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The catastrophic decay of a spacetime with compact dimensions, via bubbles of nothing (BoNs), is
probably a generic phenomenon. BoNs admit a four-dimensional description as singular Coleman–
de Luccia bounces of the size modulus field, stabilized by some potential VðϕÞ. We apply the tunneling
potential approach to this 4D description to provide a very simple picture of BoNs. Using it, we identify
four different types of BoN, corresponding to different classes of higher-dimensional theories. We also
identify 4D theories featuring a new type of quenching of BoN decay, which may be present even for dS
vacua, and discuss the viability of embedding such models in a higher-dimensional theory. The present
approach allows us to treat in a single framework BoN nucleation and other decay channels, and we study
the interplay between the different nonperturbative instabilities comparing their decay rates.
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I. INTRODUCTION

Multiple vacua are common in theories beyond the
Standard Model, and their decay has been widely studied
using Euclidean bounces [1,2]. In theories with compact
extra dimensions, a qualitatively new decay process, medi-
ated by the so-called bubble of nothing (BoN), was first
discussed byWitten [3] for theM4 × S1 Kaluza-Klein (KK)
model. For BoNs in cases with more general internal
manifolds and dimensions, see, e.g., [4–8]. ABoNdescribes
a hole in spacetime, where the size of a compact dimension
vanishes at the surface of the bubble, leaving nothing in the
interior. Once nucleated, the BoN expands, ultimately
destroying the parent spacetime.
BoNs are also relevant for the swampland program,

which aims to characterize which effective field theories
can be consistently coupled to quantum gravity [9,10]. In
particular, the swampland conjecture in [11,12] states that
nonsupersymmetric vacua are metastable at best, and BoN

decay has been postulated as a universal decay channel for
all nonsupersymmetric compactifications [6,13]. The gen-
erality of BoN decay is supported by the swampland
cobordism conjecture [14], which states that all consistent
quantum gravity theories are cobordant between them, and
thus, they must admit a cobordism to nothing. BoNs are
such configurations, with spacetime ending smoothly on
the BoN core. In other words, the cobordism conjecture
ensures that BoN decay is always topologically allowed.
Therefore, to be able to establish the universality of BoN
decay, it is imperative to understand any possible obstruc-
tions to BoN nucleation which have a dynamical origin,
such as gravitational quenching [2], a well-known effect in
standard false vacuum decay.
BoNs admit an effective 4D description as singular

Euclidean bounces of the modulus field ϕ that controls
the compactification size [15]. This bottom-up approach,
quite useful to study the impact of the potential VðϕÞ
present in realistic models, has been used to get some of the
necessary conditions on VðϕÞ for the existence of BoNs
[16]. We follow this 4D approach but use the tunneling
potential method [17,18] (see Sec. II). Vacuum decay is
described by a tunneling potential, VtðϕÞ, that minimizes a
simple action functional in field space. In this language,
BoNs are described by Vt’s which are unbounded in the
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region where the extra dimension disappears. We describe
Witten’s BoN in the Vt formalism in Sec. III.
This technique allows us to efficiently explore possible

BoNs. We identify (Sec. IV) four types with characteristic
asymptotics as ϕ → ∞ (the BoN core) corresponding to
different 4þ d origins (depending on the compact geom-
etry and possible presence of a UV defect). We study
(Secs. V and VI) the action and structure of these BoNs,
contrasting them with other decay channels, like Coleman–
de Luccia (CdL) [2] or pseudobounces [19]. We also
identify and study two kinds of BoN quenching. In the
first, the action diverges (CdL suppression), and the BoN
becomes an end-of-the-world brane, while in the second,
the action remains finite. We summarize in Sec. VII. For
further details on our work, see Ref. [20].

II. TUNNELING POTENTIAL METHOD

The tunneling potential method calculates the action for
the decay of a false vacuum of VðϕÞ at ϕþ by finding the
(tunneling potential) function VtðϕÞ, (going from ϕþ to
some ϕ0 on the basin of the true vacuum at ϕ−) that
minimizes the functional [18]

S½Vt� ¼
6π2

κ2

Z
ϕ0

ϕþ
dϕ

ðDþ V 0
tÞ2

V2
t D

; ð1Þ

where κ ¼ 1=m2
P, with mP being the reduced Planck mass.

We take ϕþ < ϕ0 < ϕ−, x0 ≡ dx=dϕ, and

D2 ≡ V 02
t þ 6κðV − VtÞVt: ð2Þ

When Vt solves its “equation of motion” (EoM),

ð4V 0
t − 3V 0ÞV 0

t þ 6ðV − VtÞ½V 00
t þ κð3V − 2VtÞ� ¼ 0; ð3Þ

S½Vt� reproduces the Euclidean bounce result [2].
The shape of Vt depends on Vþ ≡ VðϕþÞ. For Vþ ≤ 0

(Minkowski or AdS false vacua), Vt is monotonic with
Vt; V 0

t ≤ 0; see Fig. 1, lower curve. Here, ϕ0 is the core
value of the Euclidean bounce, and it is found so as to
satisfy the boundary conditions

VtðϕþÞ ¼ VðϕþÞ; V 0
tðϕþÞ ¼ 0 ð4Þ

at the false vacuum ϕþ, and

Vtðϕ0Þ ¼ Vðϕ0Þ; V 0
tðϕ0Þ ¼ 3V 0ðϕ0Þ=4 ð5Þ

at ϕ0.
For Vþ > 0 (dS vacua), Vt is not monotonic and has the

shape of the upper curve in Fig. 1, with two parts: a
Hawking-Moss (HM)-like [21] part ðϕþ;ϕ0þÞ, with
Vt ¼ V, and a CdL-like part ðϕ0þ;ϕ0 ¼ ϕ0−Þ, with
Vt < V. The field values ϕ0� ≠ ϕ� are found so as to

satisfy the boundary conditions Vtðϕ0�Þ ¼ Vðϕ0�Þ and
V 0
tðϕ0�Þ ¼ 3V 0ðϕ0�Þ=4 and they coincide with the extreme

values of the Euclidean CdL bounce. If Vþ grows, the CdL
interval shrinks to zero, there is no CdL decay, and the
action tends toward the HM value [18].
Gravitational quenching of decay, and thus vacuum

stabilization, occurs if the condition D2 > 0 (needed for
a real S½Vt�) cannot be satisfied for any Vt. This can happen
for Minkowski or AdS vacua if gravitational effects are
strong. We define VtðϕÞ as the solution to D≡ 0 (we set
κ ¼ 1 from now on),

Vt
0 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðV − VtÞð−VtÞ

q
; ð6Þ

with VtðϕþÞ ¼ Vþ. To have D2 > 0, Vt should have a
slope steeper than Vt, so that VtðϕÞ < VtðϕÞ. If, after
leaving ϕþ, Vt does not intersect V again, we have
quenching. If Vt reaches V right at the minimum ϕ−
(critical case), then Vt ¼ Vt describes a flat and static
domain wall between false and true vacua, its action is
infinite, and gravity also forbids the decay.
In the Euclidean approach, assuming Oð4Þ symmetry,

vacuum decay is described by a bounce configuration,
ϕðξÞ, which extremizes the Euclidean action, and a metric
function, ρðξÞ, entering the Euclidean metric

ds2 ¼ dξ2 þ ρðξÞ2dΩ2
3: ð7Þ

Here, ξ is a radial coordinate, and dΩ2
3 is the line element on

a unit three-sphere. A dictionary between Euclidean and Vt
methods follows from the key link between both formal-
isms,

VtðϕÞ ¼ VðϕÞ − ϕ̇2=2; ð8Þ

where ẋ≡ dx=dξ, and ϕ̇ is expressed in terms of the field
via the profile ϕðξÞ. The profiles ϕðξÞ and ρðξÞ can be

FIG. 1. Typical shape of tunneling potentials for the decay of
AdS/Minkowski (lower curve) or dS (upper) vacua.
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derived from Vt using the previous link and the Euclidean
EoMs [17,18].
Finally, the Vt approach also describes pseudobounces

[19] as solutions of (3) with V 0
tðϕ0Þ ¼ 0. These decay

modes are not extremals of the action (they would be if ϕ0

were held fixed), and they have actions larger than the CdL
one. They are relevant when there is no CdL solution [19].

III. WITTEN’S BUBBLE OF NOTHING

The 5D KK spacetime (4D Minkowski ×S1) is unstable
against semiclassical decay via the nucleation of a BoN,
described by the instanton metric

ds2 ¼ dr2

1 − R2

r2
þ r2dΩ2

3 þ R2
KK

�
1 −

R2

r2

�
dθ25; ð9Þ

where RKK is the KK radius, R is the size of the nucleated
bubble, r∈ ½R;∞Þ, and θ5 ∈ ½0; 2πÞ parametrizes the KK
circle. For r → ∞, this metric tends to M4 × S1. This
instanton solution, analytically continued to Lorentzian
signature, describes the tunneling from the homogeneous
M4 × S1 to a spacetime in which the radius of the fifth
dimension shrinks to zero as r → R [3]. This BoN “hole”
at r ¼ R then expands and destroys the KK spacetime. The
decay rate per unit volume is Γ=V ∼ e−ΔSE , with ΔSE ¼
ðπmPRKKÞ2 being the difference between the Euclidean
action of the bounce and the KK vacuum.
The BoN (9) can be reduced to a 4D description [15]

integrating the fifth dimension θ5, and introducing the
modulus scalar ϕ with

e−2
ffiffiffiffiffiffi
2=3

p
ϕ ≡ 1 − R2

KK=r
2: ð10Þ

AWeyl rescaling puts the BoN metric into CdL form (7),
with

dξ
dr

≡ 1

ð1 − R2
KK=r

2Þ1=4 ð11Þ

and

ρðξÞ2 ≡ r2ð1 − R2
KK=r

2Þ1=2: ð12Þ

This maps (9) into a field profile, ϕðξÞ, with the BoN core
at ϕ → ∞ (ξ → 0), and the KK vacuum at ϕ → 0 (ξ → ∞).
This CdL solution is not of the standard form, as the field
diverges at ξ ¼ 0. Nevertheless, its Euclidean action is
finite and equal to Witten’s (after including a boundary
term of 5D origin).
Finding the description in the Vt approach is straightfor-

ward, using Vt ¼ V − ϕ̇2=2. One gets

VtðϕÞ ¼ −ð6=R2
KKÞsinh3ð

ffiffiffiffiffiffiffiffi
2=3

p
ϕÞ; ð13Þ

with Vtð0Þ ¼ 0, Vtðϕ → ∞Þ ∼ −e
ffiffi
6

p
ϕ, so that Vt diverges

at ϕ → ∞. This is a generic property of the Vt’s of BoNs.
Furthermore, the action in the Vt formalism, Eq. (1), gives
the correct result without the need of additional boundary
terms. This is true for any other BoN solution in this
formalism; see Ref. [20].

IV. BONS WITH NONZERO POTENTIAL

The modulus field potential, VðϕÞ, needed to stabilize
the extra dimensions, affects the existence and shape of
BoNs. In the spirit of [16], we derive the conditions that
VðϕÞ must satisfy to allow BoN decays. The single
function VtðϕÞ, on the same footing as VðϕÞ, captures
the key BoN asymptotics in a simple way. Without
assumptions about the origin of VðϕÞ, we first identify
four different types of asymptotics of V and Vt compatible
with BoNs.
Any Vt describing a BoN solves Eq. (3) with standard

boundary conditions at the false vacuum ϕþ, and Vt → −∞
at ϕ → ∞ (the BoN core). The four different types of core
asymptotics depending on the value of limϕ→∞V=jVtj are
listed in Table I:
Type 0: limϕ→∞V=jVtj ¼ 0. Whether V is positive or

negative at ϕ → ∞, Eq. (3) gives Vtðϕ → ∞Þ ∼ VtAe
ffiffi
6

p
ϕ,

with VtA < 0. V is irrelevant for ϕ → ∞, and these BoNs
behave as Witten’s BoN.
Types �: limϕ→∞V=jVtj is a constant of sign �, which

labels the type. For V ∼ VAea
ffiffi
6

p
ϕ and Vt ∼ VtAea

ffiffi
6

p
ϕ at

ϕ → ∞, with a > 0, VtA < 0, Eq. (3) gives

½VA þ ða2 − 1ÞVtA�ð3VA − 2VtAÞ ¼ 0: ð14Þ

The first option is VtA ¼ VA=ð1 − a2Þ. For type −,
VA < 0; a < 1. For type þ, VA > 0; a > 1.
Type −�: The second option to satisfy Eq. (14) is

VtA ¼ 3VA=2. One needs VA < 0, as Vt < V.

TABLE I. For Vðϕ → ∞Þ ¼ VAea
ffiffi
6

p
ϕ, we show, for the four

different types of BoN, the asymptotics of Vtðϕ → ∞Þ, parameter
constraints (Param. Constr.), the exponent β in ρðξ → 0Þ ∼ ξβ, the
exponent δ inDðϕ → ∞Þ ∼D∞eδϕ, and their possible UVorigin.
The label “Sing.” indicates the need for a defect to avoid a
singularity.

Type 0 − þ −�

Vtð∞Þ VtAe
ffiffi
6

p
ϕ VAea

ffiffi
6

p
ϕ

ð1−a2Þ
VAea

ffiffi
6

p
ϕ

ð1−a2Þ
3VAea

ffiffi
6

p
ϕ

2

Param. VtA < 0 VA < 0 VA > 0 VA < 0
Constr. a < 1 1ffiffi

3
p < a < 1 a > 1 a > 1ffiffi

3
p

β 1
3

1
3a2

1
3a2

1
δ ð1þβÞffiffiffiffi

2β
p ð1þβÞffiffiffiffi

2β
p ð1þβÞffiffiffiffi

2β
p a

ffiffiffi
6

p

UV S1 Sd Sing. Sing.
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Table I also shows additional parameter constraints on a
obtained by requiring the finiteness of the BoN action.
V and Vt determine the asymptotics of the Euclidean

BoN functions ϕðξÞ and ρðξÞ at ξ → 0. We get

ρ ≃ cρξβ; ϕ ≃ −
1

a

ffiffiffi
2

3

r
log ½ξa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðVA − VtAÞ

p
�; ð15Þ

with β as given in Table I. For type-0 BoNs, this holds with
a ¼ 1, VA ¼ 0 and agrees with [16]. Thus, the 4D instanton
is singular, with the leading behavior near the singularity
determined by VtA.
From a 4þ d BoN geometry, we can integrate over the

compact space to get a reduced 4D metric and a modulus
field [with potential VðϕÞ] that tracks the size of the extra
dimensions. This gives a 4D picture of the BoN as a
singular CdL bounce ϕðξÞ [15,16], or as a divergent
tunneling potential, VtðϕÞ. Via such a top-down approach,
we explore the 4þ d origin of the parameters in the BoNs
found above.
Consider first a BoN with a d-dimensional sphere, Sd, of

radius RKK , as compact space. Imposing the smoothness of
the 4þ d BoN solution at r → 0, and reducing to 4D, we
obtain the ξ → 0 scaling

ϕ ≃ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d

ðdþ 2Þ

s
log ξd; ρ ≃Rξd=ðdþ2Þ

d ; ð16Þ

where ξd ≡ ðdþ 2Þξ=ð2RKKÞ, which agrees with [16].
Comparing with the scalings found above using Vt, we get

a ¼
ffiffiffiffiffiffiffiffiffiffiffi
dþ 2

3d

r
; β ¼ d

dþ 2
; ð17Þ

and

D∞ ¼ 3

RKKR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðdþ 2Þ

2

r
; ð18Þ

where Dðϕ → ∞Þ ∼D∞eδϕ, with δ given in Table I. VA
and VtA are also determined by (16), giving

V ≃
−dðd − 1Þ
2R2

KK
e

ffiffiffiffiffiffiffiffi
2ðdþ2Þ

d

p
ϕ; Vt ≃

−3d2

4R2
KK

e
ffiffiffiffiffiffiffiffi
2ðdþ2Þ

d

p
ϕ; ð19Þ

at ϕ → ∞. Thus, the smoothness condition imposes V to be
of the form one gets in the 4D reduced action from the
curvature Rd of the compact space,

δVðϕÞ ¼ −
Rd

2
e

ffiffiffiffiffiffiffiffi
2ðdþ2Þ

d

p
ϕ: ð20Þ

Type-0 BoNs are realized for d ¼ 1, and type − for d > 1

[as 1=
ffiffiffi
3

p
< a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðdþ 2Þ=ð3dÞp

< 1].
Other well-known sources of moduli potentials (see,

e.g., [16]) give

δVðϕÞ ¼ Λ4þde
ffiffiffiffiffi
2d
dþ2

p
ϕ þ Q2

2g2VðdÞ
e3

ffiffiffiffiffi
2d
dþ2

p
ϕ: ð21Þ

The first term comes from a 4þ d cosmological constant,
Λ4þd. If this is the dominant term in V, then the a
parameter of our Vt description (see Table I) would be
1=3 ≤ a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d=½3ðdþ 2Þ�p
< 1=

ffiffiffi
3

p
, which is of type 0.

The second term comes from a d-form flux on the compact
space,

R
Sd Fd ¼ Q (with g being the gauge coupling and

VðdÞ the volume of the d sphere). This contribution gives

1 ≤ a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3d=ðdþ 2Þp

<
ffiffiffi
3

p
: the scaling of type-þ cases

(provided d > 1).
However, for Sd compactifications, the flux contribution

to V cannot dominate at the ϕ → ∞ limit, as the regularity
conditions require V as in (19). Nevertheless, scalar fields
present besides the modulus ϕ can modify the potential
probed asymptotically by the BoN. Such an example for a
BoN in a flux compactification model is given in [20].
There, the naive type-þ behavior of the flux contribution is
tamed by the presence of a smooth source that effectively
transforms the solution in a type-0 BoN at its core. See
Ref. [4] for a higher-dimensional realization of this effect.
More exotic types of solutions leading to singular BoNs

(like types −� and þ) can also be realized. The BoN
singularity signals the need of a brane, or another UV
object, whose properties (tension and charge) could be
inferred from the behavior of the solution in the limit
ϕ → ∞; see Refs. [14,22–24].

V. LOW-FIELD SHOOTING AND BON QUENCH

For the numerical exploration of vacuum decay solu-
tions, instead of starting at large field values using the
overshoot/undershoot method as in [16], we solve the EoM
for Vt starting at low-field values. Our solutions never
under/overshoot but are always on target: all starting
boundary conditions correspond to a solution, be it a
BoN, a CdL, or a pseudobounce.
As Vt is a solution of the second-order differential

equation (3), it depends on two integration constants—
e.g., Vt and V 0

t at some field value. For dS vacua, we can
solve for Vt starting from the initial point of the CdL range
of Vt, ϕi ≠ ϕþ, with VtðϕiÞ ¼ VðϕiÞ and V 0

tðϕiÞ ¼
3V 0ðϕiÞ=4. For Minkowski or AdS vacua, we start at ϕþ
with VtðϕþÞ ¼ VðϕþÞ, but V 0

tðϕþÞ ¼ 0 does not fix
completely the solution, as ϕþ is an accumulation point
of an infinite family of solutions, and one needs to impose
an additional condition to select a particular one; see below.
There is an interesting interplay between the boundary

conditions satisfied by VtðϕÞ at both ends of the field
interval in which it is defined. In order to illustrate this, we
use the simple type-0 potential

VðϕÞ ¼ m2ϕ2=2: ð22Þ
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The low-field expansion of Vt is

VtðA;ϕÞ ≃ −m2ϕ2=½1=A − ð1=3Þ logðAϕ2Þ�; ð23Þ

with A > 0 being a free parameter. (For AdS vacua, the
behavior is similar, with a low-field expansion for Vt with a
different parameter [20].) We find an infinite family of
solutions, VtðA;ϕÞ, describing BoN decays; see the top
plot of Fig. 2. For A → 0, we reach the critical VtðϕÞ (black
dashed line), which has D ¼ 0 and is an upper limit on
allowed Vt’s (with D2 > 0).
The asymptotics of the Vt solutions is of type 0:

Vt ∼ VtAðAÞe
ffiffi
6

p
ϕ; D ∼D∞ðAÞe

ffiffiffiffiffiffi
8=3

p
ϕ: ð24Þ

(For these BoNs, the two integration constants in the large-
field regime can be chosen to be VtA and D∞.) The
functions VtAðAÞ and D∞ðAÞ depend on VðϕÞ and are
given for our case in the bottom plot of Fig. 2. Interestingly,

−VtA is bounded below by the VtA prefactor of Vt ∼
VtAe

ffiffi
6

p
ϕ (dashed line).

As shown in Sec. III, a given 4þ d theory with fixed
RKK determines VtA via Eq. (19) (with d ¼ 1), thus
selecting one member of the family of Vt ’s. When
−VtAðAÞ is bounded below, −VtAðAÞ ≥ −VtA� (as in
Fig. 2), BoN decay is allowed provided

R2
KK ¼ 3

4ð−VtAÞ
≤

3

4ð−VtA�Þ
; ð25Þ

and forbidden otherwise. The critical case VtA� corresponds
to the limit A → 0, for which D∞ → 0, S → ∞, and
R → ∞ [see (18)], as expected for an infinite and static
BoN: an end-of-the-world brane [25]. The situation is
similar for the AdS case.
This dynamical obstruction to BoN decay [6,13] is

similar to the CdL quenching of the standard decay of
Minkowski or AdS false vacua, with the critical case
corresponding to a domain wall of infinite action; see
Sec. II. Although already [3] discussed possible topological
obstructions to BoN decays, the cobordism conjecture [14]
removes such obstructions. In that case, the only protection
of a compactification against BoN formation must be
dynamical [6,13].
For the dS case, an expansion of Vt near ϕi is used, and

one can take ϕi as the free parameter for a family of Vt
solutions. For regular CdL decay, we get a family of
pseudobounces ending at the proper CdL [19]. For BoNs,

we get a type-0 family with asymptotics Vt ∼ VtAðϕiÞe
ffiffi
6

p
ϕ.

However, now there is no bound on VtAðϕiÞ (as there is no
critical Vt), and thus no dynamical constraint on BoN decay
(see Ref. [20]).

VI. BONS VS. OTHER DECAY CHANNELS

To illustrate the interplay of BoNs with standard decay
channels (CdL decay and pseudobounces), let us consider
the potential

VðϕÞ ¼ Vþ þ 1

2
m2ϕ2 − λϕ4 þ λ6ϕ

6; ð26Þ

which admits examples of type-0 BoNs. For numerics, we
take m ¼ 1, λ ¼ 17=4, and λ6 ¼ 8=3. The potential has a
false vacuum at ϕþ ¼ 0, separated from the true vacuum at
ϕ− ¼ 1 by a shallow barrier that peaks at ϕB ¼ 0.25.
(Further examples, including dS cases with HM but no CdL
decay, type-− BoNs, etc., are discussed in the companion
paper [20].)
The Minkowski case (Vþ ¼ 0) is shown in Fig. 3. In the

upper plot, the (D ¼ 0) Vt of (6) (black dashed line)
touches the potential beyond the barrier, signaling a CdL
instability of the false vacuum. Below Vt, we find VtðA;ϕÞ
solutions, labeled by the parameter A of the low-field Vt
expansion: the CdL instanton solution (red line) for
A ¼ ACdL ≃ 2.8, pseudobounce solutions (green lines)
for A < ACdL, and unbounded BoN solutions (orange lines)
for A > ACdL.
The bottom plot of Fig. 3 gives the tunneling action of

the Vt solutions just described. The action of pseudoboun-
ces diverges at A → 0 (when Vt → Vt) and interestingly,
the BoN action beyond the CdL point can be larger or

FIG. 2. Top: Potential V ¼ ϕ2=2 and tunneling potentials
VtðA;ϕÞ (bounded by Vt, dashed line). Bottom: Tunneling action
S and prefactors VtA and D∞.

TUNNELING POTENTIALS TO NOTHING PHYS. REV. D 109, 084057 (2024)

084057-5



smaller than SCdL. Thus, the BoN decay channel does not
always dominate.
The BoNs obtained are of type 0, with ϕ → ∞ asymp-

totic behavior as in (24). The lower plot of Fig. 3 shows
D∞ðAÞ and −VtAðAÞ, which is bounded below by −VtA� ¼
−VtAðA�Þ (black dashed line). That minimum is reached
when S is maximal.
In a given 4þ 1 theory, VtA is determined by (19) (with

d ¼ 1). When the bound (25) is satisfied, there are two
possible BoNs, corresponding to the two solutions of
R2
KK ¼ 3

4ð−VtAðAÞÞ. The solution with the lowest tunneling

action (thus the relevant one) lies in the branch of solutions
extending from the action maximum to values below
SCdL (A > A�).
BoN decays are forbidden if R2

KK > 3
4ð−VtA�Þ (although

CdL decay is still open). This dynamical quench with finite
S can happen even for a dS vacuum [20], in contrast with
the standard quenching of decay, which only occurs for
Vþ ≤ 0. If we require the KK and 4d EFT scales to be well
separated (RKK small compared to the typical EFT length
scale), this needs large −VtA due to (25). In this limit, where
the EFT is well under control, BoN decay is always
allowed, and it becomes the fastest decay channel.

VII. SUMMARY

The Vt method greatly facilitates the study of which
modulus potentials VðϕÞ admit BoN decays and which
types of BoN exist. We identify four types of BoN, with
different asymptotics in the compactification limit (ϕ → ∞,
the BoN core); see Table I. Type-0=− BoNs can appear if
the compact space is a Sd sphere, while Type-þ or −� BoNs
need more complicated compact geometries, and/or the
presence of some UV defect at the BoN core.
For BoNs of types 0 or −, there are simple relations

between the asymptotics of V, Vt, and the BoN geometry in
the 4þ d theory (like the KK radius, RKK). Such relations
tell which BoNs are relevant for a given theory. For

potentials not growing as fast as e
ffiffiffiffi
6κ

p
ϕ, we find a continu-

ous family of type-0 BoN solutions labeled by some

parameter p, with Vtðp;ϕÞ ≃ VtAðpÞe
ffiffi
6

p
ϕ and Dðp;ϕÞ ≃

D∞ðpÞe
ffiffiffiffiffiffi
8=3

p
ϕ for ϕ → ∞. Fixing the compactification

scale, RKK , selects a finite number of BoNs from the
family (each with different action). The number of such
selected BoNs is model dependent in the following way.
When the modulus has a single vacuum (or if gravity

forbids its decay), the BoN is unique (for fixed RKK). If the
vacuum is a Minkowski or AdS one, there is an upper
critical limit R�

KK for which the BoN has infinite action and
radius and turns into an end-of-the-world brane. For
RKK > R�

KK , BoN decay is forbidden (CdL-like dynamical
quenching).
When the scalar potential has additional vacua and

admits standard decay channels (CdL/HM) to them, there
are (at least) two BoNs (the one with the lowest action
being the relevant one). In this case, there is also a critical
R�
KK which corresponds to the merging of the two BoN

solutions into one with finite action. For RKK > R�
KK, BoN

decay is again dynamically forbidden. It would be inter-
esting to understand this new quenching of the BoN decay
channel from a higher-dimensional theory—in particular,
in models of flux compactifications within a string theory
context.
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FIG. 3. Top: Potential [Eq. (26)] with Vþ ¼ 0 and tunneling
potentials VtðA;ϕÞ: Vt (black dashed), pseudobounces (green),
CdL bounce (red), and BoNs (orange). Bottom: Tunneling action
S for the VtðA;ϕÞ. For the BoN range of A, (rescaled) prefactors
VtA and D∞.
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