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We consider Einstein gravity extended with Riemann-squared term and construct the leading-order
perturbative solution to the rotating black hole with all equal angular momenta in D = 7. We find that in the
extremal limit, the linear perturbation involves irrational powers in the near-horizon expansion. We argue
that, despite that all curvature tensor invariants are regular on the horizon, the irrational power implies that
the inside of the horizon is destroyed and the horizon becomes the natural boundary of the spacetime. We
demonstrate that this vulnerability of the horizon regularity is an innate part of Einstein theory, and can
arise in Einstein theory with minimally coupled matter. However, in fine-tuned theories such as
supergravities, the black hole inside is preserved, which may be one of the criteria for a consistent
theory of quantum gravity. We also show that the vulnerability occurs in general higher dimensions, which
only a few sporadically distributed dimensions can evade.

DOI: 10.1103/PhysRevD.109.084053

I. INTRODUCTION

Black holes, predicted by Einstein’s theory of general
relativity, are characterized by having an event horizon, i.e.,
a boundary where the escape velocity equals the speed of
light. In all the well-known black holes such as the
Schwarzschild or the Kerr black holes, in four or higher
dimensions, the curvature invariants on the horizon are
regular and the near-horizon geometry is described by
analytic metric functions that are infinitely differentiable.
(see e.g., [1-8] for some Ricci-flat or Einstein metrics.)
This implies that the horizon is not the boundary of
spacetime itself. One can extend the horizon geometry,
e.g., [9] to include the inside of a black hole and indeed this
is confirmed by analyzing the geodesic motion.

Recently, the linear perturbation of higher-derivative
gravity to D =5 dimensional rotating black holes with
equal angular momenta was obtained [10]. In the extremal
limit, the perturbed solution involves a function like
(¢ +1log(1 — ry/r)), which is not analytic on the horizon
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r = ry. In this particular case, the iz factor generated by
crossing over the horizon can be absorbed into the
integration constant c¢. This, however, leads to some
obvious questions; can worse nonanalyticities arise on
the horizon and what are their implications?

Black hole extremal limit typically arises when the
attractive force of gravity balances the repulsive force in
the theory. The best known example of such balance is
exhibited by the Reissner-Nordstrom (RN) black hole,
where gravity and electric Coulomb repulsion balance
precisely in the extremal limit. This can not only be verified
by geodesic motion of charged test particles [11], but
also allows the construction of multicenter black holes
in harmonic superposition. This no-force condition was
recently shown to be preserved under appropriate higher-
order curvature corrections [12]. Rotations provide a
repulsive centrifugal force and extremal rotating black
holes are the results of its balance against the gravitational
attraction. However, in higher dimensions, gravitational
force becomes weaker, whilst the centrifugal force, asso-
ciated with rotation on a plane, remains the same strength.
This Newtonian picture suggests that the balance between
gravity and centrifugal force becomes more strenuous in
higher dimensions so that any perturbation might ruin the
near-horizon geometry.

In this paper, we therefore consider Einstein gravity
extended with a Riemann-squared term in general odd
D = 2n + 1 dimensions, with a coupling constant a. We
construct the leading a-order perturbation to the Ricci-flat
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rotating black holes. For simplicity, we consider only the
cohomogeneity-one metrics with all equal angular
momenta. We find that in the extremal limit, the linearized
solutions in general higher-odd dimensions involve a
nonanalytic term of the type (r — ry)“+, where A, is an
irrational number. In fact, we find that it is generally
irrational in higher D = 2n + 1 dimensions lying between
1/2 and 1, but it can be rational sporadically.

We study the implication of these irrational structures
and we argue that despite that curvature tensor invariants
are all regular and geodesics are incomplete on the horizon,
we cannot extend the spacetime beyond horizon, which
therefore forms a natural boundary of spacetime. Similar
singularities were studied in the context of cosmological
models with homogeneous spatial section and it was
referred to as the “wimper singularity” in that the universe
terminates at a singularity where all physical quantities are
well-behaved (a “whimper” rather than a “bang”) and an
associated Cauchy horizon [13,14].

It should be emphasized that having an irrational A, is
not a consequence of higher-derivative corrections. This is
because the dynamics of perturbative equation is governed
by the linearized equation of Einstein gravity in the
background of the rotating black hole. Our conclusion
therefore applies to FEinstein gravity with minimally
coupled matter, unless the matter Lagrangian is so fine-
tuned that these irrational terms all drop out. The reason
that we focus on higher-derivative corrections in this paper
is to restrict our tension to only pure gravities, which
however are not necessary to demonstrate the vulnerability
of the horizon regularity.

The paper is organized as follows. In Sec. II, we review
the Reall-Santos procedure to obtain the corrected black
hole thermodynamic variables without solving for the
perturbative solutions. This allows us to double check
our later numerical calculations of the perturbative sol-
utions. In Sec. III, we construct linear perturbation of the
D = 7 rotating black hole with all equal angular momenta
in Finstein gravity extended by a Riemann-squared term.
We analyze both the horizon and asymptotic structure and
obtain the numerical solution that validates the result in
Sec. II. We generalize the D =7 discussion to general
D =2n+ 1 dimensions in Sec. IV. We then study the
implication of having irrational powers in the near-horizon
structure in Sec. V. We conclude our paper in Sec. VI. In
Appendixes A—C, we present some detailed complicated
formulas that would interrupt the discussion if presented in
the main text.

II. CORRECTIONS TO THERMODYNAMICS

In this paper, we focus on the study of rotating
black holes with all equal angular momenta in general
D =2n+ 1 dimensions. We shall restrict ourselves to pure
gravity for simplicity. Many exact solutions of Ricci-flat
or Einstein metrics have been constructed, e.g., [1-8].

The most general quadratic curvature extension to Einstein
gravity,

1
SEin :E/de\/—gR, (1)
involves three terms, ie., R“*°R,, .. R*R,,, and RZ

However, in the effective field theory approach, the
couplings of these terms are all small, and hence the latter
two terms can be removed by the field redefinition
9w = G + 1R, + 2Ry, leading to an equivalent
description of quadratic curvature correction with simply
just one term,

1
Squad = Ton / dPx\/=g(aR"™ Ry ps). (2)

Rotating black holes that are asymptotically flat in
general dimensions were constructed in [3]. In odd
D = 2n + 1 dimensions, when all the angular momenta
are equal, the metric reduces to cohomogeneity-one
depending only on the radial variable r. Following the
notation in [15], this solution can be expressed as

2
ds3,., =— Vi:/((r:) dr* + ;i(rr) + r*W(r) (o + w(r)dt)?
+ s p- (3)

Here ds?., ., is the metric of an (n — 1)-dimensional
complex projective space. (We adopt the convention
of [16] for the CP”" metrics.) The metric functions are
givenby h = f = f, W =W, and @ = @, with

- V2 _ N . U V2
W=1+ on=rpr5 [=1-55t 5T
(4)

The solution has two integration constants (u,v), para-
metrizing the mass M, and the angular momentum J,. The
event horizon r, is located at the largest root of f and
thermodynamical quantities can all be easily obtained,
given by

(D-2)Qp (D-1)Qp_,
My=—2E2, g ET O
0 1 K 0 16z Vi
Q= v T, — (D=3)rb-1-2,2

= : I :
ro/rf 07 4ary " TR
Qs Yoo

S = Z 22073 Jrb=1 42, (5)

_ D-1
where QD—Z = W

round (D — 2)-sphere. The parameters (u,v) and the

D-1)

#P=1)/2 is the volume of the unit
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horizon location r are related by f(ry) = 0. The Gibbs free
energy associated with the Euclidean action is

The leading a-order correction from the quadratic
extension (2) to these thermodynamic quantities can be
computed using the Reall-Santos method [17] without
having to construct the corresponding corrected solution.
Specifically, we need first to fix the temperature and
angular velocity,

T = TO + O(az), Q= QO + O((lz). (7)

The Gibbs free energy is then shifted by the correction from
the quadratic extension,

G(To, Qo, a) = G() + AG + O(az). (8)

This shifted term can be calculated from the quadra-
tic Euclidean action evaluated on the leading-order solu-
tion (4). We find

Al
AG==—", Al=- dr/ dr
B 167:

X /dQD_z\/'a(aR’wpgRﬂypa)' (9)

We therefore have

(D-3)Qp_,
l67er+3

—-2(2D = 3)r{1V + 1*)a. (10)

2(D-1
AG = — (D =2)2rgP7Y

This allows one to obtain the complete set of thermody-
namic variables at the a-order correction, namely

oG G
J = S=—— s
aQO Ty, aTO Q.a

M =G +TyS + Q. (11)

= f’(ro), i.e.,

In the extremal limit, f(ry) =0

p=3 (D=1 A=1(D-3E (12)

| =

the mass and angular momentum are no longer indepen-
dent, but satisfies the relation

P-2(%)7 4 -
D-3 D=5 Je;t (1 + 7](1] sz) ’
(D — 3)2(0—2) (D _ 1)2(1)—2)

1= 3y - -3 (52)7 1)

ext —

The D =5 result was obtained in [10]. This is an elegant
approach that makes finding the perturbative solution
unnecessary. However, this procedure assumes that such
a solution necessarily exists, which may not be guaran-
teed. Even if such a solution does exist, the procedure only
uses the information of the spacetime regions outside the
horizon. It does not tell how the inside of the horizon
changes under the perturbation and how the geodesics can
be extended on the horizon.

III. LEADING-ORDER CORRECTION:
THE D=7 EXAMPLE

We now consider the leading a-order correction to Ricci-
flat rotating black holes (3) while keeping the full isometry.
The perturbative Ansdtze of the metric functions are chosen
to be

w(r)
f(r) =

=W + asW, o(r)=a— %5W+a5a),

F(1 + asf), h(r) = f(1 + adh). (14)

The linear perturbative equations of (6f, 5h,6W, éw) are
not solvable analytically in general higher dimensions. We
therefore choose to solve the perturbative equations with
the horizon radius r, fixed for an easier numerical
approach. In this set of Ansdtze, the perturbative functions
(6f, 6h, 6W, éw) should be all finite in all the regions from
the outer horizon to asymptotic infinity. The D = 5 case
can be solved exactly, and was obtained and analyzed
in [10]. However, analytic solutions for general D do not
seem to exist, and we focus on the D =7 case in this
section and summarize the main results for higher dimen-
sions in the next section.

A. Perturbative equations

The four independent coupled linear equations of
(6f,8h,6W,6w) in general dimensions were given in
Appendix A. By the standard procedure of eliminating
variables, we obtain a fourth-order linear differential
equation with a source for of,

P46 ////+P35 ///+P25f//+P]5f/+P05f:Q. (15)

In D = 7 dimensions, we have
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Py =502 + 1% — ur?)?(8u? + 2710 — 10ur — 54°12),
Py = 1077 (V% + r® — ur?)(=32u* + 32451 — 86pur'? — 24307710 — 80p*r®
+206u1?rS + 103 r* + p?v?r?),
Py = 51516800 + 3915122 — 1848ur'® — 23760216 — 974421 + 158412 112
+3r10(200% + 8190*) = 712420718 + rO(35p* — T74uv*) — 964317 r* + 214 r?),
Py = 5r"(—168u15 + 2565r*2 4 504ur'8 — 28081716 — 466> r'* + 1776y r'?
= 7r10(40p3 + 3510*) + 136207 r8 + 3r0(15u* + 386ur*) — 64u*1°r* — 124r?),
Py = —480r"2(8ur* + 13576 + 14ur'? — 10812110 — 254218 + 40u?r® — 4p®1?r?), (16)

together with the source

O = 384(8960u°1° + 1782u1?r'® + 135714 (1014% 4 961*) — 62340u%1r'?
+ r10(54720pr* — 5250u*) + 23610p30% 18 — r0(11251° + 24352p%1%)
+ 60r* (12141 + 24u1°) — 14080p°14r). (17)

It is clear that the left-hand side of the equation, the linear sector, comes from the linearization of the Einstein tensor 6G,,, on

the rotating black hole background (4). The right-hand side of the equation, the source Q, comes from the contributions of
RMP?R,, .5, but evaluated on the original metric functions (4).

For the remaining perturbations, (54, dw) reduce to quadratures and 5W becomes purely algebraic,

1

5P9(8u? + 27710 — 10ur® — 54217)
— 154 (11 + 80%) + 5884°0°7°) + 120r2(=207 + 1 + pur?)of (r)

+ 577 (T4 + 19712 = 8pur® + 170270 — TP r* + pu*r?)f (1)

+358(2° = A (W2 + 15 — ur?)3f"(r) + 510 (13 + 15 — ur?)25fO(r)), (18)

Sh'(r) = (96(—416ur* + 135478 — 31242 r°

36u(5ur® — T2 2 2478 —pr?
ow = 2O ZT) | <1;—6—2)5f(r) SRR (5pe) 4 o), (19)

1
6! (V2 +1°)
x (V2 + r8)25f(r) — 18u?r'®Sh(r) + P (2v* + 5r12 + 70218 (V* + 10 — ur?)sh' (r)
+ 2714 (80t + 2112 + 1218 + 9u? ) oW (r) — P (L* + 1) (=202 + r° — 3/4r2)5W’(r)). (20)

S (r)

5 (24007 + r0)2(160* + 15u%r* = 3617 r2) + 4r8(5r6 — 12)

These equations are sufficiently complicated that we need to apply numerical methods to connect the near horizon geometry
to the asymptotic infinity, both of which can be analyzed analytically.

B. Asymptotic behavior

Although the peturbative equations cannot be solved exactly, we can nevertheless obtain the asymptotic behavior.
Assuming that the leading-order behavior is 6f = 7 f;, we have

25344

=2 +4)r+6)(y+10)r7t12f = - s

pr2. (21)

Therefore, we have y = 2, —4, —6, —10 for the source-free contributions and y = —12 for the source contribution, leading to
the general solution with four integration constants,

084053-4



HORIZON AS A NATURAL BOUNDARY PHYS. REV. D 109, 084053 (2024)

132u1? - Clo ~ Co ~ general asymptotically-flat perturbations involve three
of = - 35,12 folr) + mfl()(r) T ﬁf6(r) independent free parameters (cy4,cg,c19). The low-

C4 5 9% lying falloff orders of f;, so that §f is up to order 1/r'°,
+ A fa(r) + car’fo(r), (22) are given by

where f,’s all take the form of f; ~ 1 4 #,/r 4+ #,/r> + - -- 21y

at the large r expansion. (We use #; to denote some generic fo=1- Rt
constants.) 11r
The first term in (22) comes from the quadratic curvature ~ u > 59 w - 2?”4
extension. It has faster falloff than any other terms, which fa=1+ 4 - B 160710 A2
come from the perturbation of the Einstein tensor. The c_, _ 21012 3u?
term is rather intriguing since it appears like a cosmological fe=1——%~— 160, 5,0 T
constant in the g,, metric component. This term however ’ " 5 r
will not arise from the linear perturbation equation of the Fro=1+ 261p _ T~ o (23)
Schwarzschild black hole, while keeping the static and 16074 5r°

spherical symmetry. The connection between rotation and
cosmological constant is worth further exploring.

In our case, however, in order for §f to be regular at ~ Analogously, we can obtain the leading falloffs of the
asymptotic infinity, we must set c¢_, = 0. Therefore,  (6h, W, dw) functions,

sh— 484> 564u1” N 3(693u3 4 608L%) 7444717 N
S\ 352 280r'* 35r16
C1o 6lu 207 Ce dp 99 A 8w
Bl L0 O T S E el (Ol - e
+ 5r10 < + 3274 * + ro * 5r + 160/% & 5710 +
2 3 2 2 4
Cy4 uoopow 4 259w 3u
Rl O I ol _ ), 24
+ rt ( + rt * 8 * r2 5/ 160710 + 5r12 + (24)

SW — <_ 120> 12u* 456417 B 3(25u° — 3204) L )

JRICR 35510 grli4
C1o 251 202 Ce u o 251> 2t
B L0 B it e HN Sy L= 2 oL
+ rl0 ( + 3274 540 + + o o328 + 5710 +
2 2
CyV 254  2v
1 - ), 25
+ 10 ( + 324 540 + ) (25)

S -
P 2/5 156800 4480,2,10

2¢qg > v* 291w n L T\/Kce ] v 2109u1?

3\/,L_wr6 64r% 1 640r1° 6ur® o 1120710
87u + 80v* Tvey 2472 Sut A 2109m?
112r8u 6\/ﬁr6 1128 77102 5 1120710

83 (1 512 3(71054% +33120%)  12(1802743 + 425614) )

(26)
From these asymptotic behavior, we can read off the mass M and angular momentum J, at their a-order correction,

5n° 3n? a
M = F (,Lt - ac4), J = ?\/ﬁIJ(] + W (48,“2 - 71/26'4 + 7ﬂC6 - 4C10)) . (27)
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C. Near-horizon structure

Note that in our perturbative solution, we hold the horizon
radius r, fixed; therefore, both the mass and angular
momentum acquire higher-order corrections. At the first
sight, the perturbed mass and angular momentum (27)
depends on three parameters (cy4, cg, 1), Which would
violate the no-hair theorem, since we would expect that
the solution should only have two independent parameters.
Indeed not all the parameters (c4, g, ¢1o) leads to black hole
solutions.

In order to determine the parameter choices of (¢4, cg, 1)
that yield black holes, we can study the near-horizon
geometry. For general nonextremal black holes, the analysis
will be given in Appendix B. Here, we shall focus only on the
extremal case, corresponding to

v=12r. (28)

u= 3r3,

In other words, the solution depends only on one parameter,
such that mass and angular momentum are no longer
independent but they satisfy,

5723 4

4\f°

M, = (29)

To determine the leading-order behavior of 6f as r — ry, we
can adopt the same trick by assuming 6f = (r — ro)’f,
where f is analytic, satisfying the usual Taylor expansion at
r = ry. We find that the leading-order equation for small

(r—rgp) is
r+D)r+2)r-2a)(r-

where

(31)
Thus, the general solution near r, takes the form,

d, - d, -
f 1+(r_r0)2f—2

fa+ dp (r— ”O)A*JACA+- (32)

28

of =—

f 5r%fo+
+da (r— ro)

Note that A, > 0 and A_ < 0. The regularity at r(, requires
that we set coefficients d_;, d_, and d, all to zero. The low-
lying orders of the near-horizon expansions at r = r are
thus given by

28 3658 63167
SF = 1 _ — )2
/ srg( T airy ") T aarg T >
117 = 7v21
+dA*(r_r°)A+(1+ 8o, ")
128221 — 6627 ,
_ _ )l 33
1836072 (r=ro)"+ ) (33)

Analogous solutions can be obtained for (6h,5W,dw),
which we present in Appendix C. The irrational power of
(r — ry)®+ should cause our concern since it indicates that
the near-horizon geometry is not analytic. We shall come
back to this point in Sec. V.

We now continue to focus on the §f equation. On the
horizon, the general regular solution of éf is specified by
two parameters, namely ro and coefficient dj . However,
for a given ry, a generic value of d, will excite the

coefficient c_, of r? in the large-r expansion (22). We need
to fine-tune the value d,, for each given ry so that ¢,
vanishes and the metric remains asymptotically flat. If such
a d, exists, then we obtain a leading-order perturbation
the extremal rotating black hole. Thus, in the linearly
perturbed solution, both the horizon and asymptotic
parameters (dy ,cy,C6,C10) all depend on the horizon
radius ry, analogous to the unperturbed extremal black
hole, which has only one independent parameter. This is
consistent with the no-hair theorem. Consequently, it
follows from (27) that both mass and angular momentum
depend only on ry,

15 3 /3
M=en 2rd 4+ asM(ry), J:4\/;ﬂ' ry+adl(r). (34)

Therefore, at the linear a order, the mass-angular momen-
tum relation becomes,

571'2/5 4 2
M =——=J5(1 +nal75), 35
v 0 (53)
where # is some order-one dimensionless constant.
Analytical calculation using the Reall-Santos procedure
was discussed in Sec. II. It follows from (13) that for
D =7, we have

n =237 ~9.661. (36)
From the leading-order perturbative solution, we deduce

71'4/ 5 Cy 21c 6 4c 10
=——z|l—-5——F t—5 —432 37
1 3032/5( P S ) (37)
We use numerical approach to show that the perturbative
solution outside the horizon correctly reproduce the value
of the 7 coefficient (36).
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The dimensionless function 38/ is not a monotonous function of the dimensionless radial variable 7 = ry/r. The numerical

result allows us to read off the asymptotic falloffs and determine both corrected mass and angular momentum.

D. Numerical result

Since we do not have analytical solution of §f, we adopt
the numerical approach to determine the coefficient d,, so
that ¢, vanishes. Specifically, we use the shooting method
by beginning with the analytical result of the power series
expansion (33) up to (r — ry)* order as the initial data, and
then integrate over to large r, e.g., 200r,. We search for the
appropriate d to shoot the target of 5f — 0. We then do
curve fitting against the asymptotic structure (22) up to the
order 1/r'*. We first find a fine-tuned result of d, so that
c_, vanishes. We then drop off the ¢_, term and do curve
fitting against the remaining coefficients and read off ¢y, cg,
and co. This allows us to obtain the a-order correction to
the mass-angular momentum relation.

The result depends on r trivially, since it is the only
scale parameter in the linearized equation. To see this
explicitly, we can define a dimensionless radial coordinate
7=r/ry, in which case, r, drops out from the linear
equation completely for the dimensionless function (r35f).
We can therefore perform the numerical analysis for rg = 1
without loss of generality. We plot dependence of the

dimensionless function r3éf on the dimensionless radial
variable 7 in Fig. 1. We see that r35f is not a monotonous
function of 7. From this numerical solution, we can read off
the asymptotic structure and determine both corrected mass
and angular momentum. We obtain the expected # within
1% of accuracy. We summarize the result in Table I.

IV. GENERAL D =2n+1 DIMENSIONS

In the previous section, we found that in D = 7 dimen-
sions, the near-horizon geometry of the extremal rotating
black hole involves (r —ry)”+ terms with irrational A,.
Such an irrational power does not arise in D = 5. In this
section, we study whether such an irrational power occurs
in general higher dimensions or it is a special case
in D =7. The linear perturbative equations in general
D =2n+1 dimensions are given in Appendix A. By
eliminating variables, we obtain the decoupled df equation,
as in the D =7 case. It is given by
Pyof" + P3of" + Prof" + P18f' + Podf = Q, (38)

where P; and Q are polynomials of r. We find

Py = (D =2)rPH (P — urd +02r)2(=8(D = 2)urP*3 +3(D — 1)21?P — 4(D — 2)1*r®

+4(D + u*r4),

Py = (D =2)rP3(rP = purd +1%r)(=8(5D? — 29D + 38)u?rP+6

+ 8(5D% — 5D — )PP+ — 4(D? — 13D + 22)37° + 4(2D% — 11D — 19)

‘u2 1/2 1”7

+ (9D3 — 109D + 247D — 163)ur?P+3 — 9(D — 1)312/2P+1 4 12(D — 1)3/3P

—4(D + 1)2u*r),

P, = (D =2)rP*2(=3(D - 1)>(2D* = D = 3)v*r*P+! + 3(D - 1)2(5D* — 16D + 12)r*P

+ 4(5D? — 38D + 56)u*r'? + 4(=7D* + 27D + 58)i°
— 4(D3 — 43D? + 200D — 236)u’rP+? + 4(2D3 — 32D? + 23D +9)
—4(D3 +11D* = 13D — 17)u*rP*+5 —2(6D* — 73D + 157D* — 17D — 109)

210 _

2r 2.4.8

4(D* — 8D + 6)u*vtr

W22 D+

U 1/2 r2D +4
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+3(2D* = 37D3 + 139D% — 215D + 119)ur3P+3 + 3(D — 1)2D(2D — 1)v4r?P+2
+ ur®((6D* = 131D3 + 702D? — 1199D + 626)ur?P + 12D(D + 1)1°)),
P, = (D =2)rP*1(12(D?* — 6D + 8)u*r'? — 4(D?> + 11D — 62)u312r'°

+4(D* - 8D + 6)u*v*r® = 3(D - 1)*(D?

—5D% +6)*r3P+! + 3(D - 1)2(2D3 - 17D?

+ 38D —24)r*P 4 4(D* — 18D + 102D? — 245D + 210)u3rP+® — 4(2D* — 25D3
+93D? — 142D + 74)p*>1*rP+7 — (6D* — 67D + 278D — 495D + 282) 1> r?P+0
+4(D* = 71D3 + 25D* — 5D — 32)u*rP+5 + 2(6D* — 25D — 99D? + 415D
—333)u?r?P+4 + (3D — 59D* + 421D3 — 1267D?* + 1676D — 798)pur>P+3
=3(D=1)’D(2D - 1)v*r*P+2 — 12D(D + 1)ur%r9),
Py=-2(D =3)(D=2)(D —1)r*?(=4(D? = 8D + 15)u*v*r" + 4(D* — 4D — 5)u*r
+2(D? = 16D* + 57D — 58)u>rP*6 — 2(D? — 10D? — 9D + 50)u*rP+* + (5D3
—51D? + 147D = 133)ur?P+3 = 3(D — 1)2(D + 1)v*r?P*! 4 6(D - 2)(D — 1)>r°P), (39)

together with the source contribution,

Q =2(D—1)(=12(D = 1)3(D + 1)*(D?> = 5D = 24)v*r3P — 4(D - 3)*(D — 2)3(D?
—5D +4)p°r'3 —4(D + 1)3(D* — 42D* — 64D + 105)ur® — 2(D* — 5D + 6)*(11D?
—86D? + 203D — 140)u*rP+19 —3(D - 1)3(D + 1)2(3D* = 11D? — 67D — 21)1°7?P+!
+6(D—1)32D* = 15D* + 8D? + 19D — 6)ur?*r*P+2 + 2(D + 1)*(11D° — 64D*
—192D3 + 658D? + 709D — 1122)us®rP+* + 4(D + 1)*(4D3 — 16D* — 91D?
+107D? + 279D — 315)u*%r7 — 8(3D7 — 21D% + 112D* — 127D3 — 23D?
+ 156D — 36)u’v*r® + 3(D — 3)*(3D% — 38D° + 194D* — 516D° + 759D* — 586D
+ 184) 1 r?P+7 4 2(33D7 — 434D + 2090D° — 4734D* + 4987D3 — 1396D? — 1350D
+ 804)u312rP+8 — 2(33D7 — 280D° + 311D + 1046D* — 945D3 — 1988D? + 729D
+ 1350)120*rP+6 4+ 4(4D7 — 48D° + 201 D> — 341D* — 53D3 + 1109D? — 1580D
+ 732)u*?r!t — (27D% — 378D7 + 2101D% — 6336D3 + 10905D* — 10042D° + 4139D?
— 524D + 108)u*1?r*P*5 + (27D® — 252D + 568D% — 284D° — 1562D* + 1132D3

+4192D? — 596D — 3225)uu*r?P+3).

In the extremal limit (12), we can take an Ansatz
8f = (r—ry)"f(r), where f(r) is analytic at r = r,.
In the limit of r — ry, we find that the leading-order
equation is

_ (D-9)(D-1)(D+17)
B (D-2)r% ' (41)
where
Ay = % (-3 + 175 __335) (42)

(40)

which reproduces the earlier D =7 result. Since only
A, > 0, the near-horizon structure of §f takes the form,

(9-D)(D-3)(D+7)
4(D-2)r}

of = Fo(r)+ds (r=ro)2 fa (1)

(43)

where d,  a certain appropriate coefficient that is to

be determined. Both functions f(r) and ]A[A+(I‘) are ana-
lytic, satisfying the Taylor expansion of the form
1 +#,(r—ry) +#(r—ro)*>+---. Thus we see that in
general higher dimensions, A is irrational as in the D =7
case. However, rational numbers can arise for sporadically
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TABLE I. Numerical data of the a-correction of the extremal
rotating black hole.

244,
dA+r()+ c/1d ce/ry  cw/rS oM/rk 8T/r} n

—604.856 13.440 —45.165 —80.72 —41.452 -96.133 9.669

TABLE II. Low-lying examples of sporadic dimensions that
give rise to rational A .

D 5 101 1027 10661 428741
Ay ! 7 I 5 i

distributed old D, and we give a few low-lying examples in
Table 2.

It should be pointed out that there exists a decoupling
limit € — 0 associated with the coordinate transformation
r=rg+ep. In this limit, the near-horizon geometry
AdS; x CP" becomes the solution on its own where
AdS; is written as a U(1) bundle over AdS,. The A,
term drops out completely from the metric of the homo-
geneous vacuum.

V. NATURAL BOUNDARY ON THE HORIZON

We have found that the Riemann-squared correction to
Einstein gravity has a consequence that the extremal
rotating black holes in D > 7 odd dimensions with all
equal angular momenta have in general irrational powers in
the near-horizon expansion, as given in (43), where A, is in
general irrational. In this section we discuss its implication.

A. Horizon as a natural boundary

In a typical black hole, e.g., the Schwarzschild black
hole, the horizon (g, = 0) represents a coordinate singu-
larity that can be removed by coordinate extension such as
the Kruskal extension. Such a procedure is problematic
when the near-horizon geometry is not analytic with
irrational powers. To illustrate this, we consider a simpler
toy model with the metric,

d 2
ds* = —fdr* + Tr + 2d03,

(50

We require that @ > 0 so that the metric satisfies both
the strong and weak energy conditions on and outside
the event horizon, i.e., r > ro. When a = 0, the metric
is simply the extremal RN black hole. The o term arises
from the exotic matter energy-momentum tensor T =

diag{_p’ Prs P> pT}’ with

pr=—p = 7
r r

a(r —rg)(2r — (A, + 4)rp) (1 ) @> .

. a(6r? —6(A, + 4)ror + (A% +9A, +20)r3)
T = 7
2r

x (1 —%’)A*. (45)

This of course is a poor imitation of the rotating solution we
constructed, since in this toy model, the irrational power
existed in the matter energy-momentum tensor, whilst in
the rotating black holes, no such matter is needed.
Nevertheless, this simpler toy model can help us under-
stand the global structure of the similar metric.

If A, is a positive integer, then the function f is analytic
at r = ry, and it is infinitely differentiable. However, in our
case, A_ is an irrational positive number lying between 0
and 1. The function f is therefore only second-order
differentiable. However, the metric is still infinitely differ-
entiable under covariant derivatives, owing to the fact that,

grrvrvr = fa% 4 (46)

Therefore, there is no curvature or covariant-derivative
curvature singularity at any order on the r = r, horizon. In
other words, any invariant polynomial of the curvature
tensor and its covariant derivatives near r = r( takes the
form X(r)+ Y(r)(r — ro)®+ for regular some analytic
functions (X(r), Y(r)) at r = ry. Nevertheless we cannot
extend the coordinate beyond the region r > r(. The r = r
horizon with irrational A, thus forms a natural boundary of
the spacetime. Although there is no infinite tidal force on
the horizon, this boundary is necessarily singular since the
geodesics are incomplete on the horizon and they cannot
extended beyond horizon.

Physically, one may argue that an irrational number A
can be approximated by a rational number A, = p/q, with
(p,q) being coprime positive integers, in arbitrary accu-
racy. In this case, we can redefine the radial coordinate,

r=ro+pt= (r=ro)i = pP. (47)

Under the new radial coordinate, the r > r, spacetime is
described by p > 0, and the geodesics can be extended into
the “inside” of the horizon where p is negative.
However, three distinct situations with equally good
approximation can arise with the above scenario: (1) p is
even and ¢ is odd; (2) p is odd and g is even; (3) p and q are
both odd. In the first case, (r—ry)?/9 ~pP is an even
function of p, i.e., it is the same inside or outside the
horizon, but the function r is not since r ~ ry + p? is an odd
function of p. In the second case, the situation reverses, and
r remains the same inside or outside of the horizon, but not
for (r—ry)?/9~pP. In the third case, both are odd
functions of p. These three approximations of the irrational
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A, therefore lead to three distinct insides of the horizon,
since different components of the metric involve both integer
powers of r as well as (r — ry)?/9. Furthermore, the more
accurate the fraction is to the irrational number, the larger the
integers g and p must be, corresponding to larger number of
branch cuts. An irrational power implies an infinite number
of branch cuts; therefore, the global structures imply that the
irrational power cannot be approximated by rational num-
bers in the black hole discussion.

B. Origin of irrational A ,

In this paper, we considered the higher-derivative cor-
rection to rotating black holes, in order to restrict ourselves
to a pure gravity discussion. We may therefore falsely
accuse that the emerging of irrational A, is a consequence
of higher-derivative gravities. We now show that the
vulnerability of the horizon regularity is actually an innate
part of Einstein gravity. The general equation of motion can
be expressed as

G (®) + aE,, (®) =0, (48)

where G, is the Einstein tensor, and E,, represents the
differential operator associated with the higher-derivative
correction. @ denotes the metric functions to be solved.
Perturbatively, we take ® = @ + a®,, with G, (®,) = 0.
At the linear a order, the perturbative equation is thus
given by

6G/w(q)l) = _E;w(q)())' (49)

Here 6G,, represents the linearized Einstein tensor on the
@, background. Thus, we see that in the perturbative
analysis, the dynamics of the higher-derivative correction
to the solution, i.e., @y, is still governed by the Einstein’s
theory. The higher-derivative terms contribute only as a
source to the linearized equation. |

96

Therefore, the horizon regularity is not only vulnerable
to higher-derivative corrections, but also to minimally
coupled matter fields in Einstein gravity. This may partially
explain why exact solutions of rotating black holes in
higher dimensions do not exist in Einstein-Maxwell theory
in higher dimensions, since it is hard to imagine an analytic
special function can give rises to the horizon structure (43).
It is also worth commenting that since curvature tensors and
their covariant derivatives are all nonsingular at r = ry, this
vulnerability persists as long as we take perturbative
approach, no matter how higher orders we consider in
higher-derivative corrections.

C. Fine-tuning away the horizon boundary

Exact solutions of charged rotating black holes in D = 7
do exist in gauged or ungauged supergravities [18-22] and
there is no irrational horizon structure (43) in these
examples, even in the extremal limit. Analogously, the
nonanalytic logarithmic terms in extremal five-dimensional
rotating black hole found in [10] do not arise in super-
gravity solutions constructed in [23-25] either. These
examples contradict our earlier statements.

From our perturbative point of view, this can be
explained that the source term Q of (15) in these examples
are fine-tuned in supergravities such that the divergent c_,
vanishes at asymptotic infinity even when we set the
coefficient dy, =0. We expect that for the simpler
Einstein-Maxwell theory in general odd dimensions, a’A+
coefficient will be necessarily turned on.

To validate the above arguments, we consider Einstein
gravity with a cubic Riemann tensor extension, namely

Lcubic :ﬁ(el lepo‘RpGa/}Raﬁ/w + eQRMua[)’Rypﬁpr//a) . (50)

We focus on D = 7 dimensions, and we find that the source
term in (15) is now given by

0= (30720(12556¢; + 1301ey)ur'® + 6531840e 4% r*® — 311040(263¢; + 13¢5 ) r*
.

— 675r7% (4e, (344534 — 570241%) — 27e, (194> + 7680*)) + 1890(442324¢; + 17957¢;)

x 22 r?0 + 30ur'® (28, (2003054° — 24094441%) — €,(369554° + 50177161*))

— 361271 (e, (4173811413 — 390735361*) + 3e,(4644834° — 12971520*))

+ p2r' (e, (434947473604 — 394103004°) + €,(3158754% + 27591376814))

+ 61’ r'? (e,(558201804° — 8326315520%) + €, (17040554 — 7186201614))

—240r'% (e, (65500u° 4 40019764 1* — 813628818) + e, (—475u° + 2432191

— 843048:8)) + 40p?17r8 (e, (42549974° + 280783361%) + 32¢,(36014° + 7496204))

— 720 r® (€, (9349998° + 63332480*) + €,(4906234 + 6698081*))

+20736(60494¢, + 4387e,)1’10r* — 128(8742916¢, + 779963 ¢,)u*1r?). (51)
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In the extremal limit (28), we have

_ 1900e, —571e;
N 5r3

of o(r) +da (r=ro)2 fa (r), (52)

with the irrational A, given in (31). Now we have an extra
nontrivial free parameter £ = e,/e. For generic &, the
parameter d,, will be turned on appropriately for asymp-
totically flat spacetime. In these cases, the horizon is the
natural boundary of the spacetime. However, we can fine-
tune the & parameter so that we can turn off d , so that the
horizon is analytic. By numerical analysis, we find, up to
six significant figures, that

&~ =2.51062. (53)

In the linear perturbative solution, this quantity is independent
of the size of the extremal black hole, namely the r value.

VI. CONCLUSION

In this paper, we obtained the leading-order perturbation
of the extremal D = 7 Ricci-flat rotating black holes with
all equal angular momenta, in Einstein gravity extended
with Riemann-squared term. The resulting mass-angular
momentum relation is the same as one derived from the
Reall-Santos procedure. We found that in the extremal
limit, the perturbative solution of 1/g,, took the form (33)
where A, was an irrational number between half and one.
We argued that the irrational A , implied that the black hole
inside of the original extremal black hole was destroyed by
the perturbation and the horizon forms a natural boundary
of spacetime. All curvature invariants of the perturbation
are regular on the horizon and hence there is no divergent
tidal force; however, the horizon boundary is nevertheless
singular since the geodesic is incomplete there. The origin
of this singularity comes from the infinity number of
branch cuts owing to the irrational power. We showed that
this feature generally continued in higher odd dimensions,
except in sporadically distributed special dimensions.

We demonstrated that this vulnerability of horizon
regularity and black hole inside was not a consequence
of higher-derivative corrections, but it was an innate part of
Einstein gravity. In other words, horizon natural boundaries
will generally arise in Einstein gravity with minimally
coupled matter in higher dimensions, unless the matter
fields are fine-tuned as in supergravities. We also illustrated
with a concrete example that we could also remove the
nonanalytic structure on the extremal horizon by fine-
tuning the coupling constants in higher-derivative gravities.

The phenomenon of singular horizon appears to confirm
further that extremal black holes with zero temperature are
not physical, under the third law of black hole thermody-
namics. However, the fact that the nonanalytical terms that
would generally exist in the near-horizon geometry of the
rotating black holes in D = 5 or D = 7 actually do not arise
in supergravities is tantalizing. Is this one of the criteria of a
good quantum theory of gravity which should be fine-tuned
so as not to generate the horizon natural boundary? It is
clearly problematic to understand the microscopic origin of
the black hole entropy in the extremal limit when the inside
of the horizon does not exist. It is thus worth investigating
whether the supersymmetric higher-order correction would
also protect the inside of the black holes.

We motivated ourself to study the horizon structure in the
extremal limit of higher-dimensional rotating black hole by
the fact that centrifugal force remains the same while gravity
becomes weaker in higher dimensions. The extremal limit
becomes a more strenuous balance between gravity and
centrifugal force. We thus expected that the horizon became
problematic under perturbation. However, it is curious to
note that rational powers can nevertheless exist sporadically
as indicated in Table 1, which provides a small number of
counterexamples to our expectations. Our analysis of the
event horizon expansion of general nonextremal black holes
in the Appendix indicates that the metric functions are all
analytic and infinitely differentiable. However, the situation
with near-extremal cases where the nonextremality is of the
order of a remains to be investigated further.

In this paper, for simplicity, we studied only the rotating
black holes in odd dimensions with all equal angular
momenta. These solutions are all cohomogeneity-one
metrics depending only on one radial variable. Although
we expect that the arising of horizon natural boundaries
will also occur in general rotating cases, the subjects
require further investigation.
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APPENDIX A: PERTURBED EQUATION
IN GENERAL D =2n +1 DIMENSIONS

The four perturbed equations of (5f,5h, W, dw) are
coupled second-order differential equations,
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PP ((D* = 2D = 3)0*r? + 2(D = 5)v*rP™ 4+ 2(D = 3)r*P + (D — 1) uu*r*)sW
+2(D*—4D + 3)(rP? + 1*r)*((D* = 4D = 5)v* + (D* — 6D + 8)u*r* — 2(D?
= 5D + 4)ur*r?) — (D = 1)2u*rPPH4sh + 2(D = 3)rP (rP 4 12r)2((D = 2)rP = 12 r)sf
=2(D = 1)\JuurP4(rP + 12r)260 + P+ (rP 4+ 02r)(2(D = 2)rP + (D = 3)*r) (rP
—purd + 2r)8h — PP (P 4 L2 r) (2rP + P (u — D) — (D = 3)%r)sW' =0, (A1)

—2(D=3)(D = 1)(rP + 1?r) ((D2 — 6D + 8)u>rP*t* — (D* + 4D + 3)v*rP
+2(D?* = Dw*r® — (D*> + 4D + 3)1%r — (D — 4)D/421/2r5) + (D = 1)2u?r*P+4sh
= r*P((D* =2D = 3)u*r* +2(D = 5)2rP ™ +2(D = 3)r*P + (D — 1) r*) W
—2(D=3)rP(rP + yzr)z((D -2)rP - z/zr)éf +2(D - 1)\/ﬁyrD+4(rD +1°r)?50’
— PP 020 (2(D = 2)rP + (D = 3)*r) (rP — ur® + v*r)5f!
= PP(P 4+ 2r) (2(D = 1)rP = (D + 1)ur® 4+ 3(D = 1)) W'
= 2r2P2(rP 1 27) (PP — ur® + V%r)6W" = 0, (A2)

—4(D=3)(D = 1)>(r? + 12r) (D — 4)ur* = (D + 1)) (—urP*? = 2rP + ?r3 — v*r)
— 4520 (—(D2 —5D + 6)v*r? +4(D - 2)0*rPt + (D - 3)r*P — (D - 1)2yl/2r4)5W
—4(D = 1)2u?r*P45h + 4(D = 3)rP (rP? +12r)35f — 8(D — 1)\ Juwr®**(r? + 12r)?6a/
= 2rPF2(rP + 121)2(rP = pur® + V2 r)Sh" + 4rP2(rP + 12r) (PP — urd + 12r)sW”
+ 42D 1 12r) ((D -2)rP + (2D - 3)%r —/4r3)5W’ + P (P + 12r)
X (—(D _ l)ﬂrDH _ (D _ 5)1/2}’D+1 4 22D + (D _ 1)/41/2}’4 _ (D _ 3)1/4r2)5f’
— PP %) ((D = 3)urP*t + (3D = 11)2rP* + 2(D - 3)r?P
— (D + DwAr* + (D = 5)v*r*)sh' =0, (A3)

—4(D =3)(D = 1)>\uvrP=2((D = 4)ur? = (D + 1)1?) = 2r 2(rP + 1?r)?50"
= 2r D=1 (rP 4 12r) (D(rD —r) + 21/2r)5a)' + (D — 1)\/uvéf' — (D — 1)\/uvéh’
+ 2D\ /uvdW' + 2\ /uvréW" = 0. (A4)

By the standard procedure of eliminating variables, we can obtain a decoupled fourth-order differential equation for of,
given in Sec. IV. The functions 64 and dw can be given as quadratures and 6W can be solved algebraically. They are

(D =2)(=8(D =2)urP*3 +3(D = 1)2r?2 — 4(D = 2)u?rS + 4(D + 1)u*r*)sH’
= —2(D = 1)r P (3(D = 32(D? = TD? + 14D — 8)12rP+* — 2(D — 3)2(2D? — 15D?
+34D = 24)1r" + 4(D + 1)2(D? = 5D? — 17D + 21)1°r + 2(—6D3 4 39D* + 6D? + 38D
— 13)u*r? = 23D = 23D* + 26D3 + 22D — 29D + 1)u?*rP*2 4 (3D — 7D* — 94D3
— 122D £ 91D + 129)04° + 4(3D% — 30D* + 97D3 — 161D + 140D — 49)p212F)
—2(D?* = 6D? + 11D = 6)rP=1((D = 5)rP + 2ur’ — 4%r)sf + (2 — D)(=2(2D?
—15D + 23)urPt £ 2(2D% — 11D + 13)22+! 1 (5D — 28D + 27)12P
+4(7 =2D)u*r® + 4(D — 6)ur?r* + 4DV r?)Sf" + 2(D = 2)r(=rP + ur® = v2r)
X ((5D =7)rP 4+ 2Dur3 — 2Dv*r — 14ur®)sf" — 4(D = 2)r2(rP — ur® + 2r)25f", (AS)
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4(D —2)r*Psw = 2(D -
+2(D

D(=(D=7)(D -

2(D = 1)\/uu(r? +12r)*6w’ = 2(D - 3)(D —

( Du*r?) = (D -
X ((D=2)rP =2 =12r)(rP +12r)25f + rP*(2(D - 5)12

+(D=4)(D =22 = 2(D - 4)(D -

+(D = 1)*wrt + (D =3)(D + 1)v*

X (rP = pr® +1%r)sh' —

DD+ 1)t = ((D -
—1)((D=7)D + T)u*r?) +
A 4 20(F 4 o1).

)W +

P3P+ v2r)(2rP - D,ur3 — DV*r + ur® + 30%r)W'.

4)(D =3)(D =2)u*r*)
(D—-2)rP ((—2(D—3)r + 4%r)5f
(A6)

DrP=4(rP + 2r)?((D - 5)(D + 1)v*

D
1)2u?rPsh —l—u

D+1 + 2(D _ 3)7‘2D

(rP —H/ ’r)

(2DrP — 4¢P + DV*r — 31%r)

APPENDIX B: NEAR-HORIZON GEOMETRY OF NONEXTREMAL BLACK HOLES

For nonextremal black holes, we can solve for i in terms of v and r, i.e.,

ﬂ—ro -4

To obtain the behavior of 6f in the near-horizon region, we can assume an Ansatz 5f =

leading order of (r — ry), we have

2. (B1)

(r—ro)’f. We find that at the

(r = Dyly + 12 = Qo(r — ro)*. (B2)
where
0 = 2(D = 1)rg”™ (2(119D3 — 1406D? + 1739D — 336)1°r;
07 3(D-2)(D-3)rP = 2%ry)? 0
— (289D* — 3528D3 + 11220D? — 11684D + 3519)1*r5 >
— (D —3)*(9D* — 86D3 + 289D — 406D + 200) 3P
+2(52D° — 685D* + 3162D% — 6617D? + 6488D — 2436)1°rg" ). (B3)
|
The modes associated with the double roots Yy = -1 At the first Slght, there appears to have two many

is clearly unacceptable for the regular horizon, we thus
have

of = dafolr) + diFi () + 201, (). (B4)

Here d) and d; are constants to be determined so that the ¢,
term at asymptotic infinity will not be generated. The last
term above represents the contribution from the source. All
fi(r) functions are analytic with Taylor expansions of the

fOI‘m}‘N 1 +#1(r—r0) +#2(l"— r0)2—|—

parameters on the horizon, namely (ry,v,d,d;).
However, in a typical discussion of perturbative solutions,
we need to hold the mass and angular momentum fixed. In
our case, we have already hold the r fixed, we can now
hold either mass or angular momentum fixed. In this case,
we need fix one combination of the coefficients (v, dy, d;).
Furthermore, we need fine-tune these parameters so that the
asymptotic divergent c_, term vanishes, and this fix another
combination, leaving only one combination, together
with .

We present the near-horizon structure at low-lying orders
of the Taylor expansion for all the functions only in D = 7,
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of = dy+ (r—ro)d; + (r —ro)

o 16(1815r = 2037r%0* — 1397rfu* 4-10150°)  4rg(31rG + 407)dy
45r10(2r§ = 12)? 9(2r§ —12)?
A ATAAN (20954758~ 1S8R — 6489Tr 91T 1S — 159100
54r0(2r8 -12) 0 45,,(1)1(2,,(6) — )
_ ra(605r8% 4+ 637rS? + 320%)dy  (547r? + 587r§u? + 4004)d,
18(2r§ —12)? 108r3(2r§ — 1)? ’

i 8dyry | 32T — 1825 + 1502
5h—h0+(r—r0)< di_ Sdory | 3200 1805 + rO))

3 2r8 -2 5r(9)(2r8 —-1%)
4 (o = NOCTBB 4 3037078 3540202 1 1635r) | Todorts 4 15) i (132 = 122) |
45r(1)0(2r0 -1?)? 9(2r§ — 1?)? 54r(2r§ — 1?)

36(—2v* + 30278 + 5r?) v’ 4 V2
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Note that all the expansion powers are integers and the functions therefore are all analytic and infinitely differentiable.
Taking an extremal limit, corresponding to setting v = \/Erg, is singular in this expansion. In the above expansion, we have
assumed that (v — 2r§)/ry > a. The near-extremal case with (v — 2r§)/r$ ~ a remains further study.

APPENDIX C: NEAR-HORIZON EXPANSION OF THE D =7 EXTREMAL BLACK HOLE

In Sec. III C, we give the near-horizon expansion of the perturbative function §f for the D = 7 extremal rotating black
hole. Here, we give the these expansions for the remaining functions,

~ 15704(r —ry)  68164(r —ry)? 1(y/31-3)
Sh=(h— o) =d —70)2 V2 3
< 0 157 315 . (r=ro) ( 1+3)
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Sw < 108 456(r — ro) _ 27444(r — ry)? L ) Cdy (r— VI <_3(\/§T +3)
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N 3(31V21 +99)(r = rg) (5794721 + 114813)(r — ry)* N
2072 4080r3 ’
Y(Shor + 1082)> (r=ry) s
50— | oy <\£ 070 O (Shord + 11226)(r — ry)? N

57 5(v/6r)

dy (r—rg)VID (= 2\/T (3314 — 41/6)(r — 1)
B 3r 903

| (479536 + 261V 14)(r = 1)’ +>
1836077 ’
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We have two new integration constants (fzo, @j). The former should be chosen such that the speed of light at the asymptotic
infinity remains unit, whilst the latter should be chosen so that the asymptotic spacetime is nonrotating.
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