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The merger phase of compact binary coalescences is the strongest gravity regime that can be observed.
To test the validity of general relativity (GR) in strong gravitational fields, we propose a gravitational
waveform parametrized for deviations from GR in the dynamical and nonlinear regime of gravity. Our
fundamental idea is that perturbative modifications to a GR waveform can capture possible deviations in the
merger phase that are difficult to model in a specific theory of gravity. One of notable points is that
our waveform is physically consistent in the sense that the additional radiative losses of energy and
angular momentum associated with beyond-GR modifications are included. Our prescription to ensure
physical consistency in the whole coalescence process is expected to be applicable to any deviation from
the standard model of compact binary coalescence, such as the extended models of gravity or the
environmental effects of compact objects, as long as perturbative modifications are considered. Based
on the Fisher analysis and the compatibility with Einstein-dilaton Gauss-Bonnet waveforms, we show that
our parametrization is a physically consistent minimal one that captures the deviations in the nonlinear

regime.
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I. INTRODUCTION

General relativity (GR), the standard theory of gravity, is
consistent with experimental and observational tests to
date, particularly in weak gravitational fields (for reviews,
see e.g., [1,2]). On the other hand, it is only recently that
we have been able to verify GR in strong and dynamical
gravity regimes. It has been made possible by the detection
of gravitational waves (GWs) from compact binary coa-
lescences (CBCs) [3,4]. In fact, the LIGO-Virgo-KAGRA
(LVK) collaboration has so far reported 90 GW events from
CBCs, and several tests have been performed [5-7] and
found no significant evidence of GR breaking within the
current accuracy.

From a theoretical point of view, GR is not considered as
an ultimate theory of gravity. This is because it has several
problems in the strong gravity limit, such as nonrenorma-
lizability as a quantum theory of gravity or the prediction of
singularities where the laws of physics break down. Our
understanding of physics in the strong gravitational fields
is still poor due to a lack of observational confirmation.
To address this issue with GW observations, it is crucial to
extract information on the strong gravity regime from
observational data. Since some theories predict modifica-
tions in GW signals (see, e.g., [8,9]), analyzing GW data
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from CBCs allows us not only to confirm GR but also
might provide a clue on a theory beyond GR.

In general, a binary black hole (BBH) coalescence
consists of three stages: inspiral, merger (or plunge), and
ringdown phases [3]. Except for the merger phase, we can
use the perturbative approaches, that is, the post-Newtonian
expansion for the inspiral phase (see, e.g., [10]) and the BH
perturbation theory for the ringdown phase (see, e.g., [11]).
However, to understand the dynamics of the merger
phase, we need to resort to numerical relativity (NR) simu-
lations. This is because the merger is a highly dynamical
gravity regime, and there is no analytical approach so far.
Therefore, to estimate the source properties from the full
inspiral-merger-ringdown (IMR) data, phenomenological
waveforms are used, which are constructed by combining
the merger waveform, which are derived by fitting to
NR data, with analytical waveforms for the inspiral and
ringdown parts.

In GW analysis for testing GR, parametrized frameworks
are often used to quantify deviations from GR with clear
physical interpretations (see, e.g., [12—16] for the inspiral
and [17-25] for the ringdown). One of the representatives is
the parametrized post-Einsteinian framework [12]. In [12],
Yunes and Pretorius introduced phenomenological mod-
ifications to the inspiral waveform that can reproduce
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deviations for several theories that are calculated analyti-
cally. In contrast, for the merger, it is more difficult to
construct a framework compatible with extended models
due to few NR predictions based on specific models. This is
primarily because the well-posedness of the initial value
problems in the extended models is not known. Instead of
performing the full NR simulations, several studies provide
IMR waveforms for a limited number of extended theories
in GR (see, e.g., [26,27]).

On the other hand, model-agnostic analyses for the
merger part have been conducted so far. For example,
LVK testing GR papers have shown the results of para-
metrized tests and IMR consistency tests [4—7]. The para-
metrized tests estimate fractional deviation in one of GR
coefficients, such as post-Newtonian parameters in the
inspiral waveform or the ringdown and damping frequen-
cies for the ringdown waveform. For the merger waveform,
deviations of the artificial parameters introduced in the
fitting procedure are estimated. One of the problems with
the merger waveform is difficulty in the identification of the
physical meanings of these fitting parameters. This means
that, if a significant deviation is found by future analysis,
it is difficult to interpret the deviation physically. More-
over, the analysis does not take into account the correla-
tions between the parameters as only a single parameter is
allowed to vary at a time. Such an analysis could bias the
estimated results. The IMR consistency tests check the
consistency between the inspiral and the post-inspiral parts
by assuming GR. This test simply checks consistency with
GR, but it is difficult to derive the physical implications,
because the post-inspiral part includes not only the merger
part but also the late-inspiral and ringdown parts. This
indicates that, if an inconsistency is found, it is difficult
to derive a physical picture only for the nonlinear regime.
Besides the LVK studies, there are a few studies that
propose analytic frameworks and perform the analysis for
the nonlinear region [28,29]. However, a satisfactory
method is still under discussion whether or not these
waveform models can cover the IMR signal of a particular
theory.

A. Summary of our parametrized waveform

To address the issues above, we propose a physically
consistent modified IMR waveform model that can mea-
sure perturbative deviations from GR in the nonlinear
regime by introducing two beyond-GR parameters: one
each to phase and amplitude. Our modification is minimal
in the sense that amplitude and phase can be modified
independently. In this work, we take the IMRPhenomD
waveform [30] as our fiducial waveform and do not modify
the inspiral and ringdown parts since we focus on the
deviations in the merger part.

(i) Beyond-GR phase parameter. We adopt the largest

principal component among the artificial parameters
in the phase of a phenomenological GR waveform.

We believe that the principal component contains
physical information about the nonlinear dynamics
of BBH, including orbital evolution and energy and
angular momentum loss rates, since the PCA is
considered to be the most dominant independent
component of the merger part, although it is not easy
to extract physical information about the PCA itself.
Furthermore, this specification is expected to break
degeneracies between artificially introduced param-
eters, which have not been considered in previous
studies (e.g., [4-6]).

(ii) Beyond-GR amplitude parameter. We adopt a
parameter that describes an amplification after the
inspiral phase. This parameter is basically given as
the parameter that characterizes the amplitude peak
of a signal.

(iii) Additional radiation backreaction. To ensure physi-
cal consistency for the entire IMR process, we
include the radiation reaction to our waveform by
calculating the additional losses of energy and
angular momentum associated with the beyond-
GR amplitude parameter. These losses are calculated
based on the quadrupole formulas for energy and
angular momentum losses and then are reflected in
the mass and spin of a remnant BH, resulting in a
physically consistent waveform.

Our prescription to ensure the physical consistency is
expected to be applicable to any deviation from the
standard model of compact binary coalescence, such as
the extended models of gravity or the environmental effects
of BHs, as long as perturbative modifications are consid-
ered. Our waveform captures deviations only in the non-
linear regime and, importantly, is constructed so as to
ensure the physical consistency of a remnant BH. Finally,
we show that our waveform can cover Einstein-dilaton
Gauss-Bonnet gravity waveforms [27] within the measure-
ment errors in the O4 and OS5 observations.

B. Plan of the paper

The rest of this paper is organized as follows. In Sec. II,
details of IMRPhenomD waveform [30], which is adopted
as a basis for our modified waveform, are presented. In
Sec. III, the construction of our modified waveform is
discussed. We elaborate on the strategies for introducing
beyond-GR parameters into phase and amplitude, and for
ensuring physical consistency through the inclusion of
radiation backreaction. In Sec. IV, we evaluate the proper-
ties of our waveform and the measurability of beyond-GR
parameters. Specifically, the mismatch, the measurement
error estimates in the O4 and OS5 observations, and the
compatibility with Einstein dilaton Gauss-Bonnet gravity
waveforms [27] are presented. Finally, in Sec. Vand VI, the
discussions and conclusions are presented, respectively.
Throughout this paper, we adopt the geometrical unit where
G = ¢ =1 except for Sec. III D.
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II. GR WAVEFORM

Extracting the physical information imprinted in the
GWs requires waveform templates, which are a family of
the waveforms that are parametrized by many binary
parameters and allow us to estimate a set of the best-fitting
parameters. In the inspiral and ringdown, we can construct
analytical waveforms because perturbative approaches can
be applied. For the inspiral, we use the post-Newtonian
(PN) approximation method (see, e.g., [10]), which gives
an accurate expression for a waveform when binary sepa-
ration is large and slow velocity, v < ¢. For the ringdown,
the waveform can be modeled based on BH perturbation
theory (e.g., [11]), which is valid as long as deviation from
an unperturbed BH spacetime can be considered small.
However, for the merger phase we need full numerical
relativity simulations despite high computational cost. To
avoid this, numerical fitting to the NR waveforms [31] is
used. The waveforms are approximate analytic ones and are
easy to handle in GW searches more cheaply and quickly.
Several Phenom waveforms are currently available for
practical use. In this study, we adopt IMRPhenomD wave-
form [30], which is one of the Phenom waveforms for an
aligned-spinning binary with circular orbit.

In this section, we briefly review the IMRPhenomD
model, which describes the dominant GW mode from the
spin-aligned BBH coalescence process.

A. Conventions

We begin by confirming the convention used throughout
this paper. A BBH system originally has 8 intrinsic

parameters: BH masses m; and spin vectors S ; for each
component (i = 1, 2). We define the z direction as the
direction of the orbital angular momentum and use some
specific combinations:

M = m; + m,:total mass, (2.1)
- = . spin component alon
Si= (8, +8y) Lo P COmP £ 22
orbital angular momentum
Xi = —— .dimensionless spin parameter, (2.3)

where L is the unit vector directed to the vector of orbital

angular momentum. Furthermore, we define other
parameters:
= m]‘14”212 :symmetric mass ratio, (2.4)
o S .
S:= €[-1, 1]:normalized S, (2.5)
1-2y
Heff = it Mo seffective spin parameter, (2.6)

38n
XPN = Xeff — 113 (1 +x2)

:leading spin effect in PN expansion.  (2.7)
In this work, we restrict ourselves to spin-aligned binaries.
Thus, there are four intrinsic parameters: the mass m; and
— A
the component spin §; := §; - L.
In the paper, we define the Fourier transform of A(z) as

A(f) = /_ ® 4t h(r)e-2r1 (2.8)

[e5]

Furthermore, we adopt a definition of the noise-weighted
inner product between two arbitrary functions, A(f)
and B(f),

(A(f), B(f)) = 4Re { /ff %

where f i, fmax are the lower and upper cutoff frequencies
and S, (f) is the noise power spectral density of a detector.

df] . (2.9

B. IMRPhenomD

The IMRPhenomD waveform describes the dominant
(I,m) = (2,42) mode from the entire process of an
aligned-spin (nonprecessing) BBH merger in the frequency
domain, with the mass ratio up to 1:18 [30]. The form is
written as

her(f) = Agr(f) e Par(f),

where ¢gr(f) and Agg (f) are the phase and amplitude of a
GW signal, respectively. In the following, we fix a sub-
script, GR, to a quantity in GR when we emphasize it.
Pgr(f) and Agr(f) are divided into three frequency
ranges, denoted as the inspiral (ins), intermediate (int),
and merger-ringdown (MR), respectively,

(2.10)

bins(f), [ < m

ber(f) = Pn(f). o1 SF <2, (2.11)
dmr(f), 2=
Ains(f)s  f < fa

Agr(f) = Ai(f),  fa Sf<fo, (2.12)
Avr(f), f2fa

where f; and f,; (i = 1, 2) are the collocation frequencies
introduced below.

1. Phenomenological parameters

To model a nonlinear regime, the IMRPhenomD wave-
form adopts phenomenological parameters that are intro-
duced to fit to NR waveforms. ¢gr(f) and Agr(f) have
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11 and 14 phenomenological parameters, respectively [30].
Here we denote them all as {A’}. Seventeen coefficients out
of {A’} are modeled with polynomial functions of 5 and
ypn from fitting to NR data,

A(n. xen) = My + Aign + (ren — 1) (A + A5ym + 2sy7)
+ (ren = 12 (A + Aion + 2oo0?)

+ ()(PN - ])3(’163 + /133’7 +/1§3772), (2-13)

where {1, } are given in [30].
The remaining eight coefficients are determined by the

C! continuity conditions for ¢gr(f) and Agr(f) at the
collocation frequencies,

fo1 =0.014/M, (2.14)
fo2 =0.5frp. (2.15)
fa1 = 0.018/M, (2.16)
Sa2 = Jpeaks (2.17)
with
e = | = 2Lt~ Vise) )

72

where {y,,y3} are the amplitude coefficients in the merger-
ringdown regime determined by Eq. (2.14), and frp and
Jf damp are the ringdown and damping frequencies, that are
computed by the following fitting formulas [32]:

1
fro =5 {15251 = LIS68(1 —a)*'*?}. (2.19)

0 = 0.7000 + 1.4187(1 — a;)04%,  (2.20)
/rD
== 2.21
fdamp 2Q ( )

Here a; is the dimensionless spin parameter of the remnant
BH, which is defined as

CSf
as = ——,
T om?

(2.22)
where M; and S; are mass and spin of the remnant,
respectively. For our study, we use the latest remnant
formula of a; given in [33], while the original waveform
adopts the formula given in [34].

In the next subsection, we see details of IMRPhenomD
construction. Following [30], we omit the total mass
dependence. If you want to revive the dependence, replace
S with Mf.

2. Phase

In the inspiral regime f < f,,; phase, ¢(f), is modeled
based on the TaylorF2 waveform [35-37], which provides
an analytical expression for the dominant GW modes
(I, m =2,42) in the early inspiral,

~ 57] ~ M? ~ y
hrp (f) = Y 2/37]’ 7/6g=idrra(f)

b (f) = 2nft. — . — n/4
;
(2f)BY " dilxf), (2.24)
i=0

(2.23)

+ 128y

where r is distance to a binary, ¢, and ¢, are the time and
phase at coalescence, respectively, and {¢;} are analyti-
cally calculated PN coefficients up to 3.5 PN order [37].
Then, the phase part of the IMRPhenomD consists of the
TaylorF2 phase and phenomenological corrections mod-
eled based on the PN expansion,

1 3
Gins(f) = drr2(f) +; (00 + 61f+102f4/3

5 (2.25)

3 1
+§03f5/3 +—04f2>1
where {0;} are four fitting coefficients in the inspiral given
by Eq. (2.14).
In the intermediate regime f,; < f < f», the phase
Pin(f) is given as

1 B .
bin(f) = 0 (ﬂo + /1 f +brlogf - ?3]( 3>, (2.26)
where {,, 3} are artificial coefficients in the intermediate
regime given by Eq. (2.14).
In the merger-ringdown regime f > f,,, the phase part is
given as

! 4
Pmr(f) :;{050 +af—af! +§a3f3/4

gt (000

where {a,, a3, 4, a5} are artificial coefficients in the
merger-ringdown regime given by Eq. (2.14). In particular,
{ay, as} characterize the ringdown phase in the sense that
arctan part ay tan~" [(f — @sfrp)/f damp) Models an analytic
behavior of the phase of the ringdown part. On the other
hand, {@,, a3} characterize the nonlinear region around
merger. The remaining four coefficients {f, f1, &y, a; } are
fixed by imposing the C' continuity conditions at f = Ipi
and fp2, that is,

(2.27)
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Gins(fp1) = Pine (1) (2.28)
Dine(fp2) = Pvr(fp2)- (2.29)
ins (fp1) = Pl (fp1)- (2.30)
i (fp2) = Pr (f2): (2.31)

where the prime is a derivative with respect to f.
We can write these continuity conditions in the matrix
form for {fy 1. a0},

L fa O 0 Po G
0 1 0 0 C
Pl & (2.32)
1 fp2 -1 —fpz (20} Cs3
0o 1 0 -1 a C,
with
_ P
Ci = nins(fp1) — P2 log [ +§fpr3» (2.33)
Cy = el (fpl) - ﬁprl_l - ﬂ3fp1_3’ (2.34)

p _ _ 4
C3 = —parlog f +§3fp2 3 —afp ! +§a3fp23/4

+ aytan! (@) (2.35)
fdamp
Cy = —ﬂzfpz_1 - ﬂ3fp2_4 + 052fp2_2 + 053fp2_1/4
a4fdamp (236)

N fdamp2 + (fp2 - anRD)2 '

{C;} are constant values once we determined the initial
configuration and the coefficients {f,,f5} and {a,, a3,

a4,a5}.

3. Amplitude

In the inspiral regime, amplitude consists of the TaylorF2
part, Apn(f) (up to 3 PN order), and the phenomenological
corrections above 3.5 PN order,

6
Auns(f) = Apn(f) + Ao(f) D pif OB, (2.37)
i=0
with
6
Apn(f) = Ao(f) D Ai(z )7, (2.38)

i=0

where Ay(f) := @ =7/ is a normalized TaylorF2 ampli-
tude in the sense that f7/®A.(f) approaches unity at the

limit of f — 0. {A;} are the PN coefficients derived
analytically [30], and {p,} are seven artificial coefficients
in the inspiral regime given by Eq. (2.14).

In the merger-ringdown regime f > f,,, the amplitude is

_n({~frp)
13/ damp R

73fdamp
(f = frD)* + 73" faamp

Avr(f) = Ao(f)ny

(2.39)

where {yy,7,,73} are artificial coefficients given by
Eq. (2.14). {y,, 73} characterize the ringdown phase because

the Lorentian part y3 f gamp/[(f = f&D)* + 73°f 3amp) and the
damping part exp [~72(f = frp)/ (V3 aamp)] are motivated
by an analytic behavior derived by BH perturbation theory.
Thus, we can find that only y,, which controls the overall
amplitude around the peak, characterizes the nonlinear
region.

In the intermediate regime f,; < f < f., a polynomial
assumption
A (f) = Ao(f) (50 + 6, f +62f* + 6 + 54f4) (2.40)
is adopted. The coefficients {;} are five artificial param-
eters in the intermediate regime, which are fixed by the C!

continuity conditions at f = f,;, f. (four equations) and
one condition at the middle frequency, fin = (fa1 + fa2)/2:

Ains(far) = Ain(fa1)» (2.41)
Aim(f2) = Aur (fa2), (2.42)
Ains(fa1) = A (fa)» (2.43)
A (fa2) = Avr (fa2) (2.44)
Aine(fine) = 1240(fim)- (2.45)

where v, is an artificial coefficient determined by
Eq. (2.14). We write these continuity conditions for {5;}
in a matrix form,

U fa fa® fa® fa*\ [ Ains (fa1)

I fo f28 f28 fo! ! Avr (f2)

AlT o | = A;ns(fal)

AT 03 Ayr (fa2)

1 fiw fid S find b4 0240(fint)
(2.46)

where AI,ZT are the transposes of A , which are defined as
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AY(f4))
FajAG(faj) + Ao(fa))
A= Fai?AG(faj) + 2fajAo(faj)
faj3A6(faj) + 3faj2A0(faj)
Fai*AG(faj) + 4f 3 Ao(fa))

(2.47)

for j = 1, 2. The important point is that {5, } are determined
by v, and the continuity conditions.

4. Nonlinear regime parameters

In summary, we confirm the parameters of the nonlinear
regime among { A}, except for the parameters fixed by the
C' continuity conditions:

(1) four phase parameters, {f,3,@y3};

(2) two amplitude parameters, {y, v }.

We will refer to these six parameters as {4;} in the
following and consider deviation from the values in GR
in the next section.

I11. MODIFIED WAVEFORM

In this section, we present our modified waveform to
capture beyond-GR effects in the merger phase. Our basic
idea for the waveform construction is that perturbative
modifications to a GR waveform can capture deviations
from GR in the nonlinear region. The advantage of our
method is that we quantify the deviations that are difficult
to calculate by analytical and numerical methods in exten-
ded models. As a first implementation target, we choose the
IMRPhenomD waveform.

In Secs. III A to III C, we first present basic methods to
introduce beyond-GR parameters to phase and amplitude,
respectively. To introduce the parameter for phase, we
consider the principal component analysis (PCA). The
PCA allows us to specify linearly independent components
among the parameters in the nonlinear regime. We adopt
the leading principal component as a parameter because
other components turn out to be less significant as dis-
cussed in Sec. III B 1. For amplitude, we introduce one
beyond-GR parameter by modifying one of the coefficients
in the IMRPhenomD waveform. This parameter describes
an overall amplification in the nonlinear regime. However,
these modifications alone do not guarantee the physical
consistency in the IMR process. Therefore, in Sec. [II D we
formulate a prescription ensuring the physical consistency
of the final mass and spin of a remnant BH by considering
the additional losses of energy and angular momentum
carried by GW radiation due to the modifications of the
waveform. Since not only the ringdown and damping
frequencies but also the collocation frequencies and the
continuity conditions are modified, the resultant signal is
different from a signal that does not take the radiation
backreactions into account. The complete form of our

physically consistent waveform is shown in Sec. IITE.
Finally, in Sec. III F, the physical picture and assumptions
of our work are discussed. Furthermore, in Sec. III G,
comparisons with Maggio et al. [28], which presents a
parametrized waveform for a purpose similar to ours, are
discussed.

A. Reparametrization

In this work, we define the fractional deviations {1}
such that

/11' :)*i_GR(l +j“i)’ (31)

where 4; gr is the value of 1; in GR [4-6].

B. Phase modification

As pointed out in Sec. I B 4, ¢pgr (f) has four parameters
in the nonlinear regime, {,32,3, @3 }. Since these parameters
are originally introduced as fitting parameters to NR wave-
forms, it is difficult to interpret their physical meanings
explicitly. Thus, in this work, we focus on principal com-
ponents of {f,3.4 3}, and expect that they play a
physically important role. We then take the leading
principal component as a beyond-GR parameter for phase.

1. Specification of the dominant component

To specify the leading principal component, we consider

the Fisher matrix for the parameters {ﬁzj, @3}, which is
defined as

Fﬁzﬁz F/}z/},s F/;'2&2 F/Aizﬁs
Frr Fy. Fp
F, y= Psbs Fﬂsaz Fﬂ30’3 i (32)
a0 00
sym. Fia

(Fpa),; = (aiih(f),aijh(f» with S,(f) =1, (3.3)

where {4;} := {$,. & 3}, and the inner product is defined
in Eq. (2.10). The evaluations are done at the GR values,
and S,(f) is set to unity since we focus only on the
structure of the waveform. Here, the lower cutoff frequency
Smin 18 set to 0.0035/M, which is the minimum frequency
considered in the IMRPhenomD model.

By diagonalizing F,, we can find the pairs of eigen-
values and eigenvectors. In principal component analysis,
the eigenvalues indicate the importance of the eigen-
vectors. Figure 1 shows the fractions of the eigenvalues,
vi/vo, where v; is the eigenvalue of Fj, ordered from

largest to smallest, i =0, 1, 2, 3. These results show
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FIG. 1.

Ratios of eigenvalues of F Ba with 0.1 <7 <0.25 fixing y.¢ = 0. v; are the eigenvalues of F V;

102 l/,'/ Lo for Xeff

107

107

02 00 02 04
Xeff

4 ordered from largest to

smallest, i =0, 1, 2, 3. The left and right figures show the fraction v;/v, for n and y., respectively. These results show that

l/l/l/o = 0(10_3)

v /vy = O(107%) in the ranges of 0.1 <7 <0.25 and
—0.95 < yer £0.95. We thus adopt only v as a beyond-
GR parameter.

2. Beyond-GR parameter, Ppc,

Using a normalized eigenvector associated with the
largest eigenvalue, A,, denoted as é€pcp, we define a
beyond-GR parameter, Ppcy, as

Ppca = Ppcaépcas (3.4)
where Ppca and epca represent a magnitude and a direction
of Ppca, respectively. We restrict Ppca to be perturbative.
The fitting formula of épcy is given in Appendix A.

Inversely, f’PC A corresponds to deviations from
{ﬂ273, a2_3} in GR, that iS,

Aﬁj(i)PCA> : ﬁj_GR(l + Ppea - Eﬁj)’ (3.5)

Aaj<ﬁPCA) = aj_GR<1 + Ppca - Eaj>, (3.6)
for j = 2,3, where € 5,4, are the basis vectors of ,3 ', @ in the

parameter space. Therefore, the deviated parameters,

{Bj.a;}, are

aj = a; gr T Aaj(PPCA)7 (3.7)

Pi=Pjcr+ Aﬂj(ﬁPCA)’ (3.8)

for j = 2, 3. We express the beyond-GR parameter in phase
as Ppca, in the following.

3. Modified phase

To construct the modified phase, solve a useful form
of the continuity conditions, Eq. (2.33), derived by
Setting ﬁ] = ﬂj,GR —+ Aﬁ] and aj = aijR —+ Aa] in Ci
[Egs. (2.34)-(2.37)],

I fo O 0 Ap AC,
0 1 0 0 A AC
b _ 2 . (39)
I fo -1 —fp A AC;
0 1 0 -1 Aa; ACy

with

1
AC, = —log(fp1)AB + gfp1_3Aﬁ37 (3.10)

AC, = —fpl_lAﬁz—fp1_3Aﬁ3, (3.11)
-1 4. 3
AC3 = _pr A(Zz + gfpz‘ AC(3
1
~10g fpdhs +3 S A (3.12)
AC, = fn 2 Ay + frn ™ Ay
_pr_lAﬂZ _fp2_4Aﬂ37 (3.13)

where {f;,a;} for k=0, 1 are deviated from {f; gr,
ar_gr }- Then, we can construct the modified phase

¢ins(f)’ fopl
Ginim ([ Prca). INEYESSE
g w(fi Prca). f 2 [

¢m(f;13PCA) =

(3.14)
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FIG. 2. Modified waveforms in the time domain associated
with Ppca([Ppcal <0.1).

where gin_m(f; Peca): Pyir_m (f3 Prca) are the modified
phases for the intermediate and merger-ringdown parts due
to Ppca, respectively. Figure 2 shows that Ppca shifts the
time and phase in the nonlinear regime compared to those
of the GR waveform. Note that the amplification here is
caused by the coalescence time and phase shifts. not by a
deviation in amplitude. The quantitative forms of these shifts
can be derived by considering the continuity conditions.
The derivation of these shifts is shown in Appendix B. In
Fig. 2 and subsequent figures in this section, GW150914-
like parameters shown in Table I are used for illustrations.
The redshift z, which scales the total mass dependence in the
GW signal, is neglected here.

C. Amplitude modification

While the amplitude Agg (f) has two parameters, y; and
v, in the nonlinear regime we employ one beyond-GR
parameter in amplitude, denoted by 7, instead of specify-
ing principal components as well as done for phase. This is
because we assume that v, linearly depends on y;, as we
show explicitly in Sec. III C 1. The assumption is motivated
by the fact that nonlinearity of gravity would increase
toward the merger of a compact binary.

1. Beyond-GR parameter, ¥,

Naively, 7, is a parameter that describes an overall
modification for amplitude in the merger-ringdown part as
discussed in Sec. II B 3. Then, we define the modified
amplitude in the merger-ringdown part as

TABLE I. GW150914-like parameters used for illustrations.
Binary ~ M(Mo) n i r(Mpe)
68 0.25 0 0 400 0

Ay (f371) = (1 + 71)Amr (f)

= Aur(f) + AAVR(S371), (3.15)

where

AAVR(f571) = 711AMR(f).- (3.16)

In addition, we assume the linear frequency dependence of
amplitude modification in the intermediate part by inter-
polating amplitudes at f,; and f,. This is achieved by
setting v, at the middle frequency, fi,., as

vy = Uy gr + Avy(71), (3.17)

where

. 1 N
Avy(71) ==§AAMR(fa2;}’1>- (3.18)
2. Modified amplitude

Fixing an initial configuration and 7, we can determine
the intermediate part

4
Aw(f:71) = Ao() D &if". (3.19)
i=0
by solving the modified form of Eq. (2.47),
U fu fa® fa fa®) [
U fo fo8 fo) fo || 6
AT 0y
Ay’ 53
U fiw S Sfid S/ \ 84
Ains(fa1)
Avr_m(fa23 71)
= An(fa) (3.20)
AR m (fa2571)
vy (71),

where {8;} implicitly depend on {7,}.
From these procedures, we can construct the modified
amplitude

Ains(f)* f Sfal
Am(f;},;l) = Aint_m(f;j}l)’ fal Sf SfaZ . (321)
Avr m(f371)s 2 fa

Figure 3 shows how the modified amplitude is constructed
in the frequency domain.
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102

Am(f; }’;l)

%AAméz(fl}A’l)

l(‘)l fn‘nl f;xl
fAHz]

-4 :
10 Tl

FIG. 3. Modified amplitude with 7; = 0.5 (navy solid line) and
GR amplitude (navy dotted line). 7, describes the amplification at
f = fa (orange) and the linear interpolation at f = f;, (red).
The former and latter deviations correspond to Egs. (3.16)
and (3.18), respectively.

D. Physical consistency

From Egs. (3.14) and (3.21), we can construct a modified
waveform

—ipn(f; PPCA)

An(fi71)e

The waveform is physically inconsistent in the sense
that it does not include the radiation backreaction caused
by the newly introduced parameters. In other words, A, (f)
describes a physically unnatural situation in which the
properties of a remnant BH are the same as those in GR,
although there are additional losses of energy and angular
momentum due to modifications in the nonlinear regime.
Therefore, to create a physically consistent waveform,
we need to include the effects. This goal is achieved by
the following two steps. The first step is calculating the
additional energy and angular momentum losses due to the
existence of beyond-GR parameters.

The second step is reflecting these deviations on the
remnant BH spin, a;. While the additional radiation causes
deviations in the mass and spin of a remnant BH, we focus
only on deviation in a; because Egs. (2.20)—(2.22), which
are used for the modeling of the ringdown GW signal,
depend on ay.

Deviation in a; changes the ringdown GW signal
because the ringdown and damping frequencies frp and
Jf damp are modified. In addition, other quantities that depend
on ay, such as the collocation frequencies f, and f,, are
modified. For usefulness in implementation, we revive the
dependence of ¢ and G.

ilm(f; 71, PPCA) = (3-22)

1. Formulas for energy and angular momentum losses

First of all, we derive formulas for energy and angular
momentum losses for a waveform in the frequency domain.

We start with a waveform in the time domain, related to
outgoing GW radiation,

0 1
H(t) = h (1) - = Z Z Y 1 (0, @) (1),
=2 m=-I
(3.23)
where ~2Y,, (0, ¢) is the spin-weighted spherical harmonics

for s = —2. In the time domain, the emission rates of
energy and the z component of angular momentum carried
by GWs (positive values mean losses from a system) are

written as
dE cA3r? /
dt 162G
dJ* c3r2 oH
—_— = dQ— H*
dr 162G { / op ]
respectively, where dQ is the standard solid angle ele-

ment [38]. Thus, the total amounts of radiated energy and
angular momentum during the coalescence are

(3.24)

(3.25)

dt dQ|H|?, (3.26)

16G

i Re[/_:dt/dﬂ?);][{*].

162G

AT = -

(3.27)

Note that Egs. (3.26) and (3.27) are asymptotic expressions
ignoring the higher order corrections above 1/r3.

We consider only the dominant GW modes, (I,m) =
(2,4£2), here. Replacing H(r) with the inverse Fourier
transform,

) 1
Z Z 2Ylm 9 ¢ hlm(f)

=2 m=—

() = o (f)
(3.28)

and integrating with respect to 7, the total amount of
radiated energy and angular momentum are

27rc 2

(AE)Gr

A TAfLALY). (3.29)

232
(AJZ) Cr

A df fAZ(f).  (3.30)

Detailed derivations of Egs. (3.29) and (3.30) are given in
Appendix C. These show that radiated energy and angular
momentum are completely determined by the spectrum of
GW amplitude in this formalism.
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2. Backreaction to a remnant BH
As long as perturbative modifications on a GR wave-
form are considered, it is expected that the radiated energy

and angular momentum of &,,(f), denoted by (AE),, and
(AJ?),,, are written as

3.2 feo
@B, () =75 [Tarpaa). G
3.2 re
@) =25 [Tarar). (63

Then, deviations in the radiated energy and angular
momentum are

S(AE)(71) = (AE)y(71) = (AE)Gr

3.2 )
r / df f2(AL(F: 71) — A% (),

al

_Zﬂc
G

(3.33)

S(AT7)(71) = (AE)(71) = (AE)Gr

26372

- /oodff(Arzn<f§771)_AéR(f))'

G

Jal

(3.34)

The lower frequency in the integral is set to f,; because the
deviation occurs in f > f,;. These deviations change the
final mass and spin to

) = - 285 5 )
S¢(91) = S = 6(AT*)(71), (3.36)

where M and Sy are the final mass and spin predicted by GR.
Similar to M; and S;, we denote the quantities that include
the radiation backreactions with a bar in the following.

1x10-2!

24

~0.04 ~0.03 ~0.02 ~001 0.00 001 0.02

1ls]

E. Complete form of modified waveform

The important quantity for ringdown modeling is the
dimensionless Kerr parameter a;, which is defined in
Eq. (2.23). a; determines not only the ringdown and dam-
ping frequencies frp and fgump via Egs. (2.20)-(2.22)
but also the collocation frequencies f,, and f, and the
continuity conditions. Regarding these facts, our strategy to
create a physically consistent waveform is as follows:

(1) Fixing 7,, construct A, (f;7,), then calculate .

(2) Replacing a; with a;, modify the ringdown part of

the signal.

(3) Construct an IMR waveform considering Ppc and

the modified continuity conditions associated with
the change of a; to a;.
The first step is done, following Sec. III D 2. As the second
step, since ay modifies the ringdown and damping frequen-
cies as frp and J_‘damp, we modify phase as

&MR_m(f; 1 i)PCA)

1 ~ 4 o
= p {ao + a1 f — ay(Ppca) f! +§a3(PPCA)f3/4

+ a47GRtan'l <‘M> }, (337)
fdamp
and amplitude as
- 4 1_GR73_GRf dampAo (f )
An(fit1) = (14 71) = =
l V(f - Fro)? + 73_6R"f damp
_72_GRU-/RD)
X € 73-GRIdamp (3.38)

Figure 4 shows the physically consistent waveforms in the
time domain associated with 7; (|7;| < 0.5). The left figure
shows the IMR waveforms and the right shows the ring-
down parts. Due to the backreaction inclusion associated

1x10-2!

0.00 0.01 0.02

1ls]

FIG. 4. Physically consistent modified waveforms in the time domain associated with , (|7;| < 0.5) that describes an amplification in
the nonlinear regime. The left figure shows the IMR waveforms and the right shows the ringdown parts. Due to the backreaction
inclusion associated with 7;, the ringdown and damping frequencies are changed. These changes are studied in Fig. 5.
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Fractional deviations of the ringdown frequency (left) and the damping frequency (right) associated with 7,. frp — f&rp and

fdamp — fdamp are monotonically decreasing and increasing functions of 7, respectively.

with 7, the ringdown and damping frequencies are
changed. Figure 5 shows fractional deviations of the
ringdown and damping frequencies associated with the
variation of 7, respectively. On the left-hand side of
Eq. (3.37), we emphasize the implicit dependence of 7;.
For the third step, we consider changes in the collocation
frequencies and the connection conditions. The collocation
frequencies between the intermediate and merger-ringdown
parts f,, and f,, are modified to

.]_[pz = O'SFRDa

}/3fdamp(1 -V 1 _722) )

72

(3.39)

}RD_

.]_Ca2 = .]_Cpeak = (340)

Moreover, phase for the intermediate is changed to

Gt (f3 Ppca) = (ﬁo + Bif + Pa(Ppca) log f

1
n
/33(133PCA) f‘3),

(3.41)

where {f, p1,ag, a;} are determined by modified con-
nection conditions, which are given as

1 fy 0 0 ABy AC,
01 0 0 A AC
_ _ ﬂ = T (342
1 fp2 -1 _fp2 AaO AC3
0 1 0 -1 Aa, AC,

where AC; 4 are obtained by replacing Sp2 in Egs. (3.12)
and (2.13) with J_sz- Since we keep the inspiral part the
same as GR, these changes affect only Aq ;. Similarly, for
amplitude, Ay, . (f;7;) becomes

4
Aint_m(f; 771) = AO(f) Z Sifi9 (343)
Jj=0

where {5} are determined by the modified connection
conditions,

U fa fa® [ fa®\ [
U fe fo fa fo||d
AT 5,
AT 83
1 J_C int _i2nt ]_C i3nt _?nt 34
Ain(fa1)
AMR_m(_a2§771)
= Afns(far) : (3.44)
A (Fa23 1)
Uy m(71 )Ao(fim)

where fiy := (fa1 + fa2)/2 and A, is obtained by replacing
Sp2 in Eq. (IL48) with f,. Then, we finally derive the
complete form of our waveform

hnia (f3 71, Prca) = Anig(f3 71 )e#moliiPrea) - (3.45)
where
¢ins(f)v fsfpl
Inic (71 Peca) = inem(f3 Prca)- ot SF <,
g (371, Prca). f>Ffn
(3.46)
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Ains(f)’ fsfal
Aint-m(f;f/l)’ fal Sf S]_[a2'
AR m(f371). [ > fa

Avc(f371) = (3.47)

F. Availability and assumption of our waveform

Since our prescription to ensure the physical consistency
does not depend on specific models, it is expected to be
applicable to various cases of the nonstandard models
of BBH mergers, such as extended theories of gravity
(e.g, [8]), or environmental effects of BHs (e.g., [39]). To
investigate the compatibility of our waveform with those in
specific models of extended gravity theories, in Sec. IV C,
we show that our waveform can reproduce Einstein-dilaton
Gauss-Bonnet gravity waveforms [27] within the measure-
ment errors in the O4 and O5 observations.

To keep our waveform physically consistent, we need
to work within the perturbative regime from the original
IMRPhenomD waveform. First, we demand that beyond-
GR modifications on the waveform are perturbative. Under
this requirement, it is strongly expected that the modifica-
tion to a; is also perturbative. Indeed, for [7;| <04, a
relative error of the dimensionless Kerr parameter ag
between estimated from the complete waveform EMG( f)
and from the tentative waveform (without the backreaction)
hy(f) is < 3%, which is comparable to a systematic error
for the modeling of a; [33]. On the other hand, there is no
explicit indicator to assess the regime of validity for Ppc,
since at the waveform generation level, Ppca can take arbi-
trary value because the connection procedure (to impose C'
condition) works for any value of Ppc,. However, too large
values of Ppca imply nonperturbative modifications to the
BBH dynamics. Therefore, we impose that Ppc, must
take a value in a perturbative range because we are here
interested in perturbative deviations from GR.

G. Comparison with Maggio et al.

Finally, we compare our waveform model with the
previous work by Maggio et al. [28], who propose a para-
metrized waveform model that can capture the deviations in
the merger and the ringdown regimes. They introduce five
beyond-GR parameters for each GW mode (I, m), {5A,,,,
Wy AL 1y 8 1mo» OTimo }» that characterize the merger and
ringdown parts. The parameters, {5A,,,, dw,,,, 6At,, }, are
ones for the merger waveform and describe fractional
deviations in amplitude, angular frequency, and time lag,
respectively. The other two parameters, {5 0, 0Tjmo }» are
ones for the ringdown waveform and describe fractional
deviations in the ringdown frequency and damping time for
the fundamental mode, n = 0, respectively. Both our and
their waveforms parametrize the deviation from GR in the
nonlinear region.

First, a main difference from [28] is that our waveform is
modeled in the frequency domain, while their waveform is

in the time domain. Their waveform model is constructed
considering generic deviations in the merger and ringdown
regimes based on the EOB waveform [40,41]. Another
point is that considering only the quadrupole GW modes,
our parametrization corresponds to picking two degrees of
freedom from three parameters characterizing the nonlinear
regime in their model, {6A,50, w,,, 5At,, }. For phase, we
adopt only one parameter, Ppc,, which determines time
and phase shifts dependently, while [28] introduces those
shifts independently. This is because one of our purposes in
this study is to specify the dominant components among the
artificial parameters introduced in the IMRPhenomD
waveform.

Furthermore, by including the radiation reactions asso-
ciated with modifications in the nonlinear regime, to the
remnant, we give an implicit but physical relation between
0Asyg, and 6f 1y and Oty that characterize the ringdown
regime in the model. In other words, our procedure to
include the reaction removes potential degeneracies between
deviations in amplitude and in the ringdown and damping
frequencies in a physically consistent way. We emphasize
again that in this study we do not introduce free parameters
in the ringdown part.

IV. EVALUATION OF THE CONSTRUCTED
WAVEFORM

In this section, we discuss the systematic properties of
our waveform. In Sec. IV A, we first study mismatch asso-
ciated with Ppc, and 7, for various configurations. The
results show what type of BBHs are preferred for testing
gravity. In Sec. IV B, we estimate the measurement errors
and correlation coefficients of the model parameters in the
04 and OS5 observations, using the Fisher analysis [42,43],
and show that our parametrization efficiently captures pos-
sible deviations from GR waveforms. Finally, in Sec. IV C, to
show the compatibility with extended theories of gravity, we
consider the case of Einstein-dilaton Gauss-Bonnet gravity
(EdGB) [27], which is a quadratic gravity theory that has
an additional scalar-field coupling to a quadratic term of
curvature.

A. Mismatch

We adopt a definition of mismatch between the
IMRPhenomD waveform, %gg(f), in Eq. (2.11), and our
modified waveform, hyg(f), in Eq. (3.45):

MM (her (). o (1))

T (ar (). Fna(£))

o) [ () B (1) (i (1), i (1)
(4.1)
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FIG.6. MM associated with Ppc, and 7, for various initial configurations. The top two figures show MM for Ppc,, and the left and
right show the case I and case II, respectively. The bottom two show MM for 7, and the left and right show the case I and case II,
respectively. For Ppca, MM is the same for positive and negative values. For 7, on the other hand, the values of MM are not exactly
symmetrical for positive and negative values. For a given positive 7, MM for a negative ; with the same absolute value is 1 to 2 times

smaller.

We investigate MM associated with Ppc, and 7, for
configurations with varying n and y.g, respectively. Here,
we set S,,(f) = 1 as in Sec. III B, and the lower cutoff is set
to 0.0035/M, which is sufficiently lower than f = f;

where deviations occur. We check for two types of initial
setups:

(1) case I (varying #)
n=1{0.1,0.15,0.2,0.25}, yoit = 0,
(2) case II (varying y.r)
n=0.25,
Xeit = {—0.95,-0.5,-0.25,0,0.25,0.5,0.95}.
Here MM for varying M is not considered because of the
universality of total-mass scaling in the waveform.
Figure 6 shows the results. For case I, MM tends to be
larger as # increases for both of Ppc, and 7;. Similarly, for

case II, MM tends to be larger as y. increases for
both. Furthermore, for the case of Ppca, varying # or
Xerr changes MM by up to a factor of 10. Therefore,
BBH with symmetric mass ratio and positive . 1S
preferred as a best target for testing GR in the nonlinear
regime with our waveform. This fact holds for the case
of 7,, though the change is more suppressed than the
case of Ppca.

As indicators for the distinguishability of beyond-GR
effects, we estimate the minimum SNR values for MM

to be detected. We adopt the criterion proposed in
Appendix G of [44],

MM < b

— 42
~ 2SNR?’ (42)
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where D is the number of the parameters used in the
analysis. For our waveform, the parameters are {M, 17, y.s,
71, Ppca}, then D = 5. Following Eq. (4.2), for MM of
1%, 0.1%, and 0.01%, the SNR necessary for detection is
16, 50, and 160, respectively.

B. The Fisher forecast

We estimate the statistical errors of beyond-GR param-
eters for a high-SNR event in the O4 and OS5 observations,
based on the Fisher matrix formalism (e.g., [42.43]).
Generally, the Fisher analysis is useful in terms of not only
error estimation prior to observations but also the assess-
ment of the parametrization of a waveform, that is, investi-
gating the existence of parameter degeneracies.

1. The Fisher matrix formalism

In the analysis, we consider eight parameters:

6 := {logdy, 1., ¢.,logn. log Mz,)(effsf/hpPCA} (4.3)
where d; is luminosity distance and M, = (1 + z)y3M is
the redshifted chirp mass. As a spin parameter, we focus
only on the effective spin parameter y.; because it is
estimated easily as a leading effect of spins. The Fisher
matrix for each detector labeled by i = {LIGO Hanford,
LIGO Livingston, Virgo, KAGRA} is given as

FE;Z = (aailMG (f), Ol (f)) (4.4)

where d, stands for the partial derivative with respect to 4,,

and S\ (f) in the inner product defined in Eq. (2.10) is the
full-sky angular averaged noise spectral density for the ith
detector in the O4 and OS5 observations [45]. The lower
cutoff f;, is set to 10 Hz, which is the minimum frequency
of the detectors. Given the Fisher matrix for each detector,
the statistical error of a parameter in a multidetector
observation, denoted by 66,, and the correlation coeffi-
cients between different parameters, denoted by c¢g g,, are
estimated by

805 = \/ (I aas (4.5)

(F_l)ub
(F_l )aa (F_l )bb ’

where T':= Y, T() is the combined Fisher matrix and
I'"! is the inverse of I'. Fixing source distance to d; =
424.6 Mpc or z = 0.09 that is consistent with GW150914
[3], mass ratio to n = 0.25, and a leading spin to y.; = 0,
we examine two cases of different total masses: M =
{20M ., 60M } or M, = {9.5M,28.5M}, where dy is
set to the presented values considering cosmological
parameters shown in [46]. In the following, we refer to

(4.6)

Co,0, =

TABLE II. SNR value for each parameter set.

Case 04 network SNR OS5 network SNR
Case A (M =20M ) 304 58.9

Case B (M = 60M,) 70.2 136.3

the case of M = 20My and M = 60M, as case A and
case B, respectively.

2. Results

Table II shows the network SNR values with our
modified waveform for each configuration when detected
in the O4 and OS5 observations. In Figs 7 and 8, each panel
shows the 1o error ellipse marginalized over other param-
eters 1o errors for the O4 and OS5 observations, respectively.
The numerical values of the errors and correlation coef-
ficients for 7; and Ppc, are shown in Tables III, IV, and V,
respectively.

For the GR parameters, Table III shows that the
estimated error of M is smaller in case A than in case B,
contrary to the errors of the other GR parameters, for both
the O4 and OS5 observations. This is because the inspiral
signal of a binary with small total mass lasts longer up to a
larger orbital frequency, then detectors can see the early
inspiral regime more clearly than a binary with large total
mass. Due to this, for case A, degeneracy between M and
the other GR parameters are solved, however, correlations
among .., ¢., 7, and y.g are strong. On the other hand, for
case B, we can see the effects of higher-order PN coeffi-
cients more efficiently, thus correlations among f¢., ¢, 7,
and y.g are solved more clearly than for case A, as Figs. 7
and 8 show.

According to Tables IV and V, although ISPC A> and ¢, or
t. are correlated modestly, the correlations between the GR
parameters and beyond-GR parameters are not significant.
This fact means that we can expect to estimate beyond-GR
effects easily by analyzing the data with our waveform.

C. Compatibility with EdGB waveform

Although our waveform does not depend on specific
models of gravity theories, we should investigate what
theories are compatible with the waveform. Recently
numerical simulations in extended gravity theories have
been developed and produced IMR waveforms in such
theories [26,27]. Here, to see compatibility, we take EdGB
gravity waveforms [27]. EAGB gravity is an effective field
theory that has a scalar field coupling to a specific combi-
nation of quadratic curvature terms, so-called the Gauss-
Bonnet term [47]. The action is written as

2
= / %d“x\/—_gliR—%(ae)z+2aGBf(9)RGB ., (47)
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case A (M=20Mg) vs. case B(M=60M ) in O4
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FIG. 7. Marginalized 1o error estimates for @ in the O4 observation. The blue and the red show the 1o regime for case A and case B,

respectively.

where my, is the reduced Planck mass, R is the four-
dimensional Ricci scalar, @ is the EAGB scalar field, agg is
the EAGB coupling constant with dimensions of length
squared, Rgp is the EAGB scalar,

Rop = R™Rpeqg —4RPR,;, + R, (4.8)
and the function, f(6), takes a form of f(#) = e’ in this
theory (e.g., [48]).

Although it is unknown whether EdGB gravity has well-
posedness for the initial value problem, the waveforms are
computed in [27] based on an order-reduced scheme in

which well-posedness of the EOM is ensured at each order
of perturbations. The method is as follows. Given the NR

data of a BBH merger as the background spacetime, the
background sources the leading-order scalar field. Then,
the GR background and leading-order scalar field source
the leading-order correction on a gravitational waveform.
Here, as the background spacetime, GR waveforms com-
puted by SXS Collaboration [49] are adopted. To obtain
EdGB waveforms, we use a Python code provided by
Okounkova [50]. Since the backreaction due to the addi-
tional GWs is not considered in the EAGB waveforms, we
turn off the backreaction inclusion in the fitting.

1. Fitting results

We evaluate the residual sum of squared (RSS) between
an EdGB waveform and the best-fit modified waveform for
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FIG. 8. Marginalized 1o error estimates for € in the O5 observation. The blue and the red show the 1o regime for case A and case B,
respectively.

the goodness of fit. Note that there is a systematic error in
the modeling of the IMRPhenomD waveform. Thus, we
consider a fraction, RSS/RSSgg, where RSSy is the RSS
value computed from the IMRPhenomD and SXS wave-
forms [49]. In this analysis, we use the GW150914-like
parameters in Table I.

We fit the cases of |/agg/GM = {0.030,0.035,0.040}
here. These coupling constants are chosen not to
drastically exceed the perturbative regime of |7,|. The
results are presented in Table VI. Figure 9 shows the
best-fit modified waveform in the time domain for
each case.

TABLE III. 16 errors of 6.

Case ody /dy %] . [ms] be on/n(%] M/ M_[%] ett o7 8Ppca
A in O4 3.41 9.12 6.17 3.77 0.174 0.0712 0.251 0.0583
A in O5 1.76 4.57 2.89 1.97 0.0480 0.0352 0.136 0.0247
B in O4 2.09 8.74 4.73 0.706 0.889 0.0335 0.0505 0.0473
B in O5 0914 3.09 1.36 0.285 0.174 0.0102 0.0255 0.0176
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TABLE IV. Correlation coefficients of 7,.

Case €y logdy Chute g Chin Chy log M. hiten €51 Poca
A in O4 0.199 0.183 0.176 —0.184 0.110 0.182 0.0941
A in O5 0.186 0.174 0.173 -0.174 0.140 0.174 0.0799
B in O4 0.246 —0.181 —0.258 —0.348 —0.307 —-0.230 -0.220
B in O5 0.460 0.0449 —0.0355 -0.212 —0.102 0.00520 —0.0363
TABLE V. Correlation coefficients of PPCA.
Case Chpcplogdy Chpcate Chpcatpe CPpcan ChPpcplog M, CPocater
A in O4 0.0448 0.391 0.514 —0.263 0.722 0.410
A in O5 0.0272 0.203 0.288 —0.121 0.498 0.206
B in 04 0.550 0.904 0.942 0.516 0.845 0.924
B in O5 0.326 0.804 0.922 0.142 0.846 0.863
TABLE VI RSS/RSSgg for /ags/GM = {0.030,0.035, compatible with EdGB waveforms in the perturbative
0.040}. ranges of Ppca and 7. According to Fig. 9, in terms of
compatibility with EdAGB waveforms, our waveforms tend
VaGr/GM 0(GR) 0.030 0.035 0040 o fit larger in the premerger portion and smaller in the
RSS/RSSgr 1 2.30 3.33 7.45 ringdown regime than EAdGB waveforms. Another impor-

2. Discussion

Note that, unlike our original waveform, EdAGB wave-
forms computed in [27] do not include backreactions to the
background spacetime. In other words, although the EdGB
waveform has a deformation from GR in the ringdown part,
it is purely caused by the scalar field. In contrast, our wave-
form includes the backreactions due to additional gravita-
tional radiation. Therefore, we cannot expect our waveform
to be fully compatible, though we turn off the inclusion of
the backreaction here. Regardless of the small difference in
modeling, the compatibility should be evaluated by com-
paring the goodness of fit with the parameter estimation
errors in future observations.

As a benchmark to whether our waveform can reproduce
EdGB waveforms, we use RSSq, s, which is defined as the
RSS value computed from the IMRPhenomD waveform
with binary parameters shown in Table I (i.e, Ppcp =5, =0)
and the modified waveform with setting beyond-GR para-
meters to lo errors in the O4 or O5 observations, that is,
Ppep = 6Ppcs and §; — 67 with binary parameters set to
values shown in Table I. Note that a degeneracy between
Ppca and 7, turns out to be insignificant as shown in
Sec. IV B. RSSqp,5 are from practical statistical errors,
which are inevitable in the parameter estimation of real
data. For this parameter set, RSSqs/RSSgr = 19.9 and
RSSOs/RSSGR — 406

According to Table VI, all cases are well below or
comparable to RSS, 5. Therefore, we can conclude that, in
both the O4 and OS5 observations, our waveform model is

tant conclusion is that, for phase, it is sufficient to introduce
one additional parameter to fit EAGB waveforms. This fact
supports that a leading principal component plays a crucial
role in interpreting physics behind deviations from GR.

V. DISCUSSION

There are several factors to consider for the availability
of our physically consistent waveform. Here, we give some
comments on these issues as discussions.

(1) Energy and angular momentum carried by the
nonstandard effects. For our waveform to describe
the physically consistent situation, we assume the
amounts of energy and angular momentum losses
carried or consumed by the nonstandard effects,
such as an additional field around the source or
environmental effects around BHs, are negligible
compared with the ones carried by GWs. If this
assumption breaks, we will find a deviation from GR
in the estimated results using our waveform, espe-
cially in the ringdown part, even if our waveform
captures such nonstandard effects as deviations from
GR with nonzero 7. The estimate of this deviation
is expected to allow us to infer the nature of the
additional physical degrees of freedom, such as
nontensorial GW modes.

(ii) Energy and angular momentum carried by the sub-
dominant GW modes. In this study, we also assume
the amounts of energy and angular momentum
carried by the subdominant modes, such as (I, m) =
(3,4£3) or (I,m) = (2, £1) modes, can be neglected.
This is just because we use the IMRPhenomD model,
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EdGB waveform
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FIG. 9. Best-fit parametrized waveforms to EdGB waveforms. The top left panel shows EdGB waveforms for ,/agg/GM = 0.030,
0.035, 0.040 and GR waveform (dotted). From the top right to the bottom right, the best-fit modified waveforms (light blue lines) are

shown for ,/agg/GM = 0.030, 0.035, 0.040 (blue lines).

which describes (I, m) = (2, £2) modes as a basis
for the first implementation. Indeed, if we focus on
BBHs with nearly equal component masses, this
assumption is reasonable if the event SNR is not
so high, or for the events detected so far. However,
for a high SNR event, subdominant modes should be
considered for a precise analysis because this sim-
plification can cause confusion with beyond-GR
effects.

Precession effects. Since we adopt the IMRPhe-
nomD waveform as a basis, we do not consider the
precession effects of BBHs. This effect also can be
confused with beyond-GR effects, especially in the
analysis of a high SNR event. Therefore, the method
that we have developed in this paper should be
implemented to the latest waveforms including the
subdominant modes or, and precession effects,
such as [51,52].

Regarding the second and third items, our idea, whose main
features are to consider the principal components of the
merger parameters and to include the radiation reaction due
to beyond-GR parameters, is in principle applicable to the
latest waveforms. From this point, there is no obstacle to
the implementation. However, technical difficulties might
arise since the latest waveforms have a larger number of
phenomenological parameters. We should reconsider an
appropriate criterion to reduce the number of beyond-GR
parameters in a modified waveform effectively.

(iif)

VI. CONCLUSIONS

In this work, we propose a parametrized waveform that
can measure generic deviations from GR in the nonlinear
regime. Our underlying idea is that perturbative modifica-
tions to a GR waveform can capture beyond-GR effects in
the nonlinear regime of gravity. As the first implementa-
tion, we use the IMRPhenomD waveform [30]. For modifi-
cation to GW phase, we adopt only the leading principal
component of the artificial parameters as a beyond-GR
parameter, Ppc,, because the leading component is more
significant than the others, as discussed in Sec. Il B 1. Our
ideas here are mainly two. The first is that the dominant
components are expected to play physically crucial roles,
though it is difficult to interpret the physical meanings of
the artificial parameters. The other is to break the degen-
eracies between the estimated parameters that have not
been considered in the previous studies (e.g., [4-6]). PPC A
corresponds to a mixture of time and phase shifts to a GR
case. For modification to GW amplitude, we adopt the
fractional change of y;, 7;, which controls amplitude
around the peak of a waveform. As a role of 7;, we
interpolate the inspiral part linearly to the midway fre-
quency such that 7, also describes an amplification in the
intermediate regime. The key point is that our modified
waveform is physically consistent in the sense that the
radiation backreactions associated with 7, are included.
This inclusion is achieved by calculating the additional
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gravitational radiation and modifying mass and spin of a
remnant BH. Thus, the ringdown signal is modified.

Furthermore, we investigate the systematic studies for
the modified waveform, specifically considering mismatch
associated with the beyond-GR parameters, the Fisher
analysis, and the compatibility with EAGB waveforms.
In Sec. IVA, we find that mismatch can be more significant
for a binary that has a symmetric mass ratio and positive
Xer Value when fixing total mass and luminosity distance.
Therefore, we conclude that such binaries are preferred for
our analysis. In Sec. IV B, we estimate the expected error of
each parameter and the correlation coefficients between
the parameters. GWs from BBHs with a small total mass
allow us to derive the posterior of M_ more tightly than
with a large total mass, due to the long inspiral. For other
parameters, contrary to M_, the errors are smaller when
considering GWs come from BBHs with a large total mass.
The important fact for our waveform parametrization is that
newly introduced parameters, 7; and Ppc,, are not corre-
lated with others significantly. This means that we can
expect beyond-GR parameters will be estimated independ-
ently from GR parameters. Finally, we have shown that our
modified waveform can reproduce EdGB waveforms in
perturbative ranges of Ppca and 7, within the measurement
errors in the O4 and OS5 observations. It is remarkable that
only two additional parameters are sufficient to describe
an extended theory. This fact supports that the principal
components play a crucial role in interpreting physics
behind deviations from GR.
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APPENDIX A: FITTING FORMULA OF épcy

€pca has a form of
€pca = Pp,€p, + Pp,€5, + Da,€a, + PaCa,-  (Al)

Figure 10 shows the coefficients of épcy with 0.1 <7 <
0.25 fixing y.; =0. Here, for 0.1 <5 <0.25 and
—0.95 < yer £0.95, we give fitting formulas for the
coefficients. We adopt a polynomial ansatz using (77, yest)>

Py = Pho + Plon + Grete — 1) (Phy + Pl + Py
+ (et — 1)2(1562 + 155277 + 1332’72)

+ (tetr — 1)°(Phs + Pian + Phsn?). (A2)

Coeficients of €
1.00 PCA

- ﬁl}:
0.75 1 .
P

0.50 — ba
0.25 1 — Pa
;,gi 0.00

0100 0025 0150 0175 0200 0225 0250
n

FIG. 10. Coefficients of épcy with 0.1 <7 < 0.25 and o = 0.
Each line shows p 5, (blue), p B, (orange), P4, (green), and py,, (red).

which is motivated by Eq. (31) in [30]. In this study, we
adopt rather y.; instead of ypy used in [30]. The results
are shown in Table VII. The errors of ps , ps, and p,, in
the fitting are below 0.002%. On the other hand, the error
of p,,, which has the smallest contribution to €pcy, is
below 1%.

APPENDIX B: TIME AND PHASE SHIFTS
DUE TO Ppcy

Here we derive quantitative representations of the time
and phase shifts associated with Ppca. Since Apy 1, Aag
appear in constants and linear terms for frequency, they can
be interpreted as time and phase shifts. First, Af | induces
the shifts at the beginning of the intermediate,

A
Atim == ﬂ
1 4 . 4
= —5 {1 =log(fp1)}AB, +§fp1 Aps|,  (Bl)
TABLE VII. Fitting coefficients for each parameter. These

values are derived using Mathematica’s NonlinearModelFit.

P> s a a3

phy, —0.291715 —0.661106 1.13042 0.189428
pi, —1.38872 0.347803  —2.39817 —0.699968
ph, —0.796214 —2.33506 0.553463 0.729275
P 4.62917 11.4896 —7.70244 —3.52067
P, —9.50827 —8.47591 19.4324 1.78907
ph, 0.163208 —2.21242 1.06718 0.492195
pi, —2.71537 9.38284  —11.1916 —1.29497
Phs 4.82752 —1.65164 26.416 —3.77372
Phs 0.513489 —0.655432 0.526777 0.0692508
piy  —4.00258 2.24979 —4.45295 0.310426
Phs 7.62501 0.944151 9.58594 —2.80064

084058-19



WATARALI, NISHIZAWA, and CANNON

PHYS. REV. D 109, 084058 (2024)

M
Ay = 2—m7 Apy

M
= —2—m7{fp1_lAﬂ2 +fpl_4Aﬂ3}’ (B2)

and, similarly Aaj; induces the shifts at the beginning of
the merger and ringdown,

A
Aty = —%
1 4 _3
= Aty — H —{1 - log(fpz)}Aﬁz - gfpz Aps
1. -

+ 2fp271 Aa, — §fp22Aa3:| , (B3)

M

Adur = 2—7”7 Aa
M -1 -4
Adhing + (f 02 AP+ [T ABs

- fpz Aa2 - fpz 4Aa3). (34)

The first terms in Eqgs. (B3) and (B4) are carried over from
the inspiral. The second term in each equation represents
the time and phase deviation in the nonlinear regime,
respectively. Since homogeneous time and phase shifts are
interpreted as the GR part when evaluating mismatch (see
in Sec. IVA), these quantities characterize deviations that
cannot be absorbed into GR.

transform of £y, () and h,_, (1),
written as

H(t) and H(t) are

H(t) = /_oo df(_zYzz(G, $)hx(f)

+72Y55(0, ¢>712—2(f)) e, (C1)
a0 = [ af-2aif) (C¥(6. )0 (1)
=2 Yo (0.9)hoa(f) )2 (€2)

Here, we have two things to pay attention to. The first
one is that the choice of the Fourier transform is fixed as in
Eq. (C1), to ensure that h,,,(f) with m =2 and m = =2
have support for f > 0 and f < 0, respectively. The other is
that each mode has a different time-to-frequency corre-
spondence in the stationary phase approximation (see, e.g.,
[53]), which determines the conversion rule from NR wave-
form to the frequency-domain waveform in the Phenom
modeling. In this case, the relation of this correspondence
between the (I = 2, m = 2) mode and the (I = 2, m = -2)
mode is 22(f) = t>72(—f); therefore, time derivative of
hy_»(t) in Eq. (C2) must have a minus sign.

Plugging Eq. (Cl1), (C2) into Eq. (3.26) and using the
orthonormality of spin-weighted spherical harmonics,

A : A . (3.2 ,
PPENDIX € DR oy O PO 327 [ 90T 10,0073, 0.00) = . (C3
We focus only on (I,m) = (2,42) components in
Eq. (3.23), which IMRPhenomD models. Using Fourier =~ we derive
|
2
=1 6 G dt dQ|H|
/ 4 /dQ f df (=2zif) <_2Y22(‘97 ) (f) = 7225 (6, ¢)E2—2(f))€_2”iﬂ>
t
66 (S, dr i) (Y50 D) = Y5 (0. D) () ) )
_rer // dfdf/ff/(hzz(f)hzz(f)+h22<f/)h22(f/))/ dr U=t
3.2 ~ ~ ~ ~
= HACLGr /_oo df f? (hzz(ﬂh;z(f) + hz-z(f)hé—z(f))
2 3.2 0 B
=2 [ app P
0
3.2 reo
= [T arra ) (c4)
0
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Similarly plugging Egs. (C1) and (C2) into Eq. (3.27), we derive

A3 [ [ 0H .
AJF = — R ar | a2 g+
162G e_/_oo / op ]

c3r? ai(/; (ffooo df (_2Y22 ((9, ¢)}~122 (f) + —2Y2_2 (9’ ¢)]712_2 (f)) e—Zm'ft)

= - Re

167G ¢ | [ d1 [ 4

' (ff‘éo df'(2zif) (*ZY’EZ (0, )55 (f') = 2Y5,(0, ) his_s ( f’)) e2m'f’t)

—o0

3,2 . ) i ) ) . o
= %Re {//_oo dfdf’(f’hgz(f)hﬁz(f’) —f’hi—z(f)hz_z(f'» / dz o2~ )z]

C3 r2

4G _
_ 20372

=2 [ arniatnr

2372

® 2
o [ araz).

=—Re {/: df(filzz(f)ilzz(f) —fﬁz—z(f)ilz—z(f))]
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