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In this paper we consider the motion of a rotating black hole through a static, homogeneous, massless
scalar field. In the general case, a constant vector of the field gradient can be timelike, spacelike, or null.
We consider and compare all of these cases. We demonstrate that as a result of the interaction of the black
hole with the scalar field, its mass, spin, and relative velocity with respect to the field can change. We obtain
the equations describing the evolution of these parameters and present solutions of the obtained equations
for some simple cases.
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I. INTRODUCTION

A scalar field plays an important role in both theoretical
physics and cosmology. Scalar fields with spontaneous
symmetry breaking are used to explain the origin of mass
for particles in the Standard Model. Quite often in cosmol-
ogy, a scalar field is used to model the inflaton field which
drives inflation. It is also used to describe possible phase
transitions in the early Universe. Awide class of interesting
models are those which include a shift-invariant scalar
field, since these models allow for solutions with a non-
vanishing field gradient. For such a state, Lorentz invari-
ance is broken. Examples of such theories are ghost
condensate models [1,2]. A model which contains a
constant spacelike gradient of the scalar field was consid-
ered in application to cosmology within the framework of a
so-called solid inflation model [3]. A scalar field was also
used for the description of the phenomenon of emergent
time and dynamics in Euclidean space (see e.g. [4–7]). In
the khrono-metric model, a Lorentz invariance-breaking
scalar field was used to label a foliation of spacetime by a
family of spacelike surfaces (see e.g. [8] and references
therein). This model is closely related to the Einstein–
aether theory [9–11], in which the preferred frame effects
are described by a unit timelike vector u, called aether.
In this paper, we consider a rotating black hole moving in

a scalar field. We assume that this field is weak and it does
not affect the metric. When a black hole moves in an
external field, the mutual interaction between the black hole
and the field changes the state of both components. The
configuration of the external field near the black hole
changes due to strong gravity in its vicinity. This field can
be scattered by the black hole, and can also be partially

absorbed. At the same time, the parameters of the moving
black hole change. A moving, rotating, electrically neutral
black hole is characterized by its massM and spin J, as well
as the velocity V⃗ of its motion. The main goal of this paper
is to obtain equations which determine the evolution of
these parameters for a rotating black hole moving in a
general-type homogeneous massless scalar field.
In the recent publication [12], the motion of a rotating

black hole in a constant homogeneous electromagnetic
field was discussed. Using an exact solution to Maxwell’s
equations in the Kerr metric for specially adapted asymp-
totic conditions at flat infinity, the momentum flux of the
field into the black hole was calculated. This allows one to
obtain the expression for the force acting on the black hole
and the torque acting on its spin.1

The motion of a rotating black hole in a special type of
homogeneous scalar massless field was discussed in [14]. It
was assumed that a constant gradient of the scalar field is a
timelike vector. Surprisingly, it was shown that the behavior
of black holes in homogeneous scalar fields is quite
different from the behavior of black holes in homogeneous
electromagnetic fields. The main difference is the follow-
ing: A black hole moving in an electromagnetic field retains
a constant mass, while a black hole moving in a scalar field
grows in mass due to absorption of the field by the black
hole. Moreover, the mass of the black hole formally
increases to infinity in a finite time interval. One of the
goals of this paper is to understand the origin of such a
difference between these two cases.
For this purpose,we consider a general case of the constant

homogeneous massless scalar field without imposing the
assumption that its gradient is timelike. We demonstrate that
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1General aspects of the interaction of a rotating black hole with
surrounding matter is discussed in the recent paper [13].
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the casewhere thegradient is spacelike sharesmany common
features with the case of the electromagnetic field. Another
new element of this paper is the calculation of all of the
components of the torque acting on the spin of the black hole
as it moves in a scalar field.
The paper is organized as follows: After discussion of a

static homogeneous massless field in flat spacetime in
Sec. II, we present an exact solution for the scalar field in
the presence of a moving black hole in Sec. III, and
calculate the fluxes of the momentum and angular momen-
tum of the field into the black hole. In Sec. IV, the equations
for the evolution of the mass and spin of the black hole are
obtained and discussed. Equations of motion of a rotating
black hole moving in the scalar field are derived in Sec. V.
Some interesting solutions of these equations are presented
in Sec. VI. The results obtained in the paper are summa-
rized and discussed in Sec. VII. In this section we also
compare black hole motion in scalar fields versus black
hole motion in electromagnetic fields, and briefly discuss
possible applications.
In this paper, we use Misner-Thorne-Wheeler sign

conventions [15] and units in which c ¼ G ¼ ℏ ¼ 1.

II. HOMOGENEOUS SCALAR FIELD
IN A FLAT SPACETIME

Let Ψ be a massless scalar field obeying the following
equation

□Ψ ¼ 0; ð2:1Þ

in flat spacetime. Its stress-energy tensor is

Tμν ¼ Ψ;μΨ;ν −
1

2
gμνΨ;αΨ;α: ð2:2Þ

We consider a special class of so-called homogeneous
solutions for which the gradient of Ψ is a constant vector.
There exist three different types of these solutions, which
we denote as T, S, and N fields. For T fields the gradient
vector is timelike, for S-fields this vector is spacelike, and
for N fields it is null.
Using Lorentz transformations, it is possible to find a

reference frame K̃ in which these solutions have the form,

∇μΨ ¼ Ψ0

8<
:

ð1; 0; 0; 0Þ for T field;

ð0; NX; NY; NZÞ for S field;

ð1; NX; NY; NZÞ forN field;

ð2:3Þ

where N⃗ ¼ ðNX;NY; NZÞ is a 3D unit vector. It is con-
venient to keep the direction of the vector N⃗ not fixed, and
to use this ambiguity later to simplify relations which
appear. We denote by K̃ a frame in which the gradient of the
field has the canonical form (2.3) and call it the “field

frame.” We also denote by X̃μ ¼ ðT̃; X̃; Ỹ; Z̃Þ Cartesian
coordinates in this frame. One has

∇μΨ∇μΨ ¼ ϵΨ2
0; ð2:4Þ

where ϵ takes values −1, þ1, and 0 for T-, S-, and
N-solutions, respectively.
Certainly, it is possible by a rigid rotation of the

coordinate axes to make the x axis be directed along N⃗.
For this choice of coordinates, one has

Ψ ¼
8<
:

Ψ0T̃ for T field;

Ψ0X̃ for S field;

Ψ0ðT̃ þ X̃Þ forN field;

ð2:5Þ

The stress-energy tensor for the T, S, and N fields in the K̃
frame has the form

T̃μν ¼ Ψ2
0

8>><
>>:

1
2
diagð1; 1; 1; 1Þ for T field;

1
2
diagð1; 1;−1;−1Þ for S field;

δT̃μ δ
T̃
ν þ δX̃μ δ

X̃
ν þ 2δT̃ðμδ

X̃
νÞ forN field;

ð2:6Þ

Before we proceed further, let us make some comments
about special features of the N-field solution. Its distin-
guishing property is that a canonical frame K̃ is not
uniquely defined by (2.3). To show this let us denote

ũ ¼ 1ffiffiffi
2

p ðT̃ − X̃Þ; ṽ ¼ 1ffiffiffi
2

p ðT̃ þ X̃Þ: ð2:7Þ

The stress-energy tensor for such a field is

T̃μν ¼ 2Ψ2
0ṽ;μṽ;ν: ð2:8Þ

This tensor describes a null fluid with energy density ∼Ψ2
0

propagating in the negative X̃ direction. Under a Lorentz
boost along the positive X̃ axis, the retarded and advanced
null coordinates ũ and ṽ transform as

v ¼ α−1ṽ; u ¼ αũ; α ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ V
1 − V

r
: ð2:9Þ

Here V is the boost velocity. Hence, the Lorentz boost
transformation preserves the form of the N field with the
only change being Ψ0 → αΨ0. The stress-energy tensor
after this boost takes the form

Tμν ¼ 2α2Ψ2
0v;μv;ν: ð2:10Þ

Let us make another remark concerning the definition of
the N-field solution. In (2.5) we assume that the vector N⃗ is
along the positive X̃ axis. For the choice of N⃗ in the
opposite direction, the form of the solution slightly
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changes. To distinguish these two solutions, we use the
notation

Ψ�
N ¼ Ψ0ðT̃ � X̃Þ: ð2:11Þ

For the Ψ−
N field its “null fluid” flux is “right-moving” (i.e.

it is propagating in the positive X̃ direction). Let us note that
the T field can be presented as a superposition of Ψ�

N fields,

ΨT ¼ 1

2
ðΨþ

N þ Ψ−
NÞ; ð2:12Þ

and for this state, the positive and negative energy fluxes
are compensated so that the off-diagonal components of the
stress-energy tensor vanish.
After these remarks, we continue by using the coordi-

nates X̃μ in which the gradient of the field Ψ has the form
(2.3). Consider another frame K which moves with respect
to the field frame K̃ with velocity V⃗. We choose its
coordinate axes to be parallel to the axes of K̃, and
denote by Xμ ¼ ðT; X; Y; ZÞ the Cartesian coordinates in
this frame.
The coordinates Xμ and X̃μ are related as follows:

T̃ ¼ γðT þ V⃗ · r⃗Þ;
˜r⃗ ¼ r⃗þ ðγ − 1Þ V⃗ · r⃗

V2
V⃗ þ γTV⃗: ð2:13Þ

Here, r⃗ ¼ ðX; Y; ZÞ, ˜r⃗ ¼ ðX̃; Ỹ; Z̃Þ, and γ is the Lorentz
factor,

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p : ð2:14Þ

The homogeneous scalar field solution in the K frame is of
the form

Ψ ¼ Ψ0ðUTT þUXX þUYY þ UZZÞ: ð2:15Þ

In what follows, we identifyK with the asymptotic frame in
which the black hole is at rest, and call it the “BH frame.”
Using (2.13), it is easy to find the expressions for the

parameters fUT;UX;UY;UZg in terms of the velocity
vector V⃗. For each field solution, we have the following.

(i) T field

UT ¼ γ; U⃗ ¼ γV⃗: ð2:16Þ

(ii) S field

UT ¼ γðN⃗ · V⃗Þ;

U⃗ ¼ N⃗ þ ðγ − 1ÞðN⃗ · V⃗Þ V⃗
V2

: ð2:17Þ

(iii) N field

UT ¼ γð1þ N⃗ · V⃗Þ;

U⃗ ¼ N⃗ þ γV⃗ þ ðγ − 1ÞðN⃗ · V⃗Þ V⃗
V2

: ð2:18Þ

III. ENERGY-MOMENTUM AND ANGULAR
MOMENTUM FLUXES IN THE BH FRAME

A. Kerr metric

The Kerr metric, describing a vacuum stationary rotating
black hole, written in Boyer-Lindquist coordinates, is

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 −

4Marsin2θ
Σ

dtdφ

þ Asin2θ
Σ

dφ2 þ Σ
Δ
dr2 þ Σdθ2;

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2;

A ¼ ðr2 þ a2Þ2 − a2Δsin2θ

¼ Σðr2 þ a2Þ þ 2Ma2rsin2θ: ð3:1Þ

Here M is the mass of the black hole, and a is its rotation
parameter related to the black hole’s spin by J ¼ Ma. The
metric has two commuting Killing vectors ξ ¼ ∂t and
ζ ¼ ∂φ. Let us denote

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ð3:2Þ

The black hole’s outer horizon is located at r ¼ rþ.
For M ¼ 0, the curvature vanishes and the metric (3.1)

takes the form

ds2 ¼ −dt2 þ Σ
r2 þ a2

dr2 þ Σdθ2

þ ðr2 þ a2Þsin2θdφ2: ð3:3Þ

This is nothing but a flat metric in oblate spheroidal
coordinates ðt; r; θ;φÞ, which are related to the flat
Cartesian coordinates ðT; X; Y; ZÞ as follows:

T ¼ t;

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ cosφ;

Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ sinφ;

Z ¼ r cos θ: ð3:4Þ

The Killing vectors generating translations along the T,
X, Y, and Z coordinate axes written in oblate spheroidal
coordinates ðt; r; θ;ϕÞ are
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ξμðTÞ∂μ ¼ ∂t;

ξμðXÞ∂μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p

Σ
cosφðr sin θ∂r þ cos θ∂θÞ

−
sinφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2
p

sin θ
∂φ;

ξμðYÞ∂μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p

Σ
sinφðr sin θ∂r þ cos θ∂θÞ

þ cosφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ

∂φ;

ξμðZÞ∂μ ¼
ðr2 þ a2Þ cos θ

Σ
∂r −

r sin θ
Σ

∂θ: ð3:5Þ

The Killing vectors generating rotations about the X, Y,
and Z axes written in oblate spheroidal coordinates are

ζμðXÞ∂μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p

Σ
sinφ½a2 sin θ cos θ∂r − r∂θ�

−
r cos θ cosφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ

∂φ;

ζμðYÞ∂μ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p

Σ
cosφ½a2 sin θ cos θ∂r − r∂θ�

−
r cos θ sinφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ

∂φ;

ζμðZÞ∂μ ¼ ∂φ: ð3:6Þ

The Boyer-Lindquist coordinates are singular at the
black hole horizon. To cover the future horizon and the
interior of the black hole, one can use the incoming Kerr
coordinates2

v ¼ tþ fðrÞ;

fðrÞ ¼
Z ðr2 þ a2Þdr

Δ

¼ rþ 2M
rþ − r−

½rþ lnðr − rþÞ − r− lnðr − r−Þ�;

ψ ¼ φþ φ0ðrÞ;

φ0ðrÞ ¼ a
Z

dr
Δ

¼ a

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p ln

�
r − rþ
r − r−

�
: ð3:7Þ

B. Scalar field in the BH frame

We start with the following ansatz for the scalar field in
Boyer-Lindquist coordinates ðt; r; θ;φÞ:

Ψ ¼ Ψ0ðUTUT þ UXUX þUYUY þ UZUZÞ;
UT ¼ t − rþ fðrÞ − 2M lnðr − r−Þ

¼ v − r − 2M lnðr − r−Þ;
UX ¼ sin θððr −MÞ cosψ − a sinψÞ;
UY ¼ sin θððr −MÞ sinψ þ a cosψÞ;
UZ ¼ ðr −MÞ cosðθÞ: ð3:8Þ

Here v and ψ are the incoming Kerr coordinates defined
in (3.7).
The functions UT , UX, UY , and UZ which enter the

expression (3.8) for the fieldΨ have the following properties:
(1) These functions are exact solutions of the massless

field equation in the Kerr metric.
(2) They are regular at the future event horizon.
(3) At large r they have the following asymptotics:

UT ≈T; UX ≈X; UY ≈Y; UZ≈Z: ð3:9Þ

These properties imply that the functionΨ defined by (3.8) is
nothing but a deformation of the homogeneous scalar
field (2.15) due to the presence of a rotating black hole.
The regularity of the functions UT , UX, UY , and UZ on
the horizon can be easily checked by writing the expressions
for these quantities in the incoming Kerr coordinates (3.7).

C. Fluxes

Let ημ be a vector in the Kerr spacetime in Boyer-
Lindquist coordinates xμ ¼ ðt; r; θ;φÞ, and let Tμν be the
stress-energy tensor of the field. We define a current

Kμ ¼ ηνTμν: ð3:10Þ

Let S0 be a 2D surface in the Kerr spacetime defined by the
equations t ¼ const and r ¼ r0 ¼ const, and let Σ be a 3D
surface obtained by the shift of S0 during the time interval
t∈ ðt1; t2Þ. The flux of the current Kμ through Σ is

K ¼
Z

KμdΣμ; ð3:11Þ

where

dΣμ ¼
1

6

ffiffiffiffiffiffi
−g

p
ϵμβ1;β2β3 det

�
∂xβi

∂yj

�
dtdθdφ: ð3:12Þ

Here,
ffiffiffiffiffiffi−gp ¼ Σ sin θ, ϵμβ1β2β3 is a Levi-Civita symbol

with ϵ0123 ¼ 1, and yj ¼ ðt; θ;φÞ are coordinates on Σ. For
this choice of coordinates, one has

2Since the radial coordinate r has dimensions of length,
formally the quantities similar to ln r should have the form
lnðr=lÞ, where l is a constant length-scale parameter. For
example, one can choose l ¼ M. Let us notice that the change
of the scale l can always be absorbed by a constant shift of the
parameters t, v, f, and terms similar to them. Since the concrete
choice of l is not important for further results, we simply choose
to omit it.
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dΣμ ¼ −Δδμrdtdω; dω ¼ sin θdθdφ: ð3:13Þ

The sign in the definition of the volume element dΣμ is
chosen so that (3.11) determines the flux through Σ into its
interior.
We assume that the current Kμ is stationary, LξKμ ¼ 0,

and so one has

K ¼ ðt2 − t1ÞK; K ¼ −Δ
Z
S0

ημTμrdω: ð3:14Þ

Here K is the flux K calculated per a unit interval of time.
If η is a Killing vector, thenK does not depend on r0, and

more generally, it does not depend on the choice of the 2D
surface S surrounding the black hole. In particular, these
fluxes can be calculated directly on the horizon of the
black hole.

1. Energy flux

Let us first discuss the energy flux into the black hole.
We note that in flat spacetime, the flux of the energy in the
direction of the ith axis is given by the T0i component of
the stress-energy tensor. This quantity can be written as
−ξμTμi, where ξμ is a future-directed Killing vector gen-
erating time translations. Using this sign convention, we
obtain the following expression for the energy flux into the
interior of the surface S0:

E ¼ Δ
Z
r¼r0

Ttrdω: ð3:15Þ

For the field (3.8), only the UT component contributes.
We have

Ttr ¼ ∂tΨ∂rΨ: ð3:16Þ

Only UT contains dependence on t. On the other hand,
all other components U i change signs under reflections
θ → π − θ and φ → π þ φ. As a result, the contribution
from these components after integration over dω vanishes.
A simple calculation gives

∂tUT ¼ 1; ∂rUT ¼ 2Mrþ
Δ

: ð3:17Þ

Using these relations, one gets

E ¼ 8πΨ2
0MrþU2

T: ð3:18Þ

The energy flux does not depend on r0, as it should be.

2. Momentum and angular momentum fluxes

We use (3.14) to define the energy-momentum and
angular momentum fluxes. For this purpose, we use vectors

ξμðνÞ and ζμðνÞ defined by the relations (3.5) and (3.6). Since

these vectors generate asymptotic symmetries, in the
definition of the corresponding fluxes we choose the radius
r0 of the 2D surface S0 to be large, and take the limit
r0 → ∞. Thus, we have

Pi ¼ − lim
r0→∞

�
Δ
Z
r¼r0

ξμðiÞTμrdω

�
;

J i ¼ − lim
r0→∞

�
Δ
Z
r¼r0

ζμðiÞTμrdω

�
: ð3:19Þ

Let us note that ζ ≡ ζðZÞ is a Killing vector, and hence J Z

does not depend on r0.
Using (3.8) and the definition of the stress-energy tensor

(2.2), one finds the expressions which enter as integrands in
(3.19). For calculations we use the GRTensor program. In
fact, for the calculation of Pi, it is sufficient to expand Tμν

in powers of 1=r and keep only the terms up to the second
order of this expansion. For the calculation of J i, one can
proceed in the same way, but terms of the order 1=r3 should
be included as well.
Performing these rather long but straightforward calcu-

lations, one obtains the following expressions for the fluxes
of the momentum

PX ¼ −8πΨ2
0MUT

�
rþUX þ 1

3
aUY

�
;

PY ¼ −8πΨ2
0MUT

�
rþUY −

1

3
aUX

�
;

PZ ¼ −8πΨ2
0MrþUTUZ: ð3:20Þ

Similarly, for the fluxes of the angular momentum, one
finds

J X ¼ 4

3
πΨ2

0MaUZ

�
MUX þ 8

5
aUY

�
;

J Y ¼ 4

3
πΨ2

0MaUZ

�
MUY −

8

5
aUX

�
;

J Z ¼ −
4

3
πΨ2

0M
2aðU2

X þ U2
YÞ: ð3:21Þ

IV. CHANGE OF THE BLACK
HOLE PARAMETERS

A. Force and torque in the BH frame

The flux of the energy-momentum changes the energy
and momentum of the black hole. The corresponding 4D
vector F μ of the force in the BH frame is

F μ ¼ ðE;PX;PY;PZÞ: ð4:1Þ
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Similarly, the torque acting on the spin of the black hole is

T⃗ ¼ ðJ X;J Y;J ZÞ: ð4:2Þ

Let us recall that we did not specify the direction N⃗ of the
gradient of the field. In the reference frame K there exists a
preferred direction to orient the frame, namely the axis of
the rotation of the black hole. We choose the Z axis of our
coordinates to coincide with this direction. For this choice,
the spin vector J⃗ of the black hole is

J⃗ ¼ Jn⃗; J ¼ Ma; n⃗ ¼ ð0; 0; 1Þ: ð4:3Þ

Let us denote

β ¼ 8πΨ2
0: ð4:4Þ

Using the expressions for the energy-momentum fluxes in
the K frame, one can write a 4D vector of force acting on
the black hole in the following form:

F 0 ¼ βMrþU2
T;

F⃗ ¼ −βUT

�
MrþU⃗ −

1

3
J⃗ × U⃗

�
; ð4:5Þ

A similar vector form of the expression for the torque is

T⃗ ¼ 1

6
β

�
MU⃗ × ðU⃗ × J⃗Þ þ 8

5M
ðU⃗ · J⃗ÞðU⃗ × J⃗Þ

�
ð4:6Þ

Let us give explicit expressions of the force for the T, S,
and N fields:

(i) T-field case

F 0
T ¼ βγ2Mrþ;

F⃗ T ¼ −βγ2
�
MrþV⃗ −

1

3
ðJ⃗ × V⃗Þ

�
: ð4:7Þ

(ii) S-field case

F 0
S¼ βγ2MrþðN⃗ · V⃗Þ2;

F⃗ S¼−βγðN⃗ · V⃗Þ
�
Mrþ

�
N⃗þðγ−1ÞðN⃗ · V⃗Þ V⃗

V2

�

−
1

3

�
ðJ⃗× N⃗Þþðγ−1ÞðN⃗ · V⃗Þ J⃗× V⃗

V2

��
: ð4:8Þ

(iii) N-field case

F μ
N ¼ ð1þ N⃗ · V⃗Þ

�
F μ

T þ 1

N⃗ · V⃗
F μ

S

�
: ð4:9Þ

B. Change of the mass and spin of the black hole

In the K frame in which the black hole is (instantly) at
rest, one has

dM
dτ

¼ F 0;
dJ⃗
dτ

¼ T⃗ : ð4:10Þ

These equations describe the change of the mass and spin
of the black hole due to its interaction with the scalar field.
Since F 0 ¼ βMrþU2

T ≥ 0, the mass of the black hole M
never decreases. It remains constant only when UT ¼ 0.
In the general case, the value of the spin J, as well as its

direction n⃗, changes. To find the rate of change of J, we use
the following relations:

J
dJ
dτ

¼ 1

2

dJ2

dτ
¼ 1

2

dJ⃗2

dτ
¼ J⃗ ·

dJ⃗
dτ

: ð4:11Þ

Using relations (4.10) and (4.6) one gets

dJ
dτ

¼ −
1

6
βMJ½U⃗2 − ðU⃗ · n⃗Þ2�: ð4:12Þ

This relation shows that the spin value J either decreases or
remains the same. The latter case occurs when the black
hole’s spin direction vector n⃗ is parallel to U⃗.
Let us emphasize that at this point we assume that the

relative rate of change of the black hole’s characteristics is
small, i.e. Ṁ ≪ 1 and J̇=J ≪ 1=M. This means that during
the characteristic black-hole “relaxation” time ∼M, the
change of M and J is small and one can describe a black
hole geometry by using the Kerr metric with slowly
changing mass and spin. We also assume that calculated
fluxes of the energy and angular momentum, in the black-
hole rest frame, are totally converted to the change of the
black hole mass and its angular momentum.
Let us specify the obtained results for the change of the

black hole parameters for T, S, and N fields:
(i) For the T field, the mass of the black hole always

grows, while the spin can remain unchanged pro-
vided it is parallel to the velocity V⃗ of the black hole.

(ii) For the S field, both mass and spin of the black
hole can remain the same. This happens when the
velocity V⃗ is orthogonal to the direction N⃗ of the
gradient of the scalar field, and the spin is parallel
to N⃗.

(iii) For the N field, the mass of the black hole always
grows, while the spin can remains unchanged
provided the following condition is satisfied:

U⃗ × n⃗ ¼ 0: ð4:13Þ
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C. Black hole entropy and the second law

As we showed in the previous section, as the black hole
moves through the scalar field its mass either increases or,
under special circumstances, remains the same. Similarly,
the value of the black hole spin cannot increase. Hence, the
radius of the horizon rþ does not decrease. This means
that a similar conclusion is valid for the surface area of the
black hole A ¼ 8πMrþ. It remains the same only if both
quantities, the mass M and spin J, remain the same.
The entropy of the black hole is proportional to its area.

Thus, the black hole entropy does not decrease as the
rotating black hole moves in the homogeneous scalar field,
as it should be. Let us obtain a relation describing the
change of the black hole’s entropy in this process.
The second law of black hole physics implies that3

TdS ¼ dM −ΩdJ: ð4:14Þ

Here, S¼ 1
4
A is the entropy of the black hole, Ω¼a=2Mrþ

is its angular velocity, and

T ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

A
ð4:15Þ

is its temperature. Substituting into the relation

T
dS
dτ

¼ dM
dτ

−Ω
dJ
dτ

ð4:16Þ

expression (4.10) for dM=dτ, and expression (4.12) for
dJ=dτ, one gets

T
dS
dτ

¼ 1

2
β

�
2MrþU2

T þ 1

6

Ma2

rþ
ðU⃗2 − ðU⃗ · n⃗Þ2Þ

�
: ð4:17Þ

Both terms in the square brackets are non-negative. Hence,
the entropy of the rotating black hole moving in the
homogeneous scalar field either grows or remains the
same. The latter case is only possible when UT ¼ 0, and
the spin of the black hole Jn⃗ is parallel to the vector U⃗.

V. FORCE ACTING ON THE BLACK HOLE
IN THE FIELD FRAME

For an observer located at far distance L from the black
hole, it can be described as a small-size rotating object with
massM and spin J⃗, moving with velocity V⃗ with respect to
this frame. Its equation of motion is of the form

dPμ

dτ
¼ fμ: ð5:1Þ

Here Pμ ¼ ðMγ;MγV⃗Þ is the four momentum of the black
hole in the field frame, and fμ is the 4D vector of the force
in the field frame.
We denote by F ¼ ðF 0; F⃗ Þ the 4D force vector acting

on the black hole in the instantly comoving frame K. To
obtain the expression for the 4D force fμ acting on the
black hole in the field frame K̃ it is sufficient to perform a
Lorentz transformation. The corresponding relations have
the form4

f0 ¼ γðF 0 þ V⃗ · F⃗ Þ;

f⃗ ¼ F⃗ þ γF 0V⃗ þ ðγ − 1Þ V⃗ · F⃗
V2

V⃗: ð5:2Þ

Here γ ¼ ð1 − V2Þ−1=2.
We use expressions (4.7), (4.8), and (4.9) for the forceF

in the instantly comoving frameK to obtain the expressions
for the force f for the T, S, and N fields.

A. T field

In the case of the T field, we find that

f0T ¼ βγMrþ; f⃗T ¼ 1

3
βγ2J⃗ × V⃗: ð5:3Þ

The torque for this case is

T⃗ T ¼ 1

6
βγ2

�
MV⃗ × ðV⃗ × J⃗Þ þ 8

5M
ðV⃗ · J⃗ÞðV⃗ × J⃗Þ

�
ð5:4Þ

B. S-field

To calculate fμ, the following relations are useful:

V⃗ · U⃗¼ γðV⃗ · N⃗Þ;

V⃗ · F⃗ ¼−βγðV⃗ · N⃗Þ
�
γMrþðV⃗ · N⃗Þþ1

3
J⃗ · ðV⃗× N⃗Þ

�
: ð5:5Þ

One gets

f0S ¼−
1

3
βγ2ðV⃗ · N⃗ÞJ⃗ · ðV⃗ × N⃗Þ;

f⃗S ¼−βγðV⃗ · N⃗Þ
�
MrþN⃗ −

1

3

�
J⃗× N⃗

þ γ− 1

V2
½ðV⃗ · N⃗ÞðJ⃗× V⃗Þþ ðJ⃗ · ðN⃗× V⃗ÞÞV⃗�

��
: ð5:6Þ3In this relation S is dimensionless entropy obtained from the

“standard” thermodynamical entropy via division of the latter by
the Boltzmann constant kB. Similarly, the temperature is defined
in “energy” units and it is obtained by the multiplication of the
“standard” thermodynamical temperature by kB.

4Note that the form of this transformation is similar to (2.13).
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C. N field

The force acting on a black hole immersed in the N field
can be written as

fμN ¼ ð1þ N⃗ · V⃗Þ
�
fμT þ fμS

N⃗ · V⃗

�
; ð5:7Þ

where fμT and fμS are defined above.

VI. SPECIAL CASES

Let us now consider some special cases of motion of the
rotating black hole in a homogeneous scalar field.

A. Black hole motion in T field

This case was discussed in [14]. Here we add only a few
remarks. Let us denote

P⃗ ¼ mγV⃗: ð6:1Þ

Then Eqs. (4.10) and (5.2) imply

dM
dτ

¼ βγ2Mrþ;

dJ⃗
dτ

¼ β

6M

�
P⃗ × ðP⃗ × J⃗Þ þ 8

5M2
ððP⃗ · J⃗ÞðP⃗ × J⃗ÞÞ

�
;

dP⃗
dτ

¼ −
β

3M
γðP⃗ × J⃗Þ: ð6:2Þ

These equations allow one to show that

P⃗2 ¼ const; ðJ⃗ · P⃗Þ ¼ const;

1

2

dJ⃗2

dτ
¼ −

β

6M
½P⃗2J⃗2 − ðJ⃗ · P⃗Þ2�: ð6:3Þ

The last relation also directly follows from (4.12).
Let us note that γ ≥ 1 and rþ ≥ M. Then, the first

equation in (6.2) implies that

1

M2

dM
dτ

≥ β: ð6:4Þ

Let M ¼ M0 be the initial mass of the black hole at τ ¼ 0.
Denote

τ1 ¼
1

βM0

: ð6:5Þ

Then by integrating the inequality (6.4), one arrives at the
conclusion that the mass M becomes infinity at some time
τ0 ≤ τ1. This is a generic property of the behavior of a black
hole in the T field, which singles this case out and
distinguishes it from the cases of the S and N fields.

Special solutions of the equations of motion of the black
hole in the T field can be found in [14].

B. Black hole motion in S field

1. Black hole motion transverse to the field

For starters, we assume that the black hole moves in the
direction orthogonal to the S field. Since ðV⃗ · N⃗Þ ¼ 0, one
has f0S ¼ 0 and f⃗S ¼ 0. This means that both the massM of

the black hole and its velocity V⃗ are constant. The
expression for the torque (4.6) takes the form

T⃗ ¼ 1

6
β

�
MN⃗ × ðN⃗ × J⃗Þ þ 8

5M
ðN⃗ · J⃗ÞðN⃗ × J⃗Þ

�
ð6:6Þ

It is easy to see that

T⃗ · N⃗ ¼ 0: ð6:7Þ

Let us write the spin as

J⃗ ¼ JkN⃗ þ J⃗⊥: ð6:8Þ

Equation (6.7) implies that Jk is constant and one obtains
the following equation:

dJ⃗⊥
dτ

¼ 1

6
β

�
−MJ⃗⊥ þ 8

5

Jk
M

ðN⃗ × J⃗⊥Þ
�
: ð6:9Þ

To solve this equation, we introduce coordinates ðy1; y2; y3Þ
in which

N⃗ ¼ ð0; 0; 1Þ; J⃗⊥ ¼ ðJ1; J2; 0Þ: ð6:10Þ

We denote

K ¼ J1 þ iJ2;

Γ ¼ 1

6
β

�
M −

8

5
i
Jk
M

�
; ð6:11Þ

and so Eq. (6.9) takes the form

dK
dτ

¼ −ΓK: ð6:12Þ

A solution of this equation is

K ¼ K0 expð−ΓτÞ: ð6:13Þ

The constant K0 is defined by the initial condition
Kjτ¼0 ¼ K0. The obtained solution shows that the spin
of the black hole precesses around the direction of the
gradient of the field with frequency ω ¼ jℑðΓÞj, while its
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magnitude exponentially decreases. The characteristic time
of this process is ∼1=ℜðΓÞ.

2. Black hole motion parallel to the field

For motion parallel to the gradient of the field, one has

V⃗ ¼ VN⃗; UT ¼ γV; U⃗ ¼ γN⃗: ð6:14Þ

The 4D force is

f0S ¼ 0; f⃗ ¼ −βγV
�
MrþN⃗ −

1

3
γðJ⃗ × N⃗Þ

�
: ð6:15Þ

If the spin vector n⃗ is not parallel to the field, there exists a
component of the force in the direction orthogonal to the
field. For the motion along the field this component should
vanish. For this reason we impose the condition that n⃗ is
parallel to N⃗. Since both vectors have a unit norm, one has
n⃗ ¼ N⃗. It is easy to see that the torque for this case vanishes
and it is sufficient to impose this condition only at the initial
time. Equation (4.12) also shows that the spin J is constant.
Equations (4.10) and (5.6) imply

dM
dτ

¼ βγ2V2Mrþ;

dðMγVÞ
dτ

¼ −βγVMrþ; ð6:16Þ

while condition f0S ¼ 0 means that

γM ¼ E0 ¼ const: ð6:17Þ

The latter relation shows that the energy E0 of the black
hole is an integral of motion, and one has

M ¼ E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
: ð6:18Þ

Using this relation and (6.16), one obtains

dM
dV

¼ −
MV

1 − V2
;

dV
dτ

¼ −βVrþ: ð6:19Þ

A plot presented in Fig. 1 shows the ðM;VÞ phase space
associated with these equations.
This plot shows that for any initial mass M and velocity

V, the S field produces a friction force which reduces the
velocity of the black hole to zero. In this asymptotic limit,
the growing massM reaches a finite final value equal to E0.
Using (6.18) and the second equation in (6.19), one

obtains the following equation for the black hole’s velocity:

dV
dτ

¼ −βE0V

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2 −

j2

1 − V2

s #
: ð6:20Þ

In the regime when the velocity of the black hole becomes
small, one can approximate this equation and write

dV
dτ

¼ −λV; λ ¼ βE0

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

q �
: ð6:21Þ

This equation shows that at later times, the velocity V
changes as

V ¼ V0e−λτ; ð6:22Þ

and therefore it takes infinite proper time τ to reach the
asymptotic value V ¼ 0.

C. Black hole motion in N field

We consider the simplest case when the black hole
moves within the N field in the direction parallel to it. For
this case,

V⃗ ¼ VN⃗: ð6:23Þ

We also impose the condition

n⃗ × N⃗ ¼ 0; ð6:24Þ

which guarantees that the force component orthogonal to
the field vanishes. For this case, if the relation (6.23) is

V

M

1

0

-1
0 5 10 15 20

FIG. 1. Phase space diagram of M vs V for the S solution with
V⃗ ¼ VN⃗ ¼ Vn⃗.
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valid at an initial moment of time, it will always
remains valid.
Under these assumptions, one has

UT ¼ α; U⃗ ¼ αN⃗; F 0 ¼ βα2Mrþ;

f0 ¼ βαMrþ; f⃗ ¼ −βαMrþN⃗: ð6:25Þ
Here

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ V
1 − V

r
: ð6:26Þ

Also we note that the black hole under these conditions has

constant spin, i.e. T⃗ ¼ 0.
We start with the following three equations:

dM
dτ

¼ βα2Mrþ;

dðγMÞ
dτ

¼ βαMrþ;

dðγMVÞ
dτ

¼ −βαMrþ: ð6:27Þ

It is easy to check that only two of these equations are
independent, and that the third one follows from the
first two.
After some algebra, we arrive at the following system of

differential equations for M and V:

dV
dτ

¼ −βrþð1þ VÞ2;
dM
dτ

¼ βMrþ
1þ V
1 − V

: ð6:28Þ

Combining them gives

dM
dV

¼ −
M

1 − V2
: ð6:29Þ

The ðM;VÞ phase space for this equation is shown in Fig. 2.
This plot shows that V ¼ VðMÞ is a monotonically
decreasing function, which takes the value V ¼ 1 for
M ¼ 0 and asymptotically reaches the value V ¼ −1 when
M → ∞. One can also solve this equation to obtain the
following relation between M and V:

M ¼ M0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − V
1þ V

r
: ð6:30Þ

Here M0 is the mass of the black hole when it has zero
velocity.
Using (6.28) and (6.30) one can also obtain the following

equation for the change of the mass:

dM
dτ

¼ βM2
0

rþ
M

: ð6:31Þ

Since M < rþ ≤ 2M this relation shows that

βM2
0 <

dM
dτ

≤ 2βM2
0: ð6:32Þ

VII. SUMMARY AND DISCUSSION

In this paper, we discussed effects connected with the
motion of a rotating black hole in a static homogeneous
scalar field of general configuration. It extends the results
of the earlier publication [14] to the cases in which the
vector of the field gradient is not only timelike but can also
be spacelike or null as well. Another difference from the
previous publication is that a complete set of equations is
obtained describing not only the change in magnitude of
the black hole’s spin, but also its orientation.
We demonstrate that the mass of a rotating black hole

moving in a scalar field cannot decrease, while the
magnitude of its spin can never increase. As a result, the
surface area (and hence the entropy) of the black hole never
decreases as well. This result is in complete agreement with
the second law of black hole physics. Although these
results are general and valid for any T-, S- and N-field
configurations, there exist very important differences
between these cases. In the T and N fields, the mass of
the black hole always grows and cannot remain constant.
For motion within the S field, the mass of the black

hole can remain constant under the right conditions.
This happens when either the black hole is at rest with
respect to the field frame, or when it moves with velocity
orthogonal to the direction of the field gradient. In the case
where the black hole’s velocity is parallel to the field

V

M

1

1

0

0 5 10 15 20
-

FIG. 2. Phase space diagram of M vs V for the N solution with
V⃗ ¼ VN⃗ ¼ Vn⃗.

VALERI P. FROLOV and ALEX KOEK PHYS. REV. D 109, 084067 (2024)

084067-10



gradient, the growth of the black hole’s mass is accom-
panied by a decrease in its velocity. The final value of the
black hole mass is finite and it is determined mainly by its
initial energy. It takes infinite time to reach this asymptotic
state in which V ¼ 0.
For the black hole moving in the N field, its mass and the

absolute value of the velocity jV⃗j monotonically grow with
time. At late time the velocity V is negative, that is the black
hole moves in the direction opposite to the N field. In the
limit τ → ∞ the velocity V → −1. These results have a
simple and natural explanation. The stress-energy tensor of
the scalar field in the N state has the form of a left-moving
null fluid. The black hole absorbs its energy andmomentum,
and this results in the growth of it mass and velocity jV⃗j.
The case of the T field is singled out by the following

property: For a black hole with an arbitrary initial velocity
(including the case when it is at rest), the mass of the black
hole infinitely grows and (at least formally) it reaches an
infinite value within a finite interval of time. This property
was already discussed in Ref. [14]. A simple explanation of
this phenomenon is given as follows: The rate of change of
the black hole’smass is proportional to its cross section∼M2,

dM=dτ ∼M2: ð7:1Þ
The integral

τf ∼
Z

Mf dM
M2

; ð7:2Þ

which shows that the time τf when themass reaches thevalue
Mf is finite forMf → ∞. This means that it takes the black

hole finite time τ to reach an infinite value of mass. Let us
note that for theN field, the situation is qualitatively different.
Equation (6.32) shows that at a late time, the rate of the
change of the black hole mass is practically constant. The
explanation of the difference with the T-field case is that for
the N field, when V → −1, its null fluid energy flux as
observed in the black hole frame is highly suppressed by a
Doppler shift [see (2.10)]. This effect exactly compensates
the effect of the black hole’s cross-sectional growth.
In many aspects, the motion of the black hole in the S

field is similar to the motion of a rotating black hole in a
homogeneous electromagnetic field discussed in [12], with
one important difference: In the latter case the mass of the
black hole never changes.
Let us emphasize that the models considered is this paper

so far have mainly theoretical interest. The obtained results
might be used for study of the interaction of primordial
black holes with the scalar field associated with the phase
transition in the early Universe. In our discussion, we
considered the simplest version of a scalar field. Namely,
we assumed that it is a minimally coupled massless field
obeying a linear equation. It would be interesting to use the
developed approach and apply it to study of the interaction
of rotating moving black holes with more complicated
fields, such as ghost condensate, khronon, and aether fields.
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