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The detection of extreme-mass-ratio inspirals (EMRIs) is intricate due to their complex waveforms,
extended duration, and low signal-to-noise ratio (SNR), making them more challenging to be identified
compared to compact binary coalescences. While matched filtering-based techniques are known for their
computational demands, existing deep learning-based methods primarily handle time-domain data and are
often constrained by data duration and SNR. In addition, most existing work ignores time delay
interferometry (TDI) and applies the long-wavelength approximation in detector response calculations,
thus limiting their ability to handle laser frequency noise. In this study, we introduce dilated convolutional
neural network for detecting extreme-mass-ratio inspirals (DECODE), an end-to-end model focusing on
EMRI signal detection by sequence modeling in the frequency domain. Centered around a dilated causal
convolutional neural network, trained on synthetic data considering TDI-1.5 detector response, DECODE
can efficiently process a year’s worth of multichannel TDI data with an SNR of around 50. We evaluate our
model on one-year data with accumulated SNR ranging from 50 to 120 and achieve a true positive rate of
96.3% at a false positive rate of 1%, keeping an inference time of less than 0.01 seconds. With the
visualization of three showcased EMRI signals for interpretability and generalization, DECODE exhibits
strong potential for future space-based gravitational wave data analyses.
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I. INTRODUCTION

The groundbreaking detection of gravitational waves
(GWs) in 2015, exemplified by the GW150914 event,
has profoundly impacted the field of astrophysics [1].
Enabled by the Laser Interferemeter Gravitational Wave
Observatory (LIGO) [2] and Virgo [3], this remarkable
achievement unequivocally confirmed the existence of
GWs, providing empirical validation of general relativity
(GR) [4]. Beyond enriching our knowledge of the cosmos,
this seminal discovery has ushered in a new era of
astronomical observation [5]. With the spotlight now turn-
ing to space-based GW observatories [6,7], the absence of
terrestrial disturbances allows for a more dedicated explo-
ration of the low-frequency GWs [8]. This exciting pursuit
carries the potential to reveal hitherto unobserved phenom-
ena, offering profound insights into the nature of our
Universe [5].
Space-based GW detection, a largely unexplored domain,

marks the next epoch in astrophysics [6]. Pioneering this
exciting venture are projects such as the Laser Interferometer

Space Antenna (LISA) [9] by the European Space Agency
(ESA), with NASA’s participation, and Asian projects
including Japan’s DECi-hertz Interferometer Gravitational
wave Observatory (DECIGO) and B-DECIGO [10,11], as
well as China’s Taiji [12,13] and TianQin [14] missions.
Targeting the millihertz frequency band, these endeavors
offer a novel perspective for the exploration of diverse
astrophysical and cosmological phenomena through the
detection of low-frequency GWs [6,15,16]. The scientific
goals are broad, with the intent to shed light on the enigmas
of massive black hole binaries (MBHBs), extreme-mass-
ratio inspirals (EMRIs), continuous waves from galactic
binaries (GBs), and the stochastic GW backgrounds pro-
duced by the early Universe’s myriad of unresolved
sources [17].
In the spectrum of potential discoveries, EMRIs hold a

unique position. These events, initiated when a compact
stellar remnant spirals into a massive black hole (MBH),
provide opportunities to investigate the MBH characteristics
and the nature of the surrounding environments [18].
EMRIs emit low-frequency GWs throughout their extended
inspiral phase, serving as a rich source of information for
understanding system physical parameters and the MBH’s
spacetime geometry [19]. The successful detection and
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parameter estimation of EMRI signals could provide novel
insights into the astrophysics of MBHs and the foundational
principles of gravity [20,21]. Traditional methods for EMRI
detection, which include both time-domain and time-fre-
quency-domain techniques, have been widely studied in
prior research [22–26]. These strategies mainly employ
matched filtering [22,25] and the Short Time Fourier
Transform [23,24,26]. However, the inherent complexities
of EMRI signals present significant obstacles. Characterized
by their complex waveform templates, high-dimensional
parameter space, and multiple modes within a single
waveform, EMRI signals require over ∼1035 templates
for matched filtering search [19], resulting in a computa-
tionally intensive and time-consuming procedure. An exam-
ple of single EMRI in both the time and frequency domains
can be seen in Fig. 1, showcasing the aforementioned
challenges of signal detection. Additionally, EMRI signals
are typically faint and buried within detector and confusion
noise, necessitating extended observation durations to
achieve an adequate signal-to-noise ratio (SNR) for detec-
tion [19]. Time-frequency techniques, offering representa-
tions in both time and frequency domains, are frequently
less sensitive than matched filtering, which limits their
ability to identify weak signals [26]. Given these challenges,
exploring alternative methods, such as deep learning,
becomes crucial for potentially improving the efficiency
of EMRI signal detection.
Deep learning, an advanced branch of machine learning,

employs neural networks with multiple layers for different
types of data. By facilitating the extraction of intricate
patterns and representations from large datasets, it has
played a crucial role in advancing various fields, from
image recognition [27] to natural language processing [28].
Among the numerous architectures, the convolutional
neural network (CNN) stands out for its proficiency in
handling structured data, such as images and time series, by

progressively learning features in a hierarchical manner.
Starting with simple features like edges in the initial layers,
they gradually combine these to recognize more complex
patterns and structures in the deeper layers. This layered
approach allows CNNs to automatically recognize and
represent intricate details in the data, making them highly
effective for tasks like object detection [29] and time-series
classification [30]. In the area of GW data analysis, the
potential of deep learning, especially CNNs, is becoming
increasingly evident. A large amount of studies [31–38] has
demonstrated their effectiveness in ground-based GW
detection. Beyond signal detection, deep learning methods
have been applied to a variety of tasks, including glitch
classification [39–41], denoising [42–44], and parameter
estimation [45,46]. However, the application of these
methods to space-based GW detection is still in its early
stages. While there have been some exploratory efforts,
such as the adoption of MFCNN [33] to detect MBHB
contaminated by confusion noise [47] and the application of
dictionary learning to low-SNR space-based binary black
hole (BBH) detection [48], these approaches have concen-
trated on BBH signals. Notably, Zhang et al. [49] pioneered
the detection of EMRIs using CNN, without incorporating
the time delay interferometry (TDI) technique. Therefore,
further research is needed to harness the full capabilities of
deep learning in space-based GW analysis.
In this paper, we introduce the dilated convolutional

neural network for detecting extreme-mass-ratio inspirals
(DECODE), an end-to-end model designed for detecting
EMRI signals in the frequency domain with an SNR of
around 50. As showed in Fig. 2, the model incorporates
dilated causal convolutional layers, which expand its
receptive field, allowing it to efficiently process data
covering an entire year in one pass. We trained our model
using synthetic data that considers the TDI-1.5 detector
response, accounting for unequal arm lengths. The results

(a) (b)

FIG. 1. Visualization of a training data sample. This depicts an EMRI signal from the TDI-A channel spanning one year with an SNR
of 70. (a) Time-domain representation of the TDI-A strain, showcasing both the combined data (signalþ noise) and the signal. The
signal’s amplitude is about 3 orders of magnitudes lower than the noise, which makes the detection challenging. (b) Welch PSD of the
combined data and the signal; the signal contains lots of modes (peaks), with some reaching the noise level, highlighting the suitability
of the frequency domain detection method. The designed detector noise PSD is also presented for reference.
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are promising: The DECODE detects EMRI signals with a
one-year accumulated SNR between 50 and 120, achieving
a true positive rate (TPR) of 96.3% with a false positive
rate (FPR) of 1%. Notably, our model can evaluate one
batch of data samples within 10−2 seconds. Visualizations
of the model’s intermediate outputs highlight its interpret-
able feature extraction process and its ability to generalize
beyond GR. These findings emphasize the potential of
DECODE in future space-based GW data analysis.
The remainder of this paper is organized as follows:

Sec. II provides a detailed overview of the data generation
procedure and outlines the architecture of our proposed
model, the DECODE. In Sec. III, we present the results of
our EMRI detection experiments, demonstrating the effec-
tiveness of our approach. Finally, Sec. IV concludes the
paper with a summary of our findings and a discussion on
potential future work based on our findings.

II. METHOD

A. EMRI waveform modeling

Detecting EMRIs has the potential to reveal key astro-
physical insights, but modeling their waveform is challeng-
ing due to the delicate balance of strong-field GR and
gravitational radiation dynamics. Accurately describing
EMRIs demands a solution to the self-force problem, which
considers the gravitational impact of the smaller compact
object on its own motion within the powerful gravitational
field of the central MBH [6]. Because the self-force problem
is highly nonlinear and defies analytical solutions, research-
ers have developed approximate waveform models, com-
monly referred to as kludge models [50,51].
Two commonly used kludge models in EMRI modeling

are the analytic kludge (AK) [50] model and the numerical
kludge (NK) [51] model. The AK model relies on

(a)

(b) (c)

FIG. 2. Comprehensive EMRI detection framework. (a) Depicts the entire EMRI detection process, from initial data preprocessing to
the end-to-end DECODE model. (b) Highlights the mechanism of dilated causal convolution with dilation factors of (1, 2, 4, 8) and a
kernel size of 2, emphasizing the exponential growth of the receptive field. (c) Detailed architecture of the residual block in DECODE,
comprising two dilated causal convolutional layers, weight normalization, ReLU, and dropout layers. A 1 × 1 convolution is introduced
to address any dimension discrepancies between the residual input and output.
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post-Newtonian expansions and perturbative calculations
to evolve the orbital parameters and generate waveforms
quickly. It provides computational efficiency but suffers
from dephasing compared to more accurate models,
leading to potential inaccuracies in parameter estimation.
On the other hand, the NK model incorporates the orbital
trajectory computed in curved space using Kerr geodesics
and includes radiation reaction effects. Although more
accurate, the NK model is computationally more expen-
sive, making EMRI signal detection using this template
highly formidable.
To address the limitations of both models, an argumented

analytic kludge (AAK) [52–54] model has been proposed.
The AAK model combines the computational efficiency of
the AK model with improved phasing achieved through a
mapping to Kerr geodesic frequencies and self-consistent
post-Newtonian evolution. By incorporating self-force
information and refining the phasing, the AAK model
achieves higher waveform fidelity compared to the AK
model while remaining computationally efficient. While its
computational efficiency may not be adequate for matched
filtering-based signal searches, it is suitable for producing
training datasets for deep neural networks (DNNs).
Despite the advancements in kludge waveform model-

ing, challenges remain. Incorporating second-order self-
force effects into the models and refining them for orbits
approaching plunge are ongoing areas of research [6].
Nonetheless, these waveform models are crucial for accu-
rately representing the dynamics of EMRIs and enabling
the detection, parameter estimation, and data analysis of
these elusive astrophysical sources.

B. Data curation

The process of curating training and testing datasets for
the identification of EMRI signals using a DNN is a
multistep procedure consisting of signal generation, detec-
tor response simulation, and preprocessing.
a. Waveform generation. The first step involves the

generation of signal templates. The AAK model used for
generating these templates is based on Ref. [55]. The
waveform, denoted as hðtÞ ¼ hþðtÞ − ih×ðtÞ, is typically
characterized by 14 physical parameters. The parameter
space used for sampling the training and testing dataset
parameters in this study is detailed in Table I. Here,M and a
represent the mass and the spin parameter of the MBH,
respectively. The semilatus rectum is denoted by p, while e
stands for orbital eccentricity, and ι signifies the orbit’s
inclination angle from the equatorial plane. Y ¼ cos ι≡
Lz=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
z þQ

p
, where Q is the Carter constant, and Lz is

the z component of the specific angular momentum. For the
orbital parameters p, e, and Y, the initial values are
designated as p0, e0, and Y0, respectively. The polar and
azimuthal sky location angles are represented by θS and ϕS.
The orientation of the spin angular momentum vector of the

MBH is described by the azimuthal and polar angles θK and
ϕK . These parameters are uniformly sampled for our dataset.
It is important to note that the mass of the compact object,
denoted by μ, is fixed at 10M⊙, and the initial phases for the
azimuthal (Φφ;0), polar (Φθ;0), and radial (Φr;0) modes are all
manually set to 0, respectively.
b. TDI response. The next stage involves simulating the

detector’s response to these signals. The specific detector
configurations utilized in this study are detailed in Table II.
For the breathing arm length, we employed the TDI-1.5
technique, which yielded the GW strain of TDI A and E
channels, denoted as hAðtÞ and hEðtÞ, respectively. A
detailed derivation of this technique can be found in
Ref. [56]. Their CUDA-based implementation enable us
to calculate the response cost in seconds. The signal is then
rescaled according to the desired SNR using the formula:

SNR2 ¼ ðhAjhAÞ þ ðhEjhEÞ: ð1Þ

Here, the inner product ðajbÞ is defined as

TABLE I. Summary of parameter setups in EMRI signal
simulation.

Parameter Lower bound Upper bound

log10ðM=M⊙Þ 5 8
a 10−3 0.99
e0 10−3 0.8
p0=M 15 25
Y0 −1 1
SNR 50 120
θS 0 π
ϕS 0 2π
θK 0 π
ϕK 0 2π

TABLE II. Summary of configurations of training and testing
dataset.

Parameter Configuration

Size of training dataset 5000
Size of testing dataset 1000
Cadence 15 s
Duration 1 year
Re-sampled data length N 1024=2048=4096

Arm length L 2.5 × 109 m
Detector orbit 1st order Keplerian orbit
TDI TDI-1.5
Acceleration noise Aacc 3 fm=

ffiffiffiffiffiffi
Hz

p
OMS noise Aoms 15 pm=Hz
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ðajbÞ ¼ 2

Z
fmax

fmin

ã�ðfÞb̃ðfÞ þ ãðfÞb̃�ðfÞ
SnðfÞ

df: ð2Þ

In this equation, fmin ¼ 1
Duration ≃ 3.17 × 10−8 Hz and

fmax ¼ 1
2·Cadence ¼ 1

30
Hz. ãðfÞ and b̃ðfÞ represent the

frequency domain signals, and the superscript � denotes
the complex conjugate. SnðfÞ is the one side noise power
spectral density (PSD), which will be specified later.
c. Noise generation. The third step introduces noise to

the signal. This noise is modeled as a colored Gaussian
noise with a PSD defined by

SnðfÞ ¼ 16sin2ðωLÞðPomsðfÞ þ ð3þ cosð2ωLÞÞPaccðfÞÞ;
ð3Þ

with

PomsðfÞ ¼ A2
oms

�
1þ

�
2 mHz

f

�
4
��

2πf
c

�
2

;

PaccðfÞ ¼ A2
acc

�
1þ

�
0.4 mHz

f

�
2
�

·

�
1þ

�
f

8 mHz

�
4
��

1

2πfc

�
2

; ð4Þ

where Aacc and Aoms are the noise budget of test mass
acceleration noise and readout noise coming from the optical
metrology system (OMS), ω ¼ 2πf=c, L is the arm length
of LISA detector, and c is the speed of light. Then the signal
is injected into the noise, resulting in the synthetic data.
Figure 1 is a showcase of the training data in the time and
frequency domain.
d. Whitening and PSD estimation. In the final stage of

data curation, the data undergoes several preprocessing
steps to prepare it for input into the DNN. The first of these
steps is whitening, which serves to remove the frequency-
dependent variations in the noise. This process allows the
DNN to concentrate on the underlying signal patterns,
simplifying the learning task and enhancing the network’s
ability to detect subtle patterns in the data, thereby improv-
ing the overall performance of the EMRI signal identifica-
tion. Following whitening, the PSD of the data is estimated
using Welch’s method. The data then undergoes subsam-
pling, where it is resampled onto a log-uniform frequency
grid. This step is aimed at reducing the computational load
of subsequent analyses by decreasing the number of data
points. Three different grid densities are selected as listed in
Table II. The final preprocessing step is standardization,
which ensures that all input features are on a uniform scale,
a fundamental requirement for most deep learning algo-
rithms. This step is crucial in enhancing the learning
efficiency of the neural network and improving the overall
performance of the model.

C. DECODE

In this work, we introduce the DECODE, a novel
architecture for sequence modeling tasks, as illustrated in
Fig. 2. The DECODE is inspired by the TCN architecture
[57], which has been shown to outperform traditional
recurrent architectures across a diverse range of tasks and
datasets. The DECODE architecture leverages the strengths
of convolutional networks, which have been proven to be
highly effective for sequence modeling. It incorporates
dilated convolutions, which are a powerful tool for captur-
ing long-range dependencies in sequence data. The causal
nature of the DECODE ensures that the model’s output at
each step is conditioned on all previous steps, making it
suitable for tasks that require an understanding of sequential
dependencies. While the TCN and other sequence modeling
architectures have predominantly been applied to time series
data, the DECODE stands out in its application to frequency
domain data. Detecting EMRI in the time domain presents
challenges due to the extended duration of the signals and
their low SNR. As illustrated in Fig. 1(a), the amplitude of
the signal is typically 3 orders of magnitude lower than the
noise, and the data spans a full year. However, as shown in
Fig. 1(b), in the frequency domain, the signal’s PSD has lots
of peaks, with some even reaching the noise level. Despite
this shift from time to frequency domain, the core principles
of sequence modeling remain applicable. The DECODE
effectively exploits these principles, achieving notable
performance in EMRI signal detection.
a. Causal sequence modeling. The DECODE framework

is designed for sequence modeling, with a focus on
maintaining causality throughout its structure. Central to
DECODE’s design are two fundamental principles. Firstly,
the architecture ensures that the output sequence’s length
aligns with the input sequence. This alignment is achieved
via a 1D-convolutional network design, where each hidden
layer matches the length of the input layer. To maintain this
length consistency, zero padding of length ðkernel size − 1Þ
is applied. Following this, the architecture emphasizes the
causality of the sequence. This is achieved by using causal
convolutions, which ensure that the output at a particular
time step is convolved only with preceding elements in the
previous layer.
b. Dilated convolution. Incorporated into the DECODE

architecture, dilated convolutions play a pivotal role in
capturing long-range dependencies in sequence data.
Drawing inspiration from the WaveNet [58], the
DECODE employs dilated convolutions to exponentially
expand the receptive field without a significant increase in
computational complexity or number of parameters. We
provide an illustration in Fig. 2(b). More formally, for a 1D
sequence input x∈Rn and a filter f∶ f0;…; k − 1g ⟶ R,
the dilated convolution operation F on element s of the
sequence is defined as
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FðsÞ ¼ ðx �d fÞðsÞ ¼
Xk−1
i¼0

fðiÞ · xs−d·i; ð5Þ

where d is the dilation factor, k is the filter size (i.e. kernel
size), and s − d · i accounts for the direction of the past.
When d ¼ 1, a dilated convolution reduces to a regular
convolution. By employing larger dilations, the receptive
field of a DECODE is effectively expanded, allowing it to
capture long-range dependencies within the sequence data
more effectively.
c. Residual connections. Residual connections, another

key feature of the DECODE architecture, are designed to
facilitate the training of deep networks. These connections,
introduced by He et al. [59], allow the gradient to flow
directly through the network, mitigating the problem of
vanishing gradients that often jeopardize deep networks. In
the DECODE, a residual block is composed of two dilated
causal convolutional layers, with a residual connection
skipping over them. If we denote the input to the residual
block as x, the output of the block, y, can be computed as

y ¼ Activationðxþ F ðxÞÞ; ð6Þ

where F ðxÞ represents the transformations performed by
the dilated causal convolutional layers. This design choice
has been shown to improve the performance of deep
networks and is a key component of the DECODE
architecture. The residual block used in the DECODE
model is illustrated in Fig. 2(c). Each block comprises two
layers of dilated causal convolution, followed by the
rectified linear unit (ReLU) activation function. Weight
normalization [60] and dropout [61] are incorporated after
each dilated convolution within the residual block.
d. Loss function. In our DECODE model, the output of

the residual block has a shape of ðH;NÞ, where H
represents the hidden size of our model, and N is the
length of the input sequence. The last column of this output
is then passed through a linear layer to generate the
predicted probability for EMRI signal detection. To train
the model, we use the cross-entropy loss, a common choice
for classification tasks. One of the advantages of using the
cross-entropy loss is its ability to accelerate convergence
during training, especially when compared to other loss
functions like mean squared error [62]. The cross-entropy
loss for a binary classification problem is given by

L ¼ −
1

n

Xn
i¼1

yi logðPiÞ þ ð1 − yiÞ logð1 − PiÞ: ð7Þ

In this equation, yi denotes the actual label, while Pi is the
predicted probability for the ith sample, with n representing
the total number of samples in the training dataset. The
cross-entropy loss quantifies the divergence between the
actual label and the predicted probability.

D. Implementation detail

For waveform generation of training data, we employed
FastEMRIWaveform1 [54,55] for EMRI signal creation
and lisa-on-gpu2 [56] for GPU-accelerated detector
response simulations, which includes TDI. We also inte-
grated additional functionalities from the SciPy library. Our
DECODE architecture consists of 10 residual blocks, each
with a kernel size of 3 and a hidden size of 128. Developed
using the PyTorch framework, known for its computational
efficiency and speed, computations were performed on a
high-performance computing cluster equipped with
NVIDIA Tesla V100 GPUs. The training utilized the
Adam optimizer with a learning rate of 2 × 10−4 and a
batch size of 64.

III. RESULTS

A. EMRI detection proficiency

Receiver operating characteristic (ROC) curve and the
area under the curve (AUC) are essential tools for evalu-
ating the performance of models in binary classification
tasks. In the context of our study, where the task is to detect
EMRI signals buried in noise, these tools provide valuable
insights. The ROC curve, which plots the TPR against the
FPR, offers a visual representation of the model’s perfor-
mance across various threshold settings. The AUC, on the
other hand, provides a single, overall measure of the
model’s performance across all thresholds. A model with
perfect discrimination has an AUC of 1, while a model
performing no better than random guessing has an AUC
of 0.5.
In our research, we employ ROC curves as the primary

benchmark to quantify the performance of the DECODE.
Our test dataset used here is generated like the training
datasets; i.e., the waveform parameters are uniformly
distributed as shown in Table I but with different SNR
range. As depicted in Figs. 3(a)–3(c), we show three
separate ROC curves, with each corresponding to a unique
input sample length fed into the DECODE. For the specified
input lengths of N ¼ ð1024; 2048; 4096Þ, the SNR ranges
are set at [50, 120], [70, 170], and [100, 240]. The
associated AUC values, detailed within the figures, offer
quantitative insight into the model’s sensitivity in detecting
EMRI signals. For clarity in visual representation, especially
at lower FPR values, Fig. 3 adopts a logarithmic scale for
their axes.
It is noteworthy that our test dataset comprises signals

with a duration of one year, achieving twice the SNR
compared to the three-month data scenario presented in
Ref. [49]. While their study tested models on datasets with
SNR∈ ½50; 120�, we evaluated ours on datasets with

1https://github.com/BlackHolePerturbationToolkit/FastEMRI-
Waveforms.

2https://github.com/mikekatz04/lisa-on-gpu.
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SNR∈ ½100; 240�. Both datasets, when rescaled for a one-
year duration, maintain equivalent SNR values, implying
consistent signal amplitudes. Impressively, our model
attains a TPR of 97.5% at a FPR of 1% as showcased in
Fig. 3(c).
One significant advantage of deep learning methods

over matched filtering-based approaches is their speed.
Once trained, the model can be rapidly deployed for
inference. In our tests, conducted on a single NVIDIA
Tesla V100 GPU, our model processed 2000 data samples
in approximately 4 seconds, amounting to less than 10−2

seconds per sample.

B. EMRI detection efficacy

In Fig. 4, we provide a detailed examination of the
DECODE’s performance across different physical param-
eters. Figure 4(a) illustrates the relationship between TPR
and SNR. The subfigure clearly demonstrates that as the

SNR increases, the TPR increases correspondingly, par-
ticularly at the specified FPR thresholds of 0.10 and 0.01.
To gain a deeper understanding of the sensitivity of our

model, we introduce the relative amplitude, denoted asA. It
is defined as

A ¼ max
i∈A;E

ffiffiffiffiffiffiffiffiffiffiffi
SihðfÞ
SnðfÞ

s
; ð8Þ

where Sih represents the Welch PSD of waveform hi. This
metric effectively captures the signal’s amplitude in the
frequency domain. Figure 4(b) plots the TPR against
the relative amplitude, at FPRs of 0.1 and 0.01; this
subfigure presents the model’s proficiency in discerning
power exceeds in the frequency domain. Notably, the
DECODE can also detect signals that are entirely sub-
merged within the noise.

(a) (b) (c)

FIG. 3. EMRI detection performance across SNR andN. All subplots depict receiver operating characteristic (ROC) curves for distinct
input sample lengths N within specific SNR ranges, presented on a logarithmic scale. Each line style signifies the balance between TPR
and FPR for a given sample length, with the area beneath each curve representing the model’s efficacy. A reference yellow dashed line
indicates the random prediction. The use of logarithmic scales enhances the visibility of performance difference, especially at lower FPR
levels. (a) Evaluation for SNR∈ ½50; 120�. (b) Evaluation for SNR∈ ½70; 170�. (c) Evaluation for SNR∈ ½100; 240�.

(a) (b) (c)

FIG. 4. Detection capability of DECODE across various parameters. (a) Illustrates the TPR as a function of SNR, highlighting the
model’s capability to detect signals with varying strengths. (b) Showcases the TPR plotted against the relative amplitude A [defined in
Eq. (8)], emphasizing the model’s ability to detect power excesses in the frequency domain and detect signals even when they are
submerged within the noise. (c) Explores the TPR in relation to the spin parameter a, keeping the MBH mass consistent at 106M⊙. This
subfigure is evaluated at three distinct SNR levels: 50, 70, and 100, shedding light on the relationship between spin parameters and
detection capabilities.
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In Fig. 4(c), we evaluate the DECODE’s sensitivity to
varying spin parameters, while keeping the MBH mass
constant at 106M⊙. The evaluation, performed at SNR
levels of 50, 70, and 100 and FPR thresholds of 0.1 and
0.01, indicates that the model’s detection performance is
mainly influenced by the SNR. In contrast, the spin
parameter appears to have a limited effect on detection,
suggesting that the spin parameter contribution to the
overall strength of the EMRI signal is relatively minor.

C. Interpretability

CNN-based models are powerful tools for pattern rec-
ognition and prediction. Their unique architecture and
operational mechanism make them inherently interpretable,
a feature that is particularly valuable in interdisciplinary
research. CNN-based models learn hierarchical patterns in
the data through their convolutional layers, with each layer
extracting a set of high-level features from the input data.
These features are then used by subsequent layers to
understand more complex patterns. This transparent proc-
ess of feature extraction can be visualized, providing
insight into how the network interprets the data and makes
predictions.
The activation maps, often used in the context of neural

networks, provide a visual representation of the features
that the model identifies and emphasizes during its
processing. Essentially, they capture the output values or
“activations” from various layers or blocks within the
network when presented with an input. These maps offer
insights into which parts of the input data the model finds
significant or relevant for a particular task. In the case of the
DECODE, the activation maps generated at the output of
each residual block reveal how the model processes and
interprets the frequency-domain data of EMRI signals.
The activation maps illuminate the interpretability of the

DECODE. By analyzing the outputs of multiple residual
blocks, the processes of feature extraction are made trans-
parent. Figure 5 provides a detailed visualization of these
maps, demonstrating the ability of the DECODE to dis-
tinguish EMRI signals from noise. Specifically, panel i of
each subfigure depicts activation maps for inputs with an
EMRI signal, while panel iii depicts the corresponding
frequency domain data. These maps emphasize activated
neurons in regions that correspond to the frequency
components of the signal. In contrast, panel ii of each
subfigure depicts diminished activations for noise-only
samples. The corresponding frequency domain data for
these samples is presented in panel iv, validating the
model’s ability at identifying EMRI signals.

D. Generalization ability

Generalization ability is the capacity of a model trained
on a specific dataset to perform well on new, untrained data.

It indicates how well a model can extrapolate from its
training data to make accurate predictions on unknown
data. In practical applications, a model will frequently be
presented with data that differs from its training set, so this
ability is crucial. A model that generalizes well is robust
and flexible, ensuring that it does not simply memorize the
training data but rather understands inherent patterns and
relationships.
In Figs. 5(b) and 5(c), we provide evidence of the

generalization capabilities of our model. Even though the
model was only trained on AAK waveform datasets, it
identified the AK waveform accurately during evaluation
with the output probability equal to 1, demonstrating its
ability to generalize across various waveform templates. In
contrast, the model’s successful detection of the XSPEG
waveform [63,64], which was formulated using the KRZ
metric, demonstrates its generalization ability with respect
to various gravitational theories. These results demonstrate
the generalization ability of the model, suggesting that it is
capable of handling scenarios beyond its training datasets.

IV. CONCLUSION AND DISCUSSION

The detection of EMRIs in gravitational wave astronomy
presents a formidable challenge. In this paper, we introduce
the DECODE, a state-of-the-art end-to-end DNN model
designed for the detection of EMRI signals in the frequency
domain. By leveraging dilated causal convolutional layers,
the DECODE efficiently processes yearlong data. Our
evaluations on synthetic datasets have revealed the model’s
robustness and efficiency, achieving remarkable detection
rates at varied SNR levels. Furthermore, the model exhibits
rapid inference capabilities and its ability to generalize
beyond its training parameters, although there is still room
for future advancement.
The precision of the EMRI detection model is intrinsi-

cally related to the precision of the training data. While our
current training dataset employs the TDI-1.5 detector
response, future developments could benefit from the
incorporation of more sophisticated simulations, such as
the TDI-2.0 technique. This would provide a more accurate
simulation of the detector’s response, potentially enhancing
the model’s applicability in the actual world.
Our current approach primarily focuses on the amplitude

information of the EMRI signals. However, the phase
information, which has been largely wasted in this research,
holds considerable potential. By integrating phase-related
features into the model, we could capture more intricate
patterns and details of the EMRI signals. This may lead to
improved detection rates and lower false alarm rates.
In conclusion, DECODE is a step forward in EMRI

detection. Even though there are avenues for improvement,
its foundational accomplishments demonstrate its potential
as a tool for future space-based GW data analyses.
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(a)

(b)

(c)

FIG. 5. Interpretability and generalization ability showcase. This figure provides an in-depth visualization of the intermediate outputs
from each residual block, demonstrating the model’s capability for feature extraction within the frequency domain and its generalization
ability to different waveform templates and gravitational theories. For each subfigure, panels i and ii represent the intermediate results
corresponding to the input data samples shown in panels iii and iv. In contrast to the faint activations in panel ii, the noticeable activated
neurons in panel i indicate the extraction of essential characteristics when a signal is present in the input. (a) AAK waveform. (b) AK
waveform. (c) XSPEG waveform.
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