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We build upon recent work by Antonelli et al. [Gravitational spin-orbit coupling through third-
subleading post-Newtonian order: From first-order self-force to arbitrary mass ratios, Phys. Rev. Lett. 125,
011103 (2020).] to obtain, within the effective-one-body formalism, and for an arbitrary choice of gauge,
the third-subleading post-Newtonian (4.5PN) corrections to the spin-orbit conservative dynamics of spin-
aligned binaries. This is then specialized to (i) the well-known Damour-Jaranowski-Schäfer (DJS) gauge,
where the dependence on the angular momentum of the gyrogravitomagnetic functions ðGS;GS� Þ is
removed and (ii) to an alternative gauge (called anti-DJS gauge, DJS) that is chosen so as to precisely
reproduce the Hamiltonian of a spinning test particle at linear order in the particle spin and keep the full
dependence on the radial and angular momentum in ðGS;GS� Þ. We use these results to extend by one
perturbative order, in post-Newtonian sense, the analytical knowledge of the periastron advance. After
performing a suitable factorization and resummation of ðGS;GS� Þ, the DJS and DJS performances are
compared via various gauge-invariant quantities at the effective-one-body last stable circular orbit. We
eventually find some indications that the DJS gauge might be advantageous in the description of the
inspiral dynamics of circularized binaries.
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I. INTRODUCTION

The detection and characterization of gravitational wave
(GW) observations from compact binary coalescences [1–5]
relies on a precise theoretical prediction of the emitted
signal. Highly accurate models of coalescing compact
binaries are a crucial prerequisite for measuring the proper-
ties of their constituent black holes (BHs) and neutron stars,
for determining their underlying astrophysical distributions,
and for testing general relativity in the strong-field regime.
The effective one-body (EOB) formalism [6–9] is cur-

rently the only semianalytical method that allows one to
generate accurate waveforms for any type of coalescing
binary, such as quasicircular and eccentric BHs [10–21],
neutron stars [16,22–26], or mixed binaries [27,28]. The
EOB method relies on three building blocks: (i) a
Hamiltonian that describes the conservative part of the
dynamics, (ii) the radiation reaction forces that describe the
backreaction on the system of the gravitational wave losses,
and (iii) a prescription to compute the waveform from the
dynamics.
The importance of including spin effects within the EOB

Hamiltonian,

HEOB ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðĤeff − 1Þ

q
; ð1Þ

where Ĥeff ≡Heff=μ is the (rescaled) effective Hamiltonian,
was pointed out early in Ref. [8]. Here,M≡m1 þm2 is the
total mass of the binary system, μ≡m1m2=M is the
reduced mass and ν≡ μ=M is the symmetric mass ratio.
The first complete waveform model for spinning and
precessing coalescing black hole binaries was presented
in Ref. [29]. Focusing on the conservative dynamics, one
separates effects that are odd in spin (spin-orbit effects) and
even in spin. Reference [30] (see also [31,32]) proposed to
incorporate even-in-spin effects within a suitable centrifugal
radius, assuming that the structure of the Hamiltonian of a
test particle on a Kerr spacetime is maintained also for
comparable mass binaries.
In particular, following Ref. [33], the spin-orbit coupling

is encoded into two gyrogravitomagnetic functions
ðGS;GS� Þ that, in general, depend on three variables: the
relative separation R between the two objects of masses
ðm1; m2Þ, the angular momentum Pφ and the relative radial
momentum PR. The effective Hamiltonian then reads

Ĥeff ¼ Ĥorb
eff þ PφðGSSþGS�S�Þ; ð2Þ

where Ĥorb
eff is the rescaled orbital effective Hamiltonian,

which includes the even-in-spin contributions as mentioned
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above. The ðS;S�Þ are linear combinations of the individual
spin vectors ðS1;S2Þ and are defined below.
It is always possible to perform a spin-gauge trans-

formation so to suitably simplify the analytical expres-
sions of ðGS;GS� Þ. In particular, Ref. [33] obtained
ðGS;GS� Þ at next-to-leading order [NLO, i.e., 2.5PN
(post-Newtonian) formal accuracy] imposing a gauge that
eliminates the dependence on Pφ, which is known as
Damour-Jaranowski-Schäfer (DJS hereafter) gauge. In
Ref. [34] these functions were computed at the next-to-
next-to-leading order (N2LO) and given in general, gauge-
unfixed form. An analogous calculation was performed in
Ref. [35], though in a different gauge, with a result that
was shown to be equivalent to the one of [34]. Recently,
Refs. [36,37] extended the ðGS;GS� Þ knowledge to N3LO
(4.5PN order) and Ref. [38] to N4LO (5.5PN order).
However, both these calculations give explicit expressions
in the DJS gauge only.
Here we build upon the procedure outlined in

Refs. [36,37] to obtain ðGS;GS� Þ ab initio without a
specific gauge fixing. This tool allows us to explore the
performance of other spin gauges at N3LO, in particular
the one proposed in Ref. [39] (see also Refs. [32,40] for
other possible gauge choices), that we shall call anti-DJS
(DJS) hereafter. Such DJS gauge is defined such that the
GS� function exactly reduces to the corresponding function
of a spinning test-body on a Kerr spacetime [40–42],
keeping the complete dependence on the momenta. In
particular, one of the nice features of this gauge is that the
angular momentum always appears in the combination
P2 ¼ P2

R þ P2
φ=R2.

The paper is organized as follows. In Sec. II we review
the Kerr Hamiltonian and the corresponding EOB one for
comparable-mass binaries. Section III revolves around the
computation in full gauge generality of ðGS;GS�Þ at N3LO
accuracy in the PN expansion. The latter is then used in
Sec. IV to compute the binding energy and the periastron
advance, complete of their spin-orbit component, up to the
4.5PN. Finally, Sec. V is dedicated to explore and compare
the gauge fixing choices for ðGS;GS� Þ.
We use geometric units, G ¼ c ¼ 1, and dimensionless

phase-space variables: the relative separation in the center of
mass frame r≡ R=M and the Newtonian potential u≡ 1=r,
the orbital phase φ, the radial momentum pr ≡ PR=μ, the
orbital angular momentum pφ ≡ Pφ=ðμMÞ. We restrict
ourselves to the case of spins only along the z direction,
ðS1; S2Þ, identified by the orbital angular momentum, and
use the following combinations of the individual spins

Ŝ≡ S1 þ S2
M2

; ð3Þ

Ŝ� ≡ 1

M2

�
m2

m1

S1 þ
m1

m2

S2

�
; ð4Þ

and

ã0 ≡ ã1 þ ã2 ¼ Ŝþ Ŝ�; ð5Þ

ã12 ≡ ã1 − ã2 ¼
Ŝ − Ŝ�
X12

; ð6Þ

where ãi ≡ Si=ðmiMÞ are the rescaled spin magnitudes of
the two bodies and X12 ≡ ðm1 −m2Þ=M ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4ν
p

.

II. THE EOB HAMILTONIAN
FOR SPIN-ALIGNED BINARIES

In this section, we recall the structure of the EOB
Hamiltonian for spin-aligned binaries, as it was first
defined in Ref. [30]. This is a ν-dependent deformation
of the Hamiltonian of a spinning particle moving in a Kerr
background [35,40,41,43,44], which we will remind below.

A. Hamiltonian of a spinning particle
in a Kerr background

We start by recalling the Hamiltonian of a spinning
particle orbiting around a Kerr BH [35,40,41,43,44].
In this scenario, when m1 ≫ m2 (ν ≪ 1), we can use M
as the central BH mass and μ as the mass of the test
particle. The spin variables entering the spin-orbit inter-
action in the comparable mass case [see Eq. (2)] reduce to
the individual dimensionless spins as Ŝ → â1 and Ŝ� → â2,
where âi ≡ ãi=M.
In the case of spin vector aligned with the orbital angular

momentum, the motion of a spinning particle around a Kerr
BH can be described by the compact Hamiltonian [30,44]

ĤK ≡HK

μ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AK

�
1þ p2

φðuKc Þ2 þ
AK

DK p2
r

�s

þ ðGK
S â1 þ GK

S� â2Þpφ; ð7Þ

where we introduced uKc ≡ 1=rKc , the inverse of the
centrifugal radius rKc , defined as

ðrKc Þ2 ≡ r2 þ ã21

�
1þ 2

r

�
: ð8Þ

The AK and DK terms are the Kerr metric potentials and
read

AK ¼ ð1 − 2uKc Þ
1þ 2uKc
1þ 2u

; ð9Þ

DK ¼ ðuKc Þ2
u2

: ð10Þ
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The GK
S and GK

S� factors parametrize the spin-orbit inter-
action of the two-body system [44]. They are called
gyrogravitomagnetic functions and read

GK
S ¼ 2uðuKc Þ2; ð11Þ

GK
S� ¼ ðuKc Þ2

( ffiffiffiffiffiffiffiffi
AK

WK

r "
1 −

u2ðuKc Þ0
ðuKc Þ2

ffiffiffiffiffiffiffi
AK

DK

r #

−
u2ðAKÞ0

2uKc ð1þ
ffiffiffiffiffiffiffiffi
WK

p
Þ

ffiffiffiffiffiffiffi
DK

p
)
; ð12Þ

where the primes denote partial derivatives with respect to
u and WK is the factor entering the square root of Eq. (7),
namely

WK ≡ 1þ p2
φðuKc Þ2 þ

AK

DK p2
r : ð13Þ

B. Hamiltonian for comparable-mass
spin-aligned binaries

Following Ref. [30], we write an effective Hamiltonian
for binary systems with arbitrary mass ratios [see Eqs. (1)
and (2)] by mimicking the structure of the Kerr
Hamiltonian and allowing for ν-dependent deformations
in each of its building blocks. The rescaled effective
Hamiltonian then reads

Ĥeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A½1þ p2

φu2c þQ� þ p2
r�

q
þ ðGSŜþGS� Ŝ�Þpφ; ð14Þ

where we introduced the tortoise-coordinate radial
momentum pr� ¼ A=

ffiffiffiffi
D

p
pr. The first term of Eq. (14)

takes into account even-in-spin interactions (including the
spin-independent ones), while the second one determines
the spin-orbit interaction.
Even-in-spin effects are fully encoded in uc ≡ 1=rc,

where rc is the EOB centrifugal radius [30]. This is defined
according to the structure of rKc , Eq. (8), and reads

r2c ≡ r2 þ ã20

�
1þ 2

r

�
þ δa2

r
; ð15Þ

with the NLO spin-spin term given by

δa2 ≡ −
1

8
f9ã20 þ ð1þ 4νÞã212 − 10X12ã0ã12g: ð16Þ

The potentials A and D in the Hamiltonian are a
ν-deformed version of AK and DK and read

A ¼ AorbðucÞ
1þ 2uc
1þ 2u

; ð17Þ

D ¼ DorbðucÞ
u2c
u2

; ð18Þ

where Aorb and Dorb are the nonspinning EOB metric
potentials (evaluated as functions of uc). The Q potential
instead collects all the extrageodesic (i.e., more than
quadratic in the momenta) corrections entering the effective
Hamilton-Jacobi equation from 3PN onward. These are not
present in the Kerr Hamiltonian, Eq. (7), and are accord-
ingly all proportional to ν (see below).
In particular, at the 4PN accuracy we will need in the

following, we have [9]

A4PN
orb ðucÞ ¼ 1 − 2uc þ 2νu3c þ

�
94

3
−
41π2

32

�
νu4c

þ
�
ac5 þ

64

5
ν log uc

�
u5c; ð19aÞ

D4PN
orb ðucÞ ¼ 1 − 6νu2c − 2ð26 − 3νÞνu3c

þ
�
dc4 þ

592

15
ν log uc

�
u4c; ð19bÞ

Q4PNðpr; ucÞ ¼ ½2νð4 − 3νÞu2c þ q43u3c�p4
r

þ q62u2cp6
r ; ð19cÞ

where

ac5 ¼
�
2275π2

512
−
4237

60
þ 128

5
γE þ

256

5
log 2

�
ν

þ
�
41π2

32
−
221

6

�
ν2; ð20aÞ

dc4 ¼
�
−
533

45
þ 1184γE

15
−
23761π2

1536
−
6496 log 2

15

þ 2916 log 3
5

�
νþ

�
−260þ 123π2

16

�
ν2; ð20bÞ

q43 ¼
�
−
5308

15
þ 496256 log 2

45
−
33048 log 3

5

�
ν

− 83ν2 þ 10ν3; ð20cÞ

q62 ¼
�
−
827

3
−
2358912 log 2

25
þ 1399437 log 3

50

þ 390625 log 5
18

�
ν −

27ν2

5
þ 6ν3; ð20dÞ

with γE being Euler’s constant. Note that here Q is
expressed in a gauge where its dependence on pφ is
removed [45].
The second term of Eq. (14) is written in terms of the two

effective gyrogravitomagnetic functions ðGS;GS� Þ, which
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generalize to general mass ratios the test-mass expressions
ðGK

S ;G
K
S� Þ and determine the strength of the spin-orbit

coupling during the binary evolution. These will be the
main focus of this work.

III. SPIN-ORBIT PART OF THE EOB
HAMILTONIAN UP TO N3LO

IN FULL GENERALITY

In this section we derive for the first time the gauge-
unfixed expressions for the functions ðGS;GS� Þ up to
N3LO. We closely follow the procedure of Refs. [36,37],
although avoiding to specify a chosen gauge from the start.
We do not include the N4LO terms computed in Ref. [38]

for two reasons. One is the appearance, at 5.5PN level, of
nonlocal terms that should be treated carefully and speci-
fied to either elliptic or hyperbolic orbits. More importantly,
the N4LO contributions contain an unknown coefficient
that can be traced back to the incomplete dynamical
information at 5PM and second GSF order.

A. Computation setup

The starting point of our computation is the most general
PN ansatz that is dimensionally allowed for GS and GS� .
Explicitly, considering a set of dimensionless ν-dependent
coefficients gN

mLO
n , the generic ansatz for GS reads1

Ggen
S ¼ u3

�
2þ 1

c2
ðgNLO1 p2 þ gNLO2 p2

r þ gNLO3 uÞ þ 1

c4
ðg N2LO

1 p4 þ g N2LO
2 p2p2

r þ g N2LO
3 p2uþ g N2LO

4 p4
r

þg N2LO
5 p2

ruþ g N2LO
6 u2Þ þ 1

c6
ðg N3LO

1 p6 þ g N3LO
2 p4p2

r þ g N3LO
3 p4uþ g N3LO

4 p2p4
r þ g N3LO

5 p2p2
ru

þg N3LO
6 p2u2 þ g N3LO

7 p6
r þ g N3LO

8 p4
ruþ g N3LO

9 p2u2 þ g N3LO
10 u3Þ

�
; ð21Þ

while Ggen
S� , the corresponding ansatz for GS�, has the same

structure ofGgen
S with a 3=2 replacing the 2 at leading order

and a different, independent set of coefficients gN
mLO�n . In

writing Eq. (21) we introduced the dimensionless total
momentum p2 ¼ p2

r þ p2
φu2 and singled out each PN

order beyond the leading one by restoring powers of
1=c. We also specify that, as we are here interested in
contributions linear in the spin, the difference between uc
and u is not relevant, therefore each quantity is written in
terms of the latter.
It is important to notice that, at this stage, Ggen

S and Ggen
S�

are still devoid of any physical meaning. The actual
ðGS;GS� Þ we are looking for must reproduce the spin-orbit
part of the dynamics of a spinning binary, a condition that is
satisfied only if certain relations hold between the coef-
ficients gN

mLO
n and, separately, gN

mLO�n .
Our source of dynamical information is the scattering

angle of a pair of gravitationally interacting spinning
bodies, which is known to encode in gauge-invariant form
the entire local-in-time conservative dynamics of an
aligned-spin binary [46,47]. We refer in particular to the
contributions proportional to Ŝ and Ŝ� in Eq. (4.38) of
Ref. [37],2 which gives the scattering angle of two spinning

bodies at the third subleading PN order, and thus we dub
hereafter as χ3PN.
The basic idea is to compute the scattering angle from an

effective Hamiltonian of the type (14) whose spin-orbit part
is written in terms of ðGgen

S ; Ggen
S� Þ, and then match the result

to χ3PN.

B. The scattering angle from the effective Hamiltonian

The scattering angle associated to the effective
Hamiltonian Ĥeff is given by the following integral

χðÊeff ; pφÞ≡ −π − 2

Z
umax

0

du
u2

∂

∂pφ
prðÊeff ; pφ; uÞ; ð22Þ

where prðÊeff ; pφ; uÞ is the radial momentum obtained by
inverting perturbatively, in PN sense, the energy conserva-
tion equation Ĥeff ¼ Êeff at fixed Êeff ,

3 and umax is the
largest real root of prðÊeff ; pφ; uÞ ¼ 0.
By naively expanding the integrand in Eq. (22) one

would generate a series of formally divergent integrals,
with the additional degree of complexity that the upper
bound umax is itself given by a PN expansion, umax ¼
p∞=pφ þOð1=c2Þ, where p∞ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ê2
eff − 1

q
. Nevertheless,

this integral is easily computed following the procedure of
Ref. [48], which we outline here for completeness.

1For simplicity, we fix from the start the leading order to its
known value.

2Reference [37] denotes our Ŝ and Ŝ�, respectively, as ab
and at.

3The (rescaled) effective energy Êeff is equal to the relativistic
Lorentz factor of the system γ ≡ −u1 · u2, where ui is the four
velocity of the body i in the binary.

PLACIDI, RETTEGNO, and NAGAR PHYS. REV. D 109, 084065 (2024)

084065-4



(i) We introduce the integration variable z ¼ pφu=p∞,
such that zmax ¼ 1þOð1=c2Þ.

(ii) We expand the integrand in 1=pφ up to 1=p4
φ and in

1=c up to 1=c8.4

(iii) We ignore any PN correction in zmax and regularize
the divergent integrals by taking the Hadamard
partie finie (Pf), i.e.,

Z
1þOðG=c2Þ

0

dz → Pf
Z

1

0

dz: ð23Þ

(iv) After the previous steps, each integral in the
expansion has the structure

Pf
Z

1

0

dzð1 − z2Þ−1=2−nzm; ð24Þ

which is actually the Pf of an Euler beta function, as
can be seen explicitly by changing the integration
variable to t ¼ z2. Such a finite part can be simply
evaluated via analytical continuation and accord-
ingly Eq. (24) is equivalent to

lim
η→0

Z
1

0

dzð1 − z2Þ−1=2þη−nzm: ð25Þ

During this procedure we need also to be careful about
the difference between the canonical angular momentum pφ

appearing in the effective Hamiltonian and the “covariant”
one that appears in χ3PN in the form pcov

φ ¼ bp∞=ðGMÊÞ.
Here, b is the covariant impact parameter and Ê≡ E=M is
the rescaled total energy of the system, related to the
effective one by the usual EOB energy map [Eq. (1)],
namely

Ê≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðÊeff − 1Þ

q
: ð26Þ

The two angular momenta are related by [49]

pφ ¼ pcov
φ þ Ê − 1

2νc2

�
Ŝþ Ŝ� −

Ŝ − Ŝ�
Ê

�
: ð27Þ

Starting from an effective Hamiltonian with a 4PN
orbital part [that is with the 4PN EOB potentials of
Eq. (19)] and with the general gyrogravitomagnetic func-
tions ðGgen

S ; Ggen
S� Þ in the spin-orbit term, the result we get

for the scattering angle has the following three-component
structure

χ ¼ χorbðÊeff ; pφÞ þ ŜχSOS ðÊeff ; pφ; gN
mLO

n Þ
þ Ŝ�χSOS� ðÊeff ; pφ; gN

mLO�n Þ: ð28Þ

Here the spin-free part χorb coincides with that of χ3PN [see
the first three lines in Eq. (4.38) of Ref. [37] ] while the
spin-orbit parts ðχSOS ; χSOS� Þ can be matched to the corre-
sponding ones in χ3PN by constraining accordingly the
coefficients of our starting ansatz, on which they both
depend.

C. N3LO accurate GS and GS� in a generic spin-gauge

Each of the two spin-orbit component of χ, once matched
to their counterparts in χ3PN, give rise to nine ν-dependent
relations among the coefficients of Ggen

S and Ggen
S� , respec-

tively; all of them are explicitly given in Appendix A 1. The
resulting gauge-unfixed expressions for GS and GS� have a
total of 10 residual gauge coefficients each and, introducing
the notation gX ≡GX=u3 for X ¼ S; S�, they read

gS ¼ 2þ 1

c2

�
gNLO2 p2

r þ
�
−
gNLO2

3
−
9ν

8

�
p2 þ

�
gNLO2

3
þ ν

2

�
u

�
þ 1

c4

�
gN

2LO
2 p2p2

r þ gN
2LO

4 p4
r þ gN

2LO
5 p2

ru

þ
�
gN

2LO
2

2
þ gNLO2

4
þ 9gN

2LO
4

20
−
gN

2LO
5

4
−
33ν

16
−
5ν2

4

�
p2uþ

�
−
gN

2LO
2

6
þ 3gNLO2

4
−
gN

2LO
4

4
þ gN

2LO
5

4

−
119ν

16
þ ν2

4

�
u2 þ

�
−
gN

2LO
2

3
−
gN

2LO
4

5
þ ν

8
þ 7ν2

8

�
p4

�
þ 1

c6

�
gN

3LO
2 p4p2

r þ gN
3LO

4 p2p4
r þ gN

3LO
7 p6

r

þ gN
3LO

5 p2p2
ruþ gN

3LO
8 p4

ruþ gN
3LO

9 p2
ru2 þ

�
2gN

2LO
2

3
−
7gN

3LO
2

15
þ 17gNLO2

30
þ 63gN

2LO
4

200
−
3gN

3LO
4

5

þ gN
2LO

5

10
þ 7gN

3LO
5

20
−
5gN

3LO
7

8
þ 11gN

3LO
8

40
−
gN

3LO
9

5
−
1231ν

80
þ 2gNLO2 ν

5
þ 431ν2

40
−
11ν3

8

�
p2u2

þ
�
−
gN

3LO
2

3
−
gN

3LO
4

5
−
gN

3LO
7

7
þ ν

128
−
9ν2

32
−
95ν3

128

�
p6 þ

�
−
gN

2LO
2

2
þ 2gN

3LO
2

15
þ 101gNLO2

60
−
21gN

2LO
4

25

4At leading order, the PN expansion of the scattering angle is proportional to 1=c2, thus 1=c8 corresponds to the third subleading
PN order.
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þ gN
3LO

4

5
þ 13gN

2LO
5

20
−
gN

3LO
5

10
þ gN

3LO
7

4
−
3gN

3LO
8

20
þ gN

3LO
9

5
−
28331ν

720
−
7gNLO2 ν

5
þ 241π2ν

192
−
123ν2

20
þ ν3

8

�
u3

þ
�
gN

2LO
2

3
þ 2gN

3LO
2

3
þ 3gN

2LO
4

8
þ 3gN

3LO
4

5
−
gN

3LO
5

4
þ 29gN

3LO
7

56
−
gN

3LO
8

8
þ ν

2
þ 21ν2

8
þ 31ν3

16

�
p4u

�
; ð29aÞ

gS� ¼
3

2
þ 1

c2

��
−
5

8
−
gNLO�2
3

�
p2 þ gNLO�2 p2

r þ
�
−
1

2
þ gNLO�2

3

�
u� þ 1

c4

��
7

16
−
gN

2LO
�2
3

−
gN

2LO
�4
5

�
p4

þ gN
2LO

�2 p2p2
r þ gN

2LO
�4 p4

r þ
�
9

16
þ gN

2LO
�2
2

þ gNLO�2
4

þ 9gN
2LO

�4
20

−
gN

2LO
�5
4

�
p2uþ gN

2LO
�5 p2

ruþ
�
−
13

16
−
gN

2LO
�2
6

þ 3gNLO�2
4

−
gN

2LO
�4
4

þ gN
2LO

�5
4

�
u2
�
þ 1

c6

��
−

45

128
−
gN

3LO
�2
3

−
gN

3LO
�4
5

−
gN

3LO
�7
7

�
p6 þ gN

3LO
�2 p4p2

r þ gN
3LO

�4 p2p4
r

þ gN
3LO

�7 p6
r þ

�
−
5

8
þ gN

2LO
�2
3

þ 2gN
3LO

�2
3

þ 3gN
2LO

�4
8

þ 3gN
3LO

�4
5

−
gN

3LO
�5
4

þ 29gN
3LO

�7
56

−
gN

3LO
�8
8

�
p4u

þ gN
3LO

�5 p2p2
ruþ gN

3LO
�8 p4

ruþ
�
51

80
þ 2gN

2LO
�2
3

−
7gN

3LO
�2
15

þ 17gNLO�2
30

þ 63gN
2LO

�4
200

−
3gN

3LO
�4
5

þ gN
2LO

�5
10

þ 7gN
3LO

�5
20

−
5gN

3LO
�7
8

þ 11gN
3LO

�8
40

−
gN

3LO
�9
5

�
p2u2 þ gN

3LO
�9 p2

ru2 þ
�
−
121

80
−
gN

2LO
�2
2

þ 2gN
3LO

�2
15

þ 101gNLO�2
60

−
21gN

2LO
�4
25

þ gN
3LO

�4
5

þ 13gN
2LO

�5
20

−
gN

3LO
�5
10

þ gN
3LO

�7
4

−
3gN

3LO
�8
20

þ gN
3LO

�9
5

�
u3
�
: ð29bÞ

These expressions represent the main result of the paper
and extend up to N3LO the N2LO-accurate gauge-unfixed
gyrogravitomagnetic functions first obtained in Ref. [34]
and provided in Eq. (29) therein. To explicitly see the
correspondence at NLO and N2LO between the results of
Ref. [34] and those given above one has however to make
the following shifts on the gauge coefficients:

gNLO2 → −3a −
9ν

2
; ð30aÞ

g N2LO
2 →

3a
2
þ 3β − 3γ þ 9ν

4
−
39ν2

16
; ð30bÞ

gN
2LO

4 → −5β þ 135ν2

16
; ð30cÞ

gN
2LO

5 → 6a − 4α − 3β − 2γ þ 35ν

4
−
3ν2

16
; ð30dÞ

and

gNLO�2 → −3b −
15ν

4
; ð31aÞ

gN
2LO

�2 →
3b
2
þ 3ζ − 3ηþ 57ν

16
−
21ν2

8
; ð31bÞ

gN
2LO

�4 → 6b − 4δ − 3ζ − 2ηþ 5

4
þ 109ν

8
þ 3ν2

4
; ð31cÞ

gN
2LO

�5 → −5ζ þ 15ν2

2
: ð31dÞ

IV. GAUGE INVARIANT QUANTITIES

In order to check our general N3LO results for ðGS;GS� Þ,
we compute here two gauge invariant quantities, complete
of their spin orbit part: the effective binding energy and the
fractional advance of the periastron per radial period, both
obtained in the adiabatic approximation, that is by approxi-
mating the dynamics as a sequence of circular orbits, with
4.5PN accuracy.
The (rescaled) binding energy is defined as

Eb ≡ Ĥcirc
EOBðxÞ −

1

ν
; ð32Þ

where x≡Ω2=3 and Ĥcirc
EOBðxÞ is the μ-rescaled version of

the EOB Hamiltonian (1) in the limit pr� → 0, with pφ and
u replaced by their 4.5PN circular expansions in terms of x.
These can be determined from Eq. (1), first by obtaining the
circular expansion of pφ in powers of u, as it can be done
by solving perturbatively the equation
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0 ¼ ṗr� ¼
∂ĤEOBðpr� ; pφ; uÞ

∂r

����
pr�¼0

; ð33Þ

for pφðuÞ, and then by computing the circular expansion of u in powers of x via the perturbative inversion of the equation

x≡Ω2=3
φ ¼

�
∂ĤEOBðpr� ; pφ; uÞ

∂pφ

����
pr�¼0

�
2=3

: ð34Þ

Using our ðGS;GS� Þ in the EOB Hamiltonian of Eqs. (1)–(14), the resulting circular expansions are

pφ ¼ 1ffiffiffi
x

p þ ffiffiffi
x

p �
3

2
þ ν

6

�
þ x3=2

�
27

8
−
19ν

8
þ ν2

24

�
þ x5=2

�
135

16
þ
�
−
6889

144
þ 41π2

24

�
νþ 31ν2

24
þ 7ν3

1296

�

þ x7=2
�
2835

128
þ
�
98869

5760
−
128γE
3

−
6455π2

1536
−
256 log 2

3
−
64 log x

3

�
νþ

�
356035

3456
−
2255π2

576

�
ν2 −

215ν3

1728
−

55ν4

31104

�

− x

�
10

3
Ŝþ 5Ŝ�

2

�
þ x2½Ŝ

�
−7þ 217ν

72

�
þ Ŝ�

�
−
21

8
þ 35ν

12

��
þ x3½Ŝ

�
−
81

4
þ 633ν

16
−
7ν2

8

�

þ Ŝ�

�
−
81

16
þ 117ν

4
−
15ν2

16

��
þ x4

�
Ŝ

�
−
495

8
þ
�
216469

1152
þ 319π2

192

�
ν −

21769ν2

288
−
2915ν3

31104

�

þ Ŝ�

�
−
1485

128
þ 6215ν

64
−
12199ν2

192
−
275ν3

2592

�	
; ð35Þ

u ¼ x −
ν

3
x2 þ 5ν

4
x3 þ x4

��
1585

72
−
41π2

48

�
ν −

7ν2

4
þ ν3

81

�
þ x5

��
−
153211

2880
þ 64γE

3
þ 11375π2

3072
þ 128 log 2

3

þ 32 log x
3

�
νþ

�
−
31777

432
þ 1681π2

576

�
ν2 þ 3ν3

4
þ ν4

243

�
þ x5=2

�
2Ŝ
3
þ Ŝ�

2

�
þ x7=2

�
Ŝ�

�
−
1

8
þ gNLO�2

3
−
5ν

6

�

þ Ŝ

�
gNLO2

3
−
53ν

72

��
þ x9=2

�
Ŝ

�
gN

2LO
2

6
þ 13gNLO2

12
−
gN

2LO
4

20
þ gN

2LO
5

4
−
�
75

16
þ 7gNLO2

18

�
ν −

5ν2

16

�

þ Ŝ�

�
gN

2LO
�2
6

þ 13gNLO�2
12

−
gN

2LO
�4
20

þ gN
2LO

�5
4

−
5

8
þ
�
−
25

6
−
7gNLO�2
18

�
ν −

ν2

8

�	

þ x11=2
�
Ŝ�

�
4gN

2LO
�2
3

þ 2gN
3LO

�2
15

þ 103gNLO�2
30

−
13gN

2LO
�4

200
þ 9gN

2LO
�5
10

þ 3gN
3LO

�5
20

þ gN
3LO

�7
56

−
gN

3LO
�8
40

þ gN
3LO

�9
5

−
993

640
þ
�
2933

96
−
gN

2LO
�2
4

−
16gNLO�2
15

þ 3gN
2LO

�4
40

−
3gN

2LO
�5
8

−
41π2

32

�
νþ

�
3511

360
þ 35gNLO�2

216

�
ν2 þ 887ν3

1296

�

þ Ŝ

�
4gN

2LO
2

3
þ 2gN

3LO
2

15
þ 103gNLO2

30
−
13gN

2LO
4

200
þ 9gN

2LO
5

10
þ 3gN

3LO
5

20
þ gN

3LO
7

56
−
gN

3LO
8

40
þ gN

3LO
9

5

þ
�
67279

1920
−
gN

2LO
2

4
−
16gNLO2

15
þ 3gN

2LO
4

40
−
3gN

2LO
5

8
−
37π2

16

�
νþ

�
9691

960
þ 35gNLO2

216

�
ν2 þ 22201ν3

31104

�	
; ð36Þ

where we explicitly see that both the orbital frequency and the angular momentum are gauge-invariant quantities in the
circular limit, such that pφðxÞ loses each dependency on the gauge parameters. On the contrary, the latter are still correctly
present in the uðxÞ relation.
The periastron advance is given by [50]

ΔΦ
2π

¼ K − 1; ð37Þ
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K ≡ Ωφ

Ωr

����
circ

¼
�
∂
2Ĥeff

∂r2
∂
2Ĥeff

∂p2
r

�
−1 ∂Ĥeff

∂pφ

����
circ

; ð38Þ

where the circular limit is taken as in Ĥcirc
EOBðxÞ above, that is by taking pr ¼ 0 and substituting pφ and u with their series

expansion in x, Eqs. (35) and (36), respectively.
Our results for Eb and K read

Eb ¼ −
x
2
þ x2

�
3

8
þ ν

24

�
þ x3

�
27

16
−
19ν

16
þ ν2

48

�
þ x4

�
675

128
þ
�
−
34445

1152
þ 205π2

192

�
νþ 155ν2

192
þ 35ν3

10368

�

þ x5
�
3969

256
þ ν

�
123671

11520
−
448γE
15

−
9037π2

3072
−
896 log2

15
−
224 logx

15

�
þ
�
498449

6912
−
3157π2

1152

�
ν2

−
301ν3

3456
−

77ν4

62208

�
− x5=2

�
4

3
Ŝþ Ŝ�

�
þ x7=2

��
−4þ 31ν

18

�
Ŝþ

�
−
3

2
þ 5ν

3

�
Ŝ�

�

þ x9=2
��

−
27

2
þ 211ν

8
−
7ν2

12

�
Ŝþ

�
−
27

8
þ 39ν

2
−
5ν2

8

�
Ŝ�

�

þ x11=2
��

−45þ
�
19679

144
þ 29π2

24

�
ν−

1979ν2

36
−
265ν3

3888

�
Ŝþ

�
−
135

16
þ 565ν

8
−
1109ν2

24
−
25ν3

324

�
Ŝ�

	
; ð39Þ

K ¼ 1þ 3xþ x2
�
27

2
− 7ν

�
þ x3

�
135

2
þ
�
−
649

4
þ 123π2

32

�
νþ 7ν2

�
þ x4

�
2835

8
þ ν

�
−
275941

360
−
2512γE
15

þ 48007π2

3072
−
592 log 2

15
−
1458 log 3

5
−
1256 log x

15

�
þ
�
5861

12
−
451π2

32

�
ν2 −

98ν3

27

�

þ x3=2ð−4Ŝ − 3Ŝ�Þ þ x5=2
��

−34þ 17ν

2

�
Ŝþ

�
−18þ 15ν

2

�
Ŝ�

�
þ x7=2

��
−252þ 5317ν

24
−
22ν2

3

�
Ŝ

þ
�
−
243

2
þ 1313ν

8
− 7ν2

�
Ŝ�

�
þ x9=2

��
−1755þ

�
504173

144
−
3655π2

96

�
ν −

4419ν2

8
þ 3ν3

�
Ŝ

þ
�
−810þ

�
111401

48
−
533π2

16

�
ν −

3661ν2

8
þ 3ν3

�
Ŝ�

	
; ð40Þ

where we see that, in compliance with the gauge invariance,
all the 20 gauge coefficients of ðGS;GS� Þ have correctly
disappeared.
Furthermore, we notice that Eq. (39) reproduces the

binding energy for circular orbits computed from the DJS
gauge in Ref. [37]. Instead, Eq. (40) is found to reproduce
precisely the orbital and spin-orbit component of the
periastron advance computed in Ref. [51] up to 3.5PN,
and extends it by one PN order.

V. GAUGE CHOICES

From the general expressions of Eqs. (29a) and (29b), by
suitably fixing the gauge parameters we can obtain the
N3LO expressions of ðGS;GS� Þ in any spin gauge we want.
For each gauge choice, we will also discuss the corre-
sponding factorized and resummed prescriptions for

ðGS;GS� Þ, in the spirit of Ref. [30], and compare the final
results.

A. The DJS gauge

To recover the DJS spin gauge from our general
expressions, we can simply fix the gauge coefficients so
that the dependence on p2 of ðGS;GS�Þ is completely
removed, making them functions of just u and pr. This
would result in the formulas computed in Ref. [36] when
choosing a priori the DJS gauge. In Appendix A 2 we
collect the associated choices for the gauge coefficients,
while explicit results for ðgDJSS ; gDJSS� Þ can be found in
Appendix B.
Inspired by the prescription for ðGS;GS� Þ proposed in

Sec. III B of Ref. [30] (and currently used in TEOBResumS),
we can reorganize the analytical information of the
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PN-expanded gyrogravitomagnetic functions in a similarly
factorized and resummed form. We can thus write

GDJS
S ¼ GDJS;0

S ĜDJS
S ; ð41aÞ

GDJS
S� ¼ GDJS;0

S� ĜDJS
S� ; ð41bÞ

where the two prefactors read

GDJS;0
S ¼ 2uu2c; GDJS;0

S� ¼ 3

2
u3; ð42Þ

and correspond to the leading orders of ðGDJS
S ; GDJS

S� Þ.
Notice that while GDJS;0

S coincides with the spinning-
particle gyrogravitomagnetic function (11), GDJS;0

S� is just
the leading order in the PN expansion of Eq. (12). For
reference, once any spin-cube term is neglected by replac-
ing uc with u, the latter reads

GK
S� ¼ u3

�
3

2
−

1

c2

�
5p2

8
þ u

2

�
þ 1

c4

�
7p4

16
þ p2u

4
þ 5p2

ru
4

−
u2

2

�

þ 1

c6

�
−
45p6

128
−
3p4u
16

−
7

4
p2p2

ruþ p2u2

4
−
p2
ru2

2
−
5u3

8

�
þO

�
1

c8

��
: ð43Þ

The reason behind this choice for G0
S� is that G

K
S� in the DJS

spin gauge presents a singularity at the light ring location.
This make the spin particle information inGK

S� usable only in
PN-expanded form, as it is done (in the circular components)
in the current spin-orbit prescription of TEOBResumS. We also
stress that the test-mass limit ν → 0 of the DJS result forGS�
(which is provided in Appendix B) differs from Eq. (43) at
every PN order beyond the leading one, thus making the
choice of shaping the prefactor G0

S� after GK
S� less natural.

Coming to the corresponding PN-correcting factors
ðĜDJS

S ; ĜDJS
S� Þ, they are inverse resummed (see [30]) as

ĜDJS
S ≡ 1

T3PN½ðGDJS
S =GDJS;0

S Þ−1� ; ð44aÞ

ĜDJS
S� ≡ 1

T3PN½ðGDJSKerr
S� =GDJSKerr ;0

S� Þ−1�
; ð44bÞ

where the operator T3PN denotes a PN Taylor expansion up to the (relative) third order. Explicitly, we find5

ðĜDJS
S Þ−1 ¼ 1þ ν

�
1

c2

�
27p2

r

16
þ 5u

16

�
þ 1

c4

��
649

256
−
35ν

16

�
p4
r þ

�
807

128
−
23ν

16

�
p2
ruþ

�
1657

256
þ ν

16

�
u2
�

þ 1

c6

��
15251

4096
−
819ν

128
þ 665ν2

256

�
p6
r þ

�
70215

4096
−
1229ν

64
þ 771ν2

256

�
p4
ruþ

�
272649

4096
−
1579ν

32
−
69ν2

128

�
p2
ru2

þ
�
1434389

36864
−
753ν

128
þ 7ν2

256
−
241π2

384

�
u3
�	

; ð45aÞ

ðĜDJS
S� Þ−1 ¼ 1þ 1

c2

��
5

4
þ 3ν

2

�
p2
r þ

�
3

4
þ ν

2

�
u

�
þ 1

c4

��
5

48
þ 25ν

12
þ 3ν2

8

�
p4
r þ

�
−1þ 5ν −

7ν2

8

�
p2
ru

þ
�
27

16
þ 29ν

4
þ 3ν2

8

�
u2
�
þ 1

c6

��
−

5

96
þ 5ν

16
þ 37ν2

32
−
ν3

16

�
p6
r þ

�
−

5

48
þ 5ν

2
þ 107ν2

96
−
9ν3

16

�
p4
ru

þ
�
69

64
þ 1337ν

32
−
217ν2

8
− 2ν3

�
p2
ru2 þ

�
135

32
−
5ν2

32
þ 5ν3

16
þ ν

�
5501

144
−
41π2

48

��
u3
	
; ð45bÞ

which correspond to the current TEOBResumS prescription with the addition of an N3LO term (proportional to 1=c6) linked to
the results of Ref. [36].

5For simplicity, spin-cube terms are always neglected in our N3LO correcting factors.
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Notice that, not being able to factor out the complete
spinning-particle prefactor in Eq. (44b), the PN factor (45b)
does not reduce to 1 in the limit ν → 0.

B. The DJS gauge

In this section, we choose an alternative spin gauge (see
also Ref. [39]), specifically defined around the condition
that the limit ν → 0 of GS� exactly reduces to GK

S� and does
not present the light-ring singularities that appeared in the
DJS gauge. It turns out that imposing this condition on
Eq. (29b) is equivalent to the requirement that any term
containing both the radial momentum and ν should dis-
appear, and this is actually sufficient to fix all the gauge
parameters also in (29a). We denote this gauge as DJS. The
resulting PN-expanded gyrogravitomagnetic functions

ðgDJSS ; gDJSS� Þ can be found in Appendix B, while the relative
gauge coefficients are collected in Appendix A 3.
We can now factorize the PN-expanded expressions as

we did for the DJS-gauge formulas, Eqs. (41a) and (41b).
The advantage of the DJS gauge is that we are able to
factorize the full GK

S� , Eq. (12), instead of just its LO. This

means that, in the test-mass limit, ν → 0, the DJS functions
will exactly reduce to their spinning-particle equivalent,
while the DJS ones will only recover their PN expansion in
the circular limit.
The factorization procedure is complicated by the fact

that G0
S� is no longer as simple as before but contains

structures like the metric potentials AK and DK . There is
hence an inherent ambiguity in extending it to comparable-
mass systems, with the only constraint that the general
prefactor must reduce to GK

S� in the probe limit ν → 0. In
order to be as agnostic as possible, we explore two different

possibilities: (i) keeping the Kerr prefactor, with the AK and
DK potentials, and introducing ν-dependent terms only in
the residual PN series; (ii) promoting the metric potentials in
the prefactor to the comparable-mass EOB potentials A and
D, splitting the ν-dependent terms between the prefactor
and the residual PN corrections. We will denote these two

different GS� , respectively, by GDJSKerr
S� and GDJSEOB

S� .
Let us start by discussing the former choice of

keeping the Kerr prefactor. Given the N3LO expressions
(B2a)–(B2b) in DJS gauge, we can define the associated
prescription

GDJS
S ¼ GDJS;0

S ĜDJS
S ; ð46aÞ

GDJSKerr
S� ¼ GDJSKerr;0

S� ĜDJSKerr
S� ; ð46bÞ

where GDJS;0
S ≡ 2uu2c as in DJS gauge but GDJSKerr;0

S� ≡
GK

S�ðuKc → ucÞ. The two PN-correcting factors are again
inverse resummed as

ĜDJS
S ≡ 1

T3PN½ðGDJS
S =GDJS;0

S Þ−1�
; ð47aÞ

ĜDJSKerr
S� ¼ 1

T3PN½ðGDJSKerr
S� =GDJSKerr;0

S� Þ−1�
; ð47bÞ

and explicitly read

ðĜDJS
S Þ−1 ¼ 1þ ν

�
1

c2

�
9

16
p2 −

1

4
u

�
þ 1

c4

��
−

1

16
−
31ν

256

�
p4 þ

�
33

32
þ 11ν

32

�
p2uþ

�
119

32
−

ν

16

�
u2
�

þ 1

c6

��
−

1

256
þ 9ν

128
þ 233ν2

4096

�
p6 þ

�
−
1

4
−
31ν

256
−
291ν2

1024

�
p4uþ

�
1231

160
−
2201ν

1280
þ 87ν2

256

�
p2u2

þ
�
28331

1440
−
241π2

384
þ 389ν

320
−
ν2

64

�
u3
�	

; ð48aÞ

ðĜDJSKerr
S� Þ−1 ¼ 1þ ν

�
1

c2
p2

2
þ 1

c4

��
−
1

8
−
ν

8

�
p4 þ

�
11

12
þ ν

4

�
p2uþ

�
55

12
þ ν

4

�
u2
�

þ 1

c6

��
1

16
þ ν

16
þ ν2

16

�
p6 þ

�
1

144
−
5ν

48
−
ν2

4

�
p4u −

5

12
p2p2

ruþ
�
847

144
−
559ν

240

�
p2u2

þ
�
21 −

41π2

48
þ 103ν

30
þ ν2

2

�
u3
�	

: ð48bÞ

We now consider the second option discussed above and promote the metric potentials entering GK
S� to the EOB

potentials, Eqs. (17) and (18). The procedure is exactly the same, but this time the prefactor GDJSEOB;0
S� is given by
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GK
S�ðAK → A;DK → D; uKc → ucÞ. In this case the inverse-resummed PN correction to GDJSEOB

S� reads

ðĜDJSEOB
S� Þ−1 ¼ 1þ ν

�
1

c2

�
1

2
p2 − 2u

�
þ 1

c4

��
−
1

8
−
ν

8

�
p4 þ

�
13

12
−
3ν

4

�
p2uþ

�
−
121

12
þ 9ν

4

�
u2
�

þ 1

c6

��
1

16
þ ν

16
þ ν2

16

�
p6 þ

�
−

13

144
þ 11ν

48

�
p4u −

5

12
p2p2

ruþ
�
1031

144
−
933ν

80
þ ν2

2

�
p2u2 −

17

6
p2
ru2

þ
�
4328

135
−
1184γE
45

þ 25729π2

4608
þ 6496 log 2

45
−
972 log 3

5
−
592 logu

45
þ
�
398

5
−
41π2

16

�
ν

�
u3
�	

: ð49Þ

While both prescriptions for GS� could be justified from
the analytical point of view, we find they both have issues.

On the one hand, we know the Kerr prefactor GDJSKerr;0
S�

could cause problems for comparable-mass systems,
because the Kerr metric potentials become singular at
the Kerr event horizons while, from other studies, we
know that the EOB event horizons can move inwards or
even disappear when considering comparable-mass BHs.
On the other hand, the EOB PN correction, Eq. (49), has a
more complicated structure than its corresponding Kerr
correction, Eq. (B2b). Comparing these equations we can

see how ĜDJSEOB
S� contains both an additional term, propor-

tional to u=c2, and a transcendental N3LO coefficient,
needed to combine with the 4PN terms of the prefactor to
give a rational PN expansion for the fullGS� . These seem to
be indications that we are factoring out some structure not
present in the full general relativity result. Keeping these
criticisms in mind, we now move on to discuss the effects
due to these gauge choices.

C. Comparing gauges

Here we try to assess the effect that different gauge
choices have on the EOB dynamics. Although this may
seem paradoxical, the only meaningful way to compare
different gauges is to use gauge-invariant quantities. While
the latter would coincide when using exact results, they are
actually susceptible to gauge effects when dealing with
approximated solutions. In other terms, the disappearance
of the gauge parameters we observed in the 4.5PN
expansion of the invariants [see, e.g., Eqs. (39) and (40)]
is not granted at higher PN orders. Thus, we decided to
compare gauge-invariant quantities at the last stable
orbit (LSO).
In particular, we will focus on the equal-mass (ν ¼ 1=4)

and equal-spin (Ŝ ¼ Ŝ� ¼ ã0=2) case and study the varia-
tion, changing ã0, of the LSO values of the binding energy
Eb, Eq. (32), and the dimensionless Kerr parameter

χJ ≡ 1

ν

jtot
Ĥcirc

EOB

; ð50Þ

where the total angular momentum jtot is given (in the
equal-mass, equal-spin case) by

jtot ¼ pφ þ 2ã0: ð51Þ

Here, we do not PN expand these quantities, as we did in
Eq. (39), so that the results will depend on the gauge
choices we make.
We recall that the LSO radius rLSO can be found by

solving numerically the system of equations

∂Ĥeff

∂r

����
r¼rLSO

¼ 0;
∂
2Ĥeff

∂r2

����
r¼rLSO

¼ 0: ð52Þ

Figure 1 compares the binding energy at the LSO for the
current version of TEOBResumS [52], with three alternative
N3LO-accurate spin-orbit prescriptions, introduced above.6

We also include the NR-informed TEOBResumS (blue dotted
line) as an approximation of quantities that are not easy to
extract from numerical simulations themselves.
We recall that TEOBResumS contains NR-informed param-

eters both in the orbital and the spin-orbit sectors (see
Ref. [52] and references therein for more details). For the
analytical N3LO spin-orbit contributions, we keep the same
(NR-calibrated) orbital effective Hamiltonian and change
only GS and GS� , so to isolate their effect. This implies that
each curve will overlap when ã0 → 0.
Notably, without any numerical calibration in the spin-

orbit part, the DJS curves are very close (at least for
negative spins) to the dynamics calibrated to numerical
relativity simulations. This is somewhat surprising, given
that the TEOBResumS gyrogravitomagnetic functions are
expressed in DJS gauge. These are in fact equivalent to
the N3LO DJS functions computed here up to 3.5PN and
differ at the 4.5PN level, where an NR-fitted parameter was
used in place of the unknown (at the time) analytical

6Let us recall that we do not include the N4LO results of
Ref. [38] because they are analytically incomplete.
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coefficient.7 The fact that our DJS curve lies further apart
from the TEOBResumS one implies that the analytical N3LO
coefficient [see Eq. (45b)] has a very different effect with
respect to the NR-calibrated one, which only contains a term
proportional to u3=c6 [52]. While this is not a demonstration
that the DJS gauge implies a better agreement with NR
simulations, it was shown in Ref. [39] (see Fig. 5 therein)
how different analytical EOB Hamiltonians, completed with
different prescriptions for the radiative sectors, converge
towards a common result when calibrated to numerical
simulations. In our case, where the only difference is the
gauge choice in the spin-orbit sector, we expect the agree-
ment with TEOBResumS to be a reasonable indication of
suitability to build NR-faithful EOB models.
We also note that the DJSKerr and DJS curves predict a

LSO for each value of the spin variable, while the
TEOBResumS LSO and DJSEOB ones stop existing for ã0 ≳
0.7 and ã0 ≳ 0.45, respectively. The LSO disappearance is
linked to the repulsive contribution of the spin-dependent
potential that, after a certain critical value, prevents the
formation of an LSO (in the adiabatic approximation).

We show in Fig. 2 the behavior of the Kerr parameter χJ
at the LSO for varying ã0. Again, we can observe how the
previous DJS prescription used in TEOBResumS is quite close
to both the N3LO-accurate DJS prescriptions of Sec. V B. In
Fig. 2 we also show for reference the numerically simulated
Kerr parameter after the coalescence, as obtained from the
analytic fit of Ref. [53]. The fact that the latter is system-
atically below our results for χLSOJ is in agreement with the
loss of angular momentum during the plunge and merger.
These results suggest that the inclusion of the newly

computed terms, in DJS gauge, could improve the accuracy
of EOB-NR models for spinning binaries.

VI. CONCLUSIONS

In this paper we have computed the GS and GS�
functions, which determine the spin-orbit interaction of
a BBH system, at 4.5PN level in gauge-unfixed form. We
hence extended the results of Ref. [36], which performed
these computations by specifying ab initio the DJS
spin gauge.
By comparing analytical scattering-angle information to

the corresponding quantity computed using a parametrized
EOBHamiltonian, wewere able to extract the gauge-unfixed
form of the gyrogravitomagnetic functions. We then speci-
fied these both in DJS gauge (as in Ref. [36]), defined so as
to make GS and GS� independent of the angular momentum
and in the alternative DJS gauge. This spin-gauge is defined
requiring that in the test-mass limit (ν → 0) GS� reduces
exactly to GK

S� [Eq. (12)], the function describing the

FIG. 2. Analog of Fig. 1 for the Kerr parameter χJ at the LSO.
We also add the numerical result of Ref. [53] (dash-dotted black
line), which represents the Kerr parameter of the residual BH after
the coalescence. The loss of angular momentum between the
LSO and merger is responsible for the lower values of this
quantity.

FIG. 1. Binding energy at the LSO versus ã0 in the equal-mass,
equal-spin case. Top panel: comparison between the binding
energy of the EOB model TEOBResumS with its NR-calibrated
spin-orbit sector (blue dashed line) to different N3LO-accurate
prescriptions of the gyrogravitomagnetic functions: (i) DJS
gauge (green line), (ii) Kerr-factorized DJS gauge functions
(red line), and (iii) EOB-factorized DJS gauge (purple line).
Each curve stops at the value of ã0 for which the LSO no longer
exists. Bottom panel: binding energy difference between the
various N3LO curves and the corresponding NR-calibrated
TEOBResumS value.

7There is a subtlety. In TEOBResumS [39,52], the DJS series are
expressed as functions of ðpr� ; ucÞ instead of ðpr; uÞ.
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spin-orbit interaction between a spinning particle and a Kerr
BH. This is impossible in DJS gauge because of coordinate
singularities at the light-ring location.
We used this computations to extend the PN knowledge of

the periastron advance for quasi-circular-orbits binaries by
one perturbative order, that is up to the 4.5PN [see Eq. (40)].
Based on the procedure followed by the TEOBResumS

model, we then proposed and tested a factorized prescrip-
tion for ðGS;GS�Þ in each gauge. We factorize the LO
contribution and inverse resum the residual PN correction,
so to tame its behavior in the strong-field regime. While this
is straightforward for the DJS gauge, where the LO of each
gyrogravitomagnetic function is simple [see Eq. (42)], it
becomes more difficult when discussing the DJS gauge. In
the latter gauge, the LO prefactor GK

S� contains the Kerr
metric potentials which have a direct extension to compa-
rable masses in the EOB framework. We can then choose to
(i) factorizeGK

S� , with the original Kerr potentials, which we

dubbed Kerr-factorized DJS gauge; or (ii) promote the Kerr
functions in GK

S� to the full comparable-mass EOB equiv-

alents, determining the EOB-factorized DJS gauge. Both
these choices have drawbacks. The Kerr-factorized func-
tions impose coordinate singularities at the location of Kerr
event horizons, although we know that the EOB horizon
location depends on the mass ratio. Conversely, in the
EOB-factorized DJS gauge, the residual PN series contains
transcendental terms, needed to compensate the ones
present in the EOB metric potentials at 4PN level.
We compared in Figs. 1 and 2 two LSO quantities for

each gauge choice against the NR-informed spin-orbit
sector of the TEOBResumS model, which is known to have
a very good agreement with NR simulations of compact
binaries. We find that quantities computed in each DJS
spin-orbit prescription lie very close to the NR-informed
TEOBResumS ones.
We think these comparisons indicate that the newly

computed terms, when expressed in a suitable gauge, could

help improve the overall accuracy of EOB-based models
for spinning compact binaries in their inspiral phase. We
only considered here the conservative dynamics, which is
directly modified by the addition of 4.5PN spin-orbit terms.
A deeper study is needed to consider GW fluxes and
waveforms and the eventual inclusion of the (incomplete)
5.5PN spin-orbit information provided in Ref. [38]. Finally,
it is also worth testing whether the analytical N3LO DJS-
gauge functions computed here can be suitably NR-
informed using an extra N4LO effective parameter, so to
further improve the description of the spin-orbit inter-
actions in the strong-field regime.
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APPENDIX A: COEFFICIENTS OF THE
GYROGRAVITOMAGNETIC FUNCTIONS

In this Appendix we provide explicitly the conditions we
find on the coefficients ofGgen

S andGgen
S� [see Eq. (21)] once

we impose the matching with the 3PN scattering angle and
after we fix the spin gauge according to the DJS and DJS
choices.

1. Relations from the scattering angle matching

Here we collect the coefficient relations that are obtained
by enforcing the matching between the spin orbit parts of
the effective and 3PN scattering angles, discussed in
Sec. III C of the main text. They are

gNLO1 ¼ −
gNLO2

3
−
9ν

8
; gNLO3 ¼ gNLO2

3
þ ν

2
; ðA1aÞ

gN
2LO

1 ¼ −
gN

2LO
2

3
−
gN

2LO
4

5
þ 7ν2

8
þ ν

8
; ðA1bÞ

gN
2LO

3 ¼ gN
2LO

2

2
þ gNLO2

4
þ 9gN

2LO
4

20
−
gN

2LO
5

4
−
5ν2

4
−
33ν

16
; ðA1cÞ

gN
2LO

6 ¼ −
gN

2LO
2

6
þ 3gNLO2

4
−
gN

2LO
4

4
þ gN

2LO
5

4
þ ν2

4
−
119ν

16
; ðA1dÞ

gN
3LO

1 ¼ −
gN

3LO
2

3
−
gN

3LO
4

5
−
gN

3LO
7

7
−
95ν3

128
−
9ν2

32
þ ν

128
; ðA1eÞ
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gN
3LO

3 ¼ gN
2LO

2

3
þ 2gN

3LO
2

3
þ 3gN

2LO
4

8
þ 3gN

3LO
4

5
−
gN

3LO
5

4
þ 29gN

3LO
7

56
−
gN

3LO
8

8
þ 31ν3

16
þ 21ν2

8
þ ν

2
; ðA1fÞ

gN
3LO

6 ¼ 2gN
2LO

2

3
−
7gN

3LO
2

15
þ 2gNLO2 ν

5
þ 17gNLO2

30
þ 63gN

2LO
4

200
−
3gN

3LO
4

5
þ gN

2LO
5

10
þ 7gN

3LO
5

20
−
5gN

3LO
7

8

þ 11gN
3LO

8

40
−
gN

3LO
9

5
−
11ν3

8
þ 431ν2

40
−
1231ν

80
; ðA1gÞ

gN
3LO

10 ¼ −
gN

2LO
2

2
þ 2gN

3LO
2

15
−
7gNLO2 ν

5
þ 101gNLO2

60
−
21gN

2LO
4

25
þ gN

3LO
4

5
þ 13gN

2LO
5

20
−
gN

3LO
5

10
þ gN

3LO
7

4

−
3gN

3LO
8

20
þ gN

3LO
9

5
þ ν3

8
−
123ν2

20
þ 241π2ν

192
−
28331ν

720
; ðA1hÞ

and

gNLO�1 ¼ −
gNLO�2
3

−
3ν

4
−
5

8
; gNLO�3 ¼ gNLO�2

3
−
1

2
; ðA2aÞ

gN
2LO

�1 ¼ −
gN

2LO
�2
3

−
gN

2LO
�4
5

þ 9ν2

16
þ ν

2
þ 7

16
; ðA2bÞ

gN
2LO
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�4
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−
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−
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2. Coefficient choices for the DJS gauge

From the general gauge-unfixed expressions for ðGS;GS� Þ given in Eqs. (29a) and (29b) we can determine the
corresponding expressions in any well-defined spin gauge we want, by suitably fixing the gauge coefficients.
For the DJS expressions (B1a)–(B1b) the associated coefficient choices are

gNLO2 ¼ −
27ν

8
; ðA3aÞ
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gN
2LO

2 ¼ 0; gN
2LO

4 ¼ 5ν

8
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8
;
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5 ¼ −
21ν
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þ 23ν2

8
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and
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−
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1105
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−
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�9 ¼ −
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−
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32
þ 2361ν2
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16
: ðA4cÞ

3. Coefficient choices for the DJS gauge

The coefficient conditions associated to the DJS expres-
sions (B2a)–(B2b) are much simpler, with all the gauge
coefficient of GS set to zero and

gNLO�2 ¼ 0; ðA5aÞ

gN
2LO

�2 ¼ 0; gN
2LO

�4 ¼ 0; gN
2LO

�5 ¼ 5

4
; ðA5bÞ
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�5 ¼ −
7

4
;

gN
3LO

�7 ¼ 0; gN
3LO

�8 ¼ 0; gN
3LO

�9 ¼ −
1

2
: ðA5cÞ

APPENDIX B: PN-EXPANDED RESULTS FOR THE GYROGRAVITOMAGNETIC FUNCTIONS

In this appendix we provide explicitly the PN results we find for ðGS;GS� Þ after their general expressions (29a) and (29b)
are specified to the DJS and the DJS spin gauge. We adopt the same notation as in Eqs. (29a) and (29b).
In the DJS gauge our result reproduce what was found in Ref. [37] and reads
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Their equivalent in the DJS gauge is instead given by

gDJSS ¼ 2þ ν
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