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We develop a numerical approach to compute polar parity perturbations within fully relativistic models of
black hole systems embedded in generic, spherically symmetric, anisotropic fluids.We apply this framework
to study gravitational wave generation and propagation from extreme mass-ratio inspirals in the presence of
several astrophysically relevant dark matter models, namely the Hernquist, Navarro-Frenk-White, and
Einasto profiles. We also study dark matter spike profiles obtained from a fully relativistic calculation of the
adiabatic growth of a BH within the Hernquist profile, and provide a closed-form analytic fit of these
profiles. Our analysis completes prior numerical work in the axial sector, yielding a fully numerical pipeline
to study black hole environmental effects. We study the dependence of the fluxes on the DM halo mass and
compactness. We find that, unlike the axial case, polar fluxes are not adequately described by simple
gravitational-redshift effects, thus offering an exciting avenue for the study of black hole environments with
gravitational waves.
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I. INTRODUCTION

Astrophysical black hole (BH) binaries are, in general,
nonvacuum systems. The environment surrounding a
BH binary is expected to play an important role in the
generation and propagation of gravitational waves (GWs)
by modifying the orbital trajectory of the binary and the
GW phase [1–3]. These modifications are particularly
interesting because the properties of the environment are
encoded in the gravitational radiation. The relation
between the GW signal and the properties of the environ-
ment has been studied in many cases of interest, including
accretion disks [2,4], dark matter (DM) clouds and over-
densities [5–12], bosonic clouds [13–18], etc.
All of these prior studies are based on simplifying

assumptions. Very often, the effect of the environment is
modeled by including Newtonian corrections to the GW
quadrupole formula (see e.g., [5,6]). In the few cases in
which the environment is treated relativistically [12,17], the
orbital trajectory and GW emission are modeled within the

post-Newtonian (PN) approximation, a perturbative expan-
sion in the ratio v=c of the binary’s orbital velocity to the
speed of light.
Extreme mass-ratio inspirals (EMRIs) of stellar-mass

objects with mass mp around massive BHs, with mass
ratios q ¼ mp=MBH ∼Oð10−5 − 10−8Þ, can spend ∼105

orbital cycles in the low-frequency regime accessible to
space-based detectors such as the Laser Interferometer
Space Antenna (LISA) [19], and they are expected to lead
to the best constraints on environmental effects [3].
The approximations commonly used in the treatment of

environmental effects are not accurate enough for EMRIs.
These binaries are not well-modeled within the PN
framework, which is more amenable to comparable mass
systems [20–22]. In addition, these studies do not con-
sistently include the backreaction effect of the environment
on the background solution (which is also expected to
modify the orbital dynamics and the GW signal) in a fully
relativistic manner. It is therefore imperative to correctly
model the environment and the orbital dynamics as
precisely as possible to fully capture secular effects which
may accumulate throughout the orbit.
Recent work has established a fully relativistic approach

to address the need for accurate modeling of EMRIs
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embedded in astrophysical environments. This program was
initiated in Ref. [23], which employed an extension of the
Einstein cluster model to find relativistic solutions for the
background spacetime and to compute observable quan-
tities. Later work established a complete framework to study
the coupled gravitational and fluid perturbations of either
parity (axial or polar) for generic, spherically symmetric
density distributions affecting EMRI inspirals [24]. While
the framework developed in these works is generic, the
analysis focused on the Hernquist distribution [25], which
yields closed-form analytic results for the background
metric. Further progress was made in Ref. [26], which
developed a fully numerical pipeline to treat generic density
distributions in the axial sector.
In this paper we complete this research program by

extending the analysis of Ref. [26] to include polar
perturbations. Polar perturbations in the presence of generic
density profiles can be reduced to five frequency-domain
ordinary differential equations (ODEs) that couple the
variables describing perturbations of the fluid with the
variables describing gravitational perturbations. This is
different from the axial case, in which the gravitational
and fluid variables are decoupled, and therefore they can be
analyzed separately. The framework we develop here is
valid for any spherically symmetric distribution surround-
ing the central BH, but we focus on a set of specific DM
models (including the Hernquist, Navarro-Frenk-White,
and Einasto profiles) which are commonly used to describe
the DM environment affecting the evolution of the EMRI.
We compute the polar GW energy flux multipoles for
various DM models and configurations of the halo, and
then we compare these calculations with previously com-
puted axial multipoles. Throughout the paper we use
geometrical units (G ¼ c ¼ 1).

II. BACKGROUND AND DENSITY PROFILES

In this section we review the formalism used to construct
relativistic BH solutions embedded within a DM halo.
We consider a spherically symmetric, static spacetime,
described by the line element,

ds2 ¼ gð0Þμν dxμdxν

¼ −aðrÞdt2 þ dr2

1 − 2mðrÞ=rþ r2dΩ2; ð1Þ

which solves the nonvacuum Einstein equations,

Gμν ¼ 8πTenv
μν : ð2Þ

Following the Einstein cluster prescription [27,28], the
properties of the environment are described by an aniso-
tropic stress-energy tensor ðTenvÞμν ¼ diagð−ρ; 0; Pt; PtÞ,
where ρðrÞ and PtðrÞ are the density and the tangential
pressure of the matter distribution. The continuity equation

determines the mass profile through the relation m0ðrÞ ¼
4πr2ρðrÞ. The metric functions aðrÞ and PtðrÞ are found
from the rr component of Eq. (2) and from the Bianchi
identities, respectively,

a0ðrÞ
aðrÞ ¼ 2mðrÞ=r

r − 2mðrÞ ; PtðrÞ ¼
mðrÞ=2

r − 2mðrÞ ρðrÞ: ð3Þ

The solutions of Eq. (3) and the function mðrÞ, for a given
profile ρðrÞ, fully specify the background spacetime. These
equations can be integrated numerically [26].
The form ofmðrÞ and aðrÞ also determines the properties

of particle geodesics in the spacetime. The energy and the
angular momentum of a particle on a circular orbit with
radius rp are given by

Ep ¼
�
r−2mðrÞ
r−3mðrÞaðrÞ

�
1=2

r¼rp

; Lp ¼
�

mðrÞ
r−3mðrÞ

�
1=2

r¼rp

; ð4Þ

while the orbital frequency is Ωp ¼ aðrpÞLp=r2pEp.
Hereafter, without loss of generality, we assume that the
orbits are equatorial and set θ ¼ π=2.
With the background spacetime solution in hand, we can

now examine the orbital dynamics of EMRIs and assess the
relevance of the environment on the resulting GWemission.
At the leading dissipative order, the secondary can be treated
as a particle of mass mp inducing small perturbations of the
background metric and of the stress-energy tensor, such that

gμν ¼ gð0Þμν þ gð1Þμν ; Tenv
μν ¼ Tð0Þenv

μν þ Tð1Þenv
μν ; ð5Þ

and

Gð1Þ
μν ¼ 8πTð1Þenv

μν þ 8πTp
μν; ð6Þ

where Tp
μν is the stress-energy tensor of the particle. The

metric and matter perturbations can be decomposed in terms
of axial and polar-tensor spherical harmonics, yielding
decoupled radial equations due to the symmetries of the
background spacetime [29–31].
The axial and polar equations have been derived in

Ref. [24], and for brevity we do not reproduce them here.
The axial perturbations have been extensively investigated
in Ref. [26] for both analytical and numerical backgrounds,
assuming different DM profiles. The polar sector has been
studied in Ref. [24] for the Hernquist model, which has the
advantage that the background spacetime can be written
down in a closed analytic form.

A. Dark matter density profiles

In this work we focus on polar perturbations, with the
goal of extending previous calculations through a fully
numerical pipeline capable of describing generic DM
profiles.
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We consider a selection of DM distributions proposed to
model cold DM profiles within galaxies. Among them,
the Hernquist [25] and Navarro-Frenk-White (NFW) [32]
distributions, which have been widely studied and com-
pared to both observations and N-body simulations, can be
parametrically described as

ρðrÞ ¼ ρ0ðr=a0Þ−γ½1þ ðr=a0Þα�ðγ−βÞ=α; ð7Þ

where a0 is the scale radius of the halo and ρ0 is a scale
factor proportional to the density through the relation
ρ0 ¼ 2ðβ−γÞ=αρða0Þ. The exponents γ and β control the
slope of the distribution at small and large radii, respec-
tively. The values of a0 and α determine the location and
“sharpness” of the change in slope. By fixing ðα; β; γÞ ¼
ð1; 4; 1Þ and ðα; β; γÞ ¼ ð1; 3; 1Þ we recover the Hernquist
profile and the NFW profile, respectively. Note that the
total mass of the NFW distribution is logarithmically
divergent. Therefore, we define a cutoff radius rc such
that MHaloðr > rcÞ ¼ 0 (as in, for example, Ref. [26]).
We also consider a third, observationally driven model;

the Einasto profile, commonly used to study the galaxy
luminosity distribution [33,34] and such that,

ρðrÞ ¼ ρe exp f−dn½ðr=reÞ1=n − 1�g; ð8Þ

with n ¼ 6 and dn ¼ 53=3 [35,36]. Here ρe is the density at
radius re, which defines a volume containing half of the
halo mass. Throughout this work, we set re ¼ a0.
The DM density profile arising from the (adiabatic) acc-

retion growth of a nonrotating BH sitting at the core is
expected to develop an overdense cusp followed by a sharp
cutoff close to the horizon [37]. A general relativistic
analysis predicts that the density falls off at r ¼ 4MBH
[38]. In our numerical profiles, we mimic this behavior by
considering two approaches. The first approach consists of
following a strategy similar to that adopted in Ref. [26], i.e.,
we multiply the density of the DM models discussed above
by a “cutoff factor” such that ρðrÞ → ð1 − 4MBH=rÞρðrÞ.
The prefactor of ð1 − 4MBH=rÞ, rather than the prefactor of
ð1 − 2MBH=rÞ used in in Ref. [26], is chosen to avoid
potential problems with the tangential pressure which arise
in the region 2MBH < r < 4MBH [39]; with the present
choice, the ratio PtðrÞ=ρðrÞ remains finite and smaller than
unity for all r. In the second approach we consider the fully
relativistic “DM spike” models investigated by some of us
in previous work [12]. In that work, following Ref. [38], we
derived semianalytic fits valid for r≲ a0 for spiked profiles
based on the Hernquist and NFW distributions, and used
these fits to assess the impact of the overdensities on the
GW emission of binary sources.
From now on we will focus on the Hernquist subclass of

the DM spikes, i.e., we consider the adiabatic growth of a
spike starting from Eq. (7) with ðα; β; γÞ ¼ ð1; 4; 1Þ. This is

because the Hernquist and NFW DM spikes are very
similar at small values of r (see Fig. 1).
We further improve the fits of the Hernquist DM spike

profile from Ref. [12] and extend their domain of validity
to large radii (i.e., to the domain r ≫ a0). The result is of
the form,

ρðrÞ ¼ MHalo

M2
BH

�Z
rc

4MBH

4πr2ρ̄ðrÞdr
�

−1
ρ̄ðrÞ ð9Þ

with

ρ̄ðrÞ ¼
�
1 −

4MBH

r

�
α
�

rMBH

MHaloa0

�
β
�
1þ rMBH

MHaloa0

�
γ

; ð10Þ

where α ¼ 2.366, β ¼ −2.320, and γ ¼ −1.370. The func-
tional dependence of ρ̄ðrÞ onMHalo and a0 was determined
empirically by studying the behavior of an ensemble of DM
profiles computed numerically for selected values of MHalo
and a0 [38]. The values of the exponents ðα; β; γÞ were then
found by fitting with Mathematica a numerical spike
with MHalo ¼ 104MBH and MHalo=a0 ¼ 0.001.
In the calculation of the GW fluxes (see Sec. III below) we

enforce a cutoff radius of rc ¼ 100MHaloa0=MBH such that
MHaloðr > rcÞ ¼ 0 for the DM spikes. Equation (9) repro-
duces the numerical results with 2% accuracy in the range
rISCO < r < rc for the values of ðMHalo=MBH;MHalo=a0Þ
which we investigated in this work. The accuracy of the fit
generally improves as both MHalo and a0 increase.
In Fig. 1 we plot some of the DM density distributions

described so far for representative choices of the halo
parameters. The Hernquist and NFW profiles are always
rather similar, except at the highest values of the halo mass
and smallest values of the compactness (bottom right
panel), where the density of the Hernquist model is larger
than the NFW density by about one order of magnitude.
When the halo is very compact (left panels) the Einasto
profiles have the highest DM density close to the BH,
orders of magnitude larger than the DM spike profiles. The
trend reverses as we move to the less compact profiles on
the right; for the largest halo masses and for the smallest
values of the compactness (bottom right panel) the DM
spike contains by far the largest amount of DM at the
orbital radii of interest for EMRIs.
Note that in all the cases we consider, the DM halo

density and compactness are quite high compared to
astrophysical galactic halos. Observations of SgrA� at the
Galactic centre from the GRAVITY Collaboration show that
the extended mass in the region r≲ 106MBH is very small,
with the total mass function dominated by the central 4.3 ×
106M⊙ BH [40]. The distributions considered in this work
have masses ∼ð1–10ÞMBH within radii r < 104MBH, and
they were mainly chosen to provide a proof of concept that
our computational pipeline can be used to study relativistic
environmental effects. These distribution may still be
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representative of DM halos in galaxies smaller than the
Milky Way, or of subhalos [41].

III. NUMERICAL PROCEDURE

We outline here the numerical procedure followed to
compute the polar gravitational perturbations.
We first make a specific choice of ρðrÞ, and then we

solve for the background metric component aðrÞ and for
the mass function mðrÞ. In lieu of analytic or approximate
solutions as found in [42,43], we choose to numerically
solve for the metric components by numerically integrating
m0ðrÞ ¼ 4πr2ρðrÞ from r ¼ 2MBH to the cutoff radius
r∞ ¼ 1011MBH, which corresponds to our numerical
approximation of spatial infinity. We then plug the numeri-
cal solution for mðrÞ into Eq. (3) to solve for aðrÞ by
integrating backwards from r∞, with the following boun-
dary condition:

mðr∞Þ ¼ MBH þMHalo;

aðr∞Þ ¼ 1 −
2mðr∞Þ

r∞
: ð11Þ

Here, MHalo corresponds to the total mass of the environ-
ment surrounding the BH.
The numerical solutions for aðrÞ and mðrÞ are used to

calculate the tangential pressure PtðrÞ from Eq. (3), as well
as the energy, angular momentum, and orbital frequency of
particles in circular orbits using Eq. (4).
Our next task is to solve the five coupled first-order

ODEs governing the polar sector. These ODEs can be cast
in the compact form,

dψ⃗
dr

− αψ⃗ ¼ S⃗; ψ⃗ ¼ fK;H0; H1;W; δρg; ð12Þ

where fK;H0; H1g and fW; δρg are the perturbation
variables related to the metric and to the fluid, respectively.

1 2 3 4
� 13
� 12
� 11
� 10
� 9
� 8
� 7
� 6
� 5
� 4
� 3
� 13
� 12
� 11
� 10
� 9
� 8
� 7
� 6
� 5
� 4
� 3
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� 12
� 11
� 10
� 9
� 8
� 7
� 6
� 5
� 4
� 3

1 2 3 4 1 2 3 4

FIG. 1. Mass profiles for some representative DM configurations considered in this work. The NFW model is truncated at the cutoff
radius rc ¼ 5a0. The Hernquist, NFW and Einasto profiles are obtained by the “cutoff factor” recipe ρðrÞ → ð1 − 4MBH=rÞρðrÞ. The
“DM spike” profile is obtained with the fully relativistic calculation of the adiabatic growth of a BH within a Hernquist profile from
Refs. [12,38], as described in the main text. Going from the top to the bottom panels, the DM halo mass grows relative to the central BH
mass (MHalo=MBH ¼ 1, 10, 100), while the compactness of the halo decreases going from the left to the right panels (MHalo=a0 ¼ 0.1,
0.01, 0.001). The vertical lines correspond to a representative orbital radius rp ¼ 7.9456MBH that will be used in Table I below to
compare GW energy fluxes.
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The components of the matrix α and of the source vector S⃗
are given explicitly in Ref. [24]. We require the gravitational
perturbation variables to satisfy ingoing- and outgoing-wave
boundary conditions at the horizon and at our numerical
infinity, respectively. Following Ref. [24] we assume, for
simplicity, that the fluid variables vanish at the two boun-
daries, i.e., Wð2MBHÞ¼δρð2MBHÞ¼Wðr∞Þ¼δρðr∞Þ¼0.
The gravitational perturbations at the horizon can be
expanded as follows:

KðinÞðrÞ ¼ e−iωr�
XNin

i¼0

KðiÞ
H ðr − 2MBHÞi;

HðinÞ
0 ðrÞ ¼ e−iωr�

XNin

i¼0

HðiÞ
0;Hðr − 2MBHÞi−1;

HðinÞ
1 ðrÞ ¼ e−iωr�

XNin

i¼0

HðiÞ
1;Hðr − 2MBHÞi−1; ð13Þ

where in our numerical calculations we set Nin ¼ 5. We
similarly expand the background functions at the horizon,

mðrÞ ¼ MBH þ
XNin

i¼2

mðiÞ
H ðr − 2MBHÞi;

aðrÞ ¼
XNin

i¼1

aðiÞH ðr − 2MBHÞi; ð14Þ

and we use the numerically computed profiles for mðrÞ and
aðrÞ to determine the coefficients aðiÞH ;mðiÞ

H . Given these
coefficients, we can expand Eq. (12) in powers of r − 2MBH

and solve order-by-order to find the coefficients KðiÞ
H , HðiÞ

0;H,

HðiÞ
1;H. This completely specifies the boundary conditions at

the horizon, modulo the value of Kð0Þ
H .

We perform a similar procedure at spatial infinity, where
we expand the gravitational perturbations as

KðoutÞðrÞ ¼ eiωr�
XNout

i¼0

KðiÞ
∞

ri
;

HðoutÞ
0 ðrÞ ¼ eiωr�

XNout

i¼0

HðiÞ
0;∞

ri−1
;

HðoutÞ
1 ðrÞ ¼ eiωr�

XNout

i¼0

HðiÞ
1;∞

ri−1
; ð15Þ

and the metric functions as

mðrÞ ¼
XNout

i¼0

mðiÞ
∞

ri
; aðrÞ ¼

XNout

i¼0

aðiÞ∞
ri

: ð16Þ

Once again we set Nout ¼ 5. By matching Eq. (16) with the
numerical profiles of aðrÞ and mðrÞ we can determine the

values of aðiÞ∞ and mðiÞ
∞ . Then we expand Eq. (12) in powers

of 1=r and solve order-by-order for the coefficients KðiÞ
∞ ,

HðiÞ
0;∞, HðiÞ

1;∞. Fixing Kð0Þ
∞ ¼ 1 completely specifies the

boundary values for the gravitational variables at spatial
infinity.
We solve the five ODEs in the frequency domain for

KðrÞ, H0ðrÞ, H1ðrÞ, WðrÞ, and δρðrÞ using standard
Mathematica numerical routines for differential equa-
tions. We assume the boundary conditions listed in Eq. (13)
at r ¼ 2MBH, and those listed in Eq. (15) at r ¼ r∞. The
source term in Eq. (12) depends on the particle location
through a delta function δðr − rpÞ, which we approximate
by a Gaussian δðr − rpÞ ∼ exp½−ðr − rpÞ2=2σ2�=

ffiffiffiffiffiffi
2π

p
σ, as

in Refs. [24,26]. We also fix the radial and transverse sound
speeds which appear in the matrix α of Eq. (12) to
be ðcs;t; cs;rÞ ¼ ð0; 9=10Þ (see [24] for a discussion).
The gravitational perturbations are then extracted at
robs ¼ max½3 × 103=ω; 2a0�. We make this choice for all
the cases we consider, except for profiles withMHalo ¼ 100,
a0 ¼ 105MBH, which require a larger extraction radius
robs ¼ 2 × 104=ω to achieve sufficient numerical accuracy.
For a given orbital radius rp, the solution of Eq. (12) is

found by a shooting method, with the shooting parameter

Kð0Þ
H determined by requiring that the perturbations and

their derivatives must be continuous at some radius robs,

lim
r→robs

½KnumðrÞK0
expðrÞ − K0

numðrÞKexpðrÞ� ¼ 0: ð17Þ

In this equation, the quantity Knum refers to the numerically
computed KðrÞ, while Kexp refers to the expansion of
Eq. (15).
We can finally compute the GW fluxes at infinity for

different multipolar components ðl; mÞ from the relation,

Ė∞
ðl;mÞ=q

2 ¼ lim
r→robs

1

32π

ðlþ 2Þ!
ðl− 2Þ! jKðrÞj2; ðlþm evenÞ;

ð18Þ

where q ¼ mp=MBH. The codes used to calculate the
background quantities and the polar fluxes are publicly
available online [44].

IV. RESULTS

Examples of the GW fluxes Ė∞
ðl;mÞ computed in this way

are shown in Table I. All fluxes are evaluated at a reference
particle orbital radius rp ¼ 7.9456MBH to facilitate com-
parison with the vacuum fluxes computed in Ref. [45]. For
nonvacuum fluxes and for a given DM profile, the four
entries in each cell of the table span two values of the DM
halo mass and compactness: MHalo=MBH ¼ 1, 100 and
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MHalo=a0 ¼ 0.1, 0.001. In other words, we consider the
four most extreme cases shown in Fig. 1; the top (bottom)
entries in each cell correspond to a small (large) halo mass,
while the left (right) entries correspond to a large (small)
compactness.
Let us first focus on halos with small compactness,

MHalo=a0 ¼ 0.001 (right entries in each cell of Table I). In
this case, changes in the halo massMHalo=MBH have nearly
no effect; in fact the fluxes are very similar for any choice of
the DM halo profile, and they differ by at most a few percent
from the corresponding vacuum fluxes. This makes sense
when we look at the DM distributions plotted in the right
panels of Fig. 1; if the compactness is small, most of the DM
density is at large radii. The particle evolution is most
sensitive to the DM density inside the orbital radius (marked
by vertical lines in Fig. 1), which is always very low for
“dilute” DM profiles with MHalo=a0 ¼ 0.001, with peak
values of M2

BHρ≲ 10−6. Therefore, the DM distribution
close to the BH has an almost negligible effect on the GW
energy flux and on the orbital evolution of the particle.
Consider next halos with large compactness,MHalo=a0 ¼

0.1 (left entries in each cell of Table I). We now observe that
the multipolar contributions to the GW energy fluxes are
typically larger for small values of the halo mass
(MHalo=MBH ¼ 1) than for large values of the halo mass
(MHalo=MBH ¼ 100). Once again, this can be understood by
looking at the DM distributions plotted in the left panels of
Fig. 1. Consider for reference the peak of the Einasto DM
density distribution (dotted green line); it decreases from
M2

BHρ ∼ 10−3 for MHalo=MBH ¼ 1, to M2
BHρ ∼ 10−4 for

MHalo=MBH ¼ 100. This is because at fixed compactness,
the more massive halos are more diluted, and extend out to
larger orbital radii, so the amount of DM within the particle
orbit decreases as the total halo massMHalo=MBH increases.
This explains why, at fixed compactness, the multipolar
contributions to the GW energy fluxes are typically smaller
for larger values of the halo mass. There are some
exceptions to this general rule, such as the ðl; mÞ ¼
ð3; 1Þ multipole for the NFW profile and the ðl; mÞ ¼
ð4; 4Þ multipole for the DM spike, but as we discuss below,
these are largely subdominant and ultimately, they do not
contribute much to the energy fluxes and to the orbital
evolution of the particle.
In Fig. 2 we focus on the fiducial “DM spike” model,

which was computed from a fully relativistic calculation
The trends visible in this figure are consist of the adiabatic
growth of a Hernquist profile [12,38]. ent with Table I. The
left panel shows that the quadrupolar energy flux decreases
as the DM halo become less compact at fixed values of
MHalo=MBH; this is easy to understand, because the strong-
field dynamics of the particle is dominated by the BH when
the DM profile is more dilute (i.e., when the DM density
close to the BH decreases). The right panel shows that the
quadrupolar energy flux is smaller for larger values of
MHalo=MBH at fixed compactness, again because moreTA
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dilute DM profiles have less DM within the particle orbit.
These are the same trends we observed at rp ¼ 7.9456MBH

in Table I, and they apply to all values of rp=MBH

(or MBHΩp).
However, Fig. 2 allows us to better appreciate the

dependence of these effects on the particle radius
rp=MBH. For example, the right panel shows that the effect
of gravitational redshift is still important. When we fix
MHalo=a0 ¼ 0.01, a0 changes by two orders of magnitude
as we vary MHalo=MBH, so the emitted GWs propagate
through very different density profiles. For rp ¼ 50MBH

(MBHΩp ∼ 0.003) the difference between the three cases is
more pronounced, because the particle is (roughly) located
halfway through the DM distribution when MHalo=MBH ¼
1 (so that a0 ¼ 100MHalo ¼ 100MBH). On the contrary,
when rp ¼ 6MBH (MBHΩp ∼ 0.05), the particle is located
so deep within the DM distribution that any differences
induced by gravitational redshift saturate, and the three
fluxes become nearly indistinguishable.
The solid lines in the top-left panel of Fig. 3 show the

relative difference between the l ¼ m ¼ 2 multipolar
contribution to the energy flux in the frequency domain
for the Hernquist distribution and the corresponding
vacuum result for different DM halos with fixed compact-
ness MHalo=a0 ¼ 0.01. The plot spans values of the orbital
frequencies such that the circular orbit radius of the particle
varies between rp ¼ 50MBH and rp ¼ 6MBH. We have
checked that when we use a cutoff factor of ð1 − 2MBH=rÞ
our results are in excellent agreement with those in Fig. 3 of
Ref. [24], which made use of closed-form analytic expres-
sions for the metric functions mðrÞ and aðrÞ. In fact, the
energy fluxes shown here are smoother compared to those
of Ref. [24], mainly because of the larger value of rout
considered in this paper to increase numerical accuracy.

In the remaining panels of Fig. 3 we compare vacuum
and matter fluxes for the NFW, Einasto, and DM spike
profiles. The solid lines in different panels shows trends
consistent with the DM profiles plotted in Fig. 1. For
example, by comparing the solid lines in the two top panels
we observe minimal differences between the Hernquist and
NFW fluxes, which is hardly surprising given the similarity
of the corresponding DM profiles. The GW flux in the
presence of DM differs more from the vacuum case when
we consider the DM spike and (even more so) the Einasto
profiles. The reason can be easily understood by a glance at
the middle column of Fig. 1; the DM density in the regime
of interest is highest for the Einasto profile, followed by the
DM spike profile and (at some distance) by the Hernquist
and NFW profiles.
The dashed lines in each panel of Fig. 3 show the relative

difference between the numerical values of Ė∞
ð2;2Þ and the

redshifted vacuum fluxes obtained through the scaling [24],

Ωp → Ωp=γ; ω → ω=γ; mp → γmp; ð19Þ

where the redshift factor is given by γ ¼ 1 −MHalo=a0
for Hernquist, NFW, and DM spike distributions, and by
γ ¼ 1 −MHalo=re for the Einasto model. Interestingly, the
nonvacuum fluxes are not well-captured by the scaling
(19), even for small values of the halo mass MHalo. This is
a key difference with respect to the energy fluxes in the
axial sector: in that case, this simple redshift scaling
turned out to significantly reduce the difference between
the vacuum energy fluxes and those in the presence of
matter [24,26].
Finally, the dot-dashed lines in each panel of Fig. 3 show

the relative difference between the numerical fluxes and the
corrections to the vacuum PN GW fluxes computed in
Ref. [12], i.e.,
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FIG. 2. Solid lines: l ¼ m ¼ 2mode GWenergy fluxes, in units of q2 ¼ m2
p=M2

BH, in the presence of a DM spike matter background.
The frequency range on the x axis corresponds to particle orbital radii ranging from rp ¼ 50MBH to rp ¼ 6MBH. In the left panel we
compare DM spike halos with the same value of MHalo=MBH ¼ 100 but different compactness MHalo=a0, while in the right panel we
compare DM spike halos with fixed compactness MHalo=a0 ¼ 0.01 but different values of MHalo=MBH. For reference, the dashed line
shows the l ¼ m ¼ 2 multipolar component of the vacuum energy flux.
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Ė∞
GW ¼ 32

5
ðMBHΩpÞ10=3

�
1þ 4

3
ϵqðrÞ

�
: ð20Þ

Equation (20) is obtained by expanding the energy
balance equation in powers of the small quantity
ϵqðrÞ ¼ MDMðrÞ=MBH, where MDMðrÞ is the mass of
the halo enclosed in a sphere of radius r. Therefore,
not surprisingly, the approximation works best when
MHalo=MBH is smallest. Note that at variance with
Ref. [12], in Eq. (20) we do not include dynamical friction
terms, because our framework does not accommodate
these effects at leading order in the perturbations. In fact,
the agreement with our numerical fluxes gets worse when
we compare them against PN expressions which include
dynamical friction.
Figure 4 is similar to Fig. 3, except now we fix the ratio

MHalo=MBH ¼ 100 and vary the halo compactness;
MHalo=a0 ¼ 0.1, 0.01, 0.001. This plot confirms the general
trends observed earlier. The Hernquist and NFW energy

fluxes behave in very similar ways. The Einasto and (to a
lesser extent) the DM spike profile produce much larger
deviations from the vacuum fluxes. Finally, and most
importantly, the dephasing induced by DM generally
increases with the compactness of the halo.
Figures 3 and 4 show that Eq. (20) is not sufficient to

reproduce the numerical fluxes at the orbital frequencies of
interest for EMRIs for any of the DM profiles we consider.
The agreement between Eq. (20) and Ė∞

2;2 improves at large
radii and small orbital frequencies, as expected in any PN
treatment, but it gets worse for more astrophysically
realistic (i.e., less compact) halos.
Overall, these results lead to twomain conclusions: (i) the

polar fluxes cannot be adequately described by PN expan-
sions, and they cannot be simply attributed to gravitational
redshift effects; (ii) the degeneracies due to the redshift
scaling (19) found in the axial sector are generally broken
when we consider polar perturbations. This observation
paves the way for the interesting possibility of constraining

0.005 0.010 0.020 0.050

100

10�1

10�2

10�3
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FIG. 3. Solid lines: relative difference between the l ¼ m ¼ 2 GW energy fluxes, in units of m2
p=M2

Halo, in vacuum (Ėv) and in the
presence of a matter background (Ėm) for different total halo masses, fixing the compactness to MHalo=a0 ¼
1=100. This frequency range corresponds to particle orbital radii ranging from rp ¼ 50MBH to rp ¼ 6MBH. Dashed lines; relative
difference between Ėm and the vacuum fluxes redshifted according to Eq. (19). Dot-dashed lines; relative difference between Ėm and the
post-Newtonian fluxes of Eq. (20).
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the halo properties through GW observations with space-
based detectors.
Finally, in Fig. 5 we show the multipolar components of

the GW energy flux as a function of the orbital radius
rp=MBH for a DM spike model withMHalo=a0 ¼ 0.001 and
MHalo ¼ 100MBH. For completeness we also include the
(2,1) and (3,2) axial contributions, that were first computed
in Ref. [26]. Similarly to the vacuum case, we observe a
clear hierarchy in the amplitude of the GW multipoles. The
total energy flux is dominated by the (2,2), (3,3), and (4,4)
modes. Among the subdominant components, the axial
(2,1) multipole dominates over the polar (5,5) multipole at
large values of rp=MBH, while the opposite is true for
rp=MBH ≲ 8.5. We observe an analogous behavior for the
axial (3,2) and polar (6,6) modes, with a “crossing radius”
around rp=MBH ∼ 7. Similar considerations apply to the
Hernquist, NFW, and Einasto models, which are not shown
here for brevity.
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FIG. 5. Multipolar components of the GW energy flux in the
presence of a DM spike background as a function of the particle’s
orbital radius rp=MBH. We fix the halo mass to MHalo=MBH ¼
100 and the compactness to MHalo=a0 ¼ 0.001. Solid (dashed)
lines refer to polar (axial) modes.
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FIG. 4. Solid lines: relative difference between the l ¼ m ¼ 2 GW energy fluxes in vacuum (Ėv) and in the presence of matter (Ėm)
for different compactness, fixing the halo mass to MHalo ¼ 100MBH. This frequency range corresponds to particle orbital radii ranging
from rp ¼ 50MBH to rp ¼ 6MBH. Dashed lines; relative difference between Ėm and the vacuum fluxes redshifted according to Eq. (19).
Dot-dashed lines; relative difference between Ėm and the post-Newtonian fluxes of Eq. (20).
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V. CONCLUSIONS

This work extends the fully relativistic modeling of
EMRIs embedded in a DM environment to include a
numerical treatment of the polar sector, thus completing
the program initiated in Refs. [24,26].
We have used this formalism to study the GW fluxes

produced by different DM density distribution models, and
we have found that the differences can be of order unity or
larger with respect to the Schwarzschild fluxes, depending
on our assumptions on the DM density profile.
Some general trends can be identified from Table I.

For halos with large compactness (say, MHalo=a0 ¼ 0.1),
the multipolar contributions to the GW energy fluxes
are typically large for small values of the halo mass
(MHalo=MBH ¼ 1), because at fixed compactness the more
massive halos are more diluted, extending out to larger
orbital radii, so the amount of DM within the particle orbit
decreases as MHalo=MBH increases. In the more realistic
case of halos with small compactness, MHalo=a0 ≪ 1, the
fluxes are very similar for any choice of the DM halo
profile and for any value of the halo mass MHalo=MBH,
differing by at most a few percent from the corresponding
vacuum fluxes. This is because most of the DM density is
at large radii, and therefore the DM distribution close to the
BH has an almost negligible effect on the GW energy flux
and on the orbital evolution of the particle.
In Fig. 2 we focus on the fiducial “DM spike” model,

computed from a fully relativistic calculation of the adia-
batic growth of a BH within the Hernquist profile [12,38].
The quadrupolar energy flux decreases as the DM halo
become less compact at fixed values of MHalo=MBH,
because the strong-field dynamics of the particle is domi-
nated by the BH when the DM profile is more dilute (i.e.,
when the DM density close to the BH decreases). The
energy flux is smaller for large values of MHalo=MBH at
fixed compactness for a similar reason: more dilute DM
profiles have less DMwithin the particle orbit. Realistic DM
profiles are probably in the regime MHalo=a0 ≪ 1, as is the
case for a Milky Way-like galaxy. We plan to explore more
carefully this “dilute DM” limit in future work.
As shown in Figs. 3 and 4, the numerical energy fluxes in

the polar case cannot be captured by simply taking into
account the gravitational redshift of the vacuum fluxes (at
variance with the axial case), nor by leading-order correc-
tions to the mass profile combined with PN estimates of
the flux.
Our analysis has several limitations that we plan to

address in future studies.
First of all, it is important to accurately model dynamical

friction, which may accumulate large dephasings over the
Oð105–106Þ orbital cycles typical of LISA EMRIs
[3,6,9,10,12,46,47]. Moreover, our model does not prop-
erly take into account matter fluxes. While EMRIs can be
correctly described by stationary configurations with matter

profiles that vanish at the horizon and at spatial infinity,
intermediate-mass binaries will be sensitive to feedback
effects. This backreaction will affect the DM profile during
the evolution of the orbit [9,48,49]. A proper treatment of
backreaction requires the inclusion of higher-order terms in
the perturbative expansion. If simple estimates similar to
Eq. (20) hold at very small orbital frequencies, DM halos
could produce effects of phenomenological relevance for
pulsar timing arrays [50,51].
On the data analysis side, prior works have proposed to

use EMRI observations to distinguish various environmen-
tal signatures [1,11,12,17,52–54]. The majority of these
works use a combination of fully relativistic and PN
estimates of environmental effects, but so far there is no
consistent description of the evolution of the BH spacetime
embedded in DM during the inspiral. Our framework can
accommodate relativistic effects in the generation and
propagation of GWs. In the future, we plan to develop
waveform models based on these flux calculations and to
use them in a Bayesian framework to estimate the detect-
ability of DM overdensities.
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