂ÞÞL − λ̂LðF̂ðr̂ÞÞR þ λ̂Rλ̂LðÛR − ÛLÞ
λ̂R − λ̂L

: ð67Þ

C. HLLC Riemann Solver for the Moving-Mesh GR

For the moving mesh in the simulation domain, naturally,
we need to solve the Riemann problem on the moving
interface with its own coordinate velocity V ≔ dx

dt ¼
ðVr; Vθ; VϕÞ. Let us denote the corresponding four-velocity
as uμgridface. In general, when we consider the 3þ 1 spacetime
foliation Σt, we define a unit normal vector as nμ, and this
unit normal vector corresponds by definition to the four-
velocity of the Eulerian observer [75]. When we define the
fluid’s four-velocity as uμ, the velocity of the fluid with
respect to the Eulerian observer (vμ ¼ ð0; viÞ) has the
following relation:

uμ ¼ Wðnμ þ vμÞ; ð68Þ

where W ¼ ð1 − gμνvμvνÞ−1=2 is the Lorentz factor of the
fluid with respect to the Eulerian observer. When we move
from a given hypersurface to the next following the normal
direction, the change in the spatial coordinates is given
as [75]:

xitþdt ¼ xit − βidt; ð69Þ

βμ ¼ ð0; βiÞ being the shift vector. Then vi is related to the
coordinate velocity V by vi ¼ 1

α ðVi þ βiÞ. In our case, only
the cell interface orthogonal to the radial direction can move
with a coordinate velocity denoted as Vr. Then the four-
velocity of our radially moving interface is

uμgridface ¼ W

�
1

α
;
Vr

α
; 0; 0

�
; ð70Þ

vi ¼
�
Vr þ βr

α
;
βθ

α
;
βϕ

α

�
: ð71Þ

In the above, we illustrate the explicit definition of
different velocities for clarity. For our moving-mesh code,
the grid moves radially, the integral of the radial flux at a
short time interval dt becomes

Z
Σr

ffiffiffiffiffiffi
−g

p ðFr − VrFtÞdtdθdϕ ð72Þ

with

Vr ¼ dxr

dt
¼ eðμ̂Þrdxðμ̂Þ

eðν̂Þtdxðν̂Þ
¼ −βr þ α

ffiffiffiffiffiffi
γrr

p
Vðr̂Þ: ð73Þ

Note that the above velocity equation relates to Eqs. (46)
and (63). From Eqs. (39) and (40), we have:

Fr − VrFt ¼
ffiffiffiffiffiffi
γrr

p
ðF̂ðr̂Þ − Vðr̂ÞF̂ðt̂ÞÞ: ð74Þ

Compared with the tetrad formulation for the static

mesh, we replace the interface velocity Vðr̂Þ
interface ¼ βr

α
ffiffiffiffi
γrr

p

by Vðr̂Þ
interface ¼ Vðr̂Þ ¼ ðβrþVrÞ

α
ffiffiffiffi
γrr

p to incorporate the effect of the

moving interface into the flux integral.
In principle, the coordinate velocity for the moving

interface can be set freely. At each instantaneous time,
on the cell interface, the three characteristic waves and four
states inside the Riemann fan depends only on the values of
the primitive variables on the left and right sides of the
interface. The interface velocity will influence which state
the numerical flux across the interface will be selected [see
Eqs. (50) and (51)]. Based on this flexibility, we choose the
contact discontinuity velocity as the interface velocity:

Vðr̂Þ
interface ¼ λ̂�; Vr

interface ¼ −βr þ α
ffiffiffiffiffiffi
γrr

p
λ̂�: ð75Þ

We find this choice performs well for the simulation of
ultrarelativistic jets.
For the derivation of the tetrad formulation and HLLC

Riemann solver, we express every metric and fluid variable
in the coordinate basis. For the implementation, we utilize
those variables in the orthonormal basis instead. For
example, in the tetrad basis calculation, we will use
γfigfjg ¼ ψ4γ̄figfjg ¼ ψ4ðδfigfjg þ ϵfigfjgÞ instead of γij
itself. In this way, the geometric factors will not directly
appear in the tetrad basis calculation. The derivation itself
remains the same because of the invariance of spacetime
interval under coordinate transformation

ds2 ¼ gμνdxμdxν ¼ gfμgfνgdxfμgdxfνg: ð76Þ

Making use of this invariance principle, we can handle
the moving mesh in another way. First, boost the coordinate
basis into the comoving coordinate basis of the interface:

dxhμi ¼ ∂xhμi

∂xν
dxν ¼ Λν

hμidxν: ð77Þ

Second, boost the primitive velocities into the comoving
coordinate basis:

vhμi ¼ Λν
hμivν: ð78Þ

Third, making use of the invariance, calculate the corre-
sponding metric ghμihνi components:
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ds2 ¼ ghμihνidxhμidxhνi ¼ gμνdxμdxν: ð79Þ

Once we have the new lapse, shift, and spatial metric in the
comoving frame, we can derive the tetrad basis in the
comoving coordinate basis, and solve the HLLC Riemann
problem accordingly. We lay out this approach for readers’
interest as well as for a more complete discussion.

IV. NUMERICAL TECHNIQUES

A. Implementation of equations

For the numerical implementation, we discretize the
volume averages of Eq. (9). Using divergence theorem, the
discretized version of Eq. (9) in the cell ði; jÞ can be
expressed as (since our code is 2.5D, we will ignore the
discretization in the ϕ direction) [85]:

d
dt
hqii;j ¼

1

ΔVi;j

nh
ðhf i1ΔA1Þjiþ1=2;j − ðhf i1ΔA1Þji−1=2;j

i

þ
h
ðhf i2ΔA2Þji;jþ1=2 − ðhf i2ΔA2Þji;j−1=2

io

þ hsii;j ð80Þ

where the cell volume and volume average are defined as

ΔV ≡
Z
cell

ffiffiffî
γ

p
dx1dx2dx3;

h•i≡ 1

ΔV

Z
cell

•
ffiffiffî
γ

p
dx1dx2dx3; ð81Þ

while the surface area and surface average is defined as

ΔAi ≡
Z
surface

ffiffiffî
γ

p
dxj;j≠i

h•ii ≡ 1

ΔAi

Z
surface

•i
ffiffiffî
γ

p
dxj;j≠i: ð82Þ

Note that when we perform the volume average h•i or
surface average h•ii, we could strip out the geometric factor
from the tensorial expressions in coordinate basis and
integrate them together with the volume factor

ffiffiffî
γ

p
. In this

way, the tensorial variables in orthonormal basis like Sfθg
become truly independent of the underlining geometry. For
example, in the spherical coordinates, the volume average
for the conserved momentum qSθ will be calculated as

hqSθii;jΔV ¼
Z
cell

MSfθgr3 sin θdrdθdϕ

¼ ðMSfθgÞi;j
Z
cell

r3 sin θdrdθdϕ: ð83Þ

For our moving-mesh scheme, the cells in the radial
direction will continuously merge and divide. When we

perform the above integral, the variables in orthonormal
basis like MSfθg will be better conserved. As an example,
if we assume MSfθg is constant across cellði;jÞ and
cellðiþ1;jÞ, when we merge these two cells, it gives a
combined conserved momentum as

hqSθiinew;jΔVinew;j ¼ hqSθii;jΔVi;jþhqSθiiþ1;jΔViþ1;j

¼ ðMSfθgÞinew;j
Z
cellðinew ;jÞ

r3 sinθdrdθdϕ;

ð84Þ

where cellðinew;jÞ is the combination of cellði;jÞ and cellðiþ1;jÞ
with ΔVinew;j ¼ ΔVi;j þ ΔViþ1;j. From the combined
momentum, we can recover the variableMSfθg accurately.
In code implementation, the contribution of the source

term to the conserved variables inside a cell is defined as
hsii;jΔVi;j. We perform volume integral on the singular
factors such as 1=r and cotðθÞ that appear in the source
term [see Eq. (17)]. Explicitly, the integral of 1=r factor
gives ðr2þ − r2−Þ=2 while the integral of cotðθÞ leads to
ðsinðθþÞ − sinðθ−ÞÞ. This practice turns out to reduce the
numerical error for the source term calculation near
singular points.
Finally, to work out the cell volume and cell surface, we

make the following definition

r� ¼ r� 1

2
Δr; θ� ¼ θ � 1

2
Δθ; ð85Þ

and calculate the area and volume as

ΔArjr� ¼ 2π

�
r� Δr

2

�
2
�
2 sin θ sin

�
Δθ
2

��
;

ΔAθjθ� ¼ 2π

�
r2 þ 1

12
ðΔrÞ2

�
ðΔrÞ

�
sin

�
θ � Δθ

2

��
;

ΔV ¼ 2π

�
r2 þ 1

12
ðΔrÞ2

�
ðΔrÞ

�
2 sin θ sin

�
Δθ
2

��
:

ð86Þ

B. Recovery of primitive variables

There are many possible ways to make the conversion
between conserved variables and primitive variables (e.g.,
[93]). Our current research focuses on relativistic jets
propagating in an ambient medium. We need to deal with
large variations of density and pressure in the jet simu-
lations. The following cons-to-prim method proves to be
robust for such a task. We use ρ; P;Wvfig ¼ ufig þ
Wβfig=α as our primitive variables where Wvfig is the
projected fluid velocity in orthonormal basis. For the
equation of state (EOS), we only consider the case of a
single-component perfect gas for now. In this case, the
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specific enthalpy h≡ 1þ εþ P=ρ is a function of a
temperature-like variable Θ ¼ P=ρ only (see [94]). In the
literature, the most widely used EOS is the ideal gas EOS:
P ¼ ðΓ − 1Þρε, where P is the gas pressure and ε is the
specific internal energy density, which can be expressed as:

hðΘÞ ¼ 1þ Γ
Γ − 1

Θ; ð87Þ

where Γ is the adiabatic index. The ideal gas EOS has been
applied to the gas of either subrelativistic temperature with
Γ ¼ 5=3 or ultrarelativistic temperature with Γ ¼ 4=3. For
our simulations of relativistic outflow propagating in a cold
ambient medium, a variable equivalent adiabatic index
Γeq ¼ ðh − 1Þ=ðh − 1 − ΘÞ is desirable to account for
transitions between the nonrelativistic and the relativistic
temperature regime. There have been efforts to find EOSs
that better describe the thermal dynamics of relativistic gas.
Synge and Morse [94] derive the correct EOS for the single-
component perfect gas in a relativistic regime using modi-
fied Bessel functions. Mignone et al. [95] proposes an
approximate EOS (denoted as TM EOS) that is consistent
with the Taub’s inequality [96]:

ðh − ΘÞðh − 4ΘÞ ≥ 1 ð88Þ

for all temperatures. It differs by less than 4% from the
theoretical value given in [94]. Ryu et al. [97] proposes a
new EOS (RC EOS), which better fits the theoretical value.
Let us write the expression of the specific enthalpy for the
RC EOS:

hðΘÞ ¼ 2
6Θ2 þ 4Θþ 1

3Θþ 2
: ð89Þ

Following the definition of the general form of poly-
tropic index n and the general form of sound speed cs,

n ¼ ρ
∂h
∂p

− 1; c2s ¼ −
ρ

nh
∂h
∂ρ

; ð90Þ

their values can be calculated for RC EOS as:

n ¼ 3
9Θ2 þ 12Θþ 2

ð3Θþ 2Þ2 ;

c2s ¼
Θð3Θþ 2Þð18Θ2 þ 24Θþ 5Þ

3ð6Θ2 þ 4Θþ 1Þð9Θ2 þ 12Θþ 2Þ : ð91Þ

For both TM and RC, we have correctly c2s → 5Θ=3 in the
nonrelativistic temperature limit and c2s → 1=3 in the
ultrarelativistic temperature limit [97].
We can use these expressions to convert the conservative

variables into primitive ones with a standard Newton-
Raphson method (NRM) [98], using Θ as our independent

variable. We will use the (known) values of the
conservative variables

D¼ ρW; Sfig ¼ ρhW2vfig; τ¼ ρhW2−P−D: ð92Þ

First, by squaring the momentum equation, we get

W2 ¼ 1þ S2

D2h2
; S2 ¼ γfigfjgSfigSfjg ð93Þ

with h ¼ hðΘÞ given by the EOS. Using the relation
p ¼ DΘ=W, we get the energy density (excluding rest
mass), τ ¼ DhW −DΘ=W −D. We can then derive the
following identity [98]:

fðΘÞ ¼ hðΘÞWðΘÞ − Θ
WðΘÞ − 1 −

τ

D
¼ 0: ð94Þ

Together with Eq. (93), the derivative df=dΘ has the form:

dfðΘÞ
dΘ

¼ h0

W

�
1 −

Θ
h
W2 − 1

W2

�
−

1

W
ð95Þ

where the relationW0 ¼ −h0ðW2 − 1Þ=ðhWÞ has been used
[derived from Eq. (93), see also [98]].
The derivative dh=dΘ depends on the particular EOS

used. We adopt the RC EOS [see Eq. (89)] for the
simulations of relativistic jets and the ideal gas EOS for
the remaining numerical tests.

C. Reconstruction

We reconstruct the primitive variable (denoted withQ) to
the left and right sides of each cell with the total variation
diminishing (TVD) method described in [99]:

Q�
i ¼ hQii þ ΔQi

ξi�1
2
− ξ̄i

Δξi
ð96Þ

where Δξi ¼ ξiþ1=2 − ξi−1=2 is the cell width, and ξ̄ is the
cell center. And ΔQi is a slope-limited gradient function
written in terms of a nonlinear limiter function φðvÞ:

ΔQi ¼ ΔQF
i φðvÞ where v ¼ ΔQB

i

ΔQF
i

ð97Þ

ΔQF
i ¼ Δξi

�hQiiþ1 − hQii
ξ̄iþ1 − ξ̄i

�
ð98Þ

ΔQB
i ¼ Δξi

�hQii − hQii−1
ξ̄i − ξ̄i−1

�
: ð99Þ

We adopt the same modified monotonized central (MC)
limiter in [99],
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φMCðvÞ ¼ max

�
0;min

�
1þ v
2

; cFi ; c
B
i v

��
ð100Þ

where cFi ¼ ξ̄iþ1 − ξ̄i
ξiþ1

2
− ξ̄i

; cBi ¼ ξ̄i − ξ̄i−1
ξ̄i − ξi−1

2

: ð101Þ

To reconstruct the left and right states of the cell i, the
above stop limiter utilizes the cell average values of hQii−1,
hQii, and hQiiþ1, defined at the cell center ξ̄i−1; ξ̄i; ξ̄iþ1.
This algorithm takes into account nonuniform spacing. The
cell center position ξ̄i can be taken as the volume-averaged
cell center (“centroids of volume”) or arithmetic-mean cell
center. In this study, we adopt the arithmetic-mean cell
center for our simulations.

D. Treatment of numerical conditions

Robust numerical simulations require the treatment of
several numerical conditions. One of them is the Courant-
Friedrich-Levy (CFL) condition [100], which limits the
time step size in explicit numerical methods. The simu-
lation domain of the JET code allocates cells at the same
temporal level. A global time step will be used to evolve
simulation time. To find the global time step, we first
calculate the time step δt of individual cells in the domain
according to:

δt ¼ CFL · minðδtr; δtθÞ ð102Þ

δtr ¼ Δr
maxðjðλrÞþ − Vr

cellj; jðλrÞ− − Vr
celljÞ

ð103Þ

δtθ ¼ rΔθ
maxðjðλθÞþj; jðλθÞ−jÞ ð104Þ

where CFL is the CFL number. Its value has been set to 0.4
for simulations performed in this study. ðλrÞ� and ðλθÞ� are
again the minimum and maximum characteristic speeds for
the cell in the radial and polar direction, respectively. Vr

cell
is the cell’s radial velocity which approximates the cell’s
upper interface velocity. We then pick the smallest time step
as the global one. The subtraction of the cell’s radial
velocity in Eq. (103) leads to a much larger time step,
making the long-term simulation of relativistic jets com-
putationally efficient. Another numerical condition that
needs to be taken care of is the boundary condition. For our
cell-centered grid structure in spherical polar coordinates,
we follow the boundary treatment described in [73,80]. We
first allocate two layers of ghost zones for each of the four
boundaries (two in the radial direction, and two in the polar
direction), and then fill the boundary ghost zones at the
radial origin, and at the θ boundary with values copied from
the corresponding points in the interior of the grid,

accounting for appropriate parity factors. For the outer
boundary in the radial direction, we adopt the Dirichlet
boundary condition and use the initial data routine to set
their ghost zone values.

E. The adjusted moving-mesh scheme

Since the initial development of the JET code [57], the
moving-mesh scheme has kept being updated to improve
the accuracy and efficiency of relativistic jet simulations.
The adjusted moving-mesh scheme in this study con-
tains the following rules: inside the simulation domain,
the radial interface of a grid cell will move at local contact
discontinuity velocity of the flow. Each radial track moves
independently. The inner and outer radial boundaries of the
domain can also move. At each time step, the longest and
shortest cell in each radial track will be marked for refine-
ment or derefinement according to the maximum or mini-
mum aspect ratio of grid cell (a ≔ Δr=rΔθ) allowed in the
simulation (see [57] for more information). In ultrarelativ-
istic jet simulations, we find the domain cells can squeeze
into an ultrathin shell with the cell’s aspect ratio reaching
1=100 or even smaller. In order to resolve the relativistic
thin shell, only cells with length Δr < r=ð8Γ2Þ will be
marked for derefinement. In addition, we define an approxi-
mate second derivative of a fluid variable as a measurement
of error Ei to mark the region of interest. At each time step,
the cell along each radial track with the maximum meas-
urement of error will be marked for refinement if its aspect
ratio is larger than twice the minimum aspect ratio and its
measurement error Ei > 0.9. The cells with Ei < 0.002 will
be considered for derefinement. The cell to be derefined is
the one that has the smallest time step (see [64]). To reduce
load imbalance of CPUs, the number of grids in each radial
track will be balanced dynamically during the simulation.

V. FIXED-MESH NUMERICAL SIMULATIONS

A. Bondi accretion in maximally sliced trumpet
coordinates

We first consider spherically symmetric, radial fluid
accretion onto a nonrotating black hole (ingoing Bondi
flow) [101,102]. Following previous work (e.g., [70,103]),
we perform simulations of Bondi flow in maximally sliced
trumpet coordinates [104,105]. The transformation between
Schwarzschild coordinate and maximally slicing trumpet
coordinates is illustrated as a reference in Appendix B. We
set the fluid parameter according to Table 1 of [103]: the
accretion rate Ṁbondi ¼ 10−4M, the adiabatic index
Γ ¼ 4=3, and the critical radius Rs ¼ 10M where M is
the mass of the central black hole. For simplicity,M is set to
1 in the simulation.
The simulation domain is in an axisymmetric spherical

coordinate, spanning the region r∈ ½0.4M; 10M�; θ∈
½0; π=2�. We employ logarithmic grid spacing in the radial
direction with a cell’s aspect ratio a set to one (i.e.,
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a ≔ Δr=rΔθ ¼ 1). The finest cell, located closest
to the inner boundary, has a spacing Δr ¼ rminðθmax−
θminÞ=ðNtÞ, where Nt is the number of cells in the
azimuthal direction. To maintain the unity aspect ratio of
the cell, the number of cells in the radial direction Nr is
calculated as

Nr ¼ logðrmax=rminÞ
logð1þ ðθmax − θminÞ=NtÞ

: ð105Þ

We conduct simulations with three different resolutions:
low resolution with Nt ¼ 128, medium resolution with
Nt ¼ 256, and high resolution with Nt ¼ 512. For the
benefit of convergence test, we set the number of grids in the

radial direction Nr ¼ 2Nt. In this case, the cell’s aspect
ratio will deviate from one slightly.
In Fig. 1, we show the radial profiles of the fluid rest-

mass density (top) and the fluid velocity (middle) at time
T ¼ 0MðinitÞ and T ¼ 50MðfinÞ for the medium resolu-
tion simulation. The profile of the Bondi flow has been
maintained throughout the simulations. In the bottom
panel, we plot the L1-norm of error for the rest-mass
density. The L1-norm of error is defined as [69]

ϵL1ðρÞ ¼
R jρfin − ρinitj ffiffiffiffiffiffi−gp

drdθdϕR jρinitj ffiffiffiffiffiffi−gp
drdθdϕ

: ð106Þ

The Bondi simulations demonstrate second-order con-
vergence for the L1-norm of error with respect to
the resolution. The code adopts the second-order RK2
time integrator and the second-order piecewise linear
reconstruction method (PLM), described in Sec. IV C.
The presented convergence result is as expected and
agrees with previous studies (see, e.g., [69,70]). For the
implementation of a higher-order reconstruction scheme
for our unstructured grid in spherical geometry, like the
piecewise parabolic method (PPM) [106], weighted essen-
tially nonoscillatory (WENO) [107–110], or the monot-
onicity preserving scheme (MP5) [109], we will refer to
future work.

B. Tolmann-Oppenheimer-Volkoff star

The next numerical test we consider is the Tolman–
Oppenheimer–Volkoff (TOV) star with the structure of a
spherically symmetric body of isotropic material in equi-
librium [111,112].
We conduct two TOV star tests based on [60]: the

stationary case and the one with pressure depletion. The
initial profile for the TOV star has a central rest-mass
density ρcð0Þ ¼ 1.28 × 10−3. We adopt the polytropic EOS
PðρÞ ¼ KρΓ, with ðK;ΓÞ ¼ ð100; 2Þ for the initial data. As
for the evolution, we adopt the ideal gas law. Additional
parameters for the initial profile can be found in Table I in
the cgs unit.
In Fig. 2, we plot the central maximum density variation

as a function of dynamical time (
ffiffiffiffiffiffiffiffiffiffiffi
ρcð0Þ

p
t) for both cases.

For the stationary case, we find the central maximum
density varies within 0.5% for 14 dynamical times for the
Nt ¼ 64 simulation, confirming the stability of the star.

TABLE I. Parameter values for the initial profile of TOV star.

Radius
[km]

Gravitational mass
½M⊙�

Baryon mass
½M⊙� ρc [g=cm3]

12 1.40 1.51 7.92 × 1014

FIG. 1. Top: radial rest-mass density profile of the Bondi flow
for the medium resolution Nt ¼ 256. The mass accretion rate is
Ṁbondi ¼ 10−4M. The blue dotted line indicates the initial
analytical solution at T ¼ 0M, while the yellow dashed line
denotes the numerical solution at T ¼ 50M. The green dash-
dotted line shows their difference. The black dotted vertical line
indicates the radial location of the event horizon of the black hole
at r ¼ 0.78M in the maximally sliced trumpet coordinate.
Middle: the radial fluid velocity −Wvr profile. W is the Lorentz
factor, and vr is the fluid velocity with respect to the Eulerian
observer. Bottom: the L1-norm of error for the rest-mass density
as a function of the azimuthal grid number Nt. The dash line
indicates second-order convergence.
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When we increase the resolution to Nt ¼ 128, the result
gets better. For the pressure depletion simulation, we
reduce the TOV initial pressure profile by ten percent.
The star falls out of equilibrium and undergoes radial
oscillations. We conduct simulations with two different
resolutions (Nt ¼ 64 and 128) and find consistent oscil-
lation pattern, as shown in the bottom panel of Fig. 2. The
result is equivalent to the test result in [60].

C. Fishbone-Moncrief torus around
a Schwarzschild black hole

Our next test concerns a stationary, axisymmetric,
isentropic torus around a Schwarzschild black hole
[113]. We consider a particular instance of the Fishbone-
Moncrief solution where the spin of the black hole is set
to zero.
We generate the initial data in the Schwarzschild

coordinate with its radius denoted by R. However, we
will evolve the system in the isotropic coordinate of the
Schwarzschild metric with its radius denoted by r (see

Appendix B). The initial profile generator follows the
implementation in [79,86,114]. Table II shows the key
variable values for the torus. For the ambient atmosphere,
we set ρ ¼ ρminðR=RgÞ−3=2, P ¼ PminðR=RgÞ−5=2, where
ρmin ¼ 10−8, Pmin ¼ 10−10, Rg ¼ GM=c2 is the black hole
gravitational radius and M is the black hole mass.
For the simulation, we employ an ideal gas EOS:

P ¼ ðΓ − 1Þρε, with Γ ¼ 4=3. In the azimuthal direction,
the simulation domain extends from θmin ¼ π=3 to
θmax ¼ 2π=3. In the radial direction, the grid covers the
region from rmin ¼ 4 to rmax ¼ 20. At the location of
maximum pressure r ¼ 10.98 (R ¼ 12), the orbital period
of the torus is around 238.9. We set the final time of the
simulation to be 2000, roughly eight orbits. We conduct
two simulations with grid resolution Nt ¼ 256 and
Nt ¼ 512, and find consistent results.
Figure 3 illustrates the contour plots of the black hole-

torus system at the beginning (top panel) and at the end of
the simulation (middle and bottom panels), taken from the
Nt ¼ 512 simulation for better visual effect. The top panel
shows the initial contour plot for the logarithmic density ρ.
Comparing these two contour snapshots, we first find that
throughout the simulation, the torus maintains its density
structure. We check that the maximum rest-mass density
always keeps the original value within 4% during the
simulation, and its radial position varies within 2%.
Because the torus stays close to the black hole, the
ambient gas falls into the black hole and blows the torus
surface in the infalling process. A bow shock appears in
front of the torus and a trailing tail fills in the inner region
between the torus and the central black hole. The falling
gas slows down when it crosses the bow shock as can be
seen from the velocity contour plot. The stability of the
torus structure near the black hole showcases the code’s
robustness in the handling of fluid rotation under strong
gravity.

FIG. 2. Normalized variation for the central maximum density
as a function of dynamical time for the TOV star at two
resolutions (Nt ¼ 64 and Nt ¼ 128). Top: the time evolution
for the stationary case. Bottom: the time evolution for the
pressure-depleted star whose equilibrium pressure has been
reduced by ten percent globally.

TABLE II. Parameters for the stationary torus around a black
hole.a

M [M⊙] Rin Rmax ΦRmax

1 6 12 2.63 × 10−2

ρmax l κ Γ

6.86 × 10−3 4.62 1 × 10−3 4=3
aM is the mass of the central Schwarzschild black hole. Rin is

the location of the inner edge of the torus. Rmax is the pressure
maximum location of the torus in Schwarzschild coordinates. ρmax
is the peak density in the torus, ΦRmax

is the angular velocity at
Rmax (calculated from the simulation with Nt ¼ 512 resolution).
l ¼ utuϕ is the constant specific angular momentum. κ and Γ
define the EOS of the initial torus P ¼ κρΓ. Unless specified, the
presented variable value follows the G ¼ c ¼ M⊙ ¼ 1 unit
convention.
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D. Rayleigh-Taylor instability for a modified Bondi flow

Previous work [57] with the original JET code has
captured the detailed nonlinear features of Rayleigh-
Taylor instability in a relativistic fireball. It uses the
HLLC Riemann solver described in [55]. To test our general
relativistic HLLC Riemann solver, we modify the Bondi
flow to induce Rayleigh-Taylor instability under strong

gravity. The setup is similar to a Strömgren sphere around
the central black hole—the low-density hot gas is sur-
rounded by a high-density gas with gravitational acceler-
ation [115]. Within a radius of r < 3ð1þ 0.1 × ð1þ
cosð80θÞÞ=2.0Þ, the density and pressure of the Bondi flow
have been modified as ρ ¼ 0.1ρbondi; P ¼ 50Pbondi; vr ¼ 0.
ρbondi and Pbondi are taken from the Bondi profile in
Sec. VA. This setup creates a hot low-density bubble inside
the Bondi flow with a curly interface. As the hot low-density
gas pushes against the heavier Bondi flow, Rayleigh-Taylor
instability (or sometimes referred to as Richtmyer Meshkov
instability in this case) develops. We perform this simulation
with an azimuthal resolution of Nt ¼ 512, covering the
azimuthal angle from π=3 to 2π=3. Figure 4 shows its time
evolution. Initially, the hot gas pushes outward and com-
presses the incoming Bondi flow into higher density as
shown at t ¼ 5 M. Instability fingers develop and evolve
inside the low-density region. Nonlinear features of the
instability continuously evolve at t ¼ 15 M. Later on, due to
the attraction of the central black hole, the turbulent gas
flows into the black hole. The implemented HLLC Riemann
solver is able to capture the detailed structure of the
instability in strong field regime. It performs better than
the HLLE Riemann solver.

VI. MOVING-MESH NUMERICAL SIMULATIONS

A. Spherical shock tube test

One advantage of our moving-mesh code is that the cell
face is able to move with the contact velocity of the flow in
the radial direction. It has been shown that the contact
discontinuity is much better preserved when employing
HLLC on the moving mesh (see Fig. 7 of [55]). What is
more, the flow naturally adjusts the cell width in the radial
direction. Combined with robust refinement and derefine-
ment schemes, the simulation domain will be able to
resolve the region of interest [64]. To test the accuracy
of the moving-mesh scheme, we conduct the identical
spherical shock tube test as shown in [61]: within the radius
of 0.25 (r < 0.25), the density ρ and pressure P is set to 1.
Outside of this region, the value of density and pressure is
0.1. We adopt the Minkowskian frame for the test. Since the
tetrad formulation for the HLLC Riemann solver also
works for the Minkowskian metric, we do not take any
additional steps for the special relativistic simulations.
In azimuthal direction, the simulation domain extends

from 0 to π=2 with Nt ¼ 128. In the radial direction, the
grid covers the region from rmin ¼ 0.01 to rmax ¼ 0.5. We
adopt logarithmic spacing in the radial direction and set the
initial cell’s aspect ratio to one. We first conduct the
spherical shock tube test with different Riemann solvers
in fixed-mesh simulation. Both the HLLE and HLLC
Riemann solver handle the test well and give almost the
same results (as shown in Fig. 5). In Fig. 6(a), we compare
the end profile for simulations with the fixed mesh setup

FIG. 3. Contour plot of a stationary torus around a static black
hole. The simulation adopts an axisymmetric spherical domain.
The azimuthal angle extends from π=3 to 2π=3. The radial grid
extends from rmin ¼ 4 to rmax ¼ 20. The top panel shows the
initial profile of the logarithmic density. The middle panel
represents the density profile at the end of the simulation
t ¼ 2000. The bottom panel represents the contour plot of the
radial velocity Wvr.
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and the moving mesh setup. The density plot exhibits a
sharp transition at the contact discontinuity for the moving
mesh and a relatively smooth one for the fixed mesh.
Following the compression of the fluid in the shocked
region, the cells squeeze between the contact discontinuity
and the forward shock. The P=ρ plot reveals a jump at the
contact discontinuity. We find this appears in the moving-
mesh simulation here as well as in the literature [55,61]. It
may come from the physical squeezing of the fluid as the
grid moves together with the flow in the moving-mesh
simulation or the TVD reconstruction scheme requires
some adjustification for the moving mesh.
To investigate the jump’s dependence on numerical

resolution, we have performed additional moving-
mesh simulations with different numerical resolution:
the Nt ¼ 32, Nt ¼ 128, and Nt ¼ 2048 resolution.
Results from these three simulations (see Fig. 7) demon-
strate that the jump feature persists and its magnitude is
invariant under different numerical resolution. We also
perform additional fixed-mesh simulations with higher
resolution and find no presence of the jump feature in
these simulations. Since the jump’s magnitude does not
increase with time and spatial resolution, considering its
minimal impact on the fluid dynamics in moving-mesh
simulations, we will leave this numerical phenomena to
the research community for now.
In the rarefaction region, the cells get elongated, leading

to an aspect ratio larger than one. Because of the increase in
the aspect ratio (i.e., the reduction of radial resolution), we

FIG. 4. Time snapshots for the density contour of a hot low-density bubble embedded inside a cold Bondi flow. The left panel shows
the simulation results with the HLLE Riemann solver while the right panel presents the comparative results from the simulation with the
HLLC Riemann solver. The simulation video for the case with HLLC Riemann solver is available from Youtube at [116].

FIG. 5. Profiles for the spherical shock tube test at t ¼ 0.3 in
fixed-mesh simulations with the HLLC (solid line) and HLLE
(dotted line) Riemann solver.

XIAOYI XIE and ALAN TSZ-LOK LAM PHYS. REV. D 109, 084070 (2024)

084070-16



find the peak of the velocity profile for the moving-mesh
simulation becomes less sharp compared to the fixed mesh
simulation.
However, since we have full control over the grid

refinement, we can specify the maximum aspect ratio in
the simulation. We conduct another moving-mesh sod-tube
simulation which sets the maximum aspect ratio to 1.5.
When the elongated cell reaches such a threshold, it will
split into two cells. To show the effect of such a refinement
scheme on the sod-tube simulation, we compare the
profiles for the moving-mesh simulation with or without
maximum aspect ratio control in Fig. 6(b). With the

maximum aspect ratio control, the resolution in the region
where the cell’s aspect ratio gets to the threshold value
increases. The peak of the velocity profile becomes sharper
compared to the peak for the moving-mesh simulation
without aspect ratio control. Overall, the implemented
HLLC Riemann solver on the moving mesh is robust for
simulating relativistic outflow.

B. Relativistic jet emerged from a black
hole-torus system

The detection of the gravitational wave (GW)
signal GW170817, coupled with the observations of its

FIG. 6. (a) Shock tube test in spherical coordinate for the fixed-mesh (black-dot) and moving-mesh (MM) (red-square) simulations.
The profiles are presented at t ¼ 0.3. Initial discontinuity locates at x ¼ 0.25. The inner (outer) state of the shock tube is ρ ¼ 1, P ¼ 1,
v ¼ 0 (ρ ¼ 0.1, P ¼ 0.1, v ¼ 0). The EOS follows the ideal gas law with Γ ¼ 4=3. (b) Shock tube test in spherical coordinate for the
moving-mesh simulations with different control schemes for the cell’s aspect ratio. The black-dot line represents the simulation where
the cell’s maximum aspect ratio has not been set. The red-square line shows the simulation where the maximum aspect ratio of the cell
has been set to 1.5.
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electromagnetic (EM) counterpart signifies the commence-
ment of the multimessenger astronomy era [117]. Research
has demonstrated that the structure of the emerged relativ-
istic outflows plays a crucial role in shaping the afterglow
emission in GRB170817A [51,118–124]. This event pro-
vides an ideal candidate for utilizing the electromagnetic
observations of the emerged outflow to infer the BNS
merging physics. While the presented moving-mesh code is
capable of simulating relativistic jets out of various pro-
genitor systems, in the following, we will use a pseudo-
model inspired by the outcome of compact binary merger
simulations (see, e.g., [28,125–129]). We set up a black
hole-torus system in the isotropic coordinate of
Schwarzschild metric, with the mass of the central black
holeM having been set toM ¼ 3M⊙ and the torus mass set
to 0.2M⊙. The radius of the inner edge of torus is 6M, and
the radius of its pressure maximum is set to 16M [130]. For
the simulation domain, the radius of the inner boundary
locates at 12. And we use Nt ¼ 256 grids to cover the half
spherical domain with cell’s initial aspect ratio been set to 1.
We adopt the reflecting boundary condition in the azimuthal
direction. Outside the torus, the domain is filled with an
ejecta cloud with a total mass of 0.02M⊙. The cloud density
structure follows:

ρ ¼ ρ0ðr=r0Þ−n þ ρfloor: ð107Þ

ρ0 ¼ ðn − 3ÞMejecta=ð4πr30Þ is derived to give a total ejecta
mass Mejecta. The pressure is P ¼ KρΓ þ Pfloor, K ¼ 0.54,
Γ ¼ 4=3. We also add a density floor ρfloor ¼ 6.2 ×
10−5 ½g=cm3� (i.e., 10−22 in the code unit) and a pressure
floor Pfloor ¼ 10−4ρfloor to the initial profile to avoid
numerical precision error. We set the density slope index
n ¼ 3.5 to represent the postmerger ejecta profile. Here, we
ignore the ejecta profile velocity for simplicity. The refer-
ence radius r0 is set to 6M⊙. A jet engine with a variable
luminosity of L0 ¼ 2 × 1051 expð−t=tdecayÞ ½erg=s� oper-
ates for 30 ms, in the polar region just above the black hole-
torus plane. The engine decay timescale tdecay has been set
to 100 ms. This gives a total injected jet engine energy
5.2 × 1049 ½erg�. We choose this low-energy jet engine
injection to test the code’s capability of launching a
relativistic jet under constraint. In jet simulations, it
becomes easier to successfully launch a relativistic jet given
a higher energy injection (see, e.g., [51,64]). The profile of
the jet engine features a narrow nozzle with an opening
angle of 0.1 rad. For the complete jet engine profile, we refer
readers to the description in Appendix C as well as
in [63,64].
Figure 8 shows the jet launching process during the first

30 ms. At the beginning of the simulation, the cloud flows
into the black hole. In the polar direction, at a location
centered around 130 [km], a small amount of relativistic
gas with a terminal Lorentz factor 100 (i.e., jet engine) gets
injected into the cloud. The injected gas has an initial boost
velocity in the radial direction (see Appendix C). The
addition of the relativistic gas slightly pushes the cloud gas
in the polar direction, leading to a non-negative radial
velocity (as can be seen from the radial velocity plot at
t ¼ 0.1 ½ms�). The continuous injection of hot relativistic
gas drives shocks and changes the temperature profile in the
polar direction. By the time t ¼ 5 ½ms�, a shocked cocoon
develops and reveals a two-layer structure: a high-density
layer which results from the forward shock, meanwhile the
inner cocoon which heats up by the jet engine and reverse
shock gets to a low-density regime [41,131,132]. Inside the
inner cocoon, the shocked gas accelerates to a high velocity
with a maximum Lorentz factor around 8 at t ¼ 5 ½ms�. The
moving-mesh scheme dynamically allocates cells to resolve
the shocked region. The interfaces of the double-layer
structure can be seen in the contour plot for the cell’s radial
resolution: the first interface lies in the shock front between
the cocoon and the unperturbed cloud, the second interface
is between the cocoon’s inner low-density hot relativistic
core and its high-density colder part. At the bottom of the
cocoon, the shock front hits the torus. At t ¼ 10 ½ms�, the
shock front starts to move beyond the torus and wrap
around it. At the head of the cocoon, the loaded matter
diverts part of the shocked gas sideways. Below this region,
the inner core of the cocoon accelerates to a higher Lorentz
factor of 13. Throughout the acceleration period, the

FIG. 7. Profiles for the spherical shock tube test at t ¼ 0.3 in the
moving-mesh simulations with different grid resolution. The
purple diamond shows results from the simulation with resolution
Nt ¼ 2048 while the red square and blue circle represent results
from the Nt ¼ 128 simulation and the Nt ¼ 32 simulation,
respectively.
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maximum Lorentz factor of the jet reaches 20 (which
happens at about t ¼ 13 ½ms�), smaller than the terminal
Lorentz factor of the injected relativistic gas. This is largely
due to the engine’s relative low-energy budget (we refer
readers to more energetic jet simulations in [51,64]). By the
end of the jet engine injection t ¼ 30 ½ms�, at the base of
the grid domain, the frontier of the shocked cocoon has

passed the torus region. A relative high-density buffer zone
appears between the torus and the cocoon (see the density
and temperature contour plots). The torus itself rotates
stably during the jet launching process, as illustrated by the
inner contour plots in Fig. 8. The head of the shocked
cocoon expands beyond the initial grid domain boundary.
More cells will be allocated in front of the boundary as the

FIG. 8. Jet launching process from a black hole-torus system, visualized at four-time snapshots. From left to right, the contour plots
represent the logarithmic density, temperature-like variable Θ, normalized radial velocity Wvr=c, and the cell’s radial resolution (i.e.,
inverse aspect ratio). The inner contour plots zoom in on the central region of the domain. The inner boundary is stationary before
t ¼ 30 ½ms�. The simulation video is available from Youtube at [133] with high-definition video quality available.
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FIG. 9. The full-time-domain evolution of the relativistic jet emerged from a black hole-torus system. The inner boundary moves
outward at a fraction of the local maximum velocity. The simulation video is available from Youtube at [133] with high-definition video
quality available.
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shock front propagates. The radius of the new boundary
will make sure that the head of the shock front will stay
below 0.8 of this new radius during the simulation.
Figure 9 illustrates the continued evolution of the

relativistic cocoon that emerged from the black hole-torus
system when the jet engine had been turned off. For
computational efficiency, we cut the grid domain within a
radius of 300 (around 440 [km]). We let the inner boundary
move with a velocity of a fraction of the fluid’s local
maximum velocity. When the inner and outer boundary
expands outward together, the simulation gets into a
(weak) scaling region where the simulation time step Δt
increases with the absolute time itself. In this way, the
moving-mesh code in spherical coordinates can simulate
long-term evolution of relativistic jets over multiple orders
of magnitude of time. When the jet engine turns off, it
stops accelerating nearby gas. The inner cocoon turns into
a shrinking relativistic bubble. The relativistic bubble
keeps pushing against the mass-loaded head, exhausting
its internal energy and kinetic energy. By the time
t ¼ 50 ½ms�, the top of the bubble starts to decelerate
dramatically. The collision with the mass-loaded head
converts part of its kinetic energy into thermal energy. The
collision drives a wave passing through the relativistic
bubble, increasing the temperature of inner cocoon all the
way to its bottom (see the simulation video). Eventually,
the relativistic bubble turns into a relativistic thin shell (see
the velocity contour at t ¼ 300 ½ms�). The relativistic shell
features a relativistic core with a mildly relativistic sheath,
similar to previous special relativistic jet simulations (see,
e.g., [51,64,125,134]). The outer layer of the cocoon goes
through adiabatic expansion. The density within this layer
keeps decreasing while the temperature structure roughly
remains the same (see the contour plots for the temper-
aturelike variable from t ¼ 50 ½ms� to t ¼ 1 ½s�). The
interface between the inner and outer cocoon features a
high-density pillar. The relativistic shell keeps sweeping
through the medium while depleting its kinetic energy. By
the time t ¼ 100 s, the relativistic thin shell is replaced by
a mass-loaded slow-moving core. We see a morphological
change in the outer shell structure. Finally, by the end of
our simulation t ¼ 1000 s, the outflow velocity becomes
completely Newtonian. Now we have seen the complete
life cycle of a relativistic jet from its birth at a black hole
scale to the distance of its dissipation. In the following, we
would like to discuss two dynamical features for this
specific simulation. The first feature of interest focuses on
the base of cocoon. In Fig. 9, we use white circle to
indicate this region of interest. We find it appears after the
shock front of the cocoon passed over the torus. It
originates from the buffer zone or shock zone between
the original torus and the remaining cocoon. It propogates
subrelativistically and maintains its hump shape before
t ¼ 1 ½s�. Later on, the shock front accumulates enough
matter and slows down to Newtonian velocities. When this

happens, via hydrodynamical interaction, the morphology
of the region changes and the hump shape disappears,
leaving behind a broken filament as shown at t ¼ 100 s
and t ¼ 1000 s. The second feature of interest relates to the
density pillar at the interface between the inner and outer
cocoon. We mark it with a red square in the figure. Its
formation, to some extent, comes from the shutdown of the
central jet engine during the jet launching period. At the
beginning, when the central jet engine inflates a cocoon, it
drives mass and energy into the cocoon outer layer while
creating a low-density hot inner funnel to generate rela-
tivistic outflow. When the central engine shuts down, the
inner cocoon quickly gets cold and stops pushing the outer
layer (see snapshots at t ¼ 50 ½ms� and t ¼ 300 ½ms�).
Then the adiabatic expansion of the outer layer further
separates this interface from the shock front as shown at
t ¼ 1 ½s�. The interface pillar also has positive radial
velocity and moves with the outer shell. However, the
part connecting to the outer shell, moves faster. To a point,
the pillar detaches itself from the outer shell and falls back
to the inner region. This is what happens from t ¼ 100 s to
t ¼ 1000 s. Because of the long-term simulation of the
relativistic jet, we are able to capture such detailed
hydrodynamics evolution, which may provide insights
for the study of morphologies of astronomical jets.
Throughout the simulation, the maximum grid resolution
in the radial direction remains below 60—a value we set
initially. We see that the moving-mesh scheme, combined
with the dynamical grid refinement and derefinement can
capture the detailed dynamical features for the relativistic
jet simulation over many orders of magnitude of space and
time. Also the adjusted moving-mesh scheme makes the
simulation of relativistic jets computationally efficient.
The presented simulation has been performed on a single
high-performance computing node with 32 Intel Xeon
Gold 6148 CPUs. The whole simulation consumes around
6400 core hours.

VII. CONCLUSION

This paper presents an advancement in computational
astrophysics: developing and implementing a general
relativistic moving-mesh hydrodynamic code featuring
an advanced Riemann solver in curvilinear coordinates.
We showcase the details of integrating a general relativistic
framework into the hydrodynamic simulation code JET,
achieved through applying the reference metric method.
With its ability to handle the intricate spacetime geom-

etries inherent in general relativity, the tetrad formulation is
an ideal choice to address the HLLC Riemann problem
under strong gravity. The achievement of our work is the
successful adaptation of the tetrad formulation to incorpo-
rate the HLLC Riemann solver into the general relativistic
moving-mesh code. We have conducted a series of numeri-
cal simulations to validate and demonstrate the efficacy of
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our newly developed code. These simulations encompass
both fixed-mesh and moving-mesh scenarios, allowing us
to test the code’s performance under various conditions.
The results from these simulations are particularly note-
worthy in demonstrating the code’s robustness and reli-
ability in simulating fluid flows under the influence of
strong gravitational fields.
Compared to the fixed-mesh approach, a moving-mesh

scheme can increase the time step for fluid regions with high
velocity since it removes the limitation imposed by the bulk
velocity (see, e.g., [61]). The moving-mesh approach makes
the long-term simulation of relativistic jets computationally
feasible (see, e.g., [51,63,64]). By extending the JET code’s
capability of handling relativistic jets from an astronomical
scale to the scale of a black hole, we have opened new
avenues for the full-time-domain simulation of relativistic
jets, from their genesis to dissipation. To demonstrate this
possibility, we design a representative prototype model
which features a torus around a central black hole. A jet
is manually launched in the polar direction, near the black
hole-torus system. For the underlining jet launching mecha-
nism, we refer readers to Blandford-Payne [4] or Blandford-
Znajek [3] and related dynamo processes (see, e.g., [13,14]).
In this work, we prescribe an engine profile to imitate the jet
launching process. This setup allows us to explore the
dynamics of the jet’s journey from its origin near the black
hole-torus system to its final Newtonian phase. We found
multiple new hydrodynamical features from this end-to-end
simulation. For the first time, we have been able to simulate
the complete life cycle of a relativistic jet, providing insights
into the detailed structures of the cocoon and emerged jet
over the whole journey.
Furthermore, these full-time-domain jet simulations

enable the joint investigation of various electromagnetic
phenomena associated with relativistic outflows. For the
case of BNS mergers, the observational phenomena
include the kilo-nova emission from the remnant ejecta
(see, e.g., [24,25,135]), the GRB prompt and afterglow
emission (see, e.g., [23,136,137]), and other related
processes. By combining our simulations with GRMHD
models of jet-launching processes, we will be able to
extend the evolution of outflows to distances relevant to
long-term electromagnetic radiation observations. This
integrative approach aligns perfectly with the era of
multimessenger astronomy, allowing for an unprecedented
understanding of the underlying physics in jet-launching
systems.
While this paper sets the foundational steps in this

direction, the complete realization of these ambitious goals
remains a pursuit for future research. The potential for
further advancements and discoveries in the field is vast,
and our work may catalyze the next generation of
astrophysical jet simulations, potentially revolutionizing
our understanding of relativistic jets and their associated
physics.
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APPENDIX A: GENERAL RELATIVISTIC
HYDRODYNAMIC EQUATIONS IN REFERENCE

METRIC FORMULATION

1. The continuity equation

The covariant divergence of a vector Vμ gives

∇μVμ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
VμÞ; ðA1Þ

which holds for any metric and its associated covariant
derivative. The covariant divergence of a mixed-index
second-rank tensor Aμ

ν, on the other hand, follows (see,
e.g., [74])

∇νAμ
ν ¼ 1ffiffiffiffiffiffi−gp ∂νð

ffiffiffiffiffiffi
−g

p
Aμ

νÞ − Aξ
νΓξ

νμ: ðA2Þ

We will utilize these two rules to derive the general
relativistic hydrodynamic equations.
Let us first apply Eq. (A1) to the continuity Eq. (5)

0 ¼ ∇νðρuνÞ ¼
1ffiffiffiffiffiffi−gp ∂νð

ffiffiffiffiffiffi
−g

p
ρuνÞ;

¼ 1ffiffiffiffiffiffi−gp ð∂0ð
ffiffiffiffiffiffi
−g

p
ρu0Þ þ ∂jð

ffiffiffiffiffiffi
−g

p
ρujÞÞ: ðA3Þ

The determinant of the spacetime metric leads to

ffiffiffiffiffiffi
−g

p ¼ α
ffiffiffi
γ

p ¼ αψ6
ffiffiffī
γ

p ¼
ffiffiffî
γ

p
αψ6

ffiffiffī
γ

γ̂

r
: ðA4Þ

Inserting the previous result into Eq. (A3) we obtain

∂0

	
ψ6

ffiffiffiffiffiffiffi
γ̄=γ̂

p
D


þ 1ffiffiffî

γ
p ∂j

h ffiffiffî
γ

p
ðfDÞj

i
¼ 0; ðA5Þ

which is sometimes written as

∂0

	
ψ6

ffiffiffiffiffiffiffi
γ̄=γ̂

p
D


þ D̂j

h
ðfDÞj

i
¼ 0; ðA6Þ

where D̂j is the covariant derivative with respect to the
reference metric γ̂. In the above expression, we have
defined the density as seen by a normal observer as
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D ¼ Wρ; ðA7Þ

and the corresponding flux

ðfDÞj ¼ αψ6
ffiffiffiffiffiffiffi
γ̄=γ̂

p
Dðvj − βj=αÞ: ðA8Þ

Note that, the fluid velocity as measured by a normal
observer, vi, is given by the ratio between the projection of
the four-velocity, uμ, in the space orthogonal to nμ and the
Lorentz factor of uμ as measured by a normal observer,
W ¼ −nμuμ ¼ αut:

vi ¼ γiμuμ

αut
¼ ui

W
þ βi

α
: ðA9Þ

2. The Euler equation

To derive the Euler equation, we apply Eq. (A2) to the
projected conservation of energy momentum (6)

0 ¼ γiμ∇νTνμ ¼ giμ∇νTνμ ¼ ∇νðgiμTνμÞ

¼ 1ffiffiffiffiffiffi−gp ∂νð
ffiffiffiffiffiffi
−g

p
Tν
i Þ − Tμ

νΓν
iμ: ðA10Þ

We then get the following Euler equation

1ffiffiffiffiffiffi−gp
	
∂0ð

ffiffiffiffiffiffi
−g

p
T0
i Þ þ ∂j

	 ffiffiffiffiffiffi
−g

p
Tj
i




¼ Tμ

νΓν
iμ: ðA11Þ

Note that the source term leads to

Tμ
νΓν

iμ ¼ TμξgξνΓν
iμ ¼

1

2
Tμξgξμ;i: ðA12Þ

Let us define

Tμν ¼ ρhuμuν þ Pgμν ðA13aÞ

¼ S0nμnν þ Sμnν þ Sνnμ þ Sμν; ðA13bÞ

S0 ¼ ρhW2 − P; ðA13cÞ

Si ¼ ρhW2vi; ðA13dÞ

Sij ¼ ρhW2vivj þ Pγij; ðA13eÞ

and calculate the source term (A12). The result is shown
below (for the derivation, we refer readers to numerical
relativity books [77]):

1

2

ffiffiffiffiffiffi
−g

p
Tμνgμν;i ¼

ffiffiffiffiffiffi
−g

p �
1

2
Sjk∂iγjk þ Sμnν∂igμν

þ 1

2
S0nμnν∂igμν

�

¼ ffiffiffiffiffiffi
−g

p �
1

2
Sjk∂iγjk þ

1

α
Sj∂iβj − S0∂i ln α

�
:

ðA14Þ

Let us define the momentum flux as

ðfSÞij ≡ αψ6
ffiffiffiffiffiffiffi
γ̄=γ̂

p
Tj
i

¼ αψ6
ffiffiffiffiffiffiffi
γ̄=γ̂

p
ðW2ρhviðvj − βj=αÞ þ PδjiÞ:

We can then rewrite the Euler equation (A11) in the
following form

∂0

	
ψ6

ffiffiffiffiffiffiffi
γ̄=γ̂

p
Si


þ 1ffiffiffî

γ
p ∂j

h ffiffiffî
γ

p
ðfSÞji

i
¼ ðsSÞi: ðA15Þ

The definition of the source term is given accordingly

ðsSÞi ¼
1

2
αψ6

ffiffiffī
γ

γ̂

r
Sjk∂iγjk

þ ψ6

ffiffiffī
γ

γ̂

r
Sj∂iβj − ψ6

ffiffiffī
γ

γ̂

r
S0∂iα; ðA16Þ

where the first term can be calculated as

Sjk∂iγjk ¼ Sjk∂iðψ4γ̄jkÞ
¼ Sjkγjkψ−4

∂iψ
4 þ ψ4Sjk∂iðγ̂jk þ ϵjkÞ

¼ ðρhðW2 − 1Þ þ 3PÞ4∂i lnψ
þ ψ4Sjk∂iðγ̂jkÞ þ ψ4Sjk∂iðϵjkÞ: ðA17Þ

3. The energy equation

For the energy equation, we consider a projection along
the normal nμ of the conservation of energy-momentum (6)
and add the conservation of rest mass (5)

nν∇μTμν þ∇μðρuμÞ ¼ 0; ðA18Þ

which can be rewritten as

∇μðnνTνμ þ ρuμÞ ¼ Tμν∇μnν: ðA19Þ

We again evaluate the divergence of a vector on the left-
hand side, and proceed exactly the same as for the
continuity equation, which leads to
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∂0

	
ψ6

ffiffiffiffiffiffiffi
γ̄=γ̂

p
τ


þ 1ffiffiffî

γ
p ∂j

h ffiffiffî
γ

p
ðfτÞj

i
¼ −αψ6

ffiffiffiffiffiffiffi
γ̄=γ̂

p
Tμν∇μnν;

ðA20Þ

where we have defined τ as the internal energy observed by
a normal observer

τ≡ nμnνTμν −D≡ ρhW2 − P −D; ðA21Þ

and the corresponding flux

ðfτÞj ≡ αψ6
ffiffiffiffiffiffiffi
γ̄=γ̂

p
ðτðvj − βj=αÞ þ PvjÞ: ðA22Þ

The right-hand side of Eq. (A20) (denoted as sτ) can be
derived as [74]

sτ ≡ αψ6
ffiffiffiffiffiffiffi
γ̄=γ̂

p
ðT00ðβiβjKij − βi∂iαÞ

þT0ið2βjKij − ∂iαÞ þ TijKijÞ: ðA23Þ

Finally, we get the energy equation as

∂t

	
ψ6

ffiffiffiffiffiffiffi
γ̄=γ̂

p
τ


þ 1ffiffiffî

γ
p ∂j

h ffiffiffî
γ

p
ðfτÞj

i
¼ sτ: ðA24Þ

4. Special relativistic hydrodynamics equations

Here we write down the special relativistic hydrody-
namics equations in spherical coordinate as a comparison to
Eq. (17),

∂

∂t
Dþ 1

r2
∂

∂r
½r2Dvr� þ

1

r sin θ
∂

∂θ
½sin θDvθ� þ

1

r sin θ
∂

∂ϕ
½Dvϕ� ¼ 0; ðA25aÞ

∂

∂t
Sr þ

1

r2
∂

∂r
½r2ðSrvr þ PÞ� þ 1

r sin θ
∂

∂θ
½sin θSrvθ� þ

1

r sin θ
∂

∂ϕ
½Srvϕ� ¼

2P
r

þ ρhW2ðv2θ þ v2ϕÞ
r

; ðA25bÞ

∂

∂t
ðrSθÞ þ

1

r2
∂

∂r
½r2ðrSθÞvr� þ

1

r sin θ
∂

∂θ
½sin θrðSθvθ þ PÞ� þ 1

r sin θ
∂

∂ϕ
½ðrSθÞvϕ� ¼ cot θPþ ρhW2v2ϕ cot θ; ðA25cÞ

∂

∂t
ðr sin θSϕÞ þ

1

r2
∂

∂r
½r2ðr sin θSϕÞvr� þ

1

r sin θ
∂

∂θ
½sin θðr sin θSϕÞvθ� þ

1

r sin θ
∂

∂ϕ
½r sin θðSϕvϕ þ PÞ� ¼ 0; ðA25dÞ

∂

∂t
τ þ 1

r2
∂

∂r
½r2ðτvr þ PvrÞ� þ

1

r sin θ
∂

∂θ
½sin θðτvθ þ PvθÞ� þ

1

r sin θ
∂

∂ϕ
½τvϕ þ Pvϕ� ¼ 0: ðA25eÞ

APPENDIX B: TRANSFORMATION BETWEEN
SCHWARZSCHILD COORDINATES AND

MAXIMALLY SLICED TRUMPET COORDINATE

Starting from a family of stationary, maximal slicing of
the Schwarzschild spacetime

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ
¼ −ðα2 − βRβ

RÞdt2 þ 2βRdtdRþ f−2dR2 þ R2dΩ2;

ðB1Þ

with lapse α ¼ f, shift vector βR¼Cf
R2, f ¼ ð1 − 2M

R þ C2

R4Þ1=2
and C being the integration constant. The transformation
into isotropic coordinates follows

f−2dR2 þ R2d2Ω ¼ ψ4ðdr2 þ r2d2ΩÞ; ðB2Þ

so we have dR=dr ¼ ψ2f; R ¼ ψ2r. Two simple solutions
of r and ψ can be found for the cases C ¼ 0 and
C ¼ 3

ffiffiffi
3

p
M2=4. For the case of C ¼ 0, the solution yields

the familiar isotropic coordinate of the Schwarzschild
metric,

r ¼ R −M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 2MR

p

2
;

α ¼
�
1 −

2M
R

�
1=2

¼ 1 −M=ð2rÞ
1þM=ð2rÞ : ðB3Þ

For the case of C ¼ 3
ffiffiffi
3

p
M2=4, the solution yields the

isotropic trumpet coordinate [70,103,104]
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r ¼
�
2RþM þ ð4R2 þ 4MRþ 3M2Þ1=2

4

�

×

� ð4þ 3
ffiffiffi
2

p Þð2R − 3MÞ
8Rþ 6M þ 3ð8R2 þ 8MRþ 6M2Þ1=2

�1= ffiffi
2

p

;

α ¼
�
1 −

2M
R

þ 27M4

16R4

�
1=2

;

Krr ¼ −
2ψ4C
R

;

Kθθ ¼
Kϕϕ

sin2θ
¼ C

R
;

γij ¼ ψ−4ηij ¼
�
r
R

�
2

diagð1; r−2; r−2sin−2θÞ: ðB4Þ

In this coordinate, we have

K ≡ γijKij ¼ −
2C
R3

þ C
R3

þ C
R3

¼ 0; ðB5Þ

which represents a maximal slicing of the Schwarzschild
spacetime with limiting surface at R ¼ 3M=2 [103].

APPENDIX C: ANALYTICAL JET
ENGINE MODEL

The jet engine model utilizes the nozzle function gðr; θÞ
as shown in [63,64]. We list its expression here,

gðr; θÞ≡ ðr=rjetÞe−ðr=rjetÞ2=2eðcos θ−1Þ=θ20=N0; ðC1Þ

where rjet is the central position for the jet engine injection,
θ0 is the jet engine opening angle, and N0 is the normali-
zation of g via the integration over r∈ ½0;∞�; θ∈ ½0; π=2�,

N0 ≡ 4πr3jetð1 − e−1=θ
2
0Þθ20: ðC2Þ

For the complete list of jet engine parameter value, we
refer readers to Table III.
We then inject the jet engine into the domain cells by

adding mass, momentum, and energy source into the
corresponding conserved variables, according to:

S0 ¼ L0e−t=tdecaygðr; θÞ; ðC3Þ

ΔSD ¼ S0=η0MdVdt; ðC4Þ

ΔSSr ¼ S0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=γ20

q
MdVdt; ðC5Þ

ΔSτ ¼ ðS0 − S0=η0ÞMdVdt; ðC6Þ

where S0 is the injected jet engine energy profile and the
other three variables are the added source terms. M is the
conformal factor coefficient. dVdt represents the cell’s
spacetime coordinate volume.
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