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Tetrahedral configurations of spacecraft on unperturbed heliocentric orbits allow for highly precise
observations of small spatial changes in the gravitational field, especially those affecting the gravity
gradient tensor (GGT). The resulting high sensitivity may be used to search for new physics that could
manifest itself via deviations from general relativistic behavior yielding a nonvanishing trace of the GGT.
We study the feasibility of recovering the trace[GGT] with the sensitivity ofOð10−24 s−2Þ—the level where
some of the recently proposed cosmological models may have observable effects in the Solar System.
Specifically, we consider how a set of local measurements provided by precision laser ranging (to measure
the intersatellite ranges) and atom-wave interferometry (to correct for any local nongravitational
disturbances) can be used for that purpose. We report on a preliminary study of such an experiment
and on the precision that may be reached in measuring the trace[GGT], with the assumption of drag-
compensated spacecraft by atom interferometer measurements. For that, we study the dynamical behavior
of a tetrahedral formation established by four spacecraft placed on nearby elliptical orbits around the Sun.
We develop analytical models for the relevant observables and study the conditions for setting up an
optimal tetrahedral configuration. We formulate the observational equations to measure the trace[GGT]
relying only on the observables that are available within the formation, such as those based on the laser
ranging and the Sagnac interferometry. We demonstrate that the Sagnac observable is a mission-enabling
capability that allows us to measure the angular frequency of the tetrahedral rotation with respect to an
inertial reference frame with an accuracy that is much higher than that available from any other modern
navigational techniques. We show that the quality of the science measurements is affected by the
tetrahedron evolution, as its orientation and the shape change while the spacecraft follow their orbits.
We present the preliminary mission and instrument requirements needed to measure the trace[GGT] to the
required accuracy and thus demonstrate the feasibility of satisfying the stated science objective.
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I. INTRODUCTION

Precise measurements of the gravitational field, con-
ducted through high-precision experiments within the Solar
System, present crucial opportunities for testing modified
theories of gravitation. These tests could play a pivotal role
in either validating or challenging these theories, providing
essential insights into our understanding of gravitational
forces. In classical physics, the Newtonian gravitational
field is described by the gravitational Poisson equation.
A key implication of this equation is that the gravitational
gradient tensor (GGT) has a zero trace value in a vacuum
environment. However, this is not the case in many
modified theories of gravitation, which predict qualitatively
different outcomes. For instance, in Yukawa-type modified
gravity theories [1–5], as well as in Galileon theory [6–9],
the trace of the GGT is nonvanishing. This variance
from the Newtonian model is a fundamental aspect of
these theories and motivates the search for such novel

mechanisms in high-precision experiments in the
Solar System [10].
Among the plausible mechanisms to explain dark

energy, modified gravity theories offer an intriguing
deviation from Einstein’s general theory of relativity
(GR). To do that, some of such theories introduce a
screening mechanism that depends on the environmental
density. Screening mechanisms in physics are fundamen-
tally categorized into two types: those dependent on local
mass densities and those that are not. Scalar field theories
such as chameleon and symmetron are examples of the
former. These theories exhibit a unique “thin shell effect”
where only the outermost layer of a substantial object
interacts with dark energy fields. This selective interaction
causes the dark energy force to be predominantly confined
to this thin outer layer, reducing its overall observable
impact. As a result, gravitational forces typically over-
shadow dark energy interactions in most observable phe-
nomena. Despite this, the presence of the short-range dark
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energy force could still be detected through precision
experiments in laboratory settings [11–13].
In contrast, the Vainshtein screening mechanism follows

a distinct approach. This mechanism involves the
Vainshtein scalar field, which is mediated by a nonlinear
“Galileon” field. The nonlinearity of this field’s equation
of motion is characterized by a coupling constant, rc. The
Galileon force behaves similarly to gravity, 1=r2, at large
distances from matter (beyond a Vainshtein radius of
several hundred parsecs) but diminishes much more gradu-
ally (1=

ffiffiffi
r

p
for a cubic Galileon) when closer to matter. The

enormity of the Vainshtein radius makes it impractical to
test this scalar field in terrestrial laboratory settings.
Currently, the experimental limits on rc are constrained
by tests of gravity’s inverse square law, including lunar
laser ranging and the analysis of gravitational wave
propagation [14–16]. In the realm of cosmology, the
Galileon field is considered a theoretically robust candidate
for explaining the dark energy field.
Unlike classical gravity theories that fail Solar System

tests, these screened theories can effectively mask their
non-GR behavior in high-density regions, such as our Solar
System, thus providing an optimal testing ground [17]. By
observing gravitational dynamics and interactions in such
settings, one can tease out the subtle signatures of these
modified gravity theories, thus broadening our understand-
ing of gravitational physics beyond GR [14,18].
In particular, the cubic Galileon model [19], with its

Vainshtein screening mechanism, offers an alternative
explanation to deviations from Newtonian gravity, distinct
from chameleon and symmetron models. Notably, it does
not exhibit the thin shell effects. Instead, it modifies
Newtonian gravity over long distances. Within the
Vainshtein radius, which is approximately 100 pc for the
Sun, its gravitational force does not follow the inverse
square law (ISL) and acts inversely proportional to the
square root of the distance [20]. Therefore, detection of an
anomalous behavior can essentially be a test of the ISL.
With the typical values of the gravitational gradients in
the Solar System evaluated to be GM⊙=r3 ≃ 3.96×
10−14 s−2ðAU=rÞ3, one would expect the effect due to
cubic Galileon model to be about a factor of 1010 times
smaller, thus, setting a measurement sensitivity requirement
of Oð10−24 s−2Þ for a space-based test.
Dark energy, if related to the cosmological constant

ΛCDM model, has a unique characteristic wherein its
pressure p ¼ −ρ. Given the Universe’s critical density
of ρc ≈ 0.85 × 10−26 kg=m3 [21] and dark energy contrib-
uting to ∼70% of this (ΩDE ≃ 0.7), if U signifies the
gravitational potential due to dark energy and the
Laplacian, ∇2, indicates spatial variations, then the resulting
contribution is ∇2U ¼ 4πGΩDEρc ≃ −5.56 × 10−36 s−2.
This very small value underscores the subtle effect of dark
energy on gravitational potential, confirming its broad yet
delicate impact, particularly in driving the Universe’s

accelerated expansion. The values associated with dark
energy’s effects are extremely small and lie beyond the
current detection capabilities of modern instruments.
Given the present state of technology and understanding,
these minute effects might remain unobservable in any
direct manner.
Recent interest in dark matter and dark energy detection

has shifted towards the use of experimental search (as
opposed to observational), particularly those enabled by
atom interferometers (AI) as they offer a complementary
approach to conventional methods. Situated in space, these
interferometers utilize ultracold, falling atoms to measure
differential forces along two separate paths, serving both as
highly sensitive accelerometers and as potential dark matter
detectors. In particular, it has been proposed [22,23] that a
tetrahedral formation of four interplanetary satellites placed
on highly elliptic heliocentric orbits may be used to
measure the trace of the GGT of the Newtonian gravita-
tional field at sufficient accuracy for direct detection of
dark energy scalar field in the form of the proposed
Galileon model. Here we investigate the feasibility of
such a mission, focusing on the tetrahedral orbits and its
measurement precisions, where spacecraft are assumed to
be drag free. The drag-free reduction for each spacecraft
could be achieved with the use of atom interferometers as
accelerometers. We consider the achievable sensitivity of
such an experimental concept and its implications for
precision tests of gravity.
In this paper, we discuss the Gravity Probe and Dark

Energy Detection Mission (GDEM) as proposed in [22,23].
GDEM is designed to search for deviations from the
canonical 1=r2 gravitational potential within the Solar
System. These spacecraft use high-precision laser ranging
systems that allow simultaneous measurements of the GGT
in four distinct directions. This design ensures that the trace
of the GGT vanish irrespective of the tetrahedron’s ori-
entation. To optimize the conditions to detect the antici-
pated Galileon signal that behaves ∝ 1=

ffiffiffi
r

p
, the GDEM

spacecraft will be placed on nearby elliptic heliocentric
orbits that will allow us to sample the Galileon field at
various distances from the Sun. An elliptical orbit with
varying distance from the Sun will allow the observation
of such variation. This distance-dependent variation will
reduce the systematics yielding stronger evidence for a GR
violation, if observed.
GDEM relies on AI to enable drag-free operations for

spacecraft within a tetrahedron formation. We assume that
AI can effectively measure and compensate nongravitational
forces, such as solar radiation pressure, outgassing, gas
leaks, and dynamic disturbances caused by gimbal oper-
ations, as these spacecraft navigate their heliocentric orbits.
We assume that AI can compensate for local nongravita-
tional disturbances at an extremely precise level, down to
differential accelerations of ∼1 × 10−15 m=s2=

ffiffiffiffiffiffi
Hz

p
, the

level that is technically feasible for AI, especially when
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deployed in space [24–27]. Our objective here is to ascertain
the viability of using these technologies for a direct dark
energy detection, especially to reach a targeted gradient
sensitivity of 10−24 s−2 over a three-year period, which
matches the expected Galileon signal at a distance equivalent
to 1 AU from the Sun.
As we shall see, it is possible to investigate this particular

prediction at very high accuracy using a configuration of
satellites in heliocentric orbits. These satellites would be
flying in close formation, typically separated by a few
thousand kilometers or less, as they follow individual,
undisturbed eccentric orbits around the Sun. Relying solely
on observations that can be performed within the con-
stellation (and specifically not relying on precision astrom-
etry or high accuracy radio navigation, as neither methods
are sufficiently accurate for this experiment) it is possible to
reconstruct the trace of the GGT. For this, we can utilize
intersatellite range data and accelerations in the form of
corresponding second time derivatives. There are, however,
some difficulties that must be overcome. We recognize that
the tetrahedron may also undergo rotation, which implies
that the computed accelerations must be decoupled from
pseudoaccelerations implied by a rotating reference frame.
In the absence of an accurate external reference, these
accelerations must be measured in constellation. To allow
for such measurements, we introduce a generalized Sagnac-
type observable, which, in principle, can be measured at the
required accuracy using the same laser ranging equipment
(perhaps with modest modifications) that is already avail-
able on board for range measurements.
This paper is organized as follows: In Sec. II, we develop

an analytical formalism that allows us to estimate the value
of the trace of the GGT using the data from four spacecraft
that move on nearby elliptic orbits, thus forming a
tetrahedral formation. We introduce a coordinate frame
suitable for representing observations made within the
constellation, and discuss the generalized Sagnac observ-
able that allows us to account for the rotation of this frame.
In Sec. III, we offer an analytical discussion of motion
along a set of idealized, nearly identical eccentric orbits
around the Sun. We also report on a numerical simulation
that we employed to verify and validate our results.
We summarize our results in Sec. IV and discuss next
steps. For convenience, we put some technically relevant
material in the Appendix. The Appendix discusses relevant
partial derivatives needed to develop linear perturbation of
elliptic Keplerian orbits.

II. MEASUREMENTS OF THE GGT
WITH A TETRAHEDRAL FORMATION

Spacecraft formations and/or distributed space systems
allow measurements not possible with single spacecraft.
For fundamental physics missions, observable field
parameters related to the gravitational field may exhibit
subtle variations in space and time. Thus, understanding

of the processes within the field requires accurate and
precise observations and analysis of both the temporal
and spatial variations.
A tetrahedron formation has the advantage since four

spacecraft with variable separations are the minimum
needed to resolve a three-dimensional structure, at least
to the lowest order in the physical field gradients. The
tetrahedral configuration is a special geometric arrange-
ment that has been proposed for multiple spacecraft
formations, primarily due to its inherent stability and
symmetry properties. When discussing spacecraft in such
configurations, they can be seen as vertices of a tetrahedron
moving in space. Here we will consider the relevant
spacecraft dynamics.

A. Spacecraft dynamics in nearby orbits

We consider a constellation of four spacecraft that move
around the Sun in a close tetrahedral formation. As seen
from the Solar System’s barycentric coordinate reference
system (BCRS), the motion of a jth spacecraft under the
gravitational attraction from the Sun is governed by the
classical equations of motion, given as

R̈j ¼ ∇jU þ pj; ð1Þ

whereRj is the position of the spacecraft in the BCRS,U is
the solar gravitational potential, and pj are the accelerations
associated with other forces (both of gravitational and
nongravitational nature), spacecraft onboard disturbances,
or control inputs. On the other hand, since we have the
basic assumption on the drag-free spacecraft behavior,
then the pj would denote the unknown forces that we
are interested in detecting.
Our objective here is to investigate the architecture and

the anticipated sensitivities in measuring the GGT provided
by a tetrahedral spacecraft configuration. For that, it is
sufficient to consider only the nonrelativistic Newtonian
approximation to GR, which, in this case, collapses to

∇2U ¼ 4πGρ; ð2Þ

where ρ is the density of matter within the Solar System
with U being the resulting gravitational potential.
We consider the solar gravitational potential UðrÞ,

which, accounting for the axial symmetry around the
rotation axis, may be given as

UðrÞ ¼ μ⊙
r

�
1 −

X∞
n¼1

�
R⊙

r

�
2n
J2nP2nðcos θÞ

�
; ð3Þ

where μ⊙ ¼ GM⊙, J2n are the solar gravitational moments
that describe the rotation-induced deviation of the Sun’s
outer gravitational potential from a spherical configuration,
P2n are the Legendre polynomials, and θ is the colatitude or
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angle with respect to the rotation axis. With (3), we evaluate
the GGT at ∼1 AU from the Sun:

T≡∇a∇bU ¼

2
64
∂
2
11U ∂

2
12U ∂

2
13U

∂
2
21U ∂

2
22U ∂

2
23U

∂
2
31U ∂

2
31U ∂

2
33U

3
75

¼ −
μ⊙
r3

ðδab − 3nanbÞ þOð2.84 × 10−25 s−2Þ; ð4Þ

where na ≡ n ¼ r=r and the error term is due to the solar
gravitational quadrupole, J2. Thus, for the target sensitivity
of GDEM of ∼10−24 s−2 in measuring the GGT, it is
sufficient to treat the solar gravity field to be spherically
symmetric.1

Laplace equation (2) says that T is trace free (in vacuum
and in the absence of other forces and fields). This turns out
to be the most powerful check for the presence of new
physical laws in the Solar System. The measurement
systems prescribed for GDEM involve assessing GGT
between spacecraft pairs connected by laser ranging inter-
ferometers across considerable distances, important for
reaching the required sensitivity. While similar to the
interspacecraft laser ranging in LISA, GDEM’s system is
tailored for accuracy over these specific distances.
To describe the spacecraft dynamics within the con-

stellation, we need to choose a reference point that could be
either the formation’s center or one of the satellites. With
this choice, the jth spacecraft position may be given as

Rj ¼ Rc þ rj; with R̈c ¼ ∇cU; ð5Þ

where Rc and rj are the BCRS position of the reference
center and the relative position of the jth spacecraft with
respect to that reference center, respectively.
As follows from (1)–(5), the spacecraft motion with

respect to the reference center is governed by the equation

̈rj ¼ ð∇jU − ∇cUÞ þ pj: ð6Þ

Considering the solar gravitational potential U in the
form of (3), we see that after the spherically symmetric
monopole term, the next largest contribution comes from
the quadrupole term that is characterized by the solar
quadrupole moment known to be J2 ¼ 2.21 × 10−7 [28].
A spacecraft in a heliocentric orbit with a semimajor axis
of a ≃ 1 AU would experience an acceleration due to the
solar quadrupole of aJ2 ∼ 4.25 × 10−14 m=s2. For a pair of
spacecraft separated by rij ∼ 103 km, this would result in

the differential acceleration of δaij ≃ aJ2ðrij=1 AUÞ∼
2.84 × 10−19 m=s2, corresponding to a gravity gradient
signal of δaij=rij ∼ 2.84 × 10−25 s−2, which is negligible
for our purposes. The next term is due to J4 ¼
−4.25 × 10−9, which would result in a signal that is 106

times smaller than that of J2 and thus may be neglected,
so as the higher order terms. Clearly, the solar gravity
oscillations [29], which are several orders smaller than the
primary quadrupole J2 term, are going to make even
smaller contributions to the trace of the GGT, and thus
are also negligible. Therefore, in (3) it is sufficient to keep
only the solar monopole, effectively treating the sun as a
point mass.
One may also consider relativistic contributions to the

equations of motion of the spacecraft (6). Note that a
typical Schwarzschild acceleration for the orbit with a
semimajor axis of a ≃ 1 AU behaves as

̈rGR ¼ μ⊙
c2r3

��
2ðβ þ γÞ μ⊙

r
− γṙ2

�
rþ 2ð1þ γÞðr · ṙÞṙ

�

≃ 4.12 × 10−10 m=s2: ð7Þ

Acceleration (7) translates in the differential acceleration
between the vehicles of δaGRij ¼ ̈rGRðrij=1 AUÞ ¼
2.76 × 10−15 m=s2 and the gravity gradient signal of
δaGRij =rij ≃ 2.76 × 10−21 s−2, which is large and must be
accounted for. Thus, although here we are concerned only
with the Newtonian gravity field and its contribution to the
GGT, any future developments must consider the general
relativistic terms in (7). That is, in addition to the fact that
the GGT must also be fully relativistic relying on the
geodesic deviation equation of the relativistic space-time.
As a result, using only the monopole term in (3), we may

present the solar gravitational potential at the position
of spacecraft j as UðRjÞ ¼ μ⊙=Rj and, while treating
the constellation to be compact, so that jrjj ≪ jRcj, we
expand the difference of the gravity gradients in (6) in terms
of the small parameter rj=Rc, which yields

ð∇jU−∇cUÞa≃−
μ⊙
R3
c
ðδab−3nacnbc Þrbj −

15μ⊙
2R4

c
Qhabcirbj r

c
j

−
35μ⊙
2R5

c
Qhabcdirbj r

c
jr

d
j þOðr4j=R6

cÞ; ð8Þ

where nac ≡ nc ¼ Rc=Rc in the heliocentric position of the
reference center chosen within the spacecraft formation.2

Also, the Einstein summation convention was used with
indices a, b ¼ 1, 2, 3. Also, Qhabci and Qhabcdi are the

1The order term Oð…Þ indicates the largest omitted terms in
the expression.

2The reference center may be associated with one of the
spacecraft within the formation or taken to be at the formation’s
mesocenter.
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Cartesian symmetric-trace free multipole coefficients [30]
representing the gravitational tidal forces acting between
spacecraft j and the formation center:

Qhabci ¼
�
nacnbcncc −

1

5
δabncc −

1

5
δacnbc −

1

5
δbcnac

�
;

Qhabcdi ¼
�
nacnbcnccndc −

1

7
ðnacnbcδcd þ nacnccδbd þ nacndcδbc

þ nbcnccδad þ nbcndcδac þ nccndcδabÞ

þ 1

35
ðδabδcd þ δacδbd þ δadδbcÞ

�
: ð9Þ

We estimate the magnitudes of the terms present in (8):
(i) the term linear in ∝ ri represents a differential accel-
eration of δ1aij ≃ 7.93 × 10−8 m=s2, yielding a GGT signal
of δ1aij=rij ≃ 7.93 × 10−14 s−2, which is the signal of
primary concern for GDEM (namely, we need to be able
to measure and remove this GGT signal that is much larger
than any signals that we are aiming to detect); (ii) the
second term, ∝ r2i , is responsible for an acceleration of
δ2aij ≃ 7.95 × 10−13 m=s2, yielding a GGT contribution of
δ2aij=rij ≃ 7.95 × 10−19 s−2; and, finally, (iii) the magni-
tude of the last term, ∝ r3i , was evaluated to be δ3aij ≃
7.09 × 10−18 m=s2 and the corresponding GGT signal
δ3aij=rij ≃ 7.09 × 10−24 s−2. Note that the first omitted
terms Oðr4j=R6

cÞ or ∝ r4i would result in the acceleration
contribution of δ4aij ≃ 1.18 × 10−23 m=s2 and the corre-
sponding GGT signal of δ4aij=rij ≃ 1.18 × 10−29 s−2,
which are negligible for our purposes. Therefore, to satisfy
the science objectives of the GDEM mission, one needs to
keep in the model all the terms present in (8).
To simplify the model development, we extend the

definition of pj from (1) by adding to it relativistic
terms (7) and those due to the tidal forces present in (8),
thus defining the aggregate force term, fj, as

faj ¼ pa
j þ ̈raGR −

15μ⊙
2R4

c
Qhabcirbj r

c
j

−
35μ⊙
2R5

c
Qhabcdirbj r

c
jr

d
j þOðr4j=R4

cÞ; ð10Þ

where indices from the first part of the latin alphabet a, b, c,
d denote vector components (with the Einstein summation
convention used), while indices from the second part of the
latin alphabet i, j are used to denote a particular spacecraft.
Given the fact that the terms ̈rGR and those due to the

tidal forces Qhabci and Qhabcdi are small, one can directly
account for their presence during data analysis as their
magnitudes and behavior will be rather well known.
Next, we observe that the first term in (8) is identical to

the GGT, T, given by (4). As a result, using (8) and (4),
allows us to rewrite (6) as

r̈aj ¼−
μ⊙
R3
c
ðδab−3nacnbc Þrbj þfaj ⇒ r̈j¼T ·rjþfj; ð11Þ

which is our fundamental result providing us with the
observational equation needed to determine the GGT.
Equation (11) describes the motion of a spacecraft with

the constellation relative to the formation center from the
standpoint of the BCRS. However, our measurements are
going to be conducted by the instruments placed on the
orbiting spacecraft (i.e., atomic interferometers, laser rang-
ing transceivers, and also the Sagnac interferometers).
Furthermore, we will mostly rely on the relative measure-
ments between spacecraft within the constellation. For a
proper description of these measurements, we need to
introduce an orbital reference frame and appropriate
coordinate system. Such a system is needed to describe
the relative dynamics between the spacecraft and the
relevant measurements as well as to transform the results
between the orbital frame and the BCRS, if needed.

B. Relevant orbital coordinate systems

A natural coordinate frame for describing the relative
motion of a spacecraft with respect to a reference center
is the radial, in-track, cross-track (RIC) frame shown in
Fig. 1. This is a noninertial frame that moves with the
reference center. Assuming that position r and velocity ṙ of
the reference center are known and evaluated at the center,
the fundamental directions of this frame are [see more
details in (85)]

eR ¼ r
r
; eC ¼ ½r × ṙ�

j½r × ṙ�j ; eI ¼ ½eC × eR�; ð12Þ

with the unit vector eR pointing radially outward from
Sun’s center and eI is in the in-track direction along
increasing true anomaly. This right-handed orthogonal
reference frame is completed with eC, pointing in the
cross-track direction.

FIG. 1. The RIC coordinate frame for a satellite or constellation
in heliocentric orbit.
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As will be shown in Sec. III, the fundamental vectors
describing position of the ith spacecraft ri ¼ ðxi; yi; ziÞ can
be expressed in the RIC frame (12) as

ri ¼ xieR þ yieI þ zieC; ð13Þ

r ¼ reR; ωRIC ¼ θ̇eC; ð14Þ

where θ̇ is the angular velocity of the formation center [see
relevant discussion in Sec. III A, especially after (85)].
The RIC frame, also known as the local orbital frame, is a

key coordinate system employed to represent the relative
motion between satellites in the same orbit or between a
satellite and its intended orbit. This system plays a crucial
role in satellite activities such as formation flying, proximity
operations, and relative navigation. The versatility of the RIC
frame is highlighted in satellite control and maneuvering,
enabling adjustments in positioning to regulate ground track
timings or to modify the satellite’s orbital plane.
However, given the set of the laser ranging observables

(which are the main observables of the GDEM mission),
the RIC coordinate system is not the most convenient for
the purposes of our experiment. As defined by (13)–(14),
this coordinate system (see Sec. III for details) relies on
the knowledge of spacecraft positions in the BCRS. Such
information will be provided by the NASA Deep Space
Network (DSN)3 tracking in combination with the data
from on-board star trackers, which are not the most precise
set of measurements available. Furthermore, our experi-
ment relies on laser ranging that measures only the
intersatellite ranges rij ¼ jrijj. Thus, another coordinate
system is needed, one that would allow expressing all the
quantities of interest with respect to the length measure-
ments of the edges of the tetrahedron formed by four point
masses in elliptical heliocentric orbits [31]. Such a system
may only be introduced on the tetrahedron itself.
Therefore, one needs to define the reference frame

associated not only with one of the vertices of the
tetrahedron, but with the tetrahedron itself, so that we
could fully benefit from laser metrology that will provide
highly precise measurements of all six edges of the
tetrahedron. For that, we introduce an orthonormal coor-
dinate system, associated with vertex no. 4 of the tetrahe-
dron [thus, the position of spacecraft no. 4 is r4 ¼ ð0; 0; 0Þ]
(as shown in Fig. 2), as follows:

ex¼n41; ez¼
½n41×n42�
j½n41×n42�j

; ey¼½ez×ex�; ð15Þ

where rij ¼ rj − ri and nij ¼ rij=rij.
In this coordinate system, positions of each of the other

three spacecraft forming the tetrahedron are given as

r41 ¼ r41ð1; 0; 0Þ≡ r41n41; ð16Þ

r42 ¼ r42ðcos α12; sin α12; 0Þ≡ r42n42; ð17Þ

r43 ¼ r43
	
cos α13;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 α13 − sin2 β3

q
; sin β3



≡ r43n43;

ð18Þ

where α12 and α13 are the angles between the edges f41g
and f42g and between f41g and f43g, correspondingly,
and are given as

cosα12¼
r241þr242−r212

2r41r42
; sinα12¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−cos2α12

q
; ð19Þ

cosα13¼
r241þr243−r213

2r41r43
; sinα13¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−cos2α13

q
: ð20Þ

Also, β3 is the angle between n43 and the plane formed
by n41 and n42. This angle is given as

sin β3 ¼ ðn43 · ½n41 × n42�Þ ¼ � 6V
r41r42r43

; ð21Þ

where V is the volume of the tetrahedron, which is given as

V¼ 1

12
ð4r241r242r243−r241u

2−r242v
2−r243w

2þuvwÞ12; ð22Þ

u ¼ r242 þ r243 − r223; v ¼ r241 þ r243 − r213;

w ¼ r241 þ r242 − r212: ð23Þ

The definition above yields the local coordinate system
defined at the tetrahedron that we shall call the tetrahedron

FIG. 2. The TCS frame, constructed with satellite 4 as the
origin. Note that the TCS frame is rotated by ωTCS with respect to
the RIC frame, as shown by (25).

3See https://www.jpl.nasa.gov/missions/dsn.
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coordinate system (TCS). As one may see, the position of
every spacecraft in this coordinate system (16)–(18) is now
expressed in terms on the lengths of the six edges of the
tetrahedron, as evidenced by (19)–(23). This justifies the
choice for the TCS, as it allows one to relate the elastic
behavior of the tetrahedron to the set of available laser
ranging measurements that will provide highly precise
information on the length of the six edges of the tetrahedron.

C. Relative spacecraft dynamics in the TCS

The two coordinate systems discussed above, namely
TCS, defined by (15) and the RIC system that is nominally
used to describe proximity operations in an orbital frame
introduced by (13)–(14), and will be discussed in Sec. III A,
have the same origin and are related by rotation

eTCS ¼ RTCSeRIC; ð24Þ

whereRTCS is a ð3 × 3Þ rotation matrix. With the positions
of each of the spacecraft known in the RIC coordinate
system, one can determine the additional angular velocity
ωTCS ¼ RT

TCSṘTCS, although the result may be a bit
complicated analytically and also less precise as it will
depend on DSN tracking. Based on this, we consider ωTCS
to be known and it may be computed by following the rules
used to define the TCS, as discussed in Sec. II B. As we
shall see in Sec. II G, such a measurement will be provided
by the Sagnac interferometers on board of each of the
spacecraft.
Therefore, to describe the local spacecraft dynamics in

the orbital (noninertial) TCS reference frame, we need to
add to ωRIC from (14) additional contribution from ωTCS,
namely

ωRIC → ω ¼ ωRIC þ ωTCS; ð25Þ

where ω is the effective angular velocity vector of the TCS
with respect to the BCRS inertial coordinate frame.
Note that ωRIC may be determined from navigational

data and will be provided by DSN tracking. The quantity
ωTCS may be either computed using navigational data or
monitored using star trackers onboard each of the space-
craft. As we shall see in Sec. II E, the precision with which
these two quantities may be determined individually is
much worse than needed for the experiment. However, the
sum of these two angular frequencies, ω, may be deter-
mined with a much higher accuracy using Sagnac observ-
ables, as discussed in Sec. II G, which is exactly what
we need.
By the use of kinematics, the relative acceleration

observed in the inertial reference frame ̈rj from (11) and
that observed locally ̈r�j in the orbital frame can be related to
the measurements in the orbiting TCS reference frame as

̈rj ¼ ̈r�j þ 2½ω × ṙ�j � þ ½ω × ½ω × rj�� þ ½ω̇ × rj�; ð26Þ

where the angular velocity and acceleration of the reference
center ω and ω̇ correspond to the angular velocity and
acceleration of the orbiting TCS frame with respect to
BCRS frame and ω is given by (25). Also, velocities and
accelerations in the local TCS frame are given as usual:
ṙ�j ¼ dr�j=dt and ̈r�j ¼ d2r�j=dt

2.
As a result, combining (11) and (26), we obtain the

following equations of motion of a satellite j ¼ 1, 2, 3 in
the TCS coordinate system associated with spacecraft no. 4,
but now it accounts for additional rotation from (25):

̈r�j ¼Tc ·rjþfj− ½ω× ½ω×rj��− ½ω̇×rj�−2½ω× ṙ�j �: ð27Þ

Thus, in addition to the first two terms containing inertial
accelerations from (11), this equation has three other terms
due to the noninertial forces acting on the spacecraft in
the TCS: the third term is due to the centrifugal force, the
forth term is due to the Euler force, and the last term is due
to the Coriolis force.
For a generic angular velocity vector ω ¼ ðωx;ωy;ωzÞ it

is convenient to introduce the matrices Ω2 and Ω̇ given as

Ω ¼

2
64

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

3
75;

Ω2 ¼

2
64
−ðω2

y þ ω2
zÞ ωxωy ωxωz

ωxωy −ðω2
x þ ω2

zÞ ωyωz

ωxωz ωyωz −ðω2
x þ ω2

yÞ

3
75;

Ω̇ ¼

2
64

0 −ω̇z ω̇y

ω̇z 0 −ω̇x

−ω̇y ω̇x 0

3
75: ð28Þ

These matrices allow us to simplify the cross products
in (27) as

½ω × ½ω × rj�� ¼ ðΩ2 · rjÞ; ½ω̇ × rj� ¼ ðΩ̇ · rjÞ;
½ω × ṙ�j � ¼ ðΩ · ṙ�jÞ: ð29Þ

With these properties and remembering (4), we present (27)
as

̈r�j ¼ fTc −Ω2 − Ω̇grj − 2ðΩ · ṙ�jÞ þ fj: ð30Þ

As a result, in the TCS frame, the two spacecraft would
experience different accelerations given as

̈r�ij ¼ fTc −Ω2 − Ω̇grij − 2ðΩ · ṙ�ijÞ þ fij; ð31Þ
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where we defined rij¼ rj−ri, ṙ�ij ¼ ṙ�j − ṙ�i , ̈r�ij ¼ ̈r�j − ̈r�i ,
and fij ¼ fj − fi.
Equation (31) may be used to recover the GGT,

Tc (similar to the approach used to develop the Gravity
Field and Steady-State Ocean Circulation Explorer
mission [32–35]). This may be done by measuring the
relative accelerations and velocities of the spacecraft
with respect to the orbital TCS frame, ̈r�ij and ṙ�ij, respec-
tively, and by measuring the separation between them rij.
For that, we could use the data provided by the laser
ranging to measure rij ¼ jrijj. Then, by using (16)–(18)
with (19)–(23), one could take the time derivatives of the
interspacecraft ranging data to determine ṙij and ̈rij. Also,
if the angular velocity Ωðt�Þ is known, one could use (32)
to determine Tc.

D. Solution for the gravity gradient tensor T

It is convenient to present (31) in the following compact
matrix form:

uij ¼ Mrij; ð32Þ

where we introduced

uij ≡ ̈r�ij þ 2ðΩ · ṙ�ijÞ − fij; M ¼ T −Ω2 − Ω̇: ð33Þ

Clearly, given the fact that we are dealing with a
tetrahedron that has six edges, there are several ways to
develop an estimate forM by using (32). Indeed, one either
(i) forms a 3 × 6 matrix equation by using all the six
intersatellite range measurements, rij, available with the
tetrahedron, (ii) may use three edges sharing the same
vertex to from a 3 × 3 matrix equation to determine M at a
particular vertex, or (iii) may do the same procedure as just
mentioned in item (ii) for all four vertices within the
tetrahedron to develop a weighted sum needed to provide a
more realistic system description.
Clearly, all the approaches mentioned above must be

explored for the ultimate mission development. However,
for our purposes aimed at a feasibility study and a
preliminary error budget development, it is sufficient to
use the approach identified in item (ii) above. For that, we
assume that the origin of our reference frame is associated
with one of the spacecraft, namely spacecraft no. 4. This
assumption will allow us to develop the relevant solution
for M. Therefore, considering that the origin of the TCS is
placed at spacecraft no. 4, we may write (32) in the
following matrix form:

U ¼ MR; ð34Þ

where matrices U, M, and R are given as

U ¼

2
64
ux41 ux42 ux43
uy41 uy42 uy43
uz41 uz42 uz43

3
75; M ¼

2
64
M11 M12 M13

M21 M22 M23

M31 M32 M33

3
75;

R ¼

2
64
rx41 rx42 rx43
ry41 ry42 ry43
rz41 rz42 rz43

3
75; ð35Þ

where we rely only on the ranges and accelerations
associated with the edges sharing the same vertex no. 4.
Clearly, similar expressions may be developed for any of
the vertices within the tetrahedron.
Assuming that detðRÞ ¼ ðr41 · ½r42 × r43�Þ ≠ 0, the

inverse of R has the following form:

R−1 ¼ 1

detðRÞ

2
64
½r42 × r43�T
½r43 × r41�T
½r41 × r42�T

3
75 ¼

�
ñ41

r41
;
ñ42

r42
;
ñ43

r43

�
; ð36Þ

where subscript ð…ÞT indicates a transposed quantity and
we introduced the unit vectors of the reciprocal coordinate
basis [36]

ñ41 ¼
½n42 × n43�

ðn41 · ½n42 × n43�Þ
; ñ42 ¼

½n43 × n41�
ðn42 · ½n43 × n41�Þ

;

ñ43 ¼
½n41 × n42�

ðn43 · ½n41 × n42�Þ
: ð37Þ

We note that, in the case of a right tetrahedron, the unit
vectors (37) would represent the base vectors of the
orthogonal coordinate system. However, our tetrahedron
is rather generic, so these vectors account for nonortho-
gonality of the vectors emanating from vertex no. 4.
Clearly, when the volume of the tetrahedron collapses,
the denominator in (37) vanishes. In this case one loses the
ability to determine the trace of the GGT (39).
As a result, the solution for M is given as

M ¼ UR−1: ð38Þ

For studying the Laplace equation, ∇2U ¼ 0, we do not
need the entire expression for M, but only its trace, which
with (37) takes a rather convenient and informative form

trðMÞ4 ¼
ðu41 · ñ41Þ

r41
þ ðu42 · ñ42Þ

r42
þ ðu43 · ñ43Þ

r43
; ð39Þ

where the accelerations in the orbital TCS frame are given
by (33).
As it stands, the result (39) with the base vectors

ñ41; ñ42; ñ43 (37), is the solution for the trace of the
GGT describing the most general situation with a generic
and elastically evolving tetrahedron. We observe that, in the
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case of a right tetrahedron, Eq. (37) becomes the base
vectors of the orthonormal coordinate system with the
origin at vertex no. 4: ñ41 → e41 ¼ ð1; 0; 0Þ, ñ42 → e42 ¼
ð0; 1; 0Þ, and ñ43 → e43 ¼ ð0; 0; 1Þ. As a result, in this
case, (39) would result in a sum of the acceleration
projections on the three base vectors divided by the lengths
of the corresponding edges.
In essence, result (39) constitutes a finite difference

version of the trace of the GGT (i.e., a finite difference
version of the Laplace equation presented in a
general nonorthogonal coordinate system, providing a
generalization for the basic equation used in gravitational
gradiometry [32] to determine trðMÞ—our primary quan-
tity of interest. Clearly, the shorter the separation between
the spacecraft, the more this quantity would resemble its
infinitesimal version.
To establish the explicit dependence of trðMÞ4 on the

observable quantities, we remember the definitions for Ω2

and Ω̇ from (28) that yield the following identities:

trðΩ2Þ¼−2ðω2
xþω2

yþω2
zÞ¼−2ω2; trðΩ̇Þ¼0; ð40Þ

where ω ¼ jωj is from (25). Note that the second result
in (40) shows that the Euler force does to not contribute
to trðMÞ4. As a result, remembering the definition for M
from (33), and using (40), we have

trðMÞ4 ¼ trðTÞ4 þ 2ω2; ð41Þ

which represents the Laplacian of the effective potential
energy for an orbiting platform, E ¼ GM=rþ 1

2
L2=m2r2,

where L ¼ mωr2 is the angular momentum with ω being
the angular velocity [37]. So, the first term in (41) is due to
the trace of the inertial GGT and the second one is due
to the gradients of the centrifugal potential.
Next, collecting the results (41) and u4i from (33),

and remembering ðΩ · ṙ�jÞ ¼ ½ω × ṙ�j �, in the case, when
the tetrahedron’s volume is not vanishing [i.e., when
ðn41 · ½n42 × n43�Þ ≠ 0, meaning that in (37) the denomi-
nator is nonvanishing], we can present (39) in the following
form

trðTÞ4 þ 2ω2 ¼ ðð̈r�41 þ 2½ω × ṙ�41� − f41Þ · ñ41Þ
r41

þ ðð̈r�42 þ 2½ω × ṙ�42� − f42Þ · ñ42Þ
r42

þ ðð̈r�43 þ ½ω × ṙ�43� − f43Þ · ñ43Þ
r43

; ð42Þ

which shows the relationship wherein the trace of the tensor
trðTÞ4 explicitly depends on observable quantities, denoted
by rij and their respective time derivatives in the TCS
orbital frame, forces fij (10) and angular frequency ω (25).
The quantities rij will be measured by laser metrology, so

as the unit vectors of the reciprocal coordinate basis (37).
The vector fij represents forces that will be measured
directly measured by the atom interferometry and cali-
brated out based on their predefined analytical structure, as
shown by (10). The angular velocity ω will be provided by
the Sagnac interferometry, as discussed Sec. II G.
Expression (42) describes the trace of the GGT in the

orbital coordinate frame. It provides a very sensitive test for
any anomalous dynamical field that may be present in the
Solar System. This expression accounts for the fact that
the orbital frame is noninertial, which is evidenced by the
presence of terms with the angular velocity ω—the terms
due to centrifugal and Coriolis forces. As we shall see
in Sec. II E, all the quantities relevant to the tetrahedron
itself—intersatellite ranges, rij, will be provided by the
laser ranging, and range rates, ṙij, and range accelerations,
̈rij, will be computed based on the range data. The only
quantity that is not provided by the local measurements,
is the angular frequency. If this quantity is known to a
sufficient precision, then trðTÞ4 can be computed. As we
shall see in Sec. II G, the angular frequency, ω, will be
provided by the Sagnac interferometry.
Based on our analysis (see Sec. III), we know that to set

up a tetrahedral formation with desirable properties, the
orbits of the spacecraft, Rj, should have the same eccen-
tricity and semimajor axes. The other Keplerian orbital
elements are different and are chosen in a such a way so that
the choice would allow us to maximize the volume of the
resulting tetrahedron, at least for some parts of the orbit.
Also, as the spacecraft move in their heliocentric orbits,
the interspacecraft separations vary significantly causing
the tetrahedral structure to evolve, while the tetrahedron
itself undergoes a complex rotation in the orbital frame.
Periodically, when one of the spacecraft crosses the
instantaneous plane formed by the other three spacecraft,
the volume of the tetrahedron collapses. Expression (42)
shows how such a complex dynamics on the orbital frame
affects the determination of trðTÞ4.

E. Required measurement sensitivities

It is instructive to present expression (42) in terms of the
TCS coordinates introduced in Sec. II B. Clearly, as trðTÞ4
is a scalar, this result will be the same in any other
coordinate system. However, the chosen TCS coordinate
system allows us to express all the quantities involved in
terms of the six tetrahedral edges measured by laser
ranging. First of all, using (16)–(18) and (19)–(21), we
establish the structure of some of the terms in (42), namely

½n42 ×n43� ¼
	
sinα12 sinβ3;− cosα12 sinβ3;

cosα12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 α13 − sin2 β3

q
− sinα12 cosα13



;

ð43Þ
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½n43 × n41� ¼
	
0; sin β3;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 α13 − sin2 β3

q 

; ð44Þ

½n41 × n42� ¼ ð0; 0; sin α12Þ;
ðn41 · ½n42 × n43�Þ ¼ sin α12 sin β3; ð45Þ

which allow us to compute the unit vectors of the reciprocal
coordinate basis ñ41; ñ42; ñ43 from (37), expressing them
via the quantities α12, α13, and β3 given by (19)–(23) that
are observed with laser interferometric ranging.
Now, treating ̈r4i as the second time derivative of r4i that

is given by (16)–(18) together with (19)–(21), we have the
following result for acceleration-dependent contributions
(i.e., ∝ ̈r4i) to trðTÞ4:

trðTÞaccel4 ¼ ̈r41
r41

þ ̈r42
r42

þ ̈r43
r43

þ ðsin α12Þ̈
sin α12

þ ðsin β3Þ̈
sin β3

þ 2ṙ42
r42

ðsin α12Þ̇
sin α12

þ 2ṙ43
r43

ðsin β3Þ̇
sin β3

: ð46Þ

Note that trðTÞ4 is independent of the signs of sin α12 and
sin β3, as it should be.
Considering this acceleration-dependent contribution (46),

we see that it has the following generic structure:

trðTÞaccel4 ≃
X

i¼1;2;3

�̈
r4i
r4i

þ
�
ṙ4i
r4i

�
2
�
; ð47Þ

that implies that in order to determine trðTÞ4 with a single
measurement accuracy of δðtrðTÞ4Þ ∼ 10−21 s−2, range rates
must be available with the accuracy of δṙ4i ≲ r4i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δtrðTÞ4

p
∼

3.2 × 10−5 m=s and the line-of-sight accelerations must be
known with the accuracy better than δ̈r4i ≲ r4iδtrðTÞ4 ∼
1 × 10−15 m=s2, thus setting the requirements on the accu-
racy of the laser ranging measurements. These requirements
are summarized in Table I. Assuming that the measurement
errors are uncorrelated and normally distributed, and the

ranging instruments allow achieving δðtrðTÞ4Þ ∼ 10−21 s−2

in 10 s, themission precision of δðtrðTÞ4Þ ∼ 10−24 s−2will be
reached in ∼4 months.
Next, we compute the f4i-dependent contributions to

trðTÞ4 in (42):

trðTÞforces4 ¼−
1

r41

�
f41x−f41ycotα12

þ f41z
sinβ3

�
cotα12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2α13−sin2β3

q
−cosα13

��

−
1

r42 sinα12

�
f42y−

f42z
sinβ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2α13−sin2β3

q �

−
f43z

r43 sinβ3
: ð48Þ

Similarly to (47), we see that the f4i-dependent con-
tribution to (48) behaves as

trðTÞforces4 ≃
X

i¼1;2;3

f4i
r4i

; ð49Þ

which implies that the nongravitational forces must be
compensated to below δf4i ≲ r4iδtrðTÞ4 ∼ 1 × 10−15 m=s2,
which may be achieved by using atom interferometers.
We evaluate the Coriolis terms due to rotation of the TCS

with respect to the BCRS to be

trðTÞCor4 ¼ 2

�
ωx

sin β3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2α13 − sin2β3

q �
ṙ43
r43

−
ðr42 sin α12Þ̇
r42 sin α12

�
þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2α13 − sin2β3

q �̇�

þ ωy

sin β3

�
cos α13

�
ṙ41
r41

−
ṙ43
r43

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2α13 − sin2β3

q �ðr42 cos α12Þ̇
r42 sin α12

− cot α12
ṙ41
r41

�
− ðcos α13Þ̇

�

þ ωz

�ðr42 cos α12Þ̇
r42 sin α12

− cot α12
ṙ41
r41

��
: ð50Þ

With the help of (50), we observe that the largest ω-dependent terms exhibit the following generic behavior

trðTÞCor4 ≃ −2
X
i;j;k

ωi

�
ṙ4j
r4j

−
ṙ4k
r4k

�
: ð51Þ

TABLE I. Select set of the GDEM mission requirements, along
with corresponding symbols used in the text.

Parameter Symbol Value

Intersatellite range rate δṙ4i 3 × 10−5 m=s
Line-of-sight acceleration δ̈r4i 1 × 10−15 m=s2

Nongravitational forces δf4i 1 × 10−15 m=s2

Angular velocity δω 2 × 10−15 s−1

Centrifugal acceleration δωCF 2 × 10−11 s−1
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Assuming that the nominal range rates of ṙ4i ∼ 0.20 m=s
[see (96)], especially at the apogee, (51) implies that the
angular velocity must be known with accuracy of
δω≲ ðr4i=ṙ4iÞ 12 δtrðTÞ4 ≃ 2.5 × 10−15 s−1. This is a chal-
lenging requirement4 that eliminates the use of both the
DSN tracking and on-board star trackers as the means to
determine ωðtÞ. (A similar point on the importance of
Coriolis forces in the rotational sensitivity of atomic
interferometers was discussed in [38].) As will be discussed
in Sec. II G, Sagnac observables are capable of providing
the needed precision.
Finally, we evaluate the centrifugal terms due to rotation

of the TCS with respect to the BCRS as below

trðTÞcentrif4 ¼ −2ω2: ð52Þ

One can see that this term yields requirement on the
precision of ω: δωCF≲ð1

2
δtrðTÞ4Þ12≃2.24×10−11 s−1, which

is less stringent compared to that derived from (51)
presented by the need to compensate for the Coriolis forces.
Results (46)–(52) express the different terms in the

expression for trðTÞ in (42). We can use these expressions
to evaluate the accuracy needed to conduct the experiment.
For that, we assume that spacecraft no. 4, the origin of our
TCS, moves along the heliocentric orbit with semimajor
axis and eccentricity of a ≃ 1 AU and e ≃ 0.6, correspond-
ingly. Also, we assume that the nominal separation between
the spacecraft is rij ≃ 103 km.
As a result, we are able to express all the quantities

involved in the determination of the trace of trðTÞ4 via two
types of observables, namely the following: (i) laser
ranging measurements that will provide time series of
the intersatellite ranges, rij, that can be time differentiated
to derive range-rate and line-of-sight accelerations, ṙij, ̈rij;
and (ii) the angular velocity of the noninertial TCS, ω, with
respect to inertial coordinates of the BCRS. Therefore, the
knowledge ofω is critical for the success of the experiment.
Below, we consider two methods to determine the angular
velocity of the TCS with respect to the BCRS, including
the kinematic determination and that relying on the
Sagnac interferometry.

F. Kinematic equation to determine Ω̇

One way to measureω is to use the same set of equations
and related observables that was used to derive trðTÞ4 given
by (42), as is typically done by gravity gradiometry
missions [32,39]. For that, using the definition for M
from (33), and relying on the fact that GGT is a symmetric
matrix,TT

c ¼ Tc, and also ðΩ2ÞT ¼ Ω2, Ω̇T ¼ −Ω̇, we have

ðMT −MÞ ¼ ðTc −Ω2 − Ω̇ÞT − ðTc −Ω2 − Ω̇Þ

¼ 2Ω̇;⇒ Ω̇ ¼ 1

2
ðMT −MÞ: ð53Þ

Then, with the help of (38), the solution to Ω̇ may be given
as follows:

Ω̇ ¼

2
64

0; −ω̇z; ω̇y

ω̇z; 0; −ω̇x

−ω̇y; ω̇x; 0

3
75; ð54Þ

where ω̇ ¼ ðω̇x; ω̇y; ω̇zÞ is given as

ω̇ ¼ ½u41 × ñ41�
2r41

þ ½u42 × ñ42�
2r42

þ ½u43 × ñ43�
2r43

; ð55Þ

where ñ41; ñ42; ñ43 are the unit vectors of the reciprocal
basis given by (37). It is interesting to note that the structure
of (55) is similar to that of the GGT trace trðT4Þ from (39).
However, as opposed to the scalar product of uij=rij to the
vectors of the reciprocal basis present in the result for
trðT4Þ, ω̇ has the cross product.
Next, substituting in (55), the expression for uij

from (33), we see that the temporal evolution of the angular
velocity vector is driven by the Euler and Coriolis forces
and is governed by the following differential equation:

ω̇ ¼ ½ð̈r�41 þ 2½ω × ṙ�41� − f41Þ × ñ41�
2r41

þ ½ð̈r�42 þ 2½ω × ṙ�42� − f42Þ × ñ42�
2r42

þ ½ð̈r�43 þ 2½ω × ṙ�43� − f43Þ × ñ43�
2r43

: ð56Þ

Equation (56) is the differential equation that establishes
the temporal evolution of ωðtÞ. In principle, if precise
knowledge of the relevant initial and/or boundary con-
ditions is available, one can solve this equation to deter-
mine ωðtÞ [40].
How can we accurately determine the value of ω for the

spacecraft within the tetrahedron? One approach might be
to employ DSN tracking or other external ranging methods.
However, these techniques, while direct, might not achieve
the desired precision. It is important to note that even with
projected advancements in tracking accuracy, these meth-
ods may still fall short of the precision needed. Thus, the
practical use of (56) may be limited, requiring other
methods. In Sec. II G we demonstrate that Sagnac observ-
ables successfully address that need.

G. Generalized Sagnac observables

Another method to determine the angular velocity ω is
to use Sagnac observables to do the job. In fact, Sagnac

4Potentially, long-baseline AI can be used to provide the
needed precision in measuring such a rotation.
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interferometers are commonly used as rotation sensors.
For that, one considers the difference between the optical
paths of the counterpropagating beams in a rotating Sagnac
interferometer that may be modeled as [41]

ΔL412 ¼ lþ − l−

¼ ðr41 þ r12 þ r24Þ − ðr14 þ r21 þ r42Þ

¼ 4

c
ðω ·A412Þ; ð57Þ

where ω is the angular velocity, A412 is the oriented area
enclosed by the optical paths, and c is the speed of light. So,
if only one triangle is available, Sagnac signal provides
information about the projection of the angular velocity
vector on the oriented area of the triangle. However, in the
case of a tetrahedron, one has access to three projections of
the same vector on three different oriented areas, thus
enabling the determination of all the three components ofω.
Note that expression (57) does not account for the fact

that all the triangles at any face of the tetrahedron evolve on
the timescale of light propagation between the spacecraft.
As a result, not only all the six edges of the tetrahedron
change lengths, the tetrahedron itself undergoes a kin-
ematic rotation so that all the oriented areas change their
size and spatial orientation. The situation of using Sagnac
interferometers at four vertices of an elastic tetrahedron to
determine its inertial orientation is new and had not been
previously considered [42,43]. Therefore, we need to
present the model that could be used to determine ω under
such conditions. We do that next.
Here, we generalize expression (57) to account for the

tetrahedron’s elasticity. To do that, we directly evaluate the
optical paths in the co- and contrarotating directions. We
begin with the triangle f4; 1; 2g and present the equations
that describe the light propagation along the different edges
in two opposite directions. For that, we rely on the fact that
the origin of our TCS coordinate system is at spacecraft
no. 4, thus, r4 ¼ 0 and ṙ4 ¼ 0.
First, we consider the clockwise direction. The logic of

this measurement is summarized as follows:
(i) A light signal is emitted at spacecraft no. 4 at time t0

and travels toward spacecraft no. 1;
(ii) The signal is coherently received at spacecraft no. 1

at time t1 ¼ t0 þ Δt41 and retransmitted toward
spacecraft no. 2;

(iii) The signal is coherently received at spacecraft no. 2
at time t2 ¼ t1 þ Δt12 ≡ t0 þ Δt41 þ Δt12 and re-
transmitted back to spacecraft no. 4, where it is
received at time t4 ¼ t2 þ Δt24 ≡ t0 þ Δt41þ
Δt12 þ Δt24.

Assuming that the individual light transit times Δtij
are small, such that cΔtij ≃ rij ≪ Rc, we can model
the vectors that describe the paths that the light signal
traveled while propagating along the different sides of the
triangle as

r41ðt1Þ ¼ r41ðt0Þ þ ṙ41ðt0ÞΔt41 þOðΔt2Þ; ð58Þ

r12ðt2Þ ¼ r42ðt2Þ − r41ðt1Þ
¼ r12ðt0Þ þ ṙ12ðt0ÞΔt41 þ ṙ42ðt0ÞΔt12 þOðΔt2Þ;

ð59Þ

r24ðt4Þ≡ r24ðt2Þ
¼ r24ðt0Þ þ ṙ24ðt0ÞðΔt41 þ Δt12Þ þOðΔt2Þ; ð60Þ

where we relied on the fact that spacecraft no. 4 is the
origin of the chosen orbital coordinate system, as
detailed in Sec. II B. Consequently, its position vector
is r4 ¼ 0, justifying the following identity: r24ðt4Þ ¼
r4ðt4Þ − r2ðt2Þ≡ r24ðt2Þ.
Note that, in (58)–(60), we consider only the terms linear

with respect to Δt. As a result, the light trajectories, which
in this approximation may be taken to be straight lines,
are given as

r41ðt1Þ ¼ r41ðt0Þ þ ðn41 · ṙ41ÞΔt41 þOðΔt2Þ; ð61Þ

r12ðt2Þ ¼ r12ðt0Þ þ ðn12 · ṙ12ÞΔt41 þ ðn12 · ṙ42ÞΔt12
þOðΔt2Þ; ð62Þ

r24ðt4Þ¼ r24ðt0Þþðn24 · ṙ24ÞðΔt41þΔt12ÞþOðΔt2Þ: ð63Þ

We remember that TCS is a noninertial reference
frame, which requires that the time derivatives must
include the angular velocity contributions ω, namely ṙij →
ṙij þ ½ω × rij�. It is clear that ðnij · ṙijÞ will be unchanged
as ðnij · ½ω × rij�Þ ¼ 0. The only place where ω does not
vanish is the last term in (62), namely

ðn12 · ṙ42Þ → ðn12 · ṙ42Þ þ ðn12 · ½ω × r42�Þ

≡ ðn12 · ṙ42Þ þ
2

r12
ðω ·A412Þ: ð64Þ

We realize that (61)–(63) may be expressed via the
travel times for the light to move along the different sides
of the triangle, cΔtij ¼ rij. Using this fact and accounting
for (64), we present these equations below, valid toOðΔt2Þ:

cΔt41 ¼ r41 þ ṙ41Δt41; ð65Þ

cΔt12¼ r12þ ṙ12Δt41þ
�
ðn12 · ṙ42Þþ

2

r12
ðω ·A412Þ

�
Δt12;

ð66Þ

cΔt24 ¼ r24 þ ṙ24ðΔt41 þ Δt12Þ; ð67Þ

where, for brevity, we used rij≡rijðt0Þ and also ðnij · ṙijÞ¼
ṙijðt0Þ≡ ṙij. These equations may be used to determine the
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light transit times Δtij by developing an approximate
solution with respect to a small parameter ðṙij=cÞ:

cΔt41 ≃ r41 þ c−1r41ṙ41 þOðc−2Þ; ð68Þ

cΔt12 ≃ r12 þ c−1ðr41ṙ12 þ ðr12 · ṙ42Þ þ 2ðω ·A412ÞÞ
þOðc−2Þ; ð69Þ

cΔt24 ≃ r24 þ c−1ṙ24ðr41 þ r12Þ þOðc−2Þ: ð70Þ

Similarly, we obtain equations describing the light
propagation in the counterclockwise direction:

cΔt42 ≃ r42 þ c−1r42ṙ42 þOðc−2Þ; ð71Þ

cΔt21 ≃ r21 þ c−1ðr42ṙ21 þ ðr21 · ṙ41Þ − 2ðω ·A412ÞÞ
þOðc−2Þ; ð72Þ

cΔt14 ≃ r14 þ c−1ṙ14ðr42 þ r21Þ þOðc−2Þ: ð73Þ

We may now combine the light transit times in
the opposite directions forming a generalized Sagnac
observable:

ΔL412 ¼ lþ − l−

¼ cðt41 þ t12 þ t24Þ− cðt14 þ t21 þ t42Þ

¼ 1

c
fr12ðṙ42 − ṙ41Þ− ṙ12ðr42 − r41Þ þ r41ṙ42 − r42ṙ41

þ ðr42 · ṙ41Þ− ðr41 · ṙ42Þ þ 4ðω ·A412ÞgþOðc−2Þ;
ð74Þ

where all the quantities on the right-hand side are taken at
time t0.
Similarly, one obtains expressions for the generalized

Sagnac observables that describe light propagation along
co- and contrapropagating paths along the other triangles of
the evolving tetrahedron that share the same vertex no. 4:

ΔL4ij ¼ ΔLelast
4ij þ 4

c
ðω ·A4ijÞ þOðc−2Þ; ð75Þ

ΔLelast
4ij ¼ 1

c
frijðṙ4j − ṙ4iÞ− ṙijðr4j − r4iÞ þ r4iṙ4j − r4jṙ4i

þ ðr4j · ṙ4iÞ− ðr4i · ṙ4jÞgþOðc−2Þ: ð76Þ

Given the anticipated values of the interspacecraft
velocities and accelerations within the constellation
evaluated and found to be vij ≃ 0.20 m=s and aij ≃
3.96×10−8m=s2, correspondingly [see (96) and Sec. III B
for details], we may evaluate the magnitude of ΔLelast

4ij

in (76). Using these anticipated values, we estimate that
these terms will be on the order of rijṙij=c ≃ 6.67 × 10−4 m
and, given the anticipated sensitivity of the Sagnac
interferometers in measuring the optical path difference,
δΔL4ij ¼ 10 pm, are large enough to be included in
the model.
We also developed the model that accounts for the

relative accelerations between the vehicles and also
velocity-dependent terms ∝ Δt2, thus improving the model
(58)–(60). Using this updated model, the relevant velocity-
and acceleration-dependent terms were evaluated to be
rijṙ2ij=c

2≃4.45×10−13m and r2ij ̈rij=c2 ≃ 4.41 × 10−13 m,
correspondingly. Both of these contributions are small but,
depending on the ultimate missions design, they may have
to be included in the model. Below, we limit our consid-
eration only to the terms present in (75)–(76).
Note that all the terms in (76) are available either from

laser ranging measurements, rij; ṙij (and, thus, the area
A4ij), or from Sagnac interferometry, ΔL4ij. Therefore, we
may use these expressions to determine ω. For that, we
consider the three triangles that share common vertex at
spacecraft no. 4, and, defining Δl4ij ¼ ΔL4ij − ΔLelast

4ij ,
we have the following three equations to determine ω:

Δl4ij ¼
4

c
ðω ·A4ijÞ with A4ij ¼

1

2
½r4i × r4j�; ð77Þ

which now accounts for the elasticity of the triangles and
the oriented areas A4ij are evaluated at the beginning of the
Sagnac measurements. Next, combining, for instance, three
relevant equations one obtains

ðω · ðAT
412;A

T
431;A

T
423ÞÞ ¼

1

4
cðΔl412;Δl431;Δl423Þ ⇒ ðω ·AÞ ¼ 1

4
cΔl: ð78Þ

If detðAÞ ¼ ðA412 · ½A423 ×A431�Þ ≠ 0, then the matrix A is invertible, yielding

A−1 ¼ 1

detðAÞ ð½A423 ×A431�T; ½A431 ×A412�T; ½A412 ×A423�TÞ≡
�
ñ412

A412

;
ñ423

A423

;
ñ431

A431

�
; ð79Þ

where ñ412, ñ423, and ñ431 are another set of the reciprocal base vectors composed from the areal unit vectors n4ij ¼
½r4i × r4j�=j½r4i × r4j�j normal to the corresponding faces of the tetrahedron. Such a definition is similar to the one for
vectors introduced in (37) with the resulting form being evident from the structure of (79).
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As a result, with the help of (79), the angular velocity
vector ω may be determined from (78) as

ω ¼ 1

4
cðΔl ·A−1Þ; ð80Þ

providing the components of the angular velocity ω that
account for the elasticity of the tetrahedron:

ωx ¼
1

4
c
ðΔl · ñ412Þ

A412

; ωy ¼
1

4
c
ðΔl · ñ423Þ

A423

;

ωz ¼
1

4
c
ðΔl · ñ431Þ

A431

; ð81Þ

which is oriented with respect to the TCS defined by (15).
Result (81) generalizes Sagnac observables in the case of

an elastic tetrahedron. If precision laser ranging data are
available, then it enables inertial navigation by providing
accurate measurements of the angular velocity vector ω. In
other words, Sagnac interferometry conducted along the
edges of the three triangles with a common vertex within a
tetrahedral configuration, combined with range measure-
ments of the same edges enables determination of ω. That
fact is important for the experiment as it provides a critical
piece of information needed to determine trðTÞ4 from (42).
Expressions (81) allow us to consider the accuracy in

determining the components of the angular velocity that
may be provided by Sagnac observables. Generically, these
expressions behave as

ω ≃ c
Δl
2r24i

; ð82Þ

which implies that, if the Sagnac interferometer will
measure optical path differences with an accuracy of
δΔl ≃ 10 pm, this would enable a determination of
the angular velocity of the constellation with respect to
Solar System barycentric frame with an accuracy of
δω≲ cδΔl=2r24i ≃ 1.5 × 10−15 s−1, which satisfies the
requirement set by (51). This demonstrates that the Sagnac
observables are capable of a highly precise determination
of the angular velocity, thus enabling the experiment.

III. TETRAHEDRAL FORMATION ON NEARLY
IDENTICAL ECCENTRIC ORBITS

To describe the motion of the spacecraft with the
tetrahedral configuration, we may rely either on a numerical
analysis or we may use an analytical approach considering
that all the spacecraft follow nearly identical elliptic orbits.
While in Sec. III D, we discuss the results of a numerical
analysis that provides detailed insights into the dynamics and
possible real-world perturbations, below we develop ana-
lytical models needed to obtain the basic understanding of
the relevant dynamics within the constellation. By using an
analytical approach, one can get an insight into the

fundamental dynamics of spacecraft in a tetrahedral con-
figuration that will be helpful for mission design.

A. Linear perturbations around
a general reference orbit

Satellite-formation missions can be designed using
two primary strategies: active control and natural formation
[44,45]. In the active control method, satellites use thrusters
to actively maintain or adjust their relative positions,
ensuring constant or periodic geometrical configurations
during the orbit. In contrast, the natural method designs
the satellites’ orbits such that they inherently achieve the
desired formation based on scientific needs, without the
continuous intervention of active controls. Here we adopt
the natural formation approach relying on analytical meth-
ods to construct a tetrahedral formation [46].
Geometric techniques for the design of formation flying,

relying on the analytical solution to Hill’s equations, have
been previously established and used in many efforts [47,48]
and applied to define intended relative motions in orbits that
are nearly circular. These methods establish understandable
relationships between spacecraft, providing valuable under-
standing of relative motion. This facilitates the swift creation
of satellite arrangements that fulfill specific mission criteria,
such as achieving certain vehicle distances during perigee
or apogee, ensuring minimal separation, or attaining a
particular geometric pattern. Moreover, the outcomes
derived from these geometric methods can effectively limit
and guide numerical optimization approaches, leading to
quicker attainment of optimal satellite configurations.
In our case, our reference orbit has a significant

eccentricity, rendering Hill’s equations ineffective as they
were developed for nearly circular reference orbits. Here,
we consider the case of generic elliptic heliocentric orbits
[49–51] and use them to explore tetrahedral formation
design and its temporal evolution.
To study the dynamical behavior of a tetrahedral con-

figuration, we need to establish a set of geometrical
relationships describing the relative motion of spacecraft
in nearby eccentric orbits. For that, we follow [51] and
assume that the primary vehicle, termed the reference
center, follows an unperturbed, eccentric trajectory that
is referred to as the reference orbit. (Note that quantities
without subscripts refer to the reference center unless
otherwise noted.) The reference orbit is completely
described by the set of standard Keplerian orbital elements
α ¼ ½a; e; i;Ω;ω;M0�T. Any of the vehicles, with the
constellation is in a similar orbit with only a small change
in orbital elements: αi ¼ αþ Δαi; i∈ f1; 2; 3g. The deri-
vation requires the assumption that the orbital elements of
all spacecraft within the constellation are similar, so that
Δαi ≪ α; no assumptions about the eccentricity of the
reference orbit are made, except for e < 1.
Assuming that the spacecraft follow nearly identical

elliptic orbits, their motion is governed by Kepler’s laws.
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However, since these are nearly identical elliptic orbits, the
primary variations in the relative positions of the spacecraft
will arise due to their phase differences in the orbits and not
due to differences in the size or shape of the orbits. For a
purely analytical approach, one might consider only the
central force and study the motion of the spacecraft with
respect to the reference frame. The perturbations can be
added later for a more accurate but complex model.

We consider the sensitivity of the reference orbit to small
changes in α (as developed in [51]). For that, we consider
the motion of spacecraft in the solar gravitational field
neglecting the presence of other planets. So, essentially the
Solar System barycentric frame collapses to heliocentric
inertial (HCI) frame. In that HCI frame the position and
velocity vectors of the reference center are related to α
through the following expressions (see [48]):

r ¼ r

2
64
cosΩ cos θ − sinΩ cos i sin θ

sinΩ cos θ þ cosΩ cos i sin θ

sin i sin θ

3
75; ṙ ¼ v

2
64
− cosΩðsin θ þ e sinωÞ − sinΩ cos iðcos θ þ e cosωÞ
− sinΩðsin θ þ e sinωÞ þ cosΩ cos iðcos θ þ e cosωÞ

sin iðcos θ þ e cosωÞ

3
75; ð83Þ

where

r ¼ að1 − e2Þ
1þ e cos ν

; v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ

að1 − e2Þ
r

: ð84Þ

A natural coordinate frame for describing the relative
motion of a spacecraft with respect to a reference center is
the RIC frame shown in Fig. 1, see details in [51]. This is a
noninertial frame that moves with the reference center.
Assuming that position r and velocity ṙ of the reference
center are known, evaluated at the center, the fundamental
directions of this frame are

eR ¼ r
r
;

deR
dt

¼ ṙ − ðeR · ṙÞeR
r

;

eC ¼ ½r × ṙ�
j½r × ṙ�j ;

deC
dt

¼ 0; eI ¼ ½eC × eR�;

deI
dt

¼
�
eC ×

deR
dt

�
; ð85Þ

with the unit vector eR pointing radially outward from
Sun’s center and eI in the in-track direction along an
increasing true anomaly. This right-handed orthogonal
reference frame is completed with eC pointing in the
cross-track direction.
The reference orbit r is represented by the standard

orbital elements ða; e; i;Ω;ω; θÞ, which correspond to the
semimajor axis, eccentricity, inclination, right ascension
of the ascending node, argument of periapsis, and true
anomaly [48]. Also, the radius r ¼ að1 − e2Þ=ð1þ e cos νÞ
and the angular velocity of the formation center given as
usual by θ̇ ¼ nð1þ e cos θÞ2=ð1 − e2Þ32, with θ ¼ νþ ω.
As defined, the RIC frame is noninertial, undergoing
rotation with the angular frequency vector ωRIC directed
along the angular momentum vector.
The sensitivity matrix SHCI is constructed by assembling

the partials of each component of r with respect to each
orbital element in α with details given in the Appendix. As
a result, at the reference center, the transformation matrixR
relating the HCI frame to the RIC frame is given by

R ¼

2
64

cosΩ cos θ − sinΩ cos i sin θ; sinΩ cos θ þ cosΩ cos i sin θ; sin i cos θ

− cosΩ sin θ − sinΩ cos i cos θ; − sinΩ sin θ þ cosΩ cos i cos θ; sin i cos θ

sinΩ sin i; − cosΩ sin i; cos i

3
75: ð86Þ

The partials of r with respect to the set of orbital parameters α can be expressed in RIC by premultiplying SHCI (see the
Appendix) by R. This results in the RIC sensitivity matrix SRIC,

SRIC ¼ RSHCI ¼

2
664

r
a −

3nðt−t0Þe sin ν
2
ffiffiffiffiffiffiffiffi
1−e2

p −a cos ν 0 0 0 ae sin νffiffiffiffiffiffiffiffi
1−e2

p

− 3anðt−t0Þ
ffiffiffiffiffiffiffiffi
1−e2

p
2r

	
aþ r

1−e2



sin ν 0 r cos i r a2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

0 0 r sin θ −r sin i cos θ 0 0

3
775: ð87Þ

Thus, SRIC is a mapping relating orbital element differences between the reference center and a spacecraft within the tight
formation (the column space of S) to radial, in-track, and cross-track position differences (the row space of S).
Given the HCI position and velocity vectors of the reference center and spacecraft with the constellation, one can

compute the curvilinear representation of the relative position of the ith spacecraft with respect to the reference center
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(the origin of the RIC). Evaluated at the center, the sensitivity of the curvilinear coordinates xi, yi, and zi to orbit element
differences is equal to SRIC given in Eq. (87). Thus, for small orbital element differences, the resulting xi, yi, and zi
coordinates of the i spacecraft are computed by SRICΔαi. This yields

xi ¼
�
r
a
−
3nðt − t0Þe sin ν

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
�
Δai − a cos νΔei þ

ae sin νffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ΔMi;

yi ¼ −
3anðt − t0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

2r
Δai þ

�
aþ r

1 − e2

�
sin νΔei þ rðcos iΔΩi þ ΔωiÞ þ

a2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ΔMi;

zi ¼ r sin θΔii − r sin i cos θΔΩi; ð88Þ

where n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ⊙=a3

p
is the natural frequency of the reference orbit.

The velocity equations are obtained by taking the time derivatives of (88):

ẋi ¼
dxi
dt

¼ −
�
ne sin ν

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p þ 3a2

r2
n2ðt − t0Þe cos ν

�
Δai þ n sin ν

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �
a3

r2

�
Δei þ en cos ν

�
a3

r2

�
ΔMi;

ẏi ¼
dyi
dt

¼
�
3a2

2r2
n2ðt − t0Þe sin ν −

3a
2r

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �
Δai þ

�
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �
1þ r

p

��
a3

r2

�
cos νþ aensin2ν

ð1 − e2Þ32
�
Δei

þ aen cos i sin νffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ΔΩi þ
aen sin νffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p Δωi − en sin ν

�
a3

r2

�
ΔMi;

żi ¼
dzi
dt

¼ anffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ððcos θ þ e cosωÞΔii þ sin iðsin θ þ e sinωÞΔΩiÞ: ð89Þ

We use these equations to study the formation and
evolution of a tetrahedral spacecraft configuration.
The distinction between time-independent analytical

expressions and time-dependent numerical solutions pro-
vides a multifaceted understanding of the system’s dynam-
ics. Analytical models, like (88)–(89), offer insights into
fundamental behavior by emphasizing key parameters such
as the true anomaly ν. Meanwhile, the numerical solutions
shown in Sec. III D will present a detailed temporal
evolution, capturing intricate dynamics and possible real-
world perturbations. Both approaches are invaluable for a
holistic understanding of the spacecraft’s tetrahedral
configuration.

B. Setting up a representative spacecraft formation

Positioning satellites in elliptic orbits around the Sun
with high eccentricity provides a varying distance r, which
is crucial for detecting our signals of interest that are
expected to exhibit distance dependence. Circular orbits
would sample nearly constant background, potentially
missing the signals. Thus, to effectively measure these
new effects, a tetrahedral configuration of four smallsats on
elliptic orbits is considered. Furthermore, each satellite in
this configuration will have nearly the same semimajor axis
but will require precise initial positioning to ensure their
relative phasing and the effective maintenance of a tetra-
hedral formation in terms of propulsion, power, and
communication. Over time, natural perturbations can dis-
rupt this arrangement, necessitating onboard propulsion

systems or other correction mechanisms to uphold the
desired geometric constraints.
Consider a reference frame with its origin at a par-

ticular point within the tetrahedral formation. In this
frame, if we know the position of one spacecraft, and
we know the phase differences between the spacecraft,
using (88)–(89), we can determine the positions and
velocities of the other spacecraft in the formation. We use
that approach below to set up a representative formation
that allows us to learn on a dynamical behavior within the
tetrahedron.
Based on (88), geometrical relationships that describe

the relative motion in eccentric orbits are established.
Stable formations with no drift are of primary interest
(as we are interested to explore the existence of passive
orbits with no active control), and thus, the secular growth
in the separation between the spacecraft is eliminated by
constraining the energy of the orbits to be equal, that is,
Δai ¼ 0. This leaves

xi ¼ −a cos νΔei þ
ae sin νffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ΔMi;

yi ¼
�
aþ r

1 − e2

�
sin νΔei þ rðcos iΔΩi þ ΔωiÞ

þ a2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ΔMi;

zi ¼ r sin θΔii − r sin i cos θΔΩi: ð90Þ
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Other approaches for constraining the secular growth
between the vehicles are needed when perturbations cause
additional secular drifts. However, in unperturbed orbits,
setting Δai ¼ 0 is sufficient.
Equation (90) can be used to study various spacecraft

formation designs and their temporal evolutions. We have
studied several special cases of spacecraft formations,
including the following: (i) in-track, (ii) radial/in-track,
and (iii) radial/in-track/cross-track formations. Many other
formations exist and may be studied with expressions (90);
however, these three were sufficient to establish our under-
standing needed to investigate tetrahedral formations of
interest. Below, we use the third type of these formations
that offers the most general approach to set up a tetrahedral
formation.
In that regard, we study no-drift formations with space-

craft moving in all there dimensions in the RIC frame. For
that, we allow for small cross-track motion, thus requiring
that only ΔMi ¼ Δωi ¼ 0. In this case, (90) results in

xi ¼ −a cos νΔei;

yi ¼
�
aþ r

1 − e2

�
sin νΔei þ r cos iΔΩi;

zi ¼ r sin θΔii − r sin i cos θΔΩi: ð91Þ

This leaves us three design parameters to specify for a
cross-track formation: Δei;ΔΩi, and Δii.
To determine the constants involved in (91), we can

set the formation at the perigee by selecting ν ¼ 0.
Remembering that θ ¼ νþ ω, the equations in (91) are
matched to their initial values yielding

Δei ¼ −
xi0
a
; ΔΩi ¼

yi0
að1 − eÞ cos i ;

Δii ¼
zi0 þ yi0 tan i cosω
að1 − eÞ sinω ; ð92Þ

where ri0 ¼ ðxi0; yi0; zi0Þ are the initial positions of the ith
spacecraft. We can safely assume that the reference orbit is
within the ecliptic plane (i.e., i ¼ 0) and the perigee is
located at ω ¼ π=2. In this case, (92) yields the following

Δei¼−
xi0
a
; ΔΩi¼

yi0
að1−eÞ ; Δii¼

zi0
að1−eÞ : ð93Þ

As a result, the position of the ith vehicle identifies a
relevant formation in the RIC frame given as follows:

xi ¼ xi0 cos ν;

yi ¼ −
�
1þ r

að1 − e2Þ
�
xi0 sin νþ

r
að1 − eÞ yi0;

zi ¼
r

að1 − eÞ zi0 cos ν: ð94Þ

We also need to evaluate the relative velocities within
the constellation. For that, using (89) for the same con-
ditions that where used to derive solution (94), namely
Δai ¼ ΔMi ¼ Δωi ¼ 0, as well as ω ¼ π=2, i ¼ 0, and
using initial conditions (93), we have the following velocity
components:

ẋi ¼ −n sin ν
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �
a2

r2

�
xi0;

żi ¼ −
n sin νffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2
p

ð1 − eÞ
zi0;

ẏi ¼ −
�
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �
1þ r

p

��
a2

r2

�
cos νþ ensin2ν

ð1 − e2Þ32
�
xi0

þ en sin νffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ð1 − eÞ

yi0: ð95Þ

Results (94)–(95) suggest that not only the separation
between the vehicles changes as they move on their elliptic
and nearly identical orbits, their mutual orientation also
periodically varies. In addition, the entire tetrahedron
rotates with the natural frequency of the orbit.
We may use the results above to evaluate the dynamical

behavior within the constellation. To do that, we consider
the reference orbit with the semimajor axis of a ¼ 1 AU,
eccentricity e ¼ 0.6 (see Table III). For such a configura-
tion, the natural orbital frequency is n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ⊙=a3

p
≃

1.99 × 10−7 s−1. Considering the interspacecraft separation
of rij ∼ 103 km, the nominal relative velocities, vij,

TABLE II. Selected mission parameters of the GDEM mission
used in the simulations.

Parameter Symbol Value

Semimajor axis a 1 AU
Orbital eccentricity e ∼0.6
Heliocentric velocity vj≃

ffiffiffiffiffiffiffiffiffiffiffi
μ⊙=a

p
29.78 km=s

Mean orbital frequency n≃
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ⊙=a3

p
1.99 × 10−7 s−1

Heliocentric acceleration a0¼μ⊙=a2 5.93×10−4m=s2

Interspacecraft range rij 103 km
Interspacecraft range rate ṙij ≃ nrij 0.20 m=s
Relative spacecraft acceleration ̈rij ≃ n2rij 3.96×10−8m=s2

TABLE III. Top level instrumental requirements for the GDEM
mission, along with corresponding symbols used in the text.

Parameter Symbol Value

Laser ranging δr4i 1 × 10−11 m
Range-rates δṙ4i 1 × 10−5 m=s
Line-of-sight accelerations δ̈r4i 1 × 10−15 m=s2

AI, as inertial sensor δf4i 1 × 10−15 m=s2

Sagnac observable δω 1.5 × 10−15 s−1
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and accelerations, aij, within the constellation are estimated
to be

vij∼nrij≃0.20m=s; aij∼n2rij≃3.96×10−8m=s2: ð96Þ

We note that, as evidenced by the form of (94) and (95),
even in this rather simple case, in addition to the natural
frequency, n, there will be other frequencies present in vij
and aij. As a result, as the spacecraft move in the their
ecliptic orbits around the Sun, the values (96) will be
modulated and amplified, resulting in changes that are
small but important to be accounted for when considering a
realistic mission architecture. Therefore, below, we use
results (96) as nominal representative values when address-
ing the error budget and mission design.

C. Tetrahedral formation on an eccentric orbit

A natural basis for inertial measurements and scientific
observations is the orbiting (noninertial) reference frame,
fixed to the formation center. To describe the relative
motion of the spacecraft within the constellation, one needs
to choose a convenient reference point. There are two
options for such a choice, namely

(i) Mesocenter of the tetrahedron [44]: Choosing meso-
center (i.e., mean position or centroid) may seem
convenient from the dynamical standpoint; however,
the position of this point is not directly measured,
observed and/or otherwise maintained. In fact, such
a position would have to be computed using space-
craft orbital positions, their masses, and rotation
states. As most of the relevant trajectory information
will be provided by the DSN, it may not be of the
highest accuracy needed for the experiment, making
this option suboptimal.

(ii) Any spacecraft within the constellation: Choosing
one of the spacecraft as the reference point has a
practical advantage as individual spacecraft orbits
are going to be available from DSN and, thus, are
directly observed. Furthermore, such a choice would
allow us to benefit from laser ranging that will
provide us with highly precise interspacecraft range
measurements. Also, such a choice is consistent with
the relative nature of the measurements that are more
convenient to describe relying on the set of mea-
surements taken onboard.

Based on the arguments above, one can choose one of
the spacecraft to be the origin of the orbital coordinate
system, for convenience, placing it at spacecraft no. 4. Note
that such a coordinate system may be introduced at any
spacecraft within the constellation.
To describe the tetrahedron formation in the case when

one of the vehicles is on the reference orbit, we use the
solution (94). We choose spacecraft no. 4 to be on the
reference orbit and set up a regular tetrahedron.
There are many ways to set up such a configuration. As

an example, we consider a LISA-like tetrahedron formation
(with one of vehicles being on the reference orbit), and the
fourth vehicle completing a regular tetrahedron. This can be
done by choosing the following initial positions of the
vehicles [where, again, r04 ¼ ð0; 0; 0Þ]:

r01 ¼
� ffiffiffi

3
p

2
l0;

1

2
l0; 0

�
; r02 ¼

� ffiffiffi
3

p

2
l0;−

1

2
l0; 0

�
;

r03 ¼
�

1ffiffiffi
3

p l0; 0;

ffiffiffi
2

3

r
l0

�
: ð97Þ

As a result, with the help of (94), one configures a
tetrahedral formation:

r1;2 ¼
ffiffiffi
3

p

2
l0

�
cos ν;−

�
1þ r

að1 − e2Þ
�
sin ν� 1ffiffiffi

3
p r

að1 − eÞ ; 0
�
;

r3 ¼
1ffiffiffi
3

p l0

�
cos ν;−

�
1þ r

að1 − e2Þ
�
sin ν;

ffiffiffi
2

p
r

að1 − eÞ cos ν
�
; ð98Þ

where the “þ” sign is for spacecraft no. 1 and the “−” sign
is for spacecraft no. 2.
Clearly, many other tetrahedral configurations exist and

must be studied and optimized for the ultimate mission.
Opting for the LISA-like configuration, as defined by
Eqs. (97)–(98), serves a dual purpose. First, it allows the
focus to be on a well-studied configuration with known
desirable properties, which facilitates benchmarking and
validates the analytical and numerical methods used.
Second, since both the configurations considered were
developed using the same foundational approach embodied

in Eq. (94), they are likely to exhibit closely related
dynamical behavior. This choice thus permits a detailed
exploration of a subset of the parameter space without loss
of generality, thereby offering valuable insights for the
mission design while ensuring computational and analyti-
cal efficiency.
The oriented volume of the tetrahedron formed by the

four satellites is a fundamental descriptor of its spatial
configuration. Using the defined relative vectors rij ¼
rj − ri, the volume can be expressed in terms of the scalar
triple product. Using the specific values from (98), one can
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compute the magnitude and sign of the volume, which,
respectively, give the volume’s size and the orientation
(chirality) of the tetrahedral configuration:

V ¼ 1

6
ðr41 · ½r42 × r43�Þ≡ 1

6
det½r41; r42; r43�

¼ −
1

6
ffiffiffi
2

p l3
0

ð1þ eÞ2cos2ν
ð1þ e cos νÞ2 : ð99Þ

Figure 3 shows the characteristic behavior of the
volume (99) that takes four principal values, namely at
perigee, ν ¼ 0, it has its nominal value; at ν ¼ π

2
; 3π
2

it
collapses to zero; and at ν ¼ π it reaches its maximum
value, all given here:

Vð0Þ ¼ 1

6
ffiffiffi
2

p l3
0; V

�
π

2
;
3π

2

�
¼ 0;

VðπÞ ¼ 1

6
ffiffiffi
2

p l3
0

ð1þ eÞ2
ð1 − eÞ2 : ð100Þ

Note that for e ¼ 0.6, as the vehicles move on their orbits
between perigee and apogee, the volume increases by a
factor of ð1þ eÞ2=ð1 − eÞ2 ¼ 16, as shown in Fig. 3 (left).
(Note that in the case when e ¼ 0, the entire tetrahedron
preserves its shape and initial volume while rotating with
the orbital frequency.)
In addition, we need to understand the behavior of the

normalized unit volume that enters the denominators in
the reciprocal coordinate basis (37). The quantity we are
interested in is v ¼ ðn41 · ½n42 × n43�Þ, which may be
computed from (99) as vðνÞ ¼ VðνÞ=r41r42r43. Because
of the significant variability in the lengths of the tetrahedral
edges, this quantity exhibits significant changes as the
constellation moves in its heliocentric orbit, see Fig. 3
(right). Understanding the behavior of this quantity is
important for the mission designs as we want to know
the orbital regions where v vanishes as the overall

solution (42) experiences large variability, as will be
shown in Fig. 5.
The equations in (98) allow us to evaluate the behavior

of the relative vectors between the spacecraft. With r4 ¼ 0,
we have r4i ¼ ri while the remaining vector differences are
readily computed as rij ¼ rj − ri allowing us to study the
internal dynamics of the tetrahedral configuration via the
displacement between individual spacecraft pairs. To
appreciate the dynamics of the entire tetrahedral structure
we may examine either of the vectors to infer the overall
behavior and stability of the tetrahedral formation. Taking,
for instance, r41, we model the range between the two
vehicles as

r41 ¼
ffiffiffi
3

p

2
l0

�
cos2νþ

�
1ffiffiffi
3

p r
að1 − eÞ

−
�
1þ r

að1 − e2Þ
�
sin ν

�
2
�1

2

: ð101Þ

Figure 4 (left) shows the range evolution as the spacecraft
move in their orbit, indicating that for e ¼ 0.6, it periodi-
cally increases by ∼3.83 times. In Sec. III D, we further
explore this evolution with numerical simulations.
Similarly, we can also analyze the behavior of the

pointing angle between the vehicles 4 and 1. For that,
we model pointing with the unit vector n41 as usual:

n41 ¼
r41
r41

¼ ðcos θ41; sin θ41; 0Þ: ð102Þ

The knowledge of the pointing vector is important as it
informs the technical aspects of designing the laser inter-
ferometric ranging systems for GDEM. In particular, this
quantity determines the ranges of the angular articulation
for the three small optical telescopes that will be positioned
at each of the vehicle to enable rij measurements. In

FIG. 3. Left: evolution of the tetrahedron volume as a function of true anomaly ν and eccentricity, e, as given by (99). Vertical axis
shows the volume compared to its initial value at the perigee, VðνÞ=Vð0Þ, where formation was initiated. Right: changes in the
normalized volume ðn41 · ½n42 × n43�Þ ¼ VðνÞ=r41r42r43. Horizontal axis: ν∈ ½0; 2π�. Dashed: e ¼ 0; solid: e ¼ 0.6.
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addition, the same system will be used to provide attitudeω
via Sagnac measurements.
Figure 4 (right), shows the evolution of the pointing

angles with respect to the true anomaly. It emphasizes the
dynamical behavior of the tetrahedral configuration,
particularly highlighting the significant variation in the
pointing angle between vehicles 4 and 1. While this
variation is noteworthy, its gradual nature provides an
opportunity for mitigation. The slow rate of change
implies that, with astute instrumental calibrations and
effective mission design, it is possible to address and
compensate for these angle excursions, ensuring the
robustness of the spacecraft formation and the integrity
of the mission’s objectives. In Sec. III D, we further
explore this evolution with numerical simulations.
Figures 3–4 show the dynamic nature of the tetrahe-

dral constellation. It is evident that the constellation does
not maintain a static formation. Rather, it behaves much
like an elastic body—stretching, compressing, and twist-
ing, and concurrently experiencing kinematic rotations.
Such behavior is intrinsically tied to the satellites’
orbital dynamics and the gravitational interactions that
govern their motion. Given this dynamic nature, it is
vital to consider these characteristics in mission plan-
ning. For the mission’s success, accounting for these
elastic behaviors and rotations is essential, these influ-
encing both the calibration of instruments and the overall
mission design.
Linear approximation techniques have been

employed here to determine essential observables and
establish constraints for achieving a tetrahedral con-
figuration. Initial findings indicate that measurements
based on this approach yield an error margin of just 0.1%
[due to the terms in the model beyond those present
in (10)], offering a notable reduction in uncertainties when
contrasted with traditional methods. Our next step involves
a more in-depth exploration of this dynamics through
numerical simulations.

D. Numerical simulations

To validate the analysis and results that were discussed in
the previous sections, we developed a simulation software.
Implemented in HTML and JavaScript (to be expanded and
improved in further studies), the software offers a simple
visualization of the evolving tetrahedron configuration
while at the same time calculating the trace of the GGT,
as well as the same trace, recovered from intersatellite
range and generalized Sagnac observables.
In our simulation, the gravitational influence is limited

exclusively to the Sun’s gravity field. While gravitational
effects from other bodies in the Solar System do exist,
their impact on our results is negligible.5 This is due
to the vacuum Poisson equation, i.e., (2), with ρ ¼ 0.
Consequently, while the gravitational field influences the
satellites’ orbits, it does not directly affect the term trðTÞ.
This effect is only through the approximations previously
discussed. The contribution from the known Solar System
bodies other than the Sun to these terms is minimal and can
be considered insignificant for our simulation purposes.
The simulation code features a variety of preconfigured

satellite constellations. Among these, a particularly notable
orbit exhibits a high eccentricity, e ¼ 0.59, and a perihelion
distance of 0.6 AU. This specific orbit could potentially
represent a realistic experiment that might be conducted in
the future. In addition to this orbit, our investigation covers
a spectrum of orbital configurations, ranging from near
circular to highly elliptical trajectories. This includes orbits
with semimajor axes ranging from approximately 0.1 AU to
as large as about 30 AU.
The simulation software models an orbital constellation

comprising four satellites. These satellites’ initial state
vectors are derived from a nominal state vector but are
purposefully perturbed. Distances between satellites are a

FIG. 4. Left: distance r41 as a function of ν and eccentricity, e, as given by (58). Vertical axis shows the distance compared to its initial
value at perigee, r41ðνÞ=r41ð0Þ. Right: pointing angle θ41ðνÞ as a function of ν and eccentricity, e, as given by (102). Vertical axis: angle
in degrees. Horizontal axis is ν∈ ½0; 2π�. For both plots: dashed: e ¼ 0, solid: e ¼ 0.6.

5Note that GDEM relies on differential observables taken
at the nominal interspacecraft separation of rij ¼ 1000 km,
see Table III.
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few thousand kilometers, with relative heliocentric veloc-
ities differing by a maximum of 0.1 m=s (see Table II).
To improve the calculation accuracy, the software adopts

a moving reference frame that aligns with the satellite’s
nominal, unperturbed orbit. In this frame, the satellite
positions are typically within a few tens of thousands of
kilometers. This limitation enables the software to achieve
submicron level positional accuracy using standard double-
precision numerical formats. This method effectively
addresses the challenge of maintaining millimeter-scale
accuracy in a heliocentric coordinate system, which
becomes more complex when satellites are several AUs
away from the Sun.
For orbit calculations, the software incorporates a fourth-

order Runge-Kutta integrator. When simulating a satellite
orbit at 1 AU from the Sun, it uses a 600-s timestep. This
specific timestep is chosen to balance the minimization
of numerical errors with the efficiency of the simulation,
ensuring accurate yet expedient orbit predictions.
The main loop of the software integrates both the

numerical simulation and visualization components. The
visualization updates occur at a lower frequency to opti-
mize runtime performance, ensuring smooth animation.
During each iteration in the main loop we see the following:
(1) The software advances the satellite orbits using the

Runge-Kutta integrator.
(2) It then integrates the reference orbit, updating the

coordinate system origin for the subsequent iteration.
(3) It calculates trðTÞ in the inertial reference frame,

serving as the “true” value of this trace, given the
numerical constraints.

(4) Observables are derived, including the six intersa-
tellite ranges and the 12 generalized Sagnac ob-
servables.

(5) The software then determines the coordinates of the
four vertices in the TCS using the time series of
range observables.

(6) The generalized Sagnac observables are leveraged
to factor in rotation and pseudoaccelerations. The
software then calculates numerical second deriva-
tives from the coordinate time series to determine
relative accelerations.

(7) These values are used to reconstruct the gravitational
gradient tensor’s trace in the TCS, representing the
“observed” value. The software also factors in the
second-order gravitational gradient using Eq. (8).

(8) These steps are replicated for all four vertices. The
software then averages the “true” and “observed”
gravitational gradient tensor trace values across the
vertices and computes the corresponding standard
deviation.

Figure 5 (left) shows results for a specific orbit that has
been selected for this study with a perihelion of ∼0.6 AU
and an eccentricity of e ≃ 0.5909. In addition, the volume
of the tetrahedron formed by the arrangement of the four
satellites in space is depicted. This tetrahedral formation is
crucial because it is the basis for the measurement meth-
odology being discussed. When examining the data pre-
sented, it becomes evident that the majority of the
computational results align well with the predicted
accuracy for the trace of the GGT. However, there is a
notable exception. Whenever the tetrahedron becomes
“degenerate,” meaning its three-dimensional shape collap-
ses to a point where its volume is essentially zero, the
calculations do not reproduce the expected trace of the
GGT. This indicates the potential limitations or challenges
of this measurement methodology under specific geometric
conditions.

FIG. 5. Simulation of the trace of the GGT. Left: results for a specific reference orbit with a perihelion of 0.6 AU and eccentricity
e ∼ 0.5909, with the satellites initially forming a tetrahedron with ∼1000 km edges. Right: shows the values for the trace of the GGT
that are derived from the actual ranges between satellites and the generalized Sagnac observables (see Table III). The constellation
volume is also shown (orange solid line). Dashed purple line shows the heliocentric distance, referencing the secondary vertical axis.
Horizontal axis: days since perihelion passage.
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In contrast, Fig. 5 (right) shows the values for the trace of
the GGT that are derived from the actual ranges between
satellites and the generalized Sagnac observables (see
Table III). This means we are looking at data derived from
more direct measurements. Additionally, to improve the
accuracy of this data, the approximate distance and direc-
tional angle to the Sun, as it is perceived in the TCS (a
specific observational reference), are also considered. This
inclusion is necessary because there are certain gradient
contributions—specifically, those of the second order—
that are not addressed by (35). For clarity in interpretation,
gray error bars have been added to the graph. These bars
represent the variability in the values obtained when the
same calculation is repeated. Each repetition is anchored at
a different vertex of the tetrahedron, and there are four such
vertices, leading to four repetitions.
One can see that there is a clear correlation between the

geometry of the tetrahedron and the sensitivity of mea-
surements. Specifically, when the tetrahedron’s volume
collapses—effectively making it flat—the ability of the
satellite constellation to detect perturbations in the GGT
decreases. This geometric condition hence becomes a
limitation or a challenge in the study. To further elucidate
this behavior, Fig. 6 enlarges the specific segments of the
constellation’s orbit, focusing particularly on those seg-
ments where the sensitivity to detect change in the GGT is
at its maximum. This view can help us understand the
conditions under which the methodology is most effective.
Additional details from this simulation are shown in

Fig. 7, in the form of the six intersatellite ranges. We can
see that the ranges change substantially during a full orbit,
varying between ∼1000 and ∼8000 km. Such variations
could be due to various factors like gravitational perturba-
tions, inherent satellite propulsion, or design of the orbit.
The range data indicate the dynamism of the satellite
constellation during its operation. Figure 8 shows two
views of the tetrahedral angles (that is to say, the angular
separation of a pair of satellites as seen from a third

satellite). There are 12 such angles (three per tetrahedron
vertex or, alternatively, three per tetrahedron face).
Correspondingly, two views are presented: in one view,
the angles are grouped using the same color per vertex,
whereas in the other, the grouping is by face. We can see
that the tetrahedron flexes substantially, with all 12 angles
changing dramatically during a full orbit. Both views reveal
a significant amount of flexing in the tetrahedron through-
out its orbit. The angles are not rigid but vary substantially,
highlighting the tetrahedron’s dynamic geometry as the
satellites move.
These results are by no means unique to the specific

configuration that we used for this simulation. However,
this configuration performed quite well in comparison to
potential alternatives. This is evident when observing the
cyclical nature of the satellite constellation. After complet-
ing a full orbit, the satellites realign into a formation
very close to their starting configuration. Such behavior
underscores the resilience and reliability of the chosen

FIG. 6. Details from the simulation shown in Fig. 5 from a region of maximum sensitivity.

FIG. 7. The six intersatellite ranges of the configuration
introduced in Fig. 5.
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configuration. However, the takeaways are clear: any
ultimate mission that aims to use a tetrahedral configuration
must account for the inherent flexibility of the tetrahedron
and the variability in intersatellite distances. These factors
are not mere nuances; they are integral to the mission
design. Ensuring the optimal functionality of equipment
onboard, communication between satellites, and accurate
data collection hinges on understanding and leveraging
this dynamics.
We note that this simulation is constrained, in part, by the

limits imposed by double-precision arithmetic, which
yields at most ∼15.9 digits of precision for simple
arithmetic operations. For complex calculations, errors
accumulate (random walk) so we do not expect a relative
accuracy much better than ∼10−14. This constrains our
ability to recover the “true” value of the trace, and further
constrains our ability (in particular, by limiting the accuracy
at which the Sagnac observable is modeled) to recover the
“observed” value. Ultimately, a more accurate simulation
may benefit from the use of extended precision arithmetic,
which was not implemented in this prototype simulation.
In the simulation, trðTÞ exhibits a nonzero value with a

notably tight standard deviation σtrðTÞ ≲ 10−24 s−2. This
standard deviation is computed by iterating over the four
satellites, considering each as the origin point in the
satellite-fixed TCS reference frame. The tightness of this
standard deviation suggests that the deviation from zero is
not due to random errors; rather, it indicates the presence of
second-order tidal terms that have not been accounted for in
the GGT. When these second-order terms (8) are included
in the model, the trace of the GGT comes significantly
closer to zero. Similar improvements were observed when
some of the relativistic terms were included.
We emphasize that once the Sagnac observables are fully

incorporated, the estimated trðTÞ value comes significantly
closer to zero, offering a more accurate representation of

the GGT. Therefore, the inclusion of the Sagnac-type
measurement provides an important correction mechanism
to improve the precision of the estimate. More broadly, in
satellite constellations, determining relative accelerations
requires accounting for the rotational dynamics of the
reference frame. This involves determining the frame’s
angular velocity, achievable through the Sagnac effect in
the constellation’s tetrahedral configuration. By analyzing
these timings bidirectionally across three satellite triplets, the
frame’s three-dimensional angular velocity can be accurately
derived, ensuring precise acceleration measurements.
We also examined various orbits spanning from circular

to eccentric and even those beyond 1 AU. We observed an
enhanced accuracy in verifying trðTÞ ¼ 0 with the expan-
sion of orbital sizes, but significantly large heliocentric
distances are nonviable. Observations highlighted intersa-
tellite range fluctuations during orbits and accuracy reduc-
tions during tetrahedron volume collapses. The prevailing
limitation was the double-precision floating-point arith-
metic. For optimal orbit determination and to maximize the
tetrahedral configuration’s efficacy, a transition to extended
precision arithmetic is imperative.
As a result, based on simulations and mission analysis,

we determine that achieving a sensitivity of 1 × 10−24 s−2

is feasible for the satellite configuration considered. This
assessment considers the precise angular velocity meas-
urement obtained through bidirectional Sagnac effect
timing across the tetrahedral satellite constellation. The
targeted sensitivity reflects the technical capabilities of
the system, encompassing error analysis, system response,
and operational thresholds in the specified rotational
dynamics context.
Finally, to evaluate the accuracy of our calculations,

we introduced a modification to Newtonian gravity by
incorporated a Yukawa term modeling it as Umod ¼
ðμ⊙=rÞð1þ αe−r=λÞ [20]. In a practical application, we

FIG. 8. The 12 tetrahedron angles of the configuration introduced in Fig. 5, grouped, using color, by vertex (left) and tetrahedron face
(right).
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conducted a sample run using Yukawa parameters
α ¼ 1 × 10−7 and λ ¼ 1 AU. It is important to note that
these parameters were chosen not to simulate any real-
world modifications of gravity but rather to test and
validate the simulation code. The test run had shown that
the trace corresponding to the GGT computed with Umod

and evaluated to be at a level below Oð10−21 s−2Þ was
detected by the constellation, showing the feasibility of the
approach.

IV. CONCLUSIONS

We have evaluated the GDEM—a prospective space
mission concept whose design is based on four spacecraft
operating in a tight tetrahedral formation. GDEM’s con-
figuration is specifically engineered to optimize both the
sensitivity and spatial resolution in precisely measuring
the GGT.
The technical feasibility of the GDEM is supported by

advancements in several key technological areas. These
include spacecraft formation flying, laser interferometric
ranging techniques, and the evolution of sophisticated data
analysis methodologies. The implementation of GDEM
relies on the following: (1) Precision formation flying in a
tetrahedral configuration for optimal sensitivity and spatial
resolution. (2) Precision laser ranging to accurately mea-
sure the distances between spacecraft. (3) Use of AI to
correct for local nongravitational disturbances and enhance
the precision of gravitational measurements. (4) Sagnac
interferometry is used for accurately determining the
formation’s angular velocity, which is essential for main-
taining the tetrahedral configuration and interpreting gravi-
tational data.
We analyzed the dynamics and behavior of a tetrahedral

spacecraft formation, comprising four spacecraft in nearby
elliptical heliocentric orbits. The choice of elliptical orbits
over circular ones allows for sampling signals at varying
heliocentric distances, thus improving detection probabil-
ity. To achieve this, we developed analytical expressions
that precisely describe the spacecraft dynamics within an
orbital coordinate system defined at the tetrahedron.
An important observation relates to the tetrahedron’s

volume evolution. Specifically, during each orbital revo-
lution, the volume of the tetrahedron, defined by the
spacecraft positions, collapses twice. This behavior is
systematically represented in Fig. 3 and mathematically
described by (100). Such changes in the volume can
substantially influence the sensitivity and precision of
the scientific data that are captured during the mission.
We studied the evolution of the distances between the
spacecraft in the formation. For orbits with an eccentricity
of e ≃ 0.6, these interspacecraft distances displayed notable
variability. In some cases, distances expanded or contracted
to levels that were up to four times their original measure-
ments, as shown in Fig. 4.

We also noted that prior to each of those instances
when the tetrahedron’s volume collapses, the quality of the
solution begins to degrade. This may be addressed by
resetting the tetrahedral constellation multiple times per
orbit, ensuring data quality is maintained across all orbital
segments. Consequently, we can gather data throughout
crucial orbital segments, particularly at the apogee and
perigee, which are vital in the quest for Galileons.
We considered the practical implications of the tetrahe-

dron’s dynamic behavior, especially in terms of gimbal
articulation. As spacecraft move in their orbits, the tetra-
hedron’s edges change causing the relative angles between
the spacecraft change by more than 80°. Such angular
variations necessitate the development and deployment of
gimbals that can achieve these wide articulations but also
maintain stability throughout the entire angular range.
Our investigation highlighted a pivotal distinction

between internal and external measurements. Traditional
external references, prevalent in astrometry, exhibit limi-
tations in precision. Given these constraints, our study
advocated for the use of Sagnac observables, which are
based on local measurements. This approach has the
potential to surpass current methodologies, offering
enhanced measurement accuracy without dependency on
external reference systems.
We explored the feasibility of a tetrahedral constellation

of four satellites in heliocentric orbit to precisely reconstruct
the trace of the GGT. These satellites are designed to gauge
intersatellite distances and to clock the round-trip times
and phases of signals coherently exchanged between them.
Relying solely on intersatellite distances poses challenges
due to its ignorance on the constellation’s rotational dynam-
ics, which introduce fictitious forces. However, by integrat-
ing Sagnac-type observables, we can precisely account for
and rectify these rotational discrepancies.
Our analysis of trðTÞ unveiled critical second-order tidal

effects overlooked in the primary formalism. If these effects
predominantly arise from the Sun, then even an approxi-
mate reckoning of the Sun’s position and distance in the
satellite-fixed reference can considerably refine experimen-
tal accuracy. On the relativistic front, given the precision
prerequisites of our experiment, a moderate understanding
of the constellation’s velocity relative to a heliocentric
inertial frame is sufficient for calibrating onboard time-
keeping mechanisms, thereby endorsing our nonrelativistic
modeling. To cap it off, our analysis underscores the
imperative of extended precision arithmetic in models
and simulations, as double precision falls short of deliv-
ering the sought-after accuracy level of Oð10−24 s−2Þ.
Given that the predicted force of dark energy in our Solar

System is vastly weaker than Newtonian gravity—by about
ten orders of magnitude—GDEM’s primary objective is to
identify variations in the acceleration’s gradient. Contrary
to the zero gradient trace in Newtonian 1=r2 forces, other
theories predict nonzero traces. GDEM targets a detection
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sensitivity of 10−24 s−2 over three-year period for these
gradients. The GDEM uses the cubic Galileon field to
explore a potential fifth force in the Solar System. Through
a tetrahedral spacecraft configuration, the weak Galileon
force can be detected as a trace of the GGT, with
measurements remaining orientation invariant.
Forces derived from 1=r potentials adhere to the ISL and

maintain zero Laplacians in source-free regions. Unlike
these, the Galileon force’s 1=

ffiffiffi
r

p
dependence produces a

nonzero trace corresponding to its force gradient. This
allows for the direct measurement of the trace of the local
GGT, circumventing gravitational inhomogeneity and
eliminating the need for detailed data on mass distribution.
Furthermore, the trace of GGT is a symmetric tensor is
rotationally invariant, reducing concerns about the precise
instrument orientation. This means the specific positioning
of the measurement instrument is not a concern, reducing
potential issues related to spacecraft pointing using star
trackers.
To optimize the conditions to detect the anticipated

signal that behaves ∝ 1=
ffiffiffi
r

p
, the GDEM spacecraft will

be placed on nearby elliptic heliocentric orbits that will
allow us to sample the Galielon field at various distances
from the Sun. Based on our simulations of the Galielon
field, there is an order of magnitude of the Galielon force
variation in the Solar System. An elliptical orbit with
varying distance from the Sun will allow the observation of
such variation. This distance-dependent variation would
significantly reduce the systematics yielding a stronger
evidence for a GR violation, if observed. This insight will
be used to further assess the relevant mission and instru-
ment requirements.
As a result, we have shown that the tetrahedral satellite

constellations offer a promising avenue for precision
gravitational measurements. In the quest to accurately
measure variations in the gravitational field, particularly
the trace trðTÞ, the configuration’s potential becomes
evident. Using the data about the Sun’s position and
distance, our system—comprising satellites typically
spaced 1000 km apart and orbiting with a semimajor
axis of 1 AU—shows capability to achieve a measurement
precision approaching Oð10−24 s−2Þ. Such precision pro-
vides a tangible means to probe for Galileonic deviations
in the solar gravitational field, potentially significantly
improving our current understanding. More broadly, the
mission obtained dataset may also be used for other
science analysis including dark matter detection and
detection of gravitational waves within the so-called
midband frequency [52].
To conclude, the GDEM mission is undeniably ambi-

tious, yet our analysis underscores its feasibility within
the scope of present and emerging technologies. In fact, the
key technologies required for GDEM, including precision
laser ranging systems, atom-wave interferometers, and
Sagnac interferometers, either already exist or are in active

development, promising a high degree of technical read-
iness and reliability. A significant scientific driver for the
GDEM lies in the potential to unveil non-Einsteinian
gravitational physics within our Solar System—a discovery
that would compel a reassessment of prevailing gravita-
tional paradigms. If realized, then this mission would not
only shed light on the nature of dark energy but also
provide critical data for testing modern relativistic gravity
theories. It has the potential to advance the search for
ultralight fields of dark matter and facilitate gravitational
wave detections in the midband frequency spectrum. This
paper sets forth the requisite technological and methodo-
logical foundations essential to the GDEM’s successful
execution. While this constitutes a significant stride, the
relevant work continues, and subsequent findings will be
communicated in future publications.
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APPENDIX: RELEVANT PARTIAL
DERIVATIVES

The partials of r and ν with respect to α are computed by
first taking the partials of M with respect to α,

M ¼ M0 þ nðt − t0Þ ⇒
∂M
∂e

¼ ∂M
∂i

¼ ∂M
∂Ω

¼ ∂M
∂ω

¼ 0;

∂M
∂a

¼ −
3n
2a

ðt − t0Þ;
∂M
∂M0

¼ 1: ðA1Þ

The partials of M are then related to the partials of the
eccentric anomaly, E, through Kepler’s equation, from
M ¼ E − e sinE, we derive
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∂E
∂i

¼ ∂E
∂Ω

¼ ∂E
∂ω

¼ 0;
∂E
∂a

¼ −
3n
2r

ðt − t0Þ;
∂E
∂e

¼ sinE
1 − e cosE

¼ sin νffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ;
∂E
∂M0

¼ 1

1 − e cosE
¼ a

r
:

ðA2Þ

The partials of r can be related to the partials of E
through several equations. From r¼að1−ecosEÞ, we have

∂r
∂i

¼ ∂r
∂Ω

¼ ∂r
∂ω

¼ 0;
∂r
∂a

¼ r
a
−
3nðt − t0Þe sin ν

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ;

∂r
∂e

¼ −a cos ν;
∂r
∂M0

¼ ae sin νffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p : ðA3Þ

Also, the partials of ν can be related to the partials of r and
E through the equation a cosE ¼ aeþ r cos ν, yielding

∂ν

∂i
¼ ∂ν

∂Ω
¼ ∂ν

∂ω
¼ 0;

∂ν

∂a
¼ −

3a
2r2

nðt − t0Þe
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
;

∂ν

∂e
¼ sin ν

1 − e2
ð2þ e cos νÞ; ∂ν

∂M0

¼ a2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
: ðA4Þ

The partial derivatives of r with respect to α are
computed using the preceding results for ∂r=∂α and
∂ν=∂α. For that, introducing

Π1 ¼

2
64
cosΩ cos θ − sinΩ cos i sin θ

sinΩ cos θ − cosΩ cos i sin θ

sin i sin θ

3
75; Π2 ¼

2
64
− cosΩ sin θ − sinΩ cos i cos θ

− sinΩ sin θ þ cosΩ cos i cos θ

sin i cos θ

3
75; ðA5Þ

we have

∂r
∂a

¼ ∂r
∂a

Π1 þ r
∂ν

∂a
Π2;

∂r
∂e

¼ ∂r
∂e

Π1 þ r
∂ν

∂e
Π2;

∂r
∂M0

¼ ∂r
∂M0

Π1 þ r
∂ν

∂M0

Π2; ðA6Þ

∂r
∂i

¼ r

2
64

sinΩ sin i sin θ

− cosΩ sin i sin θ

cos i sin θ

3
75; ∂r

∂Ω
¼ r

2
64
− sinΩ cos θ − cosΩ cos i sin θ

cosΩ cos θ − sinΩ cos i sin θ

0

3
75; ∂r

∂ω
¼ rΠ2: ðA7Þ

Thus, the partials of r with respect to α can be written as the sensitivity matrix SHCI,

SHCI ¼
�
∂r
∂a

���� ∂r
∂e

���� ∂r
∂i

���� ∂r
∂Ω

���� ∂r
∂ω

���� ∂r
∂M0

�
3×6

: ðA8Þ
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