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The merger phase of compact binary coalescences is the strongest gravity regime that can be observed.
To test the validity of general relativity (GR) in strong gravitational fields, we propose a gravitational
waveform parametrized for deviations from GR in the dynamical and nonlinear regime of gravity. Our
fundamental idea is that perturbative modifications to a GR waveform can capture possible deviations in the
merger phase that are difficult to model in a specific theory of gravity. One of notable points is that
our waveform is physically consistent in the sense that the additional radiative losses of energy and
angular momentum associated with beyond-GR modifications are included. Our prescription to ensure
physical consistency in the whole coalescence process is expected to be applicable to any deviation from
the standard model of compact binary coalescence, such as the extended models of gravity or the
environmental effects of compact objects, as long as perturbative modifications are considered. Based
on the Fisher analysis and the compatibility with Einstein-dilaton Gauss-Bonnet waveforms, we show that
our parametrization is a physically consistent minimal one that captures the deviations in the nonlinear
regime.
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I. INTRODUCTION

General relativity (GR), the standard theory of gravity, is
consistent with experimental and observational tests to
date, particularly in weak gravitational fields (for reviews,
see e.g., [1,2]). On the other hand, it is only recently that
we have been able to verify GR in strong and dynamical
gravity regimes. It has been made possible by the detection
of gravitational waves (GWs) from compact binary coa-
lescences (CBCs) [3,4]. In fact, the LIGO-Virgo-KAGRA
(LVK) collaboration has so far reported 90 GWevents from
CBCs, and several tests have been performed [5–7] and
found no significant evidence of GR breaking within the
current accuracy.
From a theoretical point of view, GR is not considered as

an ultimate theory of gravity. This is because it has several
problems in the strong gravity limit, such as nonrenorma-
lizability as a quantum theory of gravity or the prediction of
singularities where the laws of physics break down. Our
understanding of physics in the strong gravitational fields
is still poor due to a lack of observational confirmation.
To address this issue with GW observations, it is crucial to
extract information on the strong gravity regime from
observational data. Since some theories predict modifica-
tions in GW signals (see, e.g., [8,9]), analyzing GW data

from CBCs allows us not only to confirm GR but also
might provide a clue on a theory beyond GR.
In general, a binary black hole (BBH) coalescence

consists of three stages: inspiral, merger (or plunge), and
ringdown phases [3]. Except for the merger phase, we can
use the perturbative approaches, that is, the post-Newtonian
expansion for the inspiral phase (see, e.g., [10]) and the BH
perturbation theory for the ringdown phase (see, e.g., [11]).
However, to understand the dynamics of the merger
phase, we need to resort to numerical relativity (NR) simu-
lations. This is because the merger is a highly dynamical
gravity regime, and there is no analytical approach so far.
Therefore, to estimate the source properties from the full
inspiral-merger-ringdown (IMR) data, phenomenological
waveforms are used, which are constructed by combining
the merger waveform, which are derived by fitting to
NR data, with analytical waveforms for the inspiral and
ringdown parts.
In GWanalysis for testing GR, parametrized frameworks

are often used to quantify deviations from GR with clear
physical interpretations (see, e.g., [12–16] for the inspiral
and [17–25] for the ringdown). One of the representatives is
the parametrized post-Einsteinian framework [12]. In [12],
Yunes and Pretorius introduced phenomenological mod-
ifications to the inspiral waveform that can reproduce
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deviations for several theories that are calculated analyti-
cally. In contrast, for the merger, it is more difficult to
construct a framework compatible with extended models
due to few NR predictions based on specific models. This is
primarily because the well-posedness of the initial value
problems in the extended models is not known. Instead of
performing the full NR simulations, several studies provide
IMR waveforms for a limited number of extended theories
in GR (see, e.g., [26,27]).
On the other hand, model-agnostic analyses for the

merger part have been conducted so far. For example,
LVK testing GR papers have shown the results of para-
metrized tests and IMR consistency tests [4–7]. The para-
metrized tests estimate fractional deviation in one of GR
coefficients, such as post-Newtonian parameters in the
inspiral waveform or the ringdown and damping frequen-
cies for the ringdown waveform. For the merger waveform,
deviations of the artificial parameters introduced in the
fitting procedure are estimated. One of the problems with
the merger waveform is difficulty in the identification of the
physical meanings of these fitting parameters. This means
that, if a significant deviation is found by future analysis,
it is difficult to interpret the deviation physically. More-
over, the analysis does not take into account the correla-
tions between the parameters as only a single parameter is
allowed to vary at a time. Such an analysis could bias the
estimated results. The IMR consistency tests check the
consistency between the inspiral and the post-inspiral parts
by assuming GR. This test simply checks consistency with
GR, but it is difficult to derive the physical implications,
because the post-inspiral part includes not only the merger
part but also the late-inspiral and ringdown parts. This
indicates that, if an inconsistency is found, it is difficult
to derive a physical picture only for the nonlinear regime.
Besides the LVK studies, there are a few studies that
propose analytic frameworks and perform the analysis for
the nonlinear region [28,29]. However, a satisfactory
method is still under discussion whether or not these
waveform models can cover the IMR signal of a particular
theory.

A. Summary of our parametrized waveform

To address the issues above, we propose a physically
consistent modified IMR waveform model that can mea-
sure perturbative deviations from GR in the nonlinear
regime by introducing two beyond-GR parameters: one
each to phase and amplitude. Our modification is minimal
in the sense that amplitude and phase can be modified
independently. In this work, we take the IMRPhenomD
waveform [30] as our fiducial waveform and do not modify
the inspiral and ringdown parts since we focus on the
deviations in the merger part.

(i) Beyond-GR phase parameter. We adopt the largest
principal component among the artificial parameters
in the phase of a phenomenological GR waveform.

We believe that the principal component contains
physical information about the nonlinear dynamics
of BBH, including orbital evolution and energy and
angular momentum loss rates, since the PCA is
considered to be the most dominant independent
component of the merger part, although it is not easy
to extract physical information about the PCA itself.
Furthermore, this specification is expected to break
degeneracies between artificially introduced param-
eters, which have not been considered in previous
studies (e.g., [4–6]).

(ii) Beyond-GR amplitude parameter. We adopt a
parameter that describes an amplification after the
inspiral phase. This parameter is basically given as
the parameter that characterizes the amplitude peak
of a signal.

(iii) Additional radiation backreaction. To ensure physi-
cal consistency for the entire IMR process, we
include the radiation reaction to our waveform by
calculating the additional losses of energy and
angular momentum associated with the beyond-
GR amplitude parameter. These losses are calculated
based on the quadrupole formulas for energy and
angular momentum losses and then are reflected in
the mass and spin of a remnant BH, resulting in a
physically consistent waveform.

Our prescription to ensure the physical consistency is
expected to be applicable to any deviation from the
standard model of compact binary coalescence, such as
the extended models of gravity or the environmental effects
of BHs, as long as perturbative modifications are consid-
ered. Our waveform captures deviations only in the non-
linear regime and, importantly, is constructed so as to
ensure the physical consistency of a remnant BH. Finally,
we show that our waveform can cover Einstein-dilaton
Gauss-Bonnet gravity waveforms [27] within the measure-
ment errors in the O4 and O5 observations.

B. Plan of the paper

The rest of this paper is organized as follows. In Sec. II,
details of IMRPhenomD waveform [30], which is adopted
as a basis for our modified waveform, are presented. In
Sec. III, the construction of our modified waveform is
discussed. We elaborate on the strategies for introducing
beyond-GR parameters into phase and amplitude, and for
ensuring physical consistency through the inclusion of
radiation backreaction. In Sec. IV, we evaluate the proper-
ties of our waveform and the measurability of beyond-GR
parameters. Specifically, the mismatch, the measurement
error estimates in the O4 and O5 observations, and the
compatibility with Einstein dilaton Gauss-Bonnet gravity
waveforms [27] are presented. Finally, in Sec. Vand VI, the
discussions and conclusions are presented, respectively.
Throughout this paper, we adopt the geometrical unit where
G ¼ c ¼ 1 except for Sec. III D.
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II. GR WAVEFORM

Extracting the physical information imprinted in the
GWs requires waveform templates, which are a family of
the waveforms that are parametrized by many binary
parameters and allow us to estimate a set of the best-fitting
parameters. In the inspiral and ringdown, we can construct
analytical waveforms because perturbative approaches can
be applied. For the inspiral, we use the post-Newtonian
(PN) approximation method (see, e.g., [10]), which gives
an accurate expression for a waveform when binary sepa-
ration is large and slow velocity, v ≪ c. For the ringdown,
the waveform can be modeled based on BH perturbation
theory (e.g., [11]), which is valid as long as deviation from
an unperturbed BH spacetime can be considered small.
However, for the merger phase we need full numerical
relativity simulations despite high computational cost. To
avoid this, numerical fitting to the NR waveforms [31] is
used. The waveforms are approximate analytic ones and are
easy to handle in GW searches more cheaply and quickly.
Several Phenom waveforms are currently available for
practical use. In this study, we adopt IMRPhenomD wave-
form [30], which is one of the Phenom waveforms for an
aligned-spinning binary with circular orbit.
In this section, we briefly review the IMRPhenomD

model, which describes the dominant GW mode from the
spin-aligned BBH coalescence process.

A. Conventions

We begin by confirming the convention used throughout
this paper. A BBH system originally has 8 intrinsic
parameters: BH masses mi and spin vectors S⃗i for each
component (i ¼ 1, 2). We define the z direction as the
direction of the orbital angular momentum and use some
specific combinations:

M ≔ m1 þm2∶total mass; ð2:1Þ

S ≔ ðS⃗1 þ S⃗2Þ · L̂∶
spin component along

orbital angular momentum
; ð2:2Þ

χi ≔
S⃗i · L̂
mi

2
∶dimensionless spin parameter; ð2:3Þ

where L̂ is the unit vector directed to the vector of orbital
angular momentum. Furthermore, we define other
parameters:

η ≔
m1m2

M2
∶symmetric mass ratio; ð2:4Þ

Ŝ ≔
S

1 − 2η
∈ ½−1; 1�∶normalized S; ð2:5Þ

χeff ≔
m1χ1 þm2χ2

M
∶effective spin parameter; ð2:6Þ

χPN ≔ χeff −
38η

113
ðχ1 þ χ2Þ

∶leading spin effect in PN expansion: ð2:7Þ

In this work, we restrict ourselves to spin-aligned binaries.
Thus, there are four intrinsic parameters: the mass mi and

the component spin Si ≔ Si
!

· L̂.
In the paper, we define the Fourier transform of hðtÞ as

h̃ðfÞ ¼
Z

∞

−∞
dt hðtÞe−2πift: ð2:8Þ

Furthermore, we adopt a definition of the noise-weighted
inner product between two arbitrary functions, AðfÞ
and BðfÞ,

ðAðfÞ; BðfÞÞ ≔ 4Re

�Z
fmax

fmin

A�ðfÞBðfÞ
SnðfÞ

df

�
; ð2:9Þ

where fmin, fmax are the lower and upper cutoff frequencies
and SnðfÞ is the noise power spectral density of a detector.

B. IMRPhenomD

The IMRPhenomD waveform describes the dominant
ðl; mÞ ¼ ð2;�2Þ mode from the entire process of an
aligned-spin (nonprecessing) BBH merger in the frequency
domain, with the mass ratio up to 1∶18 [30]. The form is
written as

h̃GRðfÞ ¼ AGRðfÞ e−iϕGRðfÞ; ð2:10Þ
where ϕGRðfÞ and AGRðfÞ are the phase and amplitude of a
GW signal, respectively. In the following, we fix a sub-
script, GR, to a quantity in GR when we emphasize it.
ϕGRðfÞ and AGRðfÞ are divided into three frequency
ranges, denoted as the inspiral (ins), intermediate (int),
and merger-ringdown (MR), respectively,

ϕGRðfÞ ¼

8><
>:

ϕinsðfÞ; f ≤ fp1
ϕintðfÞ; fp1 ≤ f ≤ fp2
ϕMRðfÞ; f ≥ fp2

; ð2:11Þ

AGRðfÞ ¼

8><
>:

AinsðfÞ; f ≤ fa1
AintðfÞ; fa1 ≤ f ≤ fa2
AMRðfÞ; f ≥ fa2

; ð2:12Þ

where fpi and fai (i ¼ 1, 2) are the collocation frequencies
introduced below.

1. Phenomenological parameters

To model a nonlinear regime, the IMRPhenomD wave-
form adopts phenomenological parameters that are intro-
duced to fit to NR waveforms. ϕGRðfÞ and AGRðfÞ have
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11 and 14 phenomenological parameters, respectively [30].
Here we denote them all as fΛig. Seventeen coefficients out
of fΛig are modeled with polynomial functions of η and
χPN from fitting to NR data,

Λiðη; χPNÞ ¼ λi00 þ λi10ηþ ðχPN − 1Þðλi01 þ λi11ηþ λi21η
2Þ

þ ðχPN − 1Þ2ðλi02 þ λi12ηþ λi22η
2Þ

þ ðχPN − 1Þ3ðλi03 þ λi13ηþ λi23η
2Þ; ð2:13Þ

where fλijkg are given in [30].
The remaining eight coefficients are determined by the

C1 continuity conditions for ϕGRðfÞ and AGRðfÞ at the
collocation frequencies,

fp1 ¼ 0.014=M; ð2:14Þ

fp2 ¼ 0.5fRD; ð2:15Þ

fa1 ¼ 0.018=M; ð2:16Þ

fa2 ¼ fpeak; ð2:17Þ

with

fpeak ¼
�����fRD −

γ3fdamp

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

2
p �

γ2

�����; ð2:18Þ

where fγ2; γ3g are the amplitude coefficients in the merger-
ringdown regime determined by Eq. (2.14), and fRD and
fdamp are the ringdown and damping frequencies, that are
computed by the following fitting formulas [32]:

fRD ¼ 1

2πM

�
1.5251 − 1.1568ð1 − afÞ0.1292

	
; ð2:19Þ

Q ¼ 0.7000þ 1.4187ð1 − afÞ−0.4990; ð2:20Þ

fdamp ¼
fRD
2Q

: ð2:21Þ

Here af is the dimensionless spin parameter of the remnant
BH, which is defined as

af ≔
cSf
GM2

f

; ð2:22Þ

where Mf and Sf are mass and spin of the remnant,
respectively. For our study, we use the latest remnant
formula of af given in [33], while the original waveform
adopts the formula given in [34].
In the next subsection, we see details of IMRPhenomD

construction. Following [30], we omit the total mass
dependence. If you want to revive the dependence, replace
f with Mf.

2. Phase

In the inspiral regime f ≤ fp1 phase, ϕinsðfÞ, is modeled
based on the TaylorF2 waveform [35–37], which provides
an analytical expression for the dominant GW modes
ðl; m ¼ 2;�2Þ in the early inspiral,

h̃TF2ðfÞ ¼
ffiffiffiffiffi
5η

24

r
π−2=3

M2

r
f−7=6e−iϕTF2ðfÞ; ð2:23Þ

ϕTF2ðfÞ ¼ 2πftc − ϕc − π=4

þ 3

128η
ðπfÞ−5=3

X7
i¼0

ϕiðπfÞi=3; ð2:24Þ

where r is distance to a binary, tc and ϕc are the time and
phase at coalescence, respectively, and fϕig are analyti-
cally calculated PN coefficients up to 3.5 PN order [37].
Then, the phase part of the IMRPhenomD consists of the
TaylorF2 phase and phenomenological corrections mod-
eled based on the PN expansion,

ϕinsðfÞ ¼ ϕTF2ðfÞ þ
1

η



σ0 þ σ1f þ 3

4
σ2f4=3

þ 3

5
σ3f5=3 þ

1

2
σ4f2

�
; ð2:25Þ

where fσig are four fitting coefficients in the inspiral given
by Eq. (2.14).
In the intermediate regime fp1 ≤ f ≤ fp2, the phase

ϕintðfÞ is given as

ϕintðfÞ ¼
1

η



β0 þ β1f þ β2 log f −

β3
3
f−3

�
; ð2:26Þ

where fβ2; β3g are artificial coefficients in the intermediate
regime given by Eq. (2.14).
In the merger-ringdown regime f ≥ fp2, the phase part is

given as

ϕMRðfÞ ¼
1

η

�
α0 þ α1f − α2f−1 þ

4

3
α3f3=4

þ α4tan−1


f − α5fRD

fdamp

�

; ð2:27Þ

where fα2; α3;α4; α5g are artificial coefficients in the
merger-ringdown regime given by Eq. (2.14). In particular,
fα4; α5g characterize the ringdown phase in the sense that
arctan part α4 tan−1 ½ðf − α5fRDÞ=fdamp�models an analytic
behavior of the phase of the ringdown part. On the other
hand, fα2; α3g characterize the nonlinear region around
merger. The remaining four coefficients fβ0; β1; α0; α1g are
fixed by imposing the C1 continuity conditions at f ¼ fp1
and fp2, that is,
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ϕinsðfp1Þ ¼ ϕintðfp1Þ; ð2:28Þ

ϕintðfp2Þ ¼ ϕMRðfp2Þ; ð2:29Þ

ϕ0
insðfp1Þ ¼ ϕ0

intðfp1Þ; ð2:30Þ

ϕ0
intðfp2Þ ¼ ϕ0

MRðfp2Þ; ð2:31Þ

where the prime is a derivative with respect to f.
We can write these continuity conditions in the matrix

form for fβ0;1; α0;1g,
0
BBB@

1 fp1 0 0

0 1 0 0

1 fp2 −1 −fp2
0 1 0 −1

1
CCCA

0
BBB@

β0

β1

α0

α1

1
CCCA ¼

0
BBB@

C1

C2

C3

C4

1
CCCA; ð2:32Þ

with

C1 ¼ ηϕinsðfp1Þ − β2 log fp1 þ
β3
3
fp1−3 ; ð2:33Þ

C2 ¼ ηϕ0
insðfp1Þ − β2fp1−1 − β3fp1−3; ð2:34Þ

C3 ¼ −β2 log fp2 þ
β3
3
fp2−3 − α2fp2−1 þ

4

3
α3fp23=4

þ α4tan−1


fp2 − α5fRD

fdamp

�
; ð2:35Þ

C4 ¼ −β2fp2−1 − β3fp2−4 þ α2fp2−2 þ α3fp2−1=4

þ α4fdamp

fdamp
2 þ ðfp2 − α5fRDÞ2

: ð2:36Þ

fCig are constant values once we determined the initial
configuration and the coefficients fβ2; β3g and fα2; α3;
α4; α5g.

3. Amplitude

In the inspiral regime, amplitude consists of the TaylorF2
part, APNðfÞ (up to 3 PN order), and the phenomenological
corrections above 3.5 PN order,

AinsðfÞ ¼ APNðfÞ þ A0ðfÞ
X6
i¼0

ρifðiþ6Þ=3; ð2:37Þ

with

APNðfÞ ¼ A0ðfÞ
X6
i¼0

AiðπfÞi=3; ð2:38Þ

where A0ðfÞ ≔
ffiffiffiffi
2η
3π

q
f−7=6 is a normalized TaylorF2 ampli-

tude in the sense that f7=6A0ðfÞ approaches unity at the

limit of f → 0. fAig are the PN coefficients derived
analytically [30], and fρig are seven artificial coefficients
in the inspiral regime given by Eq. (2.14).
In the merger-ringdown regime f ≥ fa2, the amplitude is

AMRðfÞ ¼ A0ðfÞγ1
γ3fdamp

ðf − fRDÞ2 þ γ3
2f2damp

e
−γ2ðf−fRDÞ

γ3fdamp ;

ð2:39Þ

where fγ1; γ2; γ3g are artificial coefficients given by
Eq. (2.14). fγ2; γ3g characterize the ringdown phase because
the Lorentian part γ3fdamp=½ðf − fRDÞ2 þ γ3

2f2damp� and the
damping part exp ½−γ2ðf − fRDÞ=ðγ3fdampÞ� are motivated
by an analytic behavior derived by BH perturbation theory.
Thus, we can find that only γ1, which controls the overall
amplitude around the peak, characterizes the nonlinear
region.
In the intermediate regime fa1 ≤ f ≤ fa2, a polynomial

assumption

AintðfÞ ¼ A0ðfÞ
�
δ0 þ δ1f þ δ2f2 þ δ3f3 þ δ4f4

� ð2:40Þ

is adopted. The coefficients fδig are five artificial param-
eters in the intermediate regime, which are fixed by the C1

continuity conditions at f ¼ fa1; fa2 (four equations) and
one condition at the middle frequency, fint¼ðfa1þfa2Þ=2:

Ainsðfa1Þ ¼ Aintðfa1Þ; ð2:41Þ

Aintðfa2Þ ¼ AMRðfa2Þ; ð2:42Þ

A0
insðfa1Þ ¼ A0

intðfa1Þ; ð2:43Þ

A0
intðfa2Þ ¼ A0

MRðfa2Þ; ð2:44Þ

AintðfintÞ ¼ v2A0ðfintÞ; ð2:45Þ

where v2 is an artificial coefficient determined by
Eq. (2.14). We write these continuity conditions for fδig
in a matrix form,

0
BBBBBB@

1 fa1 fa12 fa13 fa14

1 fa2 fa22 fa23 fa24

A1
T

A2
T

1 fint fint2 fint3 fint4

1
CCCCCCA

0
BBBBBB@

δ0

δ1

δ2

δ3

δ4

1
CCCCCCA

¼

0
BBBBBB@

Ainsðfa1Þ
AMRðfa2Þ
A0
insðfa1Þ

A0
MRðfa2Þ

v2A0ðfintÞ

1
CCCCCCA
;

ð2:46Þ

where A1;2
T are the transposes of A1;2 which are defined as
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Aj ≔

0
BBBBBBB@

A0
0ðfajÞ

fajA0
0ðfajÞ þ A0ðfajÞ

faj2A0
0ðfajÞ þ 2fajA0ðfajÞ

faj3A0
0ðfajÞ þ 3faj2A0ðfajÞ

faj4A0
0ðfajÞ þ 4faj3A0ðfajÞ

1
CCCCCCCA

ð2:47Þ

for j ¼ 1, 2. The important point is that fδig are determined
by v2 and the continuity conditions.

4. Nonlinear regime parameters

In summary, we confirm the parameters of the nonlinear
regime among fΛig, except for the parameters fixed by the
C1 continuity conditions:
(1) four phase parameters, fβ2;3; α2;3g;
(2) two amplitude parameters, fγ1; v2g.

We will refer to these six parameters as fλig in the
following and consider deviation from the values in GR
in the next section.

III. MODIFIED WAVEFORM

In this section, we present our modified waveform to
capture beyond-GR effects in the merger phase. Our basic
idea for the waveform construction is that perturbative
modifications to a GR waveform can capture deviations
from GR in the nonlinear region. The advantage of our
method is that we quantify the deviations that are difficult
to calculate by analytical and numerical methods in exten-
ded models. As a first implementation target, we choose the
IMRPhenomD waveform.
In Secs. III A to III C, we first present basic methods to

introduce beyond-GR parameters to phase and amplitude,
respectively. To introduce the parameter for phase, we
consider the principal component analysis (PCA). The
PCA allows us to specify linearly independent components
among the parameters in the nonlinear regime. We adopt
the leading principal component as a parameter because
other components turn out to be less significant as dis-
cussed in Sec. III B 1. For amplitude, we introduce one
beyond-GR parameter by modifying one of the coefficients
in the IMRPhenomD waveform. This parameter describes
an overall amplification in the nonlinear regime. However,
these modifications alone do not guarantee the physical
consistency in the IMR process. Therefore, in Sec. III D we
formulate a prescription ensuring the physical consistency
of the final mass and spin of a remnant BH by considering
the additional losses of energy and angular momentum
carried by GW radiation due to the modifications of the
waveform. Since not only the ringdown and damping
frequencies but also the collocation frequencies and the
continuity conditions are modified, the resultant signal is
different from a signal that does not take the radiation
backreactions into account. The complete form of our

physically consistent waveform is shown in Sec. III E.
Finally, in Sec. III F, the physical picture and assumptions
of our work are discussed. Furthermore, in Sec. III G,
comparisons with Maggio et al. [28], which presents a
parametrized waveform for a purpose similar to ours, are
discussed.

A. Reparametrization

In this work, we define the fractional deviations fλ̂ig
such that

λi ¼ λi GR

�
1þ λ̂i

�
; ð3:1Þ

where λi GR is the value of λi in GR [4–6].

B. Phase modification

As pointed out in Sec. II B 4, ϕGRðfÞ has four parameters
in the nonlinear regime, fβ̂2;3; α̂2;3g. Since these parameters
are originally introduced as fitting parameters to NR wave-
forms, it is difficult to interpret their physical meanings
explicitly. Thus, in this work, we focus on principal com-
ponents of fβ̂2;3; α̂2;3g, and expect that they play a
physically important role. We then take the leading
principal component as a beyond-GR parameter for phase.

1. Specification of the dominant component

To specify the leading principal component, we consider
the Fisher matrix for the parameters fβ̂2;3; α̂2;3g, which is
defined as

Fβ̂ α̂ ¼

0
BBBB@

Fβ̂2β̂2
Fβ̂2β̂3

Fβ̂2α̂2
Fβ̂2α̂3

Fβ̂3β̂3
Fβ̂3α̂2

Fβ̂3α̂3

Fα̂2α̂2 Fα̂2α̂3

sym: Fα̂3α̂3

1
CCCCA; ð3:2Þ

with

�
Fβ̂ α̂

�
ij
≔

�
∂λ̂i

h̃ðfÞ; ∂λ̂j h̃ðfÞ
�

with SnðfÞ ¼ 1; ð3:3Þ

where fλ̂ig ≔ fβ̂2;3; α̂2;3g, and the inner product is defined
in Eq. (2.10). The evaluations are done at the GR values,
and SnðfÞ is set to unity since we focus only on the
structure of the waveform. Here, the lower cutoff frequency
fmin is set to 0.0035=M, which is the minimum frequency
considered in the IMRPhenomD model.
By diagonalizing Fβ̂ α̂, we can find the pairs of eigen-

values and eigenvectors. In principal component analysis,
the eigenvalues indicate the importance of the eigen-
vectors. Figure 1 shows the fractions of the eigenvalues,
νi=ν0, where νi is the eigenvalue of Fβ̂ α̂ ordered from
largest to smallest, i ¼ 0, 1, 2, 3. These results show
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ν1=ν0 ¼ Oð10−3Þ in the ranges of 0.1 ≤ η ≤ 0.25 and
−0.95 ≤ χeff ≤ 0.95. We thus adopt only ν0 as a beyond-
GR parameter.

2. Beyond-GR parameter, P̂PCA

Using a normalized eigenvector associated with the
largest eigenvalue, Λ0, denoted as e⃗PCA, we define a
beyond-GR parameter, P⃗PCA, as

P⃗PCA ¼ P̂PCAe⃗PCA; ð3:4Þ

where P̂PCA and e⃗PCA represent a magnitude and a direction
of P⃗PCA, respectively. We restrict P̂PCA to be perturbative.
The fitting formula of e⃗PCA is given in Appendix A.
Inversely, P⃗PCA corresponds to deviations from

fβ2;3; α2;3g in GR, that is,

ΔβjðP̂PCAÞ ≔ βj GR

�
1þ P⃗PCA · e⃗β̂j

�
; ð3:5Þ

ΔαjðP̂PCAÞ ≔ αj GR

�
1þ P⃗PCA · e⃗α̂j

�
; ð3:6Þ

for j ¼ 2, 3, where e⃗β̂j;α̂j are the basis vectors of β̂j; α̂j in the

parameter space. Therefore, the deviated parameters,
fβj; αjg, are

αj ¼ αj GR þ ΔαjðP̂PCAÞ; ð3:7Þ

βj ¼ βj GR þ ΔβjðP̂PCAÞ; ð3:8Þ

for j ¼ 2, 3. We express the beyond-GR parameter in phase
as P̂PCA, in the following.

3. Modified phase

To construct the modified phase, solve a useful form
of the continuity conditions, Eq. (2.33), derived by
setting βj ¼ βj GR þ Δβj and αj ¼ αj GR þ Δαj in Ci

[Eqs. (2.34)–(2.37)],
0
BBB@

1 fp1 0 0

0 1 0 0

1 fp2 −1 −fp2
0 1 0 −1

1
CCCA

0
BBB@

Δβ0
Δβ1
Δα0
Δα1

1
CCCA ¼

0
BBB@

ΔC1

ΔC2

ΔC3

ΔC4

1
CCCA; ð3:9Þ

with

ΔC1 ¼ − logðfp1ÞΔβ2 þ
1

3
fp1−3Δβ3; ð3:10Þ

ΔC2 ¼ −fp1−1Δβ2 − fp1−3Δβ3; ð3:11Þ

ΔC3 ¼ −fp2−1Δα2 þ
4

3
fp23=4Δα3

− log fp2Δβ2 þ
1

3
fp2−3Δβ3; ð3:12Þ

ΔC4 ¼ fp2−2Δα2 þ fp2−1=4Δα3
− fp2−1Δβ2 − fp2−4Δβ3; ð3:13Þ

where fβk;αkg for k ¼ 0, 1 are deviated from fβk GR;
αk GRg. Then, we can construct the modified phase

ϕmðf; P̂PCAÞ ¼

8>><
>>:

ϕinsðfÞ; f ≥ fp1

ϕint mðf; P̂PCAÞ; fp1 ≤ f ≤ fp2

ϕMR mðf; P̂PCAÞ; f ≥ fp2

;

ð3:14Þ

FIG. 1. Ratios of eigenvalues of Fβ̂ α̂ with 0.1 ≤ η ≤ 0.25 fixing χeff ¼ 0. νi are the eigenvalues of Fβ̂ α̂, ordered from largest to
smallest, i ¼ 0, 1, 2, 3. The left and right figures show the fraction νi=ν0 for η and χeff , respectively. These results show that
ν1=ν0 ¼ Oð10−3Þ.
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where ϕint mðf; P̂PCAÞ;ϕMR mðf; P̂PCAÞ are the modified
phases for the intermediate and merger-ringdown parts due
to P̂PCA, respectively. Figure 2 shows that P̂PCA shifts the
time and phase in the nonlinear regime compared to those
of the GR waveform. Note that the amplification here is
caused by the coalescence time and phase shifts. not by a
deviation in amplitude. The quantitative forms of these shifts
can be derived by considering the continuity conditions.
The derivation of these shifts is shown in Appendix B. In
Fig. 2 and subsequent figures in this section, GW150914-
like parameters shown in Table I are used for illustrations.
The redshift z, which scales the total mass dependence in the
GW signal, is neglected here.

C. Amplitude modification

While the amplitude AGRðfÞ has two parameters, γ1 and
v2, in the nonlinear regime we employ one beyond-GR
parameter in amplitude, denoted by γ̂1, instead of specify-
ing principal components as well as done for phase. This is
because we assume that v2 linearly depends on γ1, as we
show explicitly in Sec. III C 1. The assumption is motivated
by the fact that nonlinearity of gravity would increase
toward the merger of a compact binary.

1. Beyond-GR parameter, γ̂1
Naively, γ̂1 is a parameter that describes an overall

modification for amplitude in the merger-ringdown part as
discussed in Sec. II B 3. Then, we define the modified
amplitude in the merger-ringdown part as

AMR mðf; γ̂1Þ ≔ ð1þ γ̂1ÞAMRðfÞ
¼ AMRðfÞ þ ΔAMRðf; γ̂1Þ; ð3:15Þ

where

ΔAMRðf; γ̂1Þ ≔ γ̂1AMRðfÞ: ð3:16Þ

In addition, we assume the linear frequency dependence of
amplitude modification in the intermediate part by inter-
polating amplitudes at fa1 and fa2. This is achieved by
setting v2 at the middle frequency, fint, as

v2 ≔ v2 GR þ Δv2ðγ̂1Þ; ð3:17Þ

where

Δv2ðγ̂1Þ ≔
1

2
ΔAMRðfa2; γ̂1Þ: ð3:18Þ

2. Modified amplitude

Fixing an initial configuration and γ̂1, we can determine
the intermediate part

Aintðf; γ̂1Þ ¼ A0ðfÞ
X4
i¼0

δifi; ð3:19Þ

by solving the modified form of Eq. (2.47),

0
BBBBBB@

1 fa1 fa12 fa13 fa14

1 fa2 fa22 fa23 fa24

A1
T

A2
T

1 fint fint2 fint3 fint4

1
CCCCCCA

0
BBBBBB@

δ0

δ1

δ2

δ3

δ4

1
CCCCCCA

¼

0
BBBBB@

Ainsðfa1Þ
AMR mðfa2; γ̂1Þ

A0
insðfa1Þ

A0
MR mðfa2; γ̂1Þ
v2ðγ̂1Þ;

1
CCCCCA
: ð3:20Þ

where fδig implicitly depend on fγ̂1g.
From these procedures, we can construct the modified

amplitude

Amðf; γ̂1Þ ¼

8><
>:

AinsðfÞ; f ≤ fa1
Aint mðf; γ̂1Þ; fa1 ≤ f ≤ fa2
AMR mðf; γ̂1Þ; f ≥ fa2

: ð3:21Þ

Figure 3 shows how the modified amplitude is constructed
in the frequency domain.

FIG. 2. Modified waveforms in the time domain associated
with P̂PCAðjP̂PCAj ≤ 0.1Þ.

TABLE I. GW150914-like parameters used for illustrations.

Binary MðM⊙Þ η χ1 χ2 r ðMpcÞ ι

68 0.25 0 0 400 0
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D. Physical consistency

From Eqs. (3.14) and (3.21), we can construct a modified
waveform

h̃mðf; γ̂1; P̂PCAÞ ≔ Amðf; γ̂1Þe−iϕmðf;P̂PCAÞ: ð3:22Þ

The waveform is physically inconsistent in the sense
that it does not include the radiation backreaction caused
by the newly introduced parameters. In other words, h̃mðfÞ
describes a physically unnatural situation in which the
properties of a remnant BH are the same as those in GR,
although there are additional losses of energy and angular
momentum due to modifications in the nonlinear regime.
Therefore, to create a physically consistent waveform,
we need to include the effects. This goal is achieved by
the following two steps. The first step is calculating the
additional energy and angular momentum losses due to the
existence of beyond-GR parameters.
The second step is reflecting these deviations on the

remnant BH spin, af . While the additional radiation causes
deviations in the mass and spin of a remnant BH, we focus
only on deviation in af because Eqs. (2.20)–(2.22), which
are used for the modeling of the ringdown GW signal,
depend on af .
Deviation in af changes the ringdown GW signal

because the ringdown and damping frequencies fRD and
fdamp are modified. In addition, other quantities that depend
on af , such as the collocation frequencies fp2 and fa2 are
modified. For usefulness in implementation, we revive the
dependence of c and G.

1. Formulas for energy and angular momentum losses

First of all, we derive formulas for energy and angular
momentum losses for a waveform in the frequency domain.

We start with a waveform in the time domain, related to
outgoing GW radiation,

HðtÞ ≔ hþðtÞ − ih×ðtÞ ¼
X∞
l¼2

Xl

m¼−l

−2Ylmðθ;ϕÞhlmðtÞ;

ð3:23Þ

where −2Ylmðθ;ϕÞ is the spin-weighted spherical harmonics
for s ¼ −2. In the time domain, the emission rates of
energy and the z component of angular momentum carried
by GWs (positive values mean losses from a system) are
written as

dE
dt

¼ c3r2

16πG

Z
dΩjḢj2; ð3:24Þ

dJz

dt
¼ −

c3r2

16πG
Re

�Z
dΩ

∂H
∂ϕ

Ḣ�
�
; ð3:25Þ

respectively, where dΩ is the standard solid angle ele-
ment [38]. Thus, the total amounts of radiated energy and
angular momentum during the coalescence are

ΔE ¼ c3r2

16πG

Z
∞

−∞
dt
Z

dΩjḢj2; ð3:26Þ

ΔJz ¼ −
c3r2

16πG
Re

�Z
∞

−∞
dt
Z

dΩ
∂H
∂ϕ

Ḣ�
�
: ð3:27Þ

Note that Eqs. (3.26) and (3.27) are asymptotic expressions
ignoring the higher order corrections above 1=r3.
We consider only the dominant GW modes, ðl; mÞ ¼

ð2;�2Þ, here. Replacing HðtÞ with the inverse Fourier
transform,

H̃ðfÞ ¼ h̃þðfÞ − ih̃×ðfÞ ¼
X∞
l¼2

Xl

m¼−l

−2Ylmðθ;ϕÞh̃lmðfÞ;

ð3:28Þ

and integrating with respect to t, the total amount of
radiated energy and angular momentum are

ðΔEÞGR ¼ 2πc3r2

G

Z
∞

0

df f2A2
GRðfÞ; ð3:29Þ

ðΔJzÞGR ¼ 2c3r2

G

Z
∞

0

df fA2
GRðfÞ: ð3:30Þ

Detailed derivations of Eqs. (3.29) and (3.30) are given in
Appendix C. These show that radiated energy and angular
momentum are completely determined by the spectrum of
GW amplitude in this formalism.

FIG. 3. Modified amplitude with γ̂1 ¼ 0.5 (navy solid line) and
GR amplitude (navy dotted line). γ̂1 describes the amplification at
f ¼ fa2 (orange) and the linear interpolation at f ¼ fint (red).
The former and latter deviations correspond to Eqs. (3.16)
and (3.18), respectively.
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2. Backreaction to a remnant BH

As long as perturbative modifications on a GR wave-
form are considered, it is expected that the radiated energy
and angular momentum of h̃mðfÞ, denoted by ðΔEÞm and
ðΔJzÞm, are written as

ðΔEÞmðγ̂1Þ ¼
2πc3r2

G

Z
∞

0

dff2A2
mðf; γ̂1Þ; ð3:31Þ

ðΔJzÞmðγ̂1Þ ¼
2c3r2

G

Z
∞

0

dffA2
mðf; γ̂1Þ: ð3:32Þ

Then, deviations in the radiated energy and angular
momentum are

δðΔEÞðγ̂1Þ ≔ ðΔEÞmðγ̂1Þ − ðΔEÞGR
¼ 2πc3r2

G

Z
∞

fa1

df f2
�
A2
mðf; γ̂1Þ − A2

GRðfÞ
�
;

ð3:33Þ
δðΔJzÞðγ̂1Þ ≔ ðΔEÞmðγ̂1Þ − ðΔEÞGR

¼ 2c3r2

G

Z
∞

fa1

df f
�
A2
mðf; γ̂1Þ − A2

GRðfÞ
�
:

ð3:34Þ
The lower frequency in the integral is set to fa1 because the
deviation occurs in f ≥ fa1. These deviations change the
final mass and spin to

M̄fðγ̂1Þ ¼ Mf −
δðΔEÞðγ̂1Þ

c2
; ð3:35Þ

S̄fðγ̂1Þ ¼ Sf − δðΔJzÞðγ̂1Þ; ð3:36Þ

whereMf and Sf are the final mass and spin predicted by GR.
Similar to M̄f and S̄f , we denote the quantities that include
the radiation backreactions with a bar in the following.

E. Complete form of modified waveform

The important quantity for ringdown modeling is the
dimensionless Kerr parameter af, which is defined in
Eq. (2.23). af determines not only the ringdown and dam-
ping frequencies fRD and fdamp via Eqs. (2.20)–(2.22)
but also the collocation frequencies fa2 and fp2 and the
continuity conditions. Regarding these facts, our strategy to
create a physically consistent waveform is as follows:
(1) Fixing γ̂1, construct h̃mðf; γ̂1Þ, then calculate āf .
(2) Replacing af with āf , modify the ringdown part of

the signal.
(3) Construct an IMR waveform considering P̂PCA and

the modified continuity conditions associated with
the change of af to āf .

The first step is done, following Sec. III D 2. As the second
step, since āf modifies the ringdown and damping frequen-
cies as f̄RD and f̄damp, we modify phase as

ϕ̄MR mðf; γ̂1; P̂PCAÞ

≔
1

η

�
α0 þ α1f − α2ðP̂PCAÞf−1 þ

4

3
α3ðP̂PCAÞf3=4

þ α4 GRtan−1


f − α5 GRf̄RD

f̄damp

�

; ð3:37Þ

and amplitude as

Āmðf; γ̂1Þ ≔ ð1þ γ̂1Þ
γ1 GRγ3 GRf̄dampA0ðfÞ

ðf − f̄RDÞ2 þ γ3 GR
2f̄2damp

× e
−γ2 GRðf−f̄RDÞ

γ3 GR f̄damp : ð3:38Þ

Figure 4 shows the physically consistent waveforms in the
time domain associated with γ̂1 (jγ̂1j ≤ 0.5). The left figure
shows the IMR waveforms and the right shows the ring-
down parts. Due to the backreaction inclusion associated

FIG. 4. Physically consistent modified waveforms in the time domain associated with γ̂1 (jγ̂1j ≤ 0.5) that describes an amplification in
the nonlinear regime. The left figure shows the IMR waveforms and the right shows the ringdown parts. Due to the backreaction
inclusion associated with γ̂1, the ringdown and damping frequencies are changed. These changes are studied in Fig. 5.
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with γ̂1, the ringdown and damping frequencies are
changed. Figure 5 shows fractional deviations of the
ringdown and damping frequencies associated with the
variation of γ̂1, respectively. On the left-hand side of
Eq. (3.37), we emphasize the implicit dependence of γ̂1.
For the third step, we consider changes in the collocation
frequencies and the connection conditions. The collocation
frequencies between the intermediate and merger-ringdown
parts fa2 and fp2 are modified to

f̄p2 ¼ 0.5f̄RD; ð3:39Þ

f̄a2 ≔ f̄peak ≔

�����f̄RD −
γ3f̄damp

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

2
p �

γ2

�����: ð3:40Þ

Moreover, phase for the intermediate is changed to

ϕ̄intðf; P̂PCAÞ ≔
1

η



β0 þ β1f þ β2ðP̂PCAÞ log f

−
β3ðP̂PCAÞ

3
f−3

�
; ð3:41Þ

where fβ0; β1; α0; α1g are determined by modified con-
nection conditions, which are given as

0
BBB@

1 fp1 0 0

0 1 0 0

1 f̄p2 −1 −f̄p2
0 1 0 −1

1
CCCA

0
BBB@

Δβ0
Δβ1
Δᾱ0
Δᾱ1

1
CCCA ¼

0
BBB@

ΔC1

ΔC2

ΔC̄3

ΔC̄4

1
CCCA; ð3:42Þ

where ΔC̄3;4 are obtained by replacing fp2 in Eqs. (3.12)
and (2.13) with f̄p2. Since we keep the inspiral part the
same as GR, these changes affect only Δᾱ0.1. Similarly, for
amplitude, Āint mðf; γ̂1Þ becomes

Āint mðf; γ̂1Þ ≔ A0ðfÞ
X4
j¼0

δ̄ifi; ð3:43Þ

where fδ̄ig are determined by the modified connection
conditions,

0
BBBBBB@

1 fa1 fa12 fa13 fa14

1 f̄a2 f̄2a2 f̄3a2 f̄4a2
A1

T

Ā2
T

1 f̄int f̄2int f̄3int f̄4int

1
CCCCCCA

0
BBBBBB@

δ̄0

δ̄1

δ̄2

δ̄3

δ̄4

1
CCCCCCA

¼

0
BBBBBB@

Ainsðfa1Þ
ĀMR mðf̄a2; γ̂1Þ

A0
insðfa1Þ

Ā0
MR mðf̄a2; γ̂1Þ

v2 mðγ̂1ÞA0ðf̄intÞ

1
CCCCCCA
; ð3:44Þ

where f̄int ≔ ðfa1 þ f̄a2Þ=2 and Ā2 is obtained by replacing
fp2 in Eq. (II.48) with f̄p2. Then, we finally derive the
complete form of our waveform

h̃MGðf; γ̂1; P̂PCAÞ ≔ AMGðf; γ̂1Þe−iϕMGðf;γ̂1;P̂PCAÞ; ð3:45Þ

where

ϕMGðf; γ̂1; P̂PCAÞ≔

8>><
>>:

ϕinsðfÞ; f ≤ fp1

ϕ̄int mðf; P̂PCAÞ; fp1 ≤ f ≤ f̄p2

ϕ̄MR mðf; γ̂1; P̂PCAÞ; f ≥ f̄p2

;

ð3:46Þ

FIG. 5. Fractional deviations of the ringdown frequency (left) and the damping frequency (right) associated with γ̂1. f̄RD − fRD and
f̄damp − fdamp are monotonically decreasing and increasing functions of γ̂1, respectively.
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AMGðf; γ̂1Þ ≔

8><
>:

AinsðfÞ; f ≤ fa1
Āint mðf; γ̂1Þ; fa1 ≤ f ≤ f̄a2
ĀMR mðf; γ̂1Þ; f ≥ f̄a2

: ð3:47Þ

F. Availability and assumption of our waveform

Since our prescription to ensure the physical consistency
does not depend on specific models, it is expected to be
applicable to various cases of the nonstandard models
of BBH mergers, such as extended theories of gravity
(e.g, [8]), or environmental effects of BHs (e.g., [39]). To
investigate the compatibility of our waveform with those in
specific models of extended gravity theories, in Sec. IV C,
we show that our waveform can reproduce Einstein-dilaton
Gauss-Bonnet gravity waveforms [27] within the measure-
ment errors in the O4 and O5 observations.
To keep our waveform physically consistent, we need

to work within the perturbative regime from the original
IMRPhenomD waveform. First, we demand that beyond-
GR modifications on the waveform are perturbative. Under
this requirement, it is strongly expected that the modifica-
tion to af is also perturbative. Indeed, for jγ̂1j≲ 0.4, a
relative error of the dimensionless Kerr parameter af
between estimated from the complete waveform h̃MGðfÞ
and from the tentative waveform (without the backreaction)
h̃mðfÞ is ≤ 3%, which is comparable to a systematic error
for the modeling of af [33]. On the other hand, there is no
explicit indicator to assess the regime of validity for P̂PCA

since at the waveform generation level, P̂PCA can take arbi-
trary value because the connection procedure (to impose C1

condition) works for any value of P̂PCA. However, too large
values of P̂PCA imply nonperturbative modifications to the
BBH dynamics. Therefore, we impose that P̂PCA must
take a value in a perturbative range because we are here
interested in perturbative deviations from GR.

G. Comparison with Maggio et al.

Finally, we compare our waveform model with the
previous work by Maggio et al. [28], who propose a para-
metrized waveform model that can capture the deviations in
the merger and the ringdown regimes. They introduce five
beyond-GR parameters for each GW mode ðl; mÞ, fδAlm;
δωlm; δΔtlm; δflm0; δτlm0g, that characterize the merger and
ringdown parts. The parameters, fδAlm; δωlm; δΔtlmg, are
ones for the merger waveform and describe fractional
deviations in amplitude, angular frequency, and time lag,
respectively. The other two parameters, fδflm0; δτlm0g, are
ones for the ringdown waveform and describe fractional
deviations in the ringdown frequency and damping time for
the fundamental mode, n ¼ 0, respectively. Both our and
their waveforms parametrize the deviation from GR in the
nonlinear region.
First, a main difference from [28] is that our waveform is

modeled in the frequency domain, while their waveform is

in the time domain. Their waveform model is constructed
considering generic deviations in the merger and ringdown
regimes based on the EOB waveform [40,41]. Another
point is that considering only the quadrupole GW modes,
our parametrization corresponds to picking two degrees of
freedom from three parameters characterizing the nonlinear
regime in their model, fδA220; δω22; δΔt22g. For phase, we
adopt only one parameter, P̂PCA, which determines time
and phase shifts dependently, while [28] introduces those
shifts independently. This is because one of our purposes in
this study is to specify the dominant components among the
artificial parameters introduced in the IMRPhenomD
waveform.
Furthermore, by including the radiation reactions asso-

ciated with modifications in the nonlinear regime, to the
remnant, we give an implicit but physical relation between
δA220, and δf220 and δτ220 that characterize the ringdown
regime in the model. In other words, our procedure to
include the reaction removes potential degeneracies between
deviations in amplitude and in the ringdown and damping
frequencies in a physically consistent way. We emphasize
again that in this study we do not introduce free parameters
in the ringdown part.

IV. EVALUATION OF THE CONSTRUCTED
WAVEFORM

In this section, we discuss the systematic properties of
our waveform. In Sec. IVA, we first study mismatch asso-
ciated with P̂PCA and γ̂1 for various configurations. The
results show what type of BBHs are preferred for testing
gravity. In Sec. IV B, we estimate the measurement errors
and correlation coefficients of the model parameters in the
O4 and O5 observations, using the Fisher analysis [42,43],
and show that our parametrization efficiently captures pos-
sible deviations fromGRwaveforms. Finally, in Sec. IVC, to
show the compatibility with extended theories of gravity, we
consider the case of Einstein-dilaton Gauss-Bonnet gravity
(EdGB) [27], which is a quadratic gravity theory that has
an additional scalar-field coupling to a quadratic term of
curvature.

A. Mismatch

We adopt a definition of mismatch between the
IMRPhenomD waveform, h̃GRðfÞ, in Eq. (2.11), and our
modified waveform, h̃MGðfÞ, in Eq. (3.45):

MM
�
h̃GRðfÞ; h̃MGðfÞ

�

≔ 1 − max
ftc;ϕcg

�
h̃GRðfÞ; h̃MGðfÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
h̃GRðfÞ; h̃GRðfÞ

�q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
h̃MGðfÞ; h̃MGðfÞ

�q :

ð4:1Þ
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We investigate MM associated with P̂PCA and γ̂1 for
configurations with varying η and χeff , respectively. Here,
we set SnðfÞ ¼ 1 as in Sec. III B, and the lower cutoff is set
to 0.0035=M, which is sufficiently lower than f ¼ fp1
where deviations occur. We check for two types of initial
setups:
(1) case I (varying η)

η ¼ f0.1; 0.15; 0.2; 0.25g; χeff ¼ 0,
(2) case II (varying χeff )

η ¼ 0.25,
χeff ¼ f−0.95;−0.5;−0.25; 0; 0.25; 0.5; 0.95g.

Here MM for varying M is not considered because of the
universality of total-mass scaling in the waveform.
Figure 6 shows the results. For case I, MM tends to be

larger as η increases for both of P̂PCA and γ̂1. Similarly, for

case II, MM tends to be larger as χeff increases for
both. Furthermore, for the case of P̂PCA, varying η or
χeff changes MM by up to a factor of 10. Therefore,
BBH with symmetric mass ratio and positive χeff is
preferred as a best target for testing GR in the nonlinear
regime with our waveform. This fact holds for the case
of γ̂1, though the change is more suppressed than the
case of P̂PCA.
As indicators for the distinguishability of beyond-GR

effects, we estimate the minimum SNR values for MM
to be detected. We adopt the criterion proposed in
Appendix G of [44],

MM≲ D
2SNR2

; ð4:2Þ

FIG. 6. MM associated with P̂PCA and γ̂1 for various initial configurations. The top two figures showMM for P̂PCA, and the left and
right show the case I and case II, respectively. The bottom two show MM for γ̂1, and the left and right show the case I and case II,
respectively. For P̂PCA,MM is the same for positive and negative values. For γ̂1, on the other hand, the values ofMM are not exactly
symmetrical for positive and negative values. For a given positive γ̂1,MM for a negative γ̂1 with the same absolute value is 1 to 2 times
smaller.
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where D is the number of the parameters used in the
analysis. For our waveform, the parameters are fM; η; χeff ;
γ̂1; P̂PCAg, then D ¼ 5. Following Eq. (4.2), for MM of
1%, 0.1%, and 0.01%, the SNR necessary for detection is
16, 50, and 160, respectively.

B. The Fisher forecast

We estimate the statistical errors of beyond-GR param-
eters for a high-SNR event in the O4 and O5 observations,
based on the Fisher matrix formalism (e.g., [42,43]).
Generally, the Fisher analysis is useful in terms of not only
error estimation prior to observations but also the assess-
ment of the parametrization of a waveform, that is, investi-
gating the existence of parameter degeneracies.

1. The Fisher matrix formalism

In the analysis, we consider eight parameters:

θ ≔ flogdL; tc;ϕc; log η; logMz; χeff ; γ̂1; P̂PCAg ð4:3Þ

where dL is luminosity distance and Mz ≔ ð1þ zÞη3
5M is

the redshifted chirp mass. As a spin parameter, we focus
only on the effective spin parameter χeff because it is
estimated easily as a leading effect of spins. The Fisher
matrix for each detector labeled by i ¼ fLIGOHanford;
LIGOLivingston;Virgo;KAGRAg is given as

ΓðiÞ
ab ≔

�
∂ah̃MGðfÞ; ∂bh̃MGðfÞ

�
ð4:4Þ

where ∂a stands for the partial derivative with respect to θa,

and SðiÞn ðfÞ in the inner product defined in Eq. (2.10) is the
full-sky angular averaged noise spectral density for the ith
detector in the O4 and O5 observations [45]. The lower
cutoff fmin is set to 10 Hz, which is the minimum frequency
of the detectors. Given the Fisher matrix for each detector,
the statistical error of a parameter in a multidetector
observation, denoted by δθa, and the correlation coeffi-
cients between different parameters, denoted by cθaθb, are
estimated by

δθa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1Þaa

q
; ð4:5Þ

cθaθb ¼
ðΓ−1Þabffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΓ−1ÞaaðΓ−1Þbb
p ; ð4:6Þ

where Γ ≔
P

i ΓðiÞ is the combined Fisher matrix and
Γ−1 is the inverse of Γ. Fixing source distance to dL ¼
424.6 Mpc or z ¼ 0.09 that is consistent with GW150914
[3], mass ratio to η ¼ 0.25, and a leading spin to χeff ¼ 0,
we examine two cases of different total masses: M ¼
f20M⊙; 60M⊙g or Mz ¼ f9.5M⊙; 28.5M⊙g, where dL is
set to the presented values considering cosmological
parameters shown in [46]. In the following, we refer to

the case of M ¼ 20M⊙ and M ¼ 60M⊙ as case A and
case B, respectively.

2. Results

Table II shows the network SNR values with our
modified waveform for each configuration when detected
in the O4 and O5 observations. In Figs 7 and 8, each panel
shows the 1σ error ellipse marginalized over other param-
eters 1σ errors for the O4 and O5 observations, respectively.
The numerical values of the errors and correlation coef-
ficients for γ̂1 and P̂PCA are shown in Tables III, IV, and V,
respectively.
For the GR parameters, Table III shows that the

estimated error of Mz is smaller in case A than in case B,
contrary to the errors of the other GR parameters, for both
the O4 and O5 observations. This is because the inspiral
signal of a binary with small total mass lasts longer up to a
larger orbital frequency, then detectors can see the early
inspiral regime more clearly than a binary with large total
mass. Due to this, for case A, degeneracy betweenMz and
the other GR parameters are solved, however, correlations
among tc, ϕc, η, and χeff are strong. On the other hand, for
case B, we can see the effects of higher-order PN coeffi-
cients more efficiently, thus correlations among tc;ϕc; η,
and χeff are solved more clearly than for case A, as Figs. 7
and 8 show.
According to Tables IV and V, although P̂PCA, and ϕc or

tc are correlated modestly, the correlations between the GR
parameters and beyond-GR parameters are not significant.
This fact means that we can expect to estimate beyond-GR
effects easily by analyzing the data with our waveform.

C. Compatibility with EdGB waveform

Although our waveform does not depend on specific
models of gravity theories, we should investigate what
theories are compatible with the waveform. Recently
numerical simulations in extended gravity theories have
been developed and produced IMR waveforms in such
theories [26,27]. Here, to see compatibility, we take EdGB
gravity waveforms [27]. EdGB gravity is an effective field
theory that has a scalar field coupling to a specific combi-
nation of quadratic curvature terms, so-called the Gauss-
Bonnet term [47]. The action is written as

S≔
Z m2

pl

2
d4x

ffiffiffiffiffiffi
−g

p �
R−

1

2
ð∂θÞ2 þ 2αGBfðθÞRGB

�
; ð4:7Þ

TABLE II. SNR value for each parameter set.

Case O4 network SNR O5 network SNR

Case A (M ¼ 20M⊙) 30.4 58.9
Case B (M ¼ 60M⊙) 70.2 136.3
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where mpl is the reduced Planck mass, R is the four-
dimensional Ricci scalar, θ is the EdGB scalar field, αGB is
the EdGB coupling constant with dimensions of length
squared, RGB is the EdGB scalar,

RGB ¼ RabcdRabcd − 4RabRab þ R2; ð4:8Þ

and the function, fðθÞ, takes a form of fðθÞ ¼ 1
8
eθ in this

theory (e.g., [48]).
Although it is unknown whether EdGB gravity has well-

posedness for the initial value problem, the waveforms are
computed in [27] based on an order-reduced scheme in
which well-posedness of the EOM is ensured at each order
of perturbations. The method is as follows. Given the NR

data of a BBH merger as the background spacetime, the
background sources the leading-order scalar field. Then,
the GR background and leading-order scalar field source
the leading-order correction on a gravitational waveform.
Here, as the background spacetime, GR waveforms com-
puted by SXS Collaboration [49] are adopted. To obtain
EdGB waveforms, we use a Python code provided by
Okounkova [50]. Since the backreaction due to the addi-
tional GWs is not considered in the EdGB waveforms, we
turn off the backreaction inclusion in the fitting.

1. Fitting results

We evaluate the residual sum of squared (RSS) between
an EdGB waveform and the best-fit modified waveform for

FIG. 7. Marginalized 1σ error estimates for θ in the O4 observation. The blue and the red show the 1σ regime for case A and case B,
respectively.
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the goodness of fit. Note that there is a systematic error in
the modeling of the IMRPhenomD waveform. Thus, we
consider a fraction, RSS=RSSGR, where RSSGR is the RSS
value computed from the IMRPhenomD and SXS wave-
forms [49]. In this analysis, we use the GW150914-like
parameters in Table I.

We fit the cases of
ffiffiffiffiffiffiffiffi
αGB

p
=GM ¼ f0.030; 0.035; 0.040g

here. These coupling constants are chosen not to
drastically exceed the perturbative regime of jγ̂1j. The
results are presented in Table VI. Figure 9 shows the
best-fit modified waveform in the time domain for
each case.

FIG. 8. Marginalized 1σ error estimates for θ in the O5 observation. The blue and the red show the 1σ regime for case A and case B,
respectively.

TABLE III. 1σ errors of θ.

Case δdL=dL½%� tc ½ms� ϕc δη=η½%� δMz=Mz½%� δχeff δγ̂1 δP̂PCA

A in O4 3.41 9.12 6.17 3.77 0.174 0.0712 0.251 0.0583
A in O5 1.76 4.57 2.89 1.97 0.0480 0.0352 0.136 0.0247
B in O4 2.09 8.74 4.73 0.706 0.889 0.0335 0.0505 0.0473
B in O5 0.914 3.09 1.36 0.285 0.174 0.0102 0.0255 0.0176

WATARAI, NISHIZAWA, and CANNON PHYS. REV. D 109, 084058 (2024)

084058-16



2. Discussion

Note that, unlike our original waveform, EdGB wave-
forms computed in [27] do not include backreactions to the
background spacetime. In other words, although the EdGB
waveform has a deformation from GR in the ringdown part,
it is purely caused by the scalar field. In contrast, our wave-
form includes the backreactions due to additional gravita-
tional radiation. Therefore, we cannot expect our waveform
to be fully compatible, though we turn off the inclusion of
the backreaction here. Regardless of the small difference in
modeling, the compatibility should be evaluated by com-
paring the goodness of fit with the parameter estimation
errors in future observations.
As a benchmark to whether our waveform can reproduce

EdGB waveforms, we use RSSO4;5, which is defined as the
RSS value computed from the IMRPhenomD waveform
with binary parameters shown in Table I (i.e, P̂PCA¼ γ̂1¼0)
and the modified waveform with setting beyond-GR para-
meters to 1σ errors in the O4 or O5 observations, that is,
P̂PCA → δP̂PCA and γ̂1 → δγ̂1 with binary parameters set to
values shown in Table I. Note that a degeneracy between
P̂PCA and γ̂1 turns out to be insignificant as shown in
Sec. IV B. RSSO4;5 are from practical statistical errors,
which are inevitable in the parameter estimation of real
data. For this parameter set, RSSO4=RSSGR ¼ 19.9 and
RSSO5=RSSGR ¼ 4.06.
According to Table VI, all cases are well below or

comparable to RSSO4;5. Therefore, we can conclude that, in
both the O4 and O5 observations, our waveform model is

compatible with EdGB waveforms in the perturbative
ranges of P̂PCA and γ̂1. According to Fig. 9, in terms of
compatibility with EdGB waveforms, our waveforms tend
to fit larger in the premerger portion and smaller in the
ringdown regime than EdGB waveforms. Another impor-
tant conclusion is that, for phase, it is sufficient to introduce
one additional parameter to fit EdGB waveforms. This fact
supports that a leading principal component plays a crucial
role in interpreting physics behind deviations from GR.

V. DISCUSSION

There are several factors to consider for the availability
of our physically consistent waveform. Here, we give some
comments on these issues as discussions.

(i) Energy and angular momentum carried by the
nonstandard effects. For our waveform to describe
the physically consistent situation, we assume the
amounts of energy and angular momentum losses
carried or consumed by the nonstandard effects,
such as an additional field around the source or
environmental effects around BHs, are negligible
compared with the ones carried by GWs. If this
assumption breaks, we will find a deviation from GR
in the estimated results using our waveform, espe-
cially in the ringdown part, even if our waveform
captures such nonstandard effects as deviations from
GR with nonzero γ̂1. The estimate of this deviation
is expected to allow us to infer the nature of the
additional physical degrees of freedom, such as
nontensorial GW modes.

(ii) Energy and angular momentum carried by the sub-
dominant GW modes. In this study, we also assume
the amounts of energy and angular momentum
carried by the subdominant modes, such as ðl; mÞ ¼
ð3;�3Þ or ðl; mÞ ¼ ð2;�1Þmodes, can be neglected.
This is just because we use the IMRPhenomDmodel,

TABLE IV. Correlation coefficients of γ̂1.

Case cγ̂1 log dL cγ̂1tc cγ̂1ϕc
cγ̂1η cγ̂1 logMz

cγ̂1χeff cγ̂1P̂PCA

A in O4 0.199 0.183 0.176 −0.184 0.110 0.182 0.0941
A in O5 0.186 0.174 0.173 −0.174 0.140 0.174 0.0799
B in O4 0.246 −0.181 −0.258 −0.348 −0.307 −0.230 −0.220
B in O5 0.460 0.0449 −0.0355 −0.212 −0.102 0.00520 −0.0363

TABLE V. Correlation coefficients of P̂PCA.

Case cP̂PCA log dL
cP̂PCAtc

cP̂PCAϕc
cP̂PCAη

cP̂PCA logMz
cP̂PCAχeff

A in O4 0.0448 0.391 0.514 −0.263 0.722 0.410
A in O5 0.0272 0.203 0.288 −0.121 0.498 0.206
B in O4 0.550 0.904 0.942 0.516 0.845 0.924
B in O5 0.326 0.804 0.922 0.142 0.846 0.863

TABLE VI. RSS=RSSGR for
ffiffiffiffiffiffiffiffi
αGB

p
=GM ¼ f0.030; 0.035;

0.040g.
ffiffiffiffiffiffiffiffi
αGR

p
=GM 0(GR) 0.030 0.035 0.040

RSS=RSSGR 1 2.30 3.33 7.45
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which describes ðl; mÞ ¼ ð2;�2Þ modes as a basis
for the first implementation. Indeed, if we focus on
BBHs with nearly equal component masses, this
assumption is reasonable if the event SNR is not
so high, or for the events detected so far. However,
for a high SNR event, subdominant modes should be
considered for a precise analysis because this sim-
plification can cause confusion with beyond-GR
effects.

(iii) Precession effects. Since we adopt the IMRPhe-
nomD waveform as a basis, we do not consider the
precession effects of BBHs. This effect also can be
confused with beyond-GR effects, especially in the
analysis of a high SNR event. Therefore, the method
that we have developed in this paper should be
implemented to the latest waveforms including the
subdominant modes or, and precession effects,
such as [51,52].

Regarding the second and third items, our idea, whose main
features are to consider the principal components of the
merger parameters and to include the radiation reaction due
to beyond-GR parameters, is in principle applicable to the
latest waveforms. From this point, there is no obstacle to
the implementation. However, technical difficulties might
arise since the latest waveforms have a larger number of
phenomenological parameters. We should reconsider an
appropriate criterion to reduce the number of beyond-GR
parameters in a modified waveform effectively.

VI. CONCLUSIONS

In this work, we propose a parametrized waveform that
can measure generic deviations from GR in the nonlinear
regime. Our underlying idea is that perturbative modifica-
tions to a GR waveform can capture beyond-GR effects in
the nonlinear regime of gravity. As the first implementa-
tion, we use the IMRPhenomD waveform [30]. For modifi-
cation to GW phase, we adopt only the leading principal
component of the artificial parameters as a beyond-GR
parameter, P̂PCA, because the leading component is more
significant than the others, as discussed in Sec. III B 1. Our
ideas here are mainly two. The first is that the dominant
components are expected to play physically crucial roles,
though it is difficult to interpret the physical meanings of
the artificial parameters. The other is to break the degen-
eracies between the estimated parameters that have not
been considered in the previous studies (e.g., [4–6]). P̂PCA
corresponds to a mixture of time and phase shifts to a GR
case. For modification to GW amplitude, we adopt the
fractional change of γ1, γ̂1, which controls amplitude
around the peak of a waveform. As a role of γ̂1, we
interpolate the inspiral part linearly to the midway fre-
quency such that γ̂1 also describes an amplification in the
intermediate regime. The key point is that our modified
waveform is physically consistent in the sense that the
radiation backreactions associated with γ̂1 are included.
This inclusion is achieved by calculating the additional

FIG. 9. Best-fit parametrized waveforms to EdGB waveforms. The top left panel shows EdGB waveforms for
ffiffiffiffiffiffiffiffi
αGB

p
=GM ¼ 0.030,

0.035, 0.040 and GR waveform (dotted). From the top right to the bottom right, the best-fit modified waveforms (light blue lines) are
shown for

ffiffiffiffiffiffiffiffi
αGB

p
=GM ¼ 0.030, 0.035, 0.040 (blue lines).
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gravitational radiation and modifying mass and spin of a
remnant BH. Thus, the ringdown signal is modified.
Furthermore, we investigate the systematic studies for

the modified waveform, specifically considering mismatch
associated with the beyond-GR parameters, the Fisher
analysis, and the compatibility with EdGB waveforms.
In Sec. IVA, we find that mismatch can be more significant
for a binary that has a symmetric mass ratio and positive
χeff value when fixing total mass and luminosity distance.
Therefore, we conclude that such binaries are preferred for
our analysis. In Sec. IV B, we estimate the expected error of
each parameter and the correlation coefficients between
the parameters. GWs from BBHs with a small total mass
allow us to derive the posterior of Mz more tightly than
with a large total mass, due to the long inspiral. For other
parameters, contrary to Mz, the errors are smaller when
considering GWs come from BBHs with a large total mass.
The important fact for our waveform parametrization is that
newly introduced parameters, γ̂1 and P̂PCA, are not corre-
lated with others significantly. This means that we can
expect beyond-GR parameters will be estimated independ-
ently from GR parameters. Finally, we have shown that our
modified waveform can reproduce EdGB waveforms in
perturbative ranges of P̂PCA and γ̂1, within the measurement
errors in the O4 and O5 observations. It is remarkable that
only two additional parameters are sufficient to describe
an extended theory. This fact supports that the principal
components play a crucial role in interpreting physics
behind deviations from GR.
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APPENDIX A: FITTING FORMULA OF e⃗PCA

e⃗PCA has a form of

e⃗PCA ¼ p̂β̂2
e⃗β̂2 þ p̂β̂3

e⃗β̂3 þ p̂α̂2 e⃗α̂2 þ p̂α̂3 e⃗α̂3 : ðA1Þ

Figure 10 shows the coefficients of e⃗PCA with 0.1 ≤ η ≤
0.25 fixing χeff ¼ 0. Here, for 0.1 ≤ η ≤ 0.25 and
−0.95 ≤ χeff ≤ 0.95, we give fitting formulas for the
coefficients. We adopt a polynomial ansatz using ðη; χeffÞ,

p̂λ̂i
¼ p̂i

00 þ p̂i
10ηþ ðχeff − 1Þðp̂i

01 þ p̂i
11ηþ p̂i

21η
2Þ

þ ðχeff − 1Þ2ðp̂i
02 þ p̂i

12ηþ p̂i
22η

2Þ
þ ðχeff − 1Þ3ðp̂i

03 þ p̂i
13ηþ p̂i

23η
2Þ; ðA2Þ

which is motivated by Eq. (31) in [30]. In this study, we
adopt rather χeff instead of χPN used in [30]. The results
are shown in Table VII. The errors of p̂β2 ; p̂β3 and p̂α2 in
the fitting are below 0.002%. On the other hand, the error
of p̂α3 , which has the smallest contribution to e⃗PCA, is
below 1%.

APPENDIX B: TIME AND PHASE SHIFTS
DUE TO P̂PCA

Here we derive quantitative representations of the time
and phase shifts associated with P̂PCA. Since Δβ0;1;Δα0;1
appear in constants and linear terms for frequency, they can
be interpreted as time and phase shifts. First, Δβ0;1 induces
the shifts at the beginning of the intermediate,

Δtint ≔ −
Δβ0
η

¼ −
1

η

�
f1 − logðfp1ÞgΔβ2 þ

4

3
fp13Δβ3

�
; ðB1Þ

FIG. 10. Coefficients of e⃗PCA with 0.1 ≤ η ≤ 0.25 and χeff ¼ 0.
Each line shows p̂β̂2

(blue), p̂β̂3
(orange), p̂α̂2 (green), and p̂α̂3 (red).

TABLE VII. Fitting coefficients for each parameter. These
values are derived using Mathematica’s NonlinearModelFit.

β̂2 β̂3 α̂2 α̂3

p̂i
00

−0.291715 −0.661106 1.13042 0.189428
p̂i
10

−1.38872 0.347803 −2.39817 −0.699968
p̂i
01

−0.796214 −2.33506 0.553463 0.729275
p̂i
11

4.62917 11.4896 −7.70244 −3.52067
p̂i
21

−9.50827 −8.47591 19.4324 1.78907
p̂i
02

0.163208 −2.21242 1.06718 0.492195
p̂i
12

−2.71537 9.38284 −11.1916 −1.29497
p̂i
22

4.82752 −1.65164 26.416 −3.77372
p̂i
03

0.513489 −0.655432 0.526777 0.0692508
p̂i
13

−4.00258 2.24979 −4.45295 0.310426
p̂i
23

7.62501 0.944151 9.58594 −2.80064
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Δϕint ≔
M
2πη

Δβ1

¼ −
M
2πη

�
fp1−1Δβ2 þ fp1−4Δβ3

	
; ðB2Þ

and, similarly Δα0;1 induces the shifts at the beginning of
the merger and ringdown,

ΔtMR ≔ −
Δα0
η

¼ Δtint −
1

η

�
−
�
1 − logðfp2Þ

	
Δβ2 −

4

3
fp2−3Δβ3

þ 2fp2−1Δα2 −
1

3
fp2

3
4Δα3

�
; ðB3Þ

ΔϕMR ≔
M
2πη

Δα1

¼ Δϕint þ
M
2πη

�
fp2−1Δβ2 þ fp2−4Δβ3

− fp2−2Δα2 − fp2−
1
4Δα3

�
: ðB4Þ

The first terms in Eqs. (B3) and (B4) are carried over from
the inspiral. The second term in each equation represents
the time and phase deviation in the nonlinear regime,
respectively. Since homogeneous time and phase shifts are
interpreted as the GR part when evaluating mismatch (see
in Sec. IVA), these quantities characterize deviations that
cannot be absorbed into GR.

APPENDIX C: DERIVATION OF EQS. (3.29)
AND (3.30)

We focus only on ðl; mÞ ¼ ð2;�2Þ components in
Eq. (3.23), which IMRPhenomD models. Using Fourier

transform of h22ðtÞ and h2−2ðtÞ, HðtÞ and ḢðtÞ are
written as

HðtÞ ¼
Z

∞

−∞
df

�
−2
Y22ðθ;ϕÞh̃22ðfÞ

þ−2 Y2−2ðθ;ϕÞh̃2−2ðfÞ
�
e−2πift; ðC1Þ

ḢðtÞ ¼
Z

∞

−∞
dfð−2πifÞ

�
−2
Y22ðθ;ϕÞh̃22ðfÞ

−−2 Y2−2ðθ;ϕÞh̃2−2ðfÞ
�
e−2πift: ðC2Þ

Here, we have two things to pay attention to. The first
one is that the choice of the Fourier transform is fixed as in
Eq. (C1), to ensure that h̃2mðfÞ with m ¼ 2 and m ¼ −2
have support for f > 0 and f < 0, respectively. The other is
that each mode has a different time-to-frequency corre-
spondence in the stationary phase approximation (see, e.g.,
[53]), which determines the conversion rule from NRwave-
form to the frequency-domain waveform in the Phenom
modeling. In this case, the relation of this correspondence
between the ðl ¼ 2; m ¼ 2Þ mode and the ðl ¼ 2; m ¼ −2Þ
mode is t22ðfÞ ¼ t2−2ð−fÞ; therefore, time derivative of
h2−2ðtÞ in Eq. (C2) must have a minus sign.
Plugging Eq. (C1), (C2) into Eq. (3.26) and using the

orthonormality of spin-weighted spherical harmonics,

Z
dΩðsYlmðθ;ϕÞs0Y�

l0m0 ðθ;ϕÞÞ ¼ δss
0
δmm0δll0 ; ðC3Þ

we derive

ΔE ¼ c3r2

16πG

Z
∞

−∞
dt
Z

dΩjḢj2

¼ c3r2

16πG

Z
∞

−∞
dt
Z

dΩ

2
64
�R∞

−∞ dfð−2πifÞ
�
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Similarly plugging Eqs. (C1) and (C2) into Eq. (3.27), we derive
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