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We consider marginally trapped surfaces in a spherically symmetric spacetime evolving due to the
presence of a perfect fluid in D-dimensions and look at the various definitions of the surface gravity for
these marginally trapped surfaces. We show that using Einstein equations it is possible to simplify and
obtain general formulas for the surface gravity in terms of invariant quantities defined at these marginally
trapped surfaces like area radius, cosmological constant, and principal values of the energy-momentum
tensor ρ, p. We then correlate these expressions of surface gravity to the cases of dynamical horizons and
timelike tubes and find which proposals of surface gravity are causally sensitive as these surfaces undergo
causal transitions from spacelike to timelike and vice versa.
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I. INTRODUCTION

Black holes are among the most mysterious objects that
exist in our universe. The formation of black holes, their
evolution, and their mergers are fields of intense study over
many decades. One intriguing feature of black holes is the
relation between gravity and thermodynamics. The event
horizon of the black hole is found to possess entropy and
temperature. The origin of the entropy of the black hole and
its description in terms of microstates is yet to be properly
understood. The connection between thermodynamics
and black holes is a well-established area of physics.
A relatively less understood phenomenon is the thermo-
dynamics of a black hole that is in the process of evolution.
Black hole thermodynamics has been an area of intense

study and analysis since the discovery of black hole
spacetimes. The connection between the surface gravity
of a stationary/static black hole event horizon and temper-
ature is very well established. The relation between black
hole entropy and its area has been firmly placed on a strong
theoretical foundation due to the presence of Hawking
radiation. Though the nonevolving black hole thermody-
namics is very well understood, the realistic scenario
involving an evolving black hole is still at the initial stages
of its formulation. The main reason for this is that the
dynamical phenomenon describing the formation and
evolution of a black hole is extremely complicated, that
is except for highly special situations, obtaining analyti-
cally solvable solutions in general relativity is difficult.

To capture the features of evolving horizons and trapped
regions, Ashtekar et al. [1,2] defined dynamical horizons.
The dynamical horizon is a spacelike hypersurface foliated
by marginally trapped regions. Using this definition, they
prove an important result stating that the area of the
dynamic horizon always increases. They also defined
timelike membranes where the evolving horizon is time-
like. Hayward in his paper [3] has refined the concept of
trapping horizons based on a 2þ 2 decomposition frame-
work which introduced different types of horizons like
future outer trapped horizon (FOTH), future inner trapped
horizon (FITH), past outer trapped horizon (POTH)
and past inner trapped horizon (PITH). There are many
works [4–7] where solutions are found for dynamical
horizons, timelike membranes, and situations where an
evolving horizon makes a transition from a dynamical
horizon to a timelike membrane were discussed. Bousso
in [8] has introduced the construction of past holographic
screens which can be defined in terms of marginally
trapped surfaces, and in his works with Engelhardt [9,10]
they have proved a new area law in general relativity where
the area of holographic screens follow a monotonic
evolution even though the causal nature of these screens
changes during its dynamics.
The thermodynamics of evolving horizons is a work in

progress, as the evolution of these horizons is a non-
equilibrium phenomenon. An evolving horizon can be a
dynamical horizon or a timelike tube depending on its
causal nature and dynamical horizons tend to increase in
their area while time-like tubes tend to decrease in their
area. In general, the dynamical horizons are outer horizons
(FOTH) while the timelike tubes are inner (FITH).
Dynamical horizons are more generic while timelike tubes
occur in special circumstances like Friedmann-Robertson-
Walker (FRW) spacetime. There are therefore fundamental
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differences between the nature of dynamical horizons
and timelike tubes. It is reasonable to expect that some
thermodynamic properties, too, would carry over the
distinction between dynamical horizons and timelike mem-
branes. There have been various definitions for the surface
gravity for the dynamically evolving marginally trapped
regions. We think that a good formulation of surface gravity
is crucial when one wants to define nonequilibrium
thermodynamic state variables for various astrophysically
realistic cases of evolving horizons. A few of the proposals
for surface gravity that are well known are, Kodama-
Hayward surface gravity [11], Hayward’s trapping gravity
[3], Fodor et al. surface gravity [12], Booth and Fairhurst
surface gravity for the evolving horizon [13], these are
well described in [14]. The surface gravity expressions of
various proposals for the case of the general spherically
symmetric metric are in Eddington-Finkelstein coordinates
and are written in terms of Misner-Sharp mass, metric
function, and their derivatives for these coordinates. In
the paper [15], they discuss a few of the proposals for
surface gravity and obtain expressions for surface gravity
using Painleve-Gullstrand coordinates and highlight the
differences between the proposals in a dynamical setting.
It is found in various solutions that the evolving horizon

may transition from being spacelike to timelike, and vice
versa [4–7]. When one wants to study the thermodynamic
aspects of the evolving horizons, it would be useful to
understand the behavior of various surface gravity propos-
als with respect to the nature of causal transitions of the
evolving horizons. The first paper that addresses the issue
of surface gravity and causal description of evolving
horizons is by [16]. The causal nature of an evolving
horizon in Friedmann-Lemaitre-Robertson-Walker (FLRW)
spacetime is well known. For the case of FLRW, the paper
[16], evaluates the Kodama-Hawyard surface gravity and
shows that the surface gravity is sensitive to the causal nature
of the evolving horizon. We want to address this question
in more a general context since FLRW is a specific case
restricted to the cosmological type solutions.
Our goal in this article is twofold. Firstly we consider

the definitions of various surface gravity proposals in the
D-dimension. We show that for the case of D dimensional
evolving marginally trapped surface, it is possible to
simplify and obtain elementary formulas for the surface
gravity ideas. We describe these formulas in simple terms
of area radius R, the cosmological constant Λ, the dimen-
sion D, and the principal values of the energy-momentum
tensor. These formulas indicate that the surface gravity
estimation can be done only using local information at the
evolving horizon and does not depend upon any nonlocal
information and the global aspects of the solution. These
formulas are obtained directly from simplifying the expres-
sions using Einstein’s equations and do not require the
solutions of Einstein’s equations to define the surface
gravity. We obtain these formulas for the proposals of

surface gravity by Kodama-Hayward [11], Fodor et al. [12],
Booth-Fairhurst [13] and also obtain expressions for trap-
ping gravity by Hawyard [3]. Secondly, we want to find out
which definitions of surface gravity are causally sensitive to
the transitions among spacelike and timelike surfaces. Using
the general formula for each proposal, we find the relation
between the expression for the causal nature of the evolving
horizon with the signature for surface gravity. We find that
Kodama-Hayward surface gravity gives a positive value for
the case of dynamical horizons and gives a negative value if
the evolving horizon is timelike.

II. CAUSAL NATURE OF EVOLVING
MARGINALLY TRAPPED SURFACE

In this section, we review some of the results describing
the causal aspects of marginally trapped regions. The
results can be found in [4–6,16,17]. Some of these results
generalized to a D dimensional scenario for the case
of spherically symmetric perfect fluid are derived in [7].
In the above references, the criteria for the marginally
trapped surface to be timelike/null/spacelike is derived.
Interestingly the causal nature of the marginally trapped
surface can be obtained using Einstein equations without
explicitly solving for the metric.
We assume a general metric for a (D ¼ nþ 2) dimen-

sional spherically symmetric spacetime is of the form

ds2 ¼ −eσðt;rÞdt2 þ eλðt;rÞdr2 þ R2ðt; rÞdΩ2
n ð1Þ

where dΩ2
n is the metric on an n dimensional sphere of unit

radius with angular coordinates defined by ðθ1; θ2;…; θnÞ.
Here, t is the time coordinate, r is the comoving radial
coordinate, and Rðt; rÞ is the areal radius (we will also refer
to this as “physical radius”) of the n-dimensional sphere.
The advantage of comoving coordinates is that the metric
remains regular across the apparent horizon and becomes
singular when the curvature singularity forms (this state-
ment is generally true as long as the initial conditions are
such that there are no shell crossing singularities). The
matter we consider here is a perfect fluid whose energy-
momentum tensor is

Tμν ¼ ðρðt; rÞ þ pðt; rÞÞuμuν þ pðt; rÞgμν ð2Þ

and the four-velocity in comoving coordinates is

uμ ¼ ðe−σ
2; 0; 0;…; 0Þ ð3Þ

with uμuμ ¼ −1. The relevant Einstein equations and
the relations obtained by the conservation of energy-
momentum tensor are given in the Appendix. It is easily
seen that the energy-momentum tensor of the perfect fluid
is diagonal in this coordinate system. As shown in [7], the
formula for the causal nature of the marginally trapped
region can be expressed completely in terms of coordinate
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invariants and the principal values of the energy-
momentum tensor (ρ and p in this context). To define
the marginally trapped regions, for the assumed metric (1),
we define the future outgoing radial null vector as

ka ¼ ðe−σ
2; e−

λ
2; 0; 0:…; 0Þ ð4Þ

and the future incoming radial null vector as

la ¼ ðe−σ
2;−e−λ

2; 0; 0:…; 0Þ ð5Þ

These null vectors are normalized as

gabkalb ¼ −2

Using these two null vectors, the induced metric on a
codimension D − 2 hypersurface that is orthogonal to the
two null vectors is given by,

hab ¼ gab þ
1

2
ðkalb þ lakbÞ

so the expansion for the congruence of outgoing null rays is

Θk ¼ hab∇akb ¼
n
R
ðe−ðσ2ÞṘþ e−ðλ2ÞR0Þ ð6Þ

and for completeness, the expansion for the congruence of
incoming null rays is

Θl ¼ hab∇alb ¼
n
R
ðe−ðσ2ÞṘ − e−ðλ2ÞR0Þ ð7Þ

The hypersurface given by the equation Θk ¼ c is a curve
foliated by a marginally trapped region if we set the
constant c ¼ 0, so the curve is a marginally trapped tube.
To obtain the causal nature of the curve, we find the
norm of normal βk to this curve evaluated at Θk ¼ 0 and is
given by [7],

βk ¼ −ðð£kΘkÞð£lΘkÞÞjΘk¼0 ð8Þ

The lie derivative of Θk with respect to the outgoing null
vector ka and the incoming null vector la are

£kΘk ¼ ka∇aΘk ¼ e
−σ
2 ∂tΘk þ e

−λ
2 ∂rΘk ð9Þ

£lΘk ¼ la∇aΘk ¼ e
−σ
2 ∂tΘk − e

−λ
2 ∂rΘk: ð10Þ

These lie derivatives have to be evaluated at Θk ¼ 0

£kΘkjΘk¼0 ¼ −κ̃ðρþ pÞ ð11Þ

and

£lΘkjΘk¼0 ¼ κ̃ðρ − pÞ þ 2Λ −
nðn − 1Þ

R2
ð12Þ

which gives us

βk ¼ κ̃ðρþ pÞ
�
κ̃ðρ − pÞ þ 2Λ −

nðn − 1Þ
R2

�
: ð13Þ

Instead of the normal, one can also obtain the causal
nature of the curve Θk ¼ 0 using the ratio of lie derivatives.
The ratio represents the causal nature of the tangent to the
curves that are foliated by marginally trapped region, the
proof of which is shown in [3,18]. The ratio of the Lie
derivatives evaluated at Θk ¼ 0 determines the causal
nature of the marginally trapped tube, which is

αk ¼
£kΘk

£lΘk

����
Θk¼0

¼ −κ̃ðρþ pÞ
κ̃ðρ − pÞ þ 2Λ − nðn−1Þ

R2

: ð14Þ

The causal nature is described by the sign of the norm of the
normal or tangent. Marginally trapped curve is timelike if
βk > 0, is spacelike if βk < 0 and is null if βk ¼ 0. We can
see that βk and αk are always of opposite signs. So the
causal criteria are reversed for αk.
We note the fact that the formula for βk is completely

local and does not need the solution of the Einstein
equations. The formula is described in terms of geometric
invariants and system parameters like area radius R of
the marginally trapped surface, cosmological constant Λ,
dimension of the spacetime (n ¼ D − 2) and the principal
values of the energy-momentum tensor ðρ; pÞ at the
location of the marginally trapped region. One can easily
see that by adjusting the density and pressure, one can
obtain transitions of the marginally trapped tube from
timelike to spacelike and vice versa. We also note that
the norm of the normal is a better tool to look at these causal
transitions since βk goes to zero and hence regular while αk
goes to infinity and therefore is analytically cumbersome at
the transition points.
Now we will analytically describe these transitions in the

FRW spacetime setting.
FRW case: The metric (1) can be brought to the standard

FRW form,

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − kr2
þ r2dΩ2

n

�
ð15Þ

which is the higher dimensional spherically symmetric
metric whose source is a homogeneous perfect fluid.
The function aðtÞ has the standard interpretation as the
scale factor and k takes the values in ð1; 0;−1Þ. For the
metric (15), the future incoming radial null vector is given by

la ¼
�
1;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

aðtÞ ; 0; 0:…; 0

�
ð16Þ
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and the future outgoing radial null vector is given by

ka ¼
�
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

aðtÞ ; 0; 0:…; 0

�
: ð17Þ

These are normalized to,

gabkalb ¼ −2:

The expansion scalar for the outgoing bundle of null rays is

Θk ¼ hab∇akb ¼
n

aðtÞr
�
ȧðtÞrþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p �
: ð18Þ

We know that the norm of the normal to the Θk ¼ 0
curve can be expressed as the product of Lie derivatives (8).
The lie derivative of Θk with respect to the outgoing radial
null vector is

£kΘkjΘk¼0 ¼ −κ̃ρð1þ ωÞ ð19Þ

and, that with respect to the ingoing radial null vector is

£lΘkjΘk¼0¼
n

2R2

�
3−n−ωðnþ1Þþ2ΛR2ð1þωÞ

n

�
: ð20Þ

The norm of the normal to the curves Θk ¼ 0 can be
expressed as

βk¼
nκ̃ρð1þωÞ

2R2

�
3−n−ωðnþ1Þþ2ΛR2ð1þωÞ

n

�
: ð21Þ

As described earlier, the causal nature of the marginally
trapped tube can also be found using the ratio of lie
derivatives, which represents the causal nature of the
tangent of the marginally trapped tube. The ratio of the
lie derivatives evaluated at Θk ¼ 0 and Θl ¼ 0 gives us

αk ¼
−2R2κ̃ρð1þ ωÞ

n
�
3 − n − ωðnþ 1Þ þ 2ΛR2ð1þωÞ

n

� : ð22Þ

Note that we have expressed the formula in terms of
physical radius R instead of aðtÞr. The formula for the
cosmological case is even more elementary than the general
case. If we assume 1þ ω is positive, the sign of the
expressions for βk and αk are completely determined by the
following expression,

�
3 − n − ωðnþ 1Þ þ 2ΛR2ð1þ ωÞ

n

�
: ð23Þ

We note that the formula does not contain any dynamical
variables of the model and is expressed completely in
terms of spacetime dimension (n), equation of the state

parameter (ω), cosmological constant (Λ), and physical
radius (R) in this sense it is a geometrical result.
If we consider the case where the cosmological constant

is zero, we see from the above expression that as the
marginally trapped region evolves, there is no change of
causal nature. It is uniformly timelike, spacelike, or null.
At a value of ω called ωcritical given below, the evolving
marginally trapped region is uniformly null. If ω < ωcritical,
it is timeline, and if ω > ωcritical, the marginally trapped
tube is spacelike.

ωcritical ¼ −
ðn − 3Þ
ðnþ 1Þ : ð24Þ

The case where the equation of state coincides with ωcritical
is very special. The evolving marginally trapped tube
is uniformly null. These are called the null evolving
horizons that do not fit in Hayward’s classification criteria
as shown in [7].
If we consider the case, Λ ≠ 0 there exists a critical

radius Rcritical at which marginally trapped tube is null
(β ¼ 0 ¼ α−1), and it also marks a transition of these curves
from spacelike region to timelike region or vice versa.

R2
critical ¼

nðn − 3Þ þ nωðnþ 1Þ
2Λð1þ ωÞ :

Whenever the marginally trapped tube crosses this critical
radius, it makes a transition in terms of its causal nature.

III. SURFACE GRAVITY OF MARGINALLY
TRAPPED SURFACES

In this section, we study the various proposals that define
surface gravity in a dynamic setting. For almost all the
proposals, we obtain elementary formulas where the sur-
face gravity is obtained in terms of invariants and local
information like area radius, the cosmological constant, the
number of dimensions, and principal values of the energy-
momentum tensor. These simplified formulas are intui-
tively appealing and have not been reported before in
literature. With the help of these formulas, it is easy to
compare the behavior of various proposals for surface
gravity for marginally trapped regions with the causal
behavior of the same. We note a useful result that the
surface gravity of D dimensional Schwarzschild black hole
is, κ ¼ ðD − 3Þ=2R ¼ ðn − 1Þ=2R. This helps in fixing the
arbitrary constant that is due to the freedom of normali-
zation of null rays.

A. Kodama-Hayward surface gravity

The paper [16], has worked on Kodama-Hayward sur-
face gravity for the case of marginally trapped surfaces in
FRW spacetimes for the case of D ¼ 4 dimensions. The
paper finds that Kodama-Hayward’s definition of surface
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gravity is sensitive to the causal description of the evolving
marginally trapped surface. It is shown in the paper that
for the FRW case, if we define the perfect fluid with
the equation of state given by, p ¼ ωρ, for ω < 1=3, the
marginally trapped surface is timelike. The Kodama-
Hayward surface gravity is shown in [16] to be negative
in this range. For ω > 1=3, the marginally trapped surface
is spacelike, and Kodama-Hayward surface gravity is
shown to be positive. The expressions for Kodama-
Hayward surface gravity for the dynamical scenario using
Painleve-Gullstrand coordinates were obtained in [15] in
terms of derivatives of the Schwarzschild mass. We now
obtain a formula for a spherically symmetric scenario in D
dimensions for a perfect fluid. The Kodama vector for the
spherically symmetric spacetime generalized to D dimen-
sions is defined as,

Kμ ¼ 1ffiffiffiffiffiffi
−h

p ϵμν∂νR ð25Þ

where R is the areal radius and −h is the determinant of the
metric induced on the horizon hab (on the two dimensional
hypersurface orthogonal to the D − 2 dimensional sphere).

κK−H ¼ C1ffiffiffiffiffiffi
−h

p ϵαμ∂αKμ

¼ C1ffiffiffiffiffiffi
−h

p ∂

∂xμ

� ffiffiffiffiffiffi
−h

p
hμν

∂

∂xν
R

�
: ð26Þ

The constant C1 is dependent on the normalization of the
Kodama vector and is fixed indirectly by matching the
value of the surface gravity for the known static case in D
dimensions. For the metric (1), using

ffiffiffiffiffiffi
−h

p ¼ eσ=2 eλ=2 and
evaluating the above expression, we obtain,

κK−H ¼ C1

�
−e−σ

�
R̈þ Ṙ

�
λ̇ − σ̇

2

��

þ e−λ
�
R00 þ R0 ðσ0 − λ0Þ

2

��
ð27Þ

where, Ṙ ¼ ∂R=∂t and R0 ¼ ∂R=∂r. We show that the
complicated expression can, surprisingly, be simplified to a
simple form using Einstein equations for the marginally
trapped regions.
For the apparent horizon, the outgoing null vector is

given by (4). The condition for the outgoing null ray to be
marginally trapped is obtained by setting Θk to zero.

Θk ¼
n
R
ðe−ðσ2ÞṘþ e−ðλ2ÞR0Þ ¼ 0: ð28Þ

This gives

Ṙe−σ=2 ¼ −R0e−λ=2: ð29Þ

Using the above relation, we can write

−e−σ
Ṙ λ̇

2
¼ e−

ðσþλÞ
2
R0λ̇
2

ð30Þ

and

e−λ
R0σ0

2
¼ −e−

ðσþλÞ
2
Ṙσ0

2
: ð31Þ

We now simplify Eq. (27) using the Einstein equations
given in the Appendix. We calculate G00 −G11 [using
Eqs. (A10) and (A11) to obtain the expression (A13). We
simplify the Eq. (A13), making use of the results (29)–(31)].
The expression (27) simplifies the equation below.

κK−H ¼ C1

�
n − 1

R
−
R
n
ðκ̃ðρ − pÞ þ 2ΛÞ

�
ð32Þ

Comparing the result for zero density, pressure, and
the cosmological constant, with the surface gravity of
D-dimensional Scwarzschild spacetime, we get C1 ¼ 1=2.
We observe that the Kodama-Hayward surface gravity is
completely determined by the local information available at
the marginally trapped region. We note that if the apparent
horizon is isolated, then the curve Θk ¼ 0 is null. We set
ðρ ¼ 0; p ¼ 0Þ in the above equation and see that the
surface gravity in D dimensions is proportional to 1=R.
We recover the surface gravity of the static black hole
horizon when the formula is adopted for the nonevolving
scenario. We also recover the surface gravity of the de Sitter
horizon or cosmological horizon by setting ρ ¼ 0, p ¼ 0.
We see that the surface gravity of the de Sitter cosmological
horizon in a pure de Sitter spacetime is −

ffiffiffiffiffiffi
2Λ

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þp

.
For FRW case, using Ref. [19], we obtain the following
formula for the perfect fluid for the equation of state given
below,

p ¼ ωρ: ð33Þ

κK−H ¼ 1

4

�
n − 3þ ωðnþ 1Þ

R
−
2ΛR
n

ð1þ ωÞ
�
: ð34Þ

We note that this formula is derived by simplifying the
expressions for the cosmological case. Setting ω ¼ 0 gives
us the formula for dust. This formula is valid for FRW
spacetime (ρ ≠ 0).

1. Causal correlation of Kodama-Hayward
surface gravity

In the previous section, we observed the possibilities of
transitions of an evolving horizon from spacelike to time-
like and vice versa. We now examine the value of surface
gravity as the marginally trapped region changes from
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timelike to spacelike. To find this relation, we divide the
surface gravity in (32) with (13). We get,

κK−H
βk

¼
�
n−1
R − R

n ð2κ̃ðρ − pÞ þ 2ΛÞ	
κ̃ðρþ pÞ

�
κ̃ðρ − pÞ þ 2Λ − nðn−1Þ

R2

� : ð35Þ

The ratio can be simplified to be −R=ð2nκ̃ðρþ pÞÞ. If we
assume the energy condition that ρþ p > 0, we see that the
ratio is a negative definite quantity. This implies that always
the surface gravity is negatively correlated with the norm of
the normal to the marginally trapped region. This implies
that for the dynamical horizon where the marginally
trapped curve is spacelike, the Kodama-Hayward surface
gravity is also positive. For the case when the marginally
trapped curve is timelike that is for timelike tubes, the
surface gravity is negative.
In the FRW case, an interesting class of solutions where

the evolving marginally trapped region is null. These are
degenerate cases that escape the classification criteria of
evolving marginally trapped regions into outer and inner
horizons [7]. For four dimensions, this corresponds to an
equation of state given by p ¼ ρ=3, and for a general
dimension D ¼ nþ 2, we have p ¼ −ρðn − 3Þ=ðnþ 1Þ.
The surface gravity corresponding to these cases is
κK−H ¼ 0.
Also, in the presence of a cosmological horizon, the

evolving marginally trapped region transitions from space-
like to timelike when the curve passes through the critical
radius given by Sec. II. So the surface gravity too
transitions from a positive value to a negative value passing
through zero. The nature of transitions needs to be explored
further and is left for future consideration.

B. Hayward’s trapping gravity

Another useful quantity defined by Hayward [3], is
called trapping gravity. It is defined below.

κH ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−lαΘk;α

p ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−£lΘk

p
: ð36Þ

We now provide a formula for estimating trapping
gravity using Eq. (12), (from [19])

κH ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þ

R2
− 2Λ − κ̄ðρ − pÞ

r
ð37Þ

for a general spherically symmetric perfect fluid scenario.
For the FRW case, we obtain the formula below for a

perfect fluid with the equation of state given by, p ¼ ωρ.
Using (20), we obtain the formula for trapping horizon in
FRW gravity to be,

κH ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 3þ ωðnþ 1ÞÞn

2R2
− Λð1þ ωÞ

r
: ð38Þ

As can be seen from both the expressions of Hayward
gravity, these are defined only for the case of dynamical
horizons and not timelike tubes. This is because of the
square root. The expression inside the square root is
positive (assuming the null energy condition is preserved)
only when the marginally trapped region is a spacelike
curve and is negative if the marginally trapped region is
described by a timelike curve. We note that the expressions
inside the square root are causally sensitive in the same
sense as the Kodama-Hayward surface gravity. The value
of Hayward’s trapping horizon becomes imaginary for
timelike tubes.

C. Fodor’s method

We now consider the definition of surface gravity due to
Fodor et al. [12]. We again try to obtain a formula for
Fodor’s surface gravity. Obtaining an expression for the
surface gravity of a perfect fluid is found to be analytically
difficult. We instead obtain a formula where the marginally
trapped region is evolving due to dust. We, therefore, set the
pressure to zero. We find that the expression simplifies to
give a closed form. We then use the obtained expression
to find the causal correlation. We recall the definition of
Fodor’s surface gravity as,

κF ¼ −lβkαkβ;α ð39Þ

with the same definitions of k and l as given in the earlier
sections. The normalization prescribed in Fodor et al. [12],
is given by

lαkα ¼ −1

However, we work with a different normalization and
finally decide on the normalization by matching the surface
gravity that is defined up to a multiplicative constant, with
the static black hole case. For the metric defined in (1),
we get the surface gravity to be,

κF ¼ C2

2
ffiffiffi
2

p ðe−λ=2σ0 þ e−σ=2λ̇Þ ð40Þ

where C2 is fixed by comparing with the known static
scenario. For the case of dust, the metric (1) becomes that
of a D-dimensional Lemaitre Toman Bondi (LTB) model.
Comparing with the D-dimensional LTB model, [6], we get
the metric coefficient σ ¼ 0 and,

eλ ¼ R02: ð41Þ

We simplify the expression (40) using the above relation.
We get,

κF ¼ C2

2
ffiffiffi
2

p λ̇: ð42Þ

PATHAK, RAVITEJA, BHATTACHARYA, and GUTTI PHYS. REV. D 109, 084062 (2024)

084062-6



Now, from the expression (41) we have

λ̇ ¼ 2Ṙ0

R0 :

Using the standard relation for the LTB models [6]

Ṙ2 ¼ FðrÞ
Rn−1 þ

2ΛR2

nðnþ 1Þ ð43Þ

where FðrÞ is a function only of the comoving radius r
and has the interpretation of Misner-Sharp mass. It is the
total mass within a shell with the comoving label r.
For marginally trapped and antitrapped surfaces, it is shown
in [6] that Ṙ2 ¼ þ1 holds. Here Ṙ is the derivative of the
area radius with comoving time. For the marginally trapped
case, we choose, Ṙ ¼ −1. We also have from Ref. [6],

F0

2RnR0 ¼
κ̃ρ

n
: ð44Þ

Now by differentiating (43) with respect to r, we arrive at
the expression

2ṘṘ0 ¼ F0

Rðn−1Þ þ
4ΛRR0

nðnþ 1Þ − ðn − 1ÞFR
0

Rn : ð45Þ

Dividing both sides by R0, we arrive at,

Ṙ0

R0 ¼ R

�
−κ̃ρ
n

−
2Λ

nðnþ 1Þ þ
ðn − 1ÞF
2Rðnþ1Þ

�
: ð46Þ

For the marginally trapped region, we set Θk ¼ 0. This
implies [6],

F
Rnþ1

¼ 1

R2
−

2Λ
nðnþ 1Þ : ð47Þ

Using the above expression, equation (46) gives

Ṙ0

R0 ¼
n − 1

2R
− R

�
κ̃ρ

n
þ Λ

n

�
: ð48Þ

Using this, we arrive at the expression for surface gravity
to be,

KF ¼ C2

�
n − 1

2R
−
R
n
ðκ̃ρþ ΛÞ

�
: ð49Þ

Compared with the D dimensional Schwarzschild case, we
get that C2 ¼ 1. We see that the Eq. (49) matches with the
result in [12] if we set the dimension D ¼ 4ðn ¼ 2Þ and
equate the cosmological constant to zero. In this sense, the
result obtained is a generalization of the result in [12] to D
dimensions and with a cosmological constant term.

1. Causal correlation of κF
For correlating with the causal nature of the marginally

trapped surface, we compare the expression for the surface
gravity with the formula for causal nature. Since the
formula obtained in the Fodor et al. case is only for dust,
we adopt the formula by setting the pressure to zero.

κF
βk

¼
�
n−1
2R − R

n ðκ̃ρþ ΛÞ	
κ̃ρ
�
κ̃ρþ 2Λ − nðn−1Þ

R2

� : ð50Þ

We can rearrange the denominator to arrive at the,

κF
βk

¼ −R
�
n−1
2R − R

n ðκ̃ρþ ΛÞ	
2nκ̃ρ

�
n−1
2R − R

n ðκ̃ρ2 þ ΛÞ	 : ð51Þ

Again assuming that ρþ p > 0, we observe that there is a
factor of 2 as the coefficient in the density term ρ that
makes a difference from κF being causally correlated. The
ratio κF

βk
is therefore not negative definite and hence the

relation between the causal nature of marginally trapped
region breaks down. However, there is a match between
κKH and κF when the energy density is zero. Also, there is
an agreement between κKH and κF when the energy
densities are small or when the area radius of the marginally
trapped region is small.

D. Booth and Fairhurst method

The dynamical surface gravity is defined in the paper [13].
This definition is tailored for the case of a slowly evolving
horizon. The criteria for the same is described in [13]. Using
the idea in [13], we can define the tangent to the marginally
trapped curve to be Vα ¼ kα − αklα and normal to be
τα ¼ kα þ αklα. The norm for each vector is evaluated with
a normalization kαlα ¼ −2 is given by αk (14) and βk (13)
respectively. We define surface gravity to be,

KBF ¼ −lαkβkα;β − αkkαlβlα;β: ð52Þ

To evaluate the above expression, we have

lβkαkβ;α ¼ −C3ðe−λ=2σ0 þ e−σ=2λ̇Þ
kαlβlα;β ¼ C3ðe−λ=2σ0 − e−σ=2λ̇Þ

after putting the metric coefficient σ ¼ 0, we get

lβkαkβ;α ¼ −C3λ̇ ð53Þ

and

kαlβlα;β ¼ −C3λ̇: ð54Þ
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Hence Eq. (52) gives us

KBF ¼ C3ð1þ αkÞλ̇: ð55Þ

Just as in the previous section, we evaluate the surface
gravity for the analytically tractable case of dust. We set the
pressure to zero. We then obtain the equation for the scalar
αk to be

αk ¼
−κ̃ρ

κ̃ρþ 2Λ − nðn−1Þ
R2

ð56Þ

and λ̇ is evaluated in Fodor’s method. This yields

κBF ¼ C3

�
n−1
2R − R

n ðκ̃ρþ ΛÞ	�2Λ − nðn−1Þ
R2

	
κ̃ρþ 2Λ − nðn−1Þ

R2

: ð57Þ

We see again that the expressions match with the static case
of D dimensional Schwarzschild black hole surface gravity
where we set density ρ ¼ 0 and Λ ¼ 0. Comparison sets the
value of C3 ¼ 1. The result matches with D-dimensional
Schwarzschild de Sitter surface gravity.

1. Causal correlation of the Booth-Fairhurst
surface gravity

An inspection of (57) indicates that the denominator
of the expression is positive definite with respect to βk,
but the numerator is not. This makes the expression κBF
not causally correlated. However the expressions for sur-
face gravity are valid for the slowly evolving horizon
scenario [13].

IV. DISCUSSION ON CAUSAL ASPECTS:
MIXED SIGNATURE AND NONSPHERICAL

GENERALIZATIONS

In this section, we use our results in causality to address a
few interesting aspects of evolving horizons. Of recent
interest is the important property of evolving horizons with
the possibility of having mixed signatures for the same
cross section. The scenarios where a cross section can have
mixed signatures have been numerically derived in the
articles [20,21]. We show below that one can use spheri-
cally symmetric solutions considered in this article as toy
models to deduce features of the real scenarios that
are developed in astrophysical situations like black hole
mergers. In this section, we define MTS to mean
Marginally trapped surface, MOTS to mean marginally
outer trapped region, and MITS to mean marginally inner
trapped region following the standard notation [22].
We show below that mixed signature scenarios can

arise in a given cross section even in the highly symmetric
case of FLRW solutions. The examples in FLRW that
can generate mixed signatures need the presence of a

cosmological constant. We note below the formulas for
the signature of the marginally trapped region for
d-dimensional FLRW spacetime, [6,7] is given by
Eq. (21), we note that the bracket that decides the sign
of the MTS is (23), we see from the above Eq. (23) that we
have a critical radius by setting the above expression to zero
to obtain,

R2
critical ¼

nðn − 3Þ þ nωðnþ 1Þ
2Λð1þ ωÞ :

At these critical radii, as the MTS evolves, the MTS makes
a transition from spacelike to timelike or vice versa. We
show that in each scenario where there is such a causal
transition, we can construct cross sections where mixed
signatures are possible. The idea is that when one studies
the model using the cosmological time coordinate t, it is
easy to show that there is a critical time tcritical at which the
MOTS/MITS crosses the critical radius. The entire cross
section then transitions in its signature. When we now
choose a different time slicing near this critical time (as
demonstrated in an example below), we have the new time
slice intersecting the MOTS/MITS such that part of the
cross section is timelike and the other part is spacelike. We
show this in the example below.
For simplicity, we consider a case of 4 dimensions

(n ¼ 2) with a negative cosmological constant Λ ¼ −λ,
equation of state parameter ω ¼ 0, we then have

R2
critical ¼

−1
Λ

¼ 1

λ

where λ ¼ −Λ. We note that for the preceding parameters,
the solution for the scale factor aðtÞ for the case with
negative cosmological constant is given by (We choose
such that að0Þ ¼ 1),

 ffiffiffi
g
λ

r
sin

 ffiffiffiffiffi
3λ

4

r
tþ arcsin

ffiffiffi
λ

g

s !!2
3

ð58Þ

where g is a constant that is set based on the initial density
[6]. We set g ¼ λ for simplicity in the equations that follow.
The expression for the area radius R where MTS is

formed is easily shown to be given by the simple expression
(we set RMTS ¼ −aðtÞ= ˙aðtÞ),

−
ffiffiffi
3

λ

r
tan

 ffiffiffiffiffi
3λ

4

r
t −

π

2

!
ð59Þ

RMTS ¼
ffiffiffi
3

λ

r
cot

 ffiffiffiffiffi
3λ

4

r
t

!
: ð60Þ
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We note that the time t here is the cosmological time
coordinate defined in (15). Now the time t at which the
entire cross section changes the signature is given by

Rcritical ¼
ffiffiffi
1

λ

r
¼

ffiffiffi
3

λ

r
cot

� ffiffiffiffiffi
3λ

4

r
t

�
:

This yields the critical time as tcritical ¼ 2π=ð3 ffiffiffiffiffi
3λ

p Þ.
The cross section has a uniform signature in this special

time slice t ¼ const. When we abandon the analysis using
the cosmological time t and carry out the analysis using a
different time coordinate, it can be shown that the cross
section in the new time slicing can have mixed signatures
whereas the single cross section can now have mixed
signatures.
As an example suppose we work with a time coordinate

given by τ ¼ t − α cosðϕÞwhere α is chosen such that τ is a
time coordinate in the domain we are interested in (the
domain where we can observe the transition). We note
that the coordinate ϕ has the standard interpretation as
the azimuthal angle. The requirement that τ ¼ constant
slice be spacelike yields the condition that α2sin2ϕ=
ðR2

criticalsin
2θÞ < 1. We can choose an α ≪ Rcritical that

serves our purpose of analyzing the MTS near Rcritical
(though this choice of α and τ has problems near θ ¼ 0 or
θ ¼ π, the problems can be overcome by moving to a
different coordinate chart). With this choice, we can study
the cross sections of MTS that are formed in this model by
choosing time slices τ ¼ constant.
The MTS cross section is given in terms of τ by,

RMTS ¼
ffiffiffi
3

λ

r
cot

 ffiffiffiffiffiffiffiffi
3jλj
4

r
ðτ þ α cosðϕÞÞ

!
: ð61Þ

We examine the cross section formed by MTS at a fixed
τ ¼ constant slice given by τ ¼ tcritical ¼ 2π=ð3 ffiffiffiffiffi

3λ
p Þ. We

see that the cross section RMTS for the constant time slice
τ ¼ 2π=ð3 ffiffiffiffiffi

3λ
p Þ is given by

RMTS ¼
ffiffiffi
3

λ

r 0
BBB@

1ffiffi
3

p cot

� ffiffiffiffiffiffi
3jλj
4

q
ðα cosðϕÞÞ

�
− 1

1ffiffi
3

p þ cot

� ffiffiffiffiffiffi
3jλj
4

q
ðα cosðϕÞÞ

�
1
CCCA: ð62Þ

The above expression for the cross section of MTS for a
constant τ slice has a mixed signature. To see this, we
approximate the above equation for small values of α

ffiffiffiffiffijλjp
,

and expanding to the first order in the same to be,

RMTS ¼
1ffiffiffi
λ

p − 2α cosϕ: ð63Þ

In the above expression for the values of π=2 < ϕ < 3π=2,
the RMTS is spacelike (since RMTS is more than 1=

ffiffiffi
λ

p
) and

for values of 0 < ϕ < π=2 and 2π=3 < ϕ < 2π, the RMTS is
timelike (since RMTS is less than 1=

ffiffiffi
λ

p
).

This example generates situations where mixed signa-
tures can be studied in spherical symmetry by a nonstand-
ard choice of time slicing. We note that for every set of
parameters ðΛ; D ¼ nþ 2;ωÞ in FLRW where we obtain
an Rcritical, we can have a cross section with a mixed
signature if we perform our analysis in a noncosmological
time slicing. When one considers more general spherically
symmetric spacetimes, one can similarly generate situa-
tions where there are causal transitions in the MTS. One
may again obtain mixed signatures in a given cross section
by choosing an appropriate time slice. These situations
present good toy models to study the properties of MTS
transitioning from spacelike to timelike and vice versa.
We showed in the article that among the various defi-

nitions of surface gravity, the Kodama-Hayward definition is
correlated with the causal description of MTS. Based on this
correlation of Kodama-Hayward surface gravity, the exam-
ple of mixed signature MTS of a given cross section yields
that the surface gravity is negative in the time-like portion
and positive in the space-like portion. There is a ϕ
dependence on the sign of the surface gravity in the single
cross section, showing that in dynamic situations, the surface
gravity need not be uniform across a cross section.
We note that in this model, we can “gauge away” the

mixed signatures by a suitable choice of time slicing. In a
realistic scenario where black hole mergers are considered,
it does not seem plausible that the mixed signatures
scenarios can similarly be “gauged away” by another time
slicing. Is there a time slicing for which the cross section
has a fixed causal nature and hence the Kodama-Hayward
surface gravity of the same sign? What are the conditions
on MOTS/MITS for which a time slicing exists that makes
the cross section have a uniform signature? This is a tough
question that might be answered only after a thorough
numerical investigation and is left for future consideration.
One important aspect is the feasibility of generalizing

the results of our article to nonspherically symmetric
situations. To see this possibility, we observe that the
formulas derived in the article show that the surface gravity
is inversely proportional to the area radius R at which the
MOTS/MITS is located. The other terms too are definable
in invariant quantities like the principle values of the
energy-momentum tensor, cosmological constant, and
dimension D of the manifold. This dependence on the
area radius R may prove to be the useful quantity for
generalizing the formula to nonspherical situations.
One needs a local (or a quasi-local) definition for surface
gravity. In a general scenario, one can locally define the
trace of the extrinsic curvature tensor K. This can be
equated to 1=R where R is defined locally for a small
section of MOTS. One can define such a local “area radius”
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by embedding the two-surface in Minkowski spacetime
along the lines of the ideas developed in the recent
work [23]). It is feasible that the Kodama-Hayward for-
mulas that are derived can be handled when the shear and
twist terms are negligible. One can test this feasibility at
least perturbatively. Thus it is a promising first step toward
generalizing this definition of surface gravity for space-
times with fewer symmetries. These are left for future
considerations.
Another important aspect of the evolving horizon is to

understand and quantify the quantum effects. Though we do
not understand yet how to evaluate these quantum effects,
they are expected to play a significant role in blackhole
formation, and black hole mergers. Successful modeling of
the quantum effects will prove to be a game changer for the
field of modeling real-life problems. The route towards
capturing the radiations from evolving horizons has to pass
through the results of this article since it is expected that
there is a relation between surface gravity and the temper-
ature of quantum radiation from horizons.
To point out the significant role surface gravity might

play, we consider the Oppenheimer-Snyder collapse of a
finite dust cloud. The outermost region becomes trapped
first forming an isolated horizon [24]. This is the MOTS.
Now the MITS evolves from a larger area radius to zero.
For this case, the Kodama-Hayward surface gravity is
shown inversely proportional to the area radius R. So
the Kodama-Hayward surface gravity of the evolvingMITS
tends to infinity when the radius of MITS becomes small.
The implications of this result are not entirely clear. The
formulas developed in the article may aid in such scenarios.

V. CONCLUSIONS

In this article, we consider the marginally trapped
surfaces which can be spacelike, timelike, or null depend-
ing on the local information at the horizon, i.e., density ρ,
pressure p, area radius R, and cosmological constant Λ. We
analyze the various ideas regarding the definition of surface
gravity when the horizon is evolving. We derived the
following simple formulas for the various proposals.
The Kodama-Hayward surface gravity for the general case
is (32). For the case of FLRW, we obtain the formula (34).
We showed that both formulas are sensitive to a causal
nature. The formula yields that surface gravity is positive
for dynamical horizons and negative for timelike tubes. The
surface gravity smoothly transitions whenever the evolving
horizon makes a transition from timelike to spacelike or
vice versa. The formula obtained for Kodama-Hayward
surface gravity holds for any spherically symmetric sit-
uation with and without cosmological constant for any
density and pressure of the fluid. This definition of surface
gravity seems better suited to study thermodynamic aspects
of evolving horizons since it is sensitive to the causal nature
of the horizon. This also holds promise for future analysis
between the nature of causal transitions and nonequilibrium

thermodynamic state variables that could be defined on
the horizons.
We obtained the formula for Hayward’s trapping

gravity (37), and similarly, for the FLRW case the formula
is derived in (38). Based on the expressions, it is clear that
this quantity is defined only for dynamical horizons and
this quantity becomes imaginary for timelike tubes. We
obtained the formula for Fodor et al. surface gravity in (49).
This formula is obtained for the case of zero pressure and
with the cosmological constant. The case with pressure is
found to be analytically not tractable and a closed-form
expression was not possible. Nevertheless, we could obtain
the causal correlation for the Fodor et al. case and find that
there is a mismatch with the causal description. The
parameter space where Fodor’s surface gravity transitions
in terms of its sign is different from the transitions in
evolving horizons. We similarly obtain the formula for
Booth and Fairhurst’s proposal for surface gravity in (52).
Again the expressions were obtainable in a closed form
only for the case of zero pressure. Just as in Fodor’s case,
the Booth and Fairhurst proposal does not correlate with the
causal description of the evolving horizon in terms of
changing the sign of surface gravity when one goes from
spacelike to timelike evolving horizons. In the discussion
section, we have highlighted how one can use spherically
symmetric models to study the cross sections of MOTS/
MITS that have mixed signatures. We discussed briefly the
possibilities of generalizing the work done in the article to
nonspherically symmetric situations. The findings in the
article, are therefore crucial for the first steps toward
defining thermodynamic variables in evolving horizons.

APPENDIX

The nonzero components of the energy-momentum
tensor are listed below

T00 ¼ ρeσ

T11 ¼ peλ

T22 ¼ pR2

Tðlþ1lþ1Þ ¼ sin2θðl−1ÞTðllÞ

where l takes values from 2 to n. From the Bianchi
identities

Tμν
;ν ¼ 0 ðA1Þ

we get the following relations

ρ̇þ ðρþ pÞ
2

�
2nṘ
R

þ λ̇

�
¼ 0 ðA2Þ

p0 þ σ0

2
ðpþ ρÞ ¼ 0 ðA3Þ
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where the dot represents a derivative with time coordinate
and the prime represents a derivative with the comoving
radial coordinate.
For a nonzero cosmological constant (Λ ≠ 0), the

Einstein equations are

Gμν þ Λgμν ¼ κ̃Tμν ðA4Þ

here κ̃ is a constant and is related to gravitational constant
Gn, (κ̃ ¼ 8πGn). With these conditions, we evaluate the
left-hand side components of the Einstein equation
ðGμν þ ΛgμνÞ which are summarized below

G00þΛg00¼
e−λ

R2



nðn−1Þ

2
ðeλþσþeλṘ2−eσR02Þ

þn
2
Rð−2R00eσþeσR0λ0 þeλṘ λ̇Þ−ΛeλþσR2

�
ðA5Þ

G01 þ Λg01 ¼
n
2

ðR0λ̇ − 2Ṙ0 þ σ0ṘÞ
R

ðA6Þ

G11 þ Λg11 ¼
e−σ

R2



−
nðn − 1Þ

2
ðeλþσ þ eλṘ2 − eσR02Þ

þ n
2
RðeσR0σ0 þ eλðṘ σ̇ −2R̈ÞÞ þ ΛeλþσR2

�
ðA7Þ

G22 þ Λg22 ¼
e−ðλþσÞ

4
½2ðn − 1Þðn − 2ÞðeσR02 − eλþσ

− eλṘ2Þ − 2ðn − 1ÞRðeσR0ðλ0 − σ0Þ − 2eσR00

þ eλðṘðλ̇ − σ̇Þ þ 2R̈ÞÞ
þ R2ð4eλþσΛ − eλð2λ̈þ λ̇2 − λ̇ σ̇Þ
þ eλð2σ00 þ σ02 − λ0σ0ÞÞ�

The other nonzero relations are given by

Gðjþ1 jþ1Þ ¼ sin2θðj−1ÞGðjjÞ ðA8Þ

where j takes values from 2 to n. So from the G01 ¼ 0
Einstein equation we get

R0λ̇ − 2Ṙ0 þ σ0Ṙ ¼ 0 ðA9Þ

from the G00 ¼ κ̃ρeσ equation we have

nðn − 1Þ
2

ðeλþσ þ eλṘ2 − eσR02Þ

þ n
2
Rð−2R00eσ þ eσR0λ0 þ eλṘ λ̇Þ ¼ ðκ̃ρþ ΛÞR2eλþσ

ðA10Þ

and G11 ¼ κ̃peλ equation we get

−
nðn−1Þ

2
ðeλþσþeλṘ2−eσR02Þ

þn
2
RðeσR0σ0 þeλðṘ σ̇−2R̈ÞÞ¼ðκ̃p−ΛÞR2eλþσ ðA11Þ

The following two expressions will be useful in the
subsequent calculations done in the paper. The sum
(A10) + (A11) gives,

n
2
ðeσR0ðσ0 þ λ0Þ þ eλṘðσ̇ þ λ̇Þ − 2ðeλR̈þ eσR00ÞÞ
¼ κ̃ðρþ pÞeðλþσÞR ðA12Þ

similarly the difference (A10)–(A11) gives us

nðn − 1Þðeλþσ þ eλṘ2 − eσR02Þ

þ nR
2

ðeσðR0λ0 − 2R00 − R0σ0Þ − eλðṘ σ̇ −2R̈ − Ṙ λ̇ÞÞ
¼ ðκ̃ðρ − pÞ þ 2ΛÞR2eλþσ ðA13Þ
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