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Effective models of gravitational collapse in loop quantum gravity for the Lemaître-Tolman-Bondi
spacetime predict that collapsing matter reaches a maximum finite density, bounces, and then expands
outward. We show that in the marginally bound case, shell-crossing singularities commonly occur for
inhomogeneous initial profiles of the dust energy density; this is the case in particular for all profiles that are
continuous and of compact support, including configurations arbitrarily close to the Oppenheimer-Snyder
model. When a shell-crossing singularity occurs, it is necessary to seek weak solutions to the dynamics; we
argue that weak solutions typically contain shock waves.
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I. INTRODUCTION

Recent work on the spherically symmetric gravity-dust
Lemaître-Tolman-Bondi (LTB) spacetimes [1–10] in effec-
tive loop quantum gravity (LQG) has provided a class of
models with a local degree of freedom for studying
quantum gravity effects in the gravitational collapse to a
black hole [7–9,11]. (For recent reviews on black holes in
LQG, see Refs. [12,13].)
These studies agree that quantum gravity corrections

only become important when the energy density of the
collapsing dust field nears the Planck scale, at which point
LQG effects lead to a repulsion that causes the initially
in-falling dust field to undergo a nonsingular bounce. How-
ever, a major difference is that some models predict the for-
mation of a shock (during or before the bounce) [4,7,8],
while others find that no shocks are formed [11,14]. Our
purpose is to analyze this difference. Before doing so it is
useful to first review the situations, in general, where shock
wave formation becomes possible.
The LTB model is a system with one local degree of

freedom. Its canonical equations of motion are a pair of
coupled first-order nonlinear partial differential equations;
this is the case for both classical general relativity and the
effective LQG models. It is therefore a useful nonpertur-
bative model for gravitational collapse as its dynamics
remain valid even in regions of large inhomogeneity.
A powerful tool to solve such equations is the method of

characteristics [15]. This method can be demonstrated by
considering the equation

∂tuðx; tÞ þ vðx; t; uÞ∂xuðx; tÞ ¼ 0; ð1Þ

this is a nonlinear advection equation where the velocity v
of the field u depends on space, time and the field itself.
The method of characteristics defines curves xðsÞ and

tðsÞ, (called characteristics) in the x–t plane that determine
the evolution of u along the curves through du=ds. For an
advection equation of the form (1), this gives

du
ds

¼ ∂tu ·
dt
ds

þ ∂xu ·
dx
ds

; ð2Þ

and reproduces (1) provided

dt
ds

¼ 1;
dx
ds

¼ vðx; t; uÞ; ð3Þ

it follows that u is constant along such curves,

du
ds

¼ 0: ð4Þ

The problem is then reduced to solving the ordinary
differential equations for xðsÞ, one for each x, with the
initial conditions xðs0Þ ¼ x0 and tðs0Þ ¼ t0; the two other
sets of equations for du=ds and dt=ds are easily solved:
uðsÞ ¼ uðx0; t0Þ ¼ u0 and t ¼ s − s0 þ t0.
This method can be viewed as a change of coordinates

from ðx; tÞ to ðX; sÞ, where X labels the characteristic
curves that are each parametrized by s. (Typically, X is
taken to be X ¼ x0; although convenient this choice is not
essential.) The new X coordinate is chosen specifically so
that it is comoving, in the sense that it follows the field u
such that u remains constant along curves of constant X.
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The main drawback of the method is that the solutions
hold only up to the points where the characteristic curves
xðtÞ intersect—since v is field dependent, characteristic
crossing is a possibility (unlike for constant v). (If one
attempts to use the method of characteristics beyond the
point that characteristics cross, the resulting “solution”
for u is multivalued, hence not a function.) It is possible
to check whether characteristics cross by calculating the
Jacobian of the coordinate transformation between ðx; tÞ
and ðX; sÞ: the Jacobian vanishes when characteristics
cross. In particular, for the case that s ¼ t − t0 þ s0
considered here, the Jacobian vanishes if and only
if ∂Xx ¼ 0.
If characteristics cross, then the solution for uðx; tÞ is not

unique after the crossing point and in such cases it is
necessary to look for weak solutions. In particular, in the
weak solution, shocks typically form if characteristic
curves intersect, while rarefaction waves arise if character-
istic curves separate.
Weak solutions solve the integrated form of the equation

of motion; for example, a weak solution uW for (1) on the
domain D ¼ R × ½0;∞Þ with initial data uð0; xÞ is one that
satisfies

Z
D
dx dt uW ½∂tϕþ ∂xðϕvÞ� ¼

Z
R
dxϕðx; 0Þuð0; xÞ; ð5Þ

for all smooth functions ϕðx; tÞ of compact support on D,
assuming v ¼ 0 on the boundary ∂D of the domain of
interest. It is evident that weak solutions uW are not
required to be differentiable on D, and therefore need
not be solutions of (1).
If comoving coordinates are utilized from the start for a

system with dynamics given by a nonlinear equation, then
the resulting equations of motion are ordinary differential
equations identical to the parametric equations for the
characteristic curves, and the defining nonlinear wave
equation does not appear explicitly. This apparent shortcut
is useful as long as the characteristic curves do not cross;
however, if they do cross, the implication is that the chosen
comoving coordinates have failed. It then becomes neces-
sary to recast the system in terms of the original nonlinear
PDE in another coordinate system and search for weak
solutions.
In Sec. II we describe the dynamics for LTB spacetimes

as PDEs and as characteristic equations; we discuss the
conditions for shell-crossing singularities and their relation
to characteristic crossing. We next consider LTB configu-
rations that describe gravitational collapse, focusing on the
Oppenheimer-Snyder (OS) model in Sec. III; in Sec. IV we
consider more general dust profiles, in particular we show
that shell-crossing singularities commonly occur, including
for all profiles that are initially marginally bound, con-
tinuous and of compact support. We conclude in Sec. V
with a discussion on the physics of shocks in gravitational

collapse drawing on insights from fluid mechanics where
shocks are ubiquitous.

II. LTB CHARACTERISTIC EQUATIONS

In this section we show that the LTB equations in
comoving coordinates are the characteristic equations of
a pair of nonlinear PDEs of the type (1). It then follows that
shell-crossing singularities corresponding to the crossing of
characteristic curves occur, a result in agreement to that
established in the areal gauge [7,8]. These observations
highlight the fact that shock waves arising in weak
solutions are not gauge artifacts.
The LTB metric in the comoving coordinate R is

ds2 ¼ −dt2 þ ð∂RrÞ2
1þ E

dR2 þ r2dΩ2; ð6Þ

where the areal radius r ¼ rðR; tÞ and spatial curvature
E ¼ EðR; tÞ are to be determined by either the classical
Einstein equations or a counterpart with quantum
corrections.
The gravitational mass m up to radius R

mðR; tÞ ¼ 4π

Z
R

0

dR̃ rðR̃; tÞ2½∂R̃rðR̃; tÞ�ρðR̃; tÞ; ð7Þ

also plays an important role in the LTB dynamics; inverting
this relation gives the formula for the dust energy density ρ,

ρ ¼ ∂Rm
4πr2∂Rr

: ð8Þ

With these definitions, the effective LQG dynamical
equations in the comoving coordinates are [11]

∂mðR; tÞ
∂t

¼ 0;
∂EðR; tÞ

∂t
¼ 0; ð9Þ

�
ṙ
r

�
2

¼
�
2Gm
r3

þ E
r2

��
1 − Δ

�
2Gm
r3

þ E
r2

��
; ð10Þ

where a dot denotes a derivative with respect to t, the
Barbero-Immirzi parameter is set to unity, and Δ ∼ l2

Pl is
the minimum eigenvalue of the area operator in LQG; the
limit Δ → 0 gives the classical equations.
The first two equations show that m ¼ mðRÞ and

E ¼ EðRÞ; these functions are fixed by the initial data.
The third equation (10) is an infinite set of ordinary

differential equations, one for each value of the coordinate
R—these correspond to the characteristic equations for the
curves rðtÞ that are comoving with the dust. These are to be
solved with initial conditions rðR; t0Þ ¼ hðRÞ, where hðRÞ
specifies how the comoving coordinate R is related to the
areal radius r at t ¼ t0. If the areal radius is monotonically
increasing at t ¼ t0, it is convenient (though not required)
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to rescale the comoving coordinate R such that hðRÞ ¼ R,
i.e., that rðR; t0Þ ¼ R.
A full solution of Eqs. (9) and (10) is therefore specified

by three functions

rRðtÞ ¼ r
�
t; R;mðRÞ; EðRÞ; hðRÞ�: ð11Þ

Such a large class of solutions opens up the possibility that
with appropriate initial conditions, solutions rkðt; R;RkÞ,
where k labels different characteristics, intersect in the r–t
plane. While it may be possible to avoid characteristic
crossing if the functions m, E, h are carefully chosen,
this will not be the case in general. (For an analysis of this
for LTB spacetimes in classical general relativity, see
Ref. [16].) Indeed, we show in the following sections that
the characteristics determined by (10) do cross for a wide
range of initial data.
The formula (8) for the dust energy density indicates a

divergence at the points where ∂Rr ¼ 0 and ∂Rm ≠ 0, and it
can be checked that curvature invariants also diverge at
such points [16]; these are shell-crossing singularities.
Shell-crossing singularities are weak singularities in the
sense that neighboring test particles remain separated [17]
rather than being crushed together or ripped infinitely far
apart as for a strong singularity. Since weak singularities
are not cured in loop quantum cosmology [18], it is not
surprising that they may arise in effective LQG models of
black hole collapse as well.
Importantly, the first condition ∂Rr ¼ 0 for a shell-

crossing singularity also signals that characteristics have
crossed. This is because the Jacobian for the coordinate
transformation to the comoving coordinate R vanishes
when ∂Rr ¼ 0 (in the same way that ∂Xx ¼ 0 signals
characteristics crossing in the example presented in

Sec. I). Therefore, a key point worth emphasizing is that
for LTB spacetimes, a shell-crossing singularity signals that
characteristics cross precisely at the location of the singu-
larity. Thus when such a point is reached, it is necessary to
allow for weak solutions, and the concomitant expectation
of shock formation. (In contrast, divergence of character-
istics gives a rarefaction wave.)
Examples of characteristic curves for the characteristic

equation (10) are shown in Fig. 1 (with the initial
conditions for each of the three plots given in the caption):
the leftmost plot shows two such curves that do not
intersect, the central plot shows two that intersect before
the bounce, and the rightmost plot shows two that cross
after the inner one has bounced.
Since the characteristics are curves of constant R, at an

intersection, either R or r must fail as a coordinate: is this
intersection in the r–t plane a single spacetime point (in
which case R is not a good coordinate), or are they separate
points R1 and R2 that have the same areal radius (in which
case r is not a good coordinate)? The discussion above
concerning the method of characteristics indicates that
when characteristics cross, it is the comoving coordinate
(in this case R) which fails. This is made particularly clear
in the case of LTB spacetimes by the presence of a shell-
crossing singularity if ∂Rm ≠ 0: the divergence in ρ is due
to shells of dust crossing each other, i.e., being at the
same spacetime point, as is correctly described by the areal
radius coordinate r, but not by the comoving coordinate
R—therefore R fails at these points. (For further discussion
on the limitations of the method of characteristics for LTB
spacetimes in classical general relativity, see Refs. [19,20].)
When characteristics cross, as in the examples shown in

the middle and rightmost plots of Fig. 1, it becomes
necessary to look for weak solutions. Weak solutions are

FIG. 1. Examples of characteristic curves for infalling dust from solutions of (10): from left to right, these show no crossing, crossing
before the bounce, and crossing of a curve that has bounced with an ingoing one. At the point where characteristics cross, it becomes
necessary to consider weak solutions. For ∂Rm ≠ 0, shell-crossing singularities and characteristic crossing coincide, showing that these
are not coordinate artefacts. The initial conditions for the curves shown here (with Δ ¼ 1) are: for the red curve, rð0Þ ¼ 8; mð8Þ ¼ 0.2
(for all three plots) and from left to right Eð8Þ ¼ 2, 1, 3; for the blue curve, rð0Þ ¼ 10; mð10Þ ¼ 0.4 (for all three plots), and from left to
right Eð10Þ ¼ 3, 3, 2.
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derived from the integral form of the PDE from which the
characteristic equations are derived. We thus seek the PDEs
that give (9) and (10) as their characteristic equations. This
is readily accomplished by noting that the areal radius r
in (10) plays the role of x in (3), and the fields are m and E.
Changing variables from ðR; tÞ to ðr; tÞ, and using the chain
rule gives

∂tmþ fðr;m; EÞ∂rm ¼ 0; ð12Þ

∂tE þ fðr;m; EÞ∂rE ¼ 0; ð13Þ

where the velocity of both fields comes from (10),

f2 ¼ r2
�
2Gm
r3

þ E
r2

��
1 − Δ

�
2Gm
r3

þ E
r2

��
: ð14Þ

A direct calculation shows that the characteristic equations
for these coupled partial differential equations are precisely
(9) and (10); this is shown in the Appendix.
Interestingly, this analysis also suggests that the most

appropriate radial coordinate to use for LTB weak solutions
is the areal radius, as was used in earlier work both in
general relativity [20] and effective LQG [7,8].
Since the equations above arise from an effective

dynamics that is invariant under spatial diffeomorphisms
[10], it is possible to use other radial coordinates. However,
since the equations hold specifically in the dust-time
gauge, obtaining a quantization of this model where the
quantum constraint algebra is fully realized remains an
open question; for various approaches to the problem see,
e.g., [2,3,5,21,22].
As a final comment, we note that a missing ingredient

in (14) is the sign of f. This suggests that m and E are not
the best of choice of fundamental fields to consider in the
LTB spacetime, since these do not determine sgnðfÞ.
Indeed, it turns out that using a component of the
Ashtekar-Barbero connection (instead of m) solves this
problem; details appear in the Appendix.

III. OPPENHEIMER-SNYDER COLLAPSE

In this section we revisit the Oppenheimer-Snyder (OS)
collapse model [23] as a special case of the LTB spacetime
in the effective LQG framework, with remarks on the use of
generalized Painlevé-Gullstrand and comoving coordi-
nates, and on the dust time gauge.
The collapsing OS star is assumed to have a radially

constant energy density, vanishing pressure, with vacuum
outside; the initial condition for ρ is

ρ ¼
�
ρo; for R < ROS;

0; for R > ROS;
ð15Þ

where ROS is the location of the surface of the OS “star” in
terms of the comoving radial coordinate R.

Due to the fact that the interior is (a portion of) the homo-
geneous and isotropic cosmological Freidman-Lemaître-
Robertson-Walker (FLRW) spacetime, it is possible to
study LQG effects by assuming the interior dynamics are
those given by loop quantum cosmology for a dust-filled
FLRW spacetime, and use matching conditions to deter-
mine the exterior [14,24,25] (see also [26,27] for earlier
work on OS collapse in LQG). Alternatively, the OS
model can also be seen as a solution to the LTB space-
time and derived from the equations of motion given
above [4,8,9,11].
The exterior vacuum solution is the same in all cases

(and matches what was found in studies of effective LQG in
vacuum spherical symmetry [28,29]), as are the dynamics
of the interior, but the matching between the interior and
exterior differs subtly in three approaches described in the
following; this is because the matching has to be done
along a timelike 3-surface of topology S2 ×R, where the
two sphere must have a certain areal radius as a function of
time, and there are multiple possible 3-surfaces in (the
maximal extension of) the vacuum exterior for which this
matching is possible.

A. Generalized Painlevé-Gullstrand coordinates

The generalized Painlevé-Gullstrand coordinates for
LTB spacetimes are obtained by using the areal radius r
as the radial coordinate (this requires that, at all times, the
areal radius increases monotonically from the origin to
infinity), and using the dust field as a relational time
variable; these are known as the areal and dust-time gauges
respectively. In these coordinates, the metric is

ds2 ¼ −dt2 þ 1

1þ E
ðdrþ NrdtÞ2 þ r2dΩ2; ð16Þ

and the equations of motion in these coordinates are
derived in [4,7,8] and are summarized in the Appendix.
Considering the marginally bound case E ¼ 0, the solution
for the OS configuration is [4,8]

Nr ¼
8<
:

−6rt
9t2þ4Δ ; for r < LðtÞ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RS
r

�
1 − ΔRS

r3
�q
; for r > LðtÞ;

ð17Þ

where RS ¼ 2GM, with M the total gravitational mass of
the OS star, and

LðtÞ ¼
�
9RSt2

4
þ ΔRS

�
1=3

ð18Þ

is the areal radius of the OS star.
Note that the shift is negative for t < 0, both in the

interior and exterior regions, and it is straightforward to
check that Nr is in fact continuous for t ≤ 0. On the other
hand, in the interior region (but not in the exterior region)
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the shift changes sign after the bounce at t ¼ 0, so a
discontinuity forms in Nr for t > 0. This discontinuity is
captured in a component of the Ashtekar-Barbero con-
nection as well, which also becomes discontinuous after the
bounce. Further, it can be verified that characteristics cross
at the bounce, indicating the necessity of looking for weak
solutions.
A detailed study of weak solutions, for the OS model as

well as other configurations, shows that a shock forms at
the latest at the bounce [7,8]. This analysis (including the
result concerning the formation of the shock), however,
depends on the areal and dust-time gauges being valid. In
the next subsections, we review how the results (specifi-
cally for the OS model) may differ if one or the other of
these gauges is relaxed.

B. Relaxing the areal gauge

It is possible to avoid the areal gauge by instead using the
so-called LTB gauge [1,10], which selects coordinates that
are comoving with the energy density of the dust, as
reviewed in Sec. II, giving the diagonal metric (6).
For the OS initial conditions (15),

m ¼
8<
:

4πGρoR3

3
; for R < ROS;

4πGρoR3
OS

3
; for R > ROS:

ð19Þ

using the initial condition rðR; t0Þ ¼ R. Although this
second condition is not strictly necessary, it simplifies
the calculations (in particular, when imposing the initial
conditions it is not necessary to worry about the ∂Rr term in
the relation between ρ and m, although the ∂Rr term cannot
be neglected for t ≠ t0).
Due to the use of comoving coordinates, the dynamics

are given by the ordinary differential equation (10) for the
characteristic curves rðR; tÞ, that can be solved analytically
with the result (for E ¼ 0) that [11]

rðR; tÞ ¼
�
2Gm

�
9

4
ðt − αÞ2 þ Δ

��
1=3

; ð20Þ

where there is a constant of integration α for each R.
The initial condition rðR; t0Þ ¼ R also determines the

constants of integration α. For the interior R < ROS,

αðRÞ ¼ t0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

9

�
3

8πGρo
− Δ

�s
; ð21Þ

note that these α are independent of R, while for the
exterior R > ROS,

αðRÞ ¼ t0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

9

�
R3

2GM
− Δ

�s
; ð22Þ

where M ¼ mðROSÞ is the total gravitational mass.
Given this solution for the OS model, it is possible to

explicitly check whether a shell-crossing singularity forms
or not by finding all occasions where ∂Rr ¼ 0, and
checking to see if ∂Rm ≠ 0 at that particular value of R.
For the interior, recalling that α is independent of R,

∂Rr ¼
�
8πGρo

3

�
9

4
ðt − αÞ2 þ Δ

��
1=3

; ð23Þ

and it is clear that ∂Rr is always nonzero.
For the exterior, it is m that is independent of R, and

∂Rr ¼
3GM
r2

ðt − αÞ∂Rα: ð24Þ

The prefactor as well as ∂Rα are always finite so, to
conclude, ∂Rr ¼ 0 only in the exterior, and at exactly
one instant of time for each R ≥ ROS, specifically

t ¼ t0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

9

�
R3

2GM
− Δ

�s
: ð25Þ

Despite this, it is clear that there is no shell-crossing
singularity, since ∂Rm ¼ 0 in the exterior region and
therefore ρ ¼ 0 in the exterior region at all times.
Nonetheless, this calculation might give us pause: in a

sense, a shell-crossing singularity is avoided because the
energy density drops suddenly to 0 at the boundary
R ¼ ROS. Note that for the exterior, ∂Rr ¼ 0 also at the
boundary R ¼ ROS, occurring exactly at the time when the
interior bounces (which is the timewhen a shock is found to
form according to the wave equation expressed in gener-
alized Painlevé-Gullstrand coordinates)—this may feel a
little too close for comfort. Indeed, it is natural to ask what
happens if instead ρ decreases continuously to zero at the
boundary of the star. Could it be possible for ∂Rr to vanish
in the region where ρ is decreasing (continuously, although
perhaps rapidly)? As shall be shown in Sec. IV, the answer
is yes: even for configurations that are arbitrarily close to
Oppenheimer-Snyder, if ρ is continuous and of compact
support then a shell-crossing singularity necessarily occurs,
at the latest at a time ∼

ffiffiffiffi
Δ

p
after the bounce, at which point

the comoving coordinates (6) fail and it is necessary to find
weak solutions to the dynamics.

C. Relaxing the dust-time gauge

An alternative possibility is to instead relax the dust-time
gauge, by allowing the dust field (used as a relational clock
here) to evolve at different rates in the interior and exterior
regions, as considered in [14]. With this change, it is
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possible to impose the Israel junction conditions to obtain a
continuous geometry, in the sense that the induced metric on
the boundary, and the extrinsic curvature on the boundary, as
calculated from the interior and the exterior give the same
result, and since the geometry resulting from this construc-
tion is continuous there is no shock in this case.
The underlying idea in this process is to change the

(relational) time coordinates after the bounce in order to
avoid the crossing of characteristics, and hence the neces-
sity of looking for a weak solution. The result is an
Oppenheimer-Snyder collapse model without the formation
of any shocks in the geometry or in the dust energy density,
although at the expense of a discontinuity in the dust field
(the relational time variable) itself.

IV. BEYOND OPPENHEIMER-SNYDER

In this section, we consider general initial conditions
where the initial profile in ρ is continuous (unlike OS where
there is a jump discontinuity in the energy density at
R ¼ ROS). We avoid using the areal gauge, instead using
the metric (6) and the equation of motion (10) for rðR; tÞ to
describe the dynamics. The resulting dynamics, as is shown
in detail below, lead to the formation of shell-crossing
singularities even for collapse models whose initial profile
for ρ is arbitrarily close to the OS profile.

A. Conditions for shell-crossing singularities

Given a specific mass function mðRÞ and spatial curva-
ture EðRÞ, it is possible to calculate whether the dynamics
will lead to the occurrence of a shell-crossing singularity or
not. For the sake of simplicity we continue to focus on the
E ¼ 0 marginally bound case.
The general solution for rðR; tÞ when E ¼ 0 is [11]

rðR; tÞ ¼
�
2Gm

�
9

4
ðt − αÞ2 þ Δ

��
1=3

; ð26Þ

where mðRÞ is given by the initial conditions, as is αðRÞ
which is a constant of integration.
Imposing the initial condition that rðR; t0Þ ¼ R, the

solution (26) can be inverted to solve for α,

αðRÞ ¼ t0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

9

�
R3

2GmðRÞ − Δ
�s
; ð27Þ

where the positive sign in front of the square root is selected
for dust that is initially collapsing (rather than expanding).
Note that by a suitable rescaling it is always possible,
as done here, to choose the radial coordinate R to initially
agree with the areal radius r at t ¼ t0 (assuming that the
areal radius is initially monotonically increasing; this will
always be the case for the configurations we consider)—
this choice will simplify the analysis. Of course, the relation
rðR; t0Þ ¼ R only holds at the initial time t0.

(As an aside, note that it may be more appropriate to give
initial conditions in terms of mðrÞ, not mðRÞ, since r has a
clear geometric meaning while R is a radial coordinate that
can be freely rescaled; however, since we are choosing R
such that it initially agrees with r, we will give initial
conditions in terms of R instead, using this identification.)
The two conditions necessary for a shell-crossing sin-

gularity to occur are ∂Rm ≠ 0 and ∂Rr ¼ 0. The first can be
checked directly from the initial profile mðRÞ, while a
direct calculation from (26) shows that ∂Rr ¼ 0 is equiv-
alent to the condition

ðt − αÞ2∂Rm − 2mðt − αÞ∂Rαþ 4Δ
9

∂Rm ¼ 0: ð28Þ

For any R such that ∂Rm ≠ 0, if there is any ts that satisfies
this equality, then there will necessarily be a shell-crossing
singularity at the spacetime point ðR; tsÞ.
To see if there is a real solution for t, solving the

quadratic equation gives

t − α ¼ m∂Rα

∂Rm

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4Δð∂RmÞ2
9m2ð∂RαÞ2

s !
; ð29Þ

therefore, there exists at least one real solution for t if and
only if

mj∂Rαj
∂Rm

≥
2
ffiffiffiffi
Δ

p

3
: ð30Þ

If this condition (which is independent of t), together with
∂Rm ≠ 0 (also independent of t), is satisfied for any R, then
a shell-crossing singularity will necessarily occur.
Note that if there are real solutions to (29) for t − α, they

must both have the same sign, which is determined by ∂Rα
since m and ∂Rm are both positive (assuming positive
energy density everywhere). At the radial coordinate R,
a bounce locally occurs at the time t ¼ α, so a positive
solution for t − α (i.e., with ∂Rα > 0) corresponds to a
shell-crossing singularity that occurs after the bounce,
while negative solution for t − α (i.e., with ∂Rα < 0)
indicates that a shell-crossing singularities forms before
the bounce.
Finally, a constraint on the time when a shell-crossing

singularity occurs is given by rewriting (28) as

2ðt − αÞ
ðt − αÞ2 þ 4Δ

9

¼ ∂Rm
m∂Rα

: ð31Þ

It is straightforward to verify that the extrema of the
function 2ðt − αÞ=½ðt − αÞ2 þ 4Δ=9� are −3=ð2 ffiffiffiffi

Δ
p Þ and

3=ð2 ffiffiffiffi
Δ

p Þ, and further that the extrema, and every point
between, is attained by that function for t − α ∈
½−2 ffiffiffiffi

Δ
p

=3; 2
ffiffiffiffi
Δ

p
=3�, i.e., of the order of a Planck time
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either side of the (local) bounce at t ¼ α. As a consequence,
if a shell-crossing singularity does form it will occur at the
latest at

tlatest ¼ αþ 2
ffiffiffiffi
Δ

p

3
; ð32Þ

within a time 2
ffiffiffiffi
Δ

p
=3 after the bounce.

B. Two simple models

We will now consider two simple models that are both
initially arbitrarily close to the OS profile, and show that
shell-crossing singularities occur in both.

1. First model

The first model we consider is based on defining ρðt0Þ in
three pieces: an innermost region R < R1 where the energy
density is a constant ρo, an intermediate region where ρ
decreases linearly to 0, and an outer region where ρ
vanishes, namely

ρ ¼

8>><
>>:

ρo; for R < R1;

ρo ·
R2−R
R2−R1

; for R1 < R < R2;

0; for R > R2:

ð33Þ

By construction, ρðt0Þ is everywhere continuous (although
not differentiable) in this model. Further, this initial
configuration can be made arbitrarily close to the OS case,
for R2 − R1 sufficiently small. For the sake of concreteness,
consider the L1 norm of ρðt0Þ − ρOSðt0Þ, choosing the
parameters of the OS initial profile to have the same ρo, and
taking ROS ¼ R1. Then,

kρðt0Þ − ρOSðt0Þk1 ¼
Z

∞

0

dRjρðt0Þ − ρOSðt0Þj

¼ 1

2
ρoðR2 − R1Þ; ð34Þ

which can clearly be made arbitrarily small by taking
R2 − R1 to be as close to 0 as necessary. (Note that one
could choose instead to define the L1 norm using the
integral over R3, but in any case the resulting norm of
ρðt0Þ − ρOSðt0Þ can be made arbitrarily small by taking
R2 − R1 arbitrarily close to zero.)
In Sec. III B, we saw that no shell-crossing singularities

will form in the homogeneous inner region (and ∂Rm ¼ 0
in the outer region, so there can be no shell-crossing
singularities there either), so we will focus on the inter-
mediate region R1 < R < R2.
In the intermediate R1 < R < R2 region, the mass

function m is

m ¼ 4πρo
3ðR2 − R1Þ

�
R2R3 −

R4
1

4
−
3R4

4

�
: ð35Þ

Since ∂Rm > 0 for R∈ ðR1; R2Þ, if ∂Rrðt; RÞ ¼ 0 for some
R in that range, and for any t, a shell-crossing singularity
occurs at that point. A direct calculation shows that the
condition (30) for the occurrence of a shell-crossing
singularity at R for this model gives

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3

2Gm − Δ
q 



R2 − R1

R2 − R
−

R2 − R1

R2 − 3
4
R − R4

1

4R3





 ≥
ffiffiffiffiffi
ρo
ρc

r
; ð36Þ

where ρc ¼ 3=ð8πGΔÞ is the critical energy density of loop
quantum cosmology.
Note that no matter the values of R1, R2 and ρo, this

inequality will be satisfied for R (smaller than but)
sufficiently close to R2 for the denominator of the first
fraction inside the absolute values to become sufficiently
large for the inequality to hold.
As a result, a shell-crossing singularity will necessarily

form, shortly after the bounce (since ∂Rα > 0) for any set of
initial data of the form (33), including initial choices for
ρðR; t0Þ arbitrarily close to the OS configuration.

2. Second model

The second model we consider is a further modification
of the OS profile. We again define the initial ρðt0Þ in three
pieces: an innermost region where ρ decreases linearly
from a maximal value ρm at the origin to a smaller value
ρ1 at R ¼ R1, an intermediate region where ρ decreases
linearly, although at a different rate, to zero at R ¼ R2, and
vanishes in the outer region,

ρ ¼

8>><
>>:

ρm · R1−aR
R1

; for R < R1;

ρ1 ·
R2−R
R2−R1

; for R1 < R < R2;

0; for R > R2;

ð37Þ

where 0 < a < 1 and ρ1 ¼ ð1 − aÞρm. This initial configu-
ration can also be made arbitrarily close to an OS model
(with parameters ρo ¼ ρm and ROS ¼ R1), since kρðt0Þ −
ρOSðt0Þk1 ¼ ½aR1 þ ρ1ðR2 − R1Þ�=2 can be made arbitrar-
ily small by taking a and R2 − R1 arbitrarily close to 0.
We will focus on the innermost region 0 < R < R1; the

mass function m in that region is

m ¼ 4πρmR3

3

�
1 −

3aR
4R1

�
; ð38Þ

and the solution for α is

αðRÞ ¼ t0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2R1

3πGρmð4R1 − 3aRÞ −
4Δ
9

s
; ð39Þ

as usual choosing the positive root for a contracting initial
profile.
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Since ∂Rm ≠ 0 in the innermost region, the remaining
condition for a shell-crossing singularity to form is that the
inequality (30) be satisfied, which for this model is
equivalent to

aR
8R1

·

h�
1 − aR

R1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3aR

4R1

q i−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρm

ρc

�
1 − 3aR

4R1

�q ≥
ffiffiffiffiffiffi
ρm
ρc

r
; ð40Þ

where ρc ¼ 3=ð8πGΔÞ is the critical energy density of loop
quantum cosmology; note that the left side of the inequality
is maximized at R ¼ R1.
In this case, if a is sufficiently small, there will not be any

shell-crossing singularities in the innermost region (and in
particular, for the limiting case of a homogeneous profile
with a ¼ 0). Note however that to avoid shell-crossing
singularities, a must be very small. Assuming that the
initial profile for ρðt0Þ is such that ρm ≪ ρc, a ≪ 1, the
condition that there not be any shell-crossings at radius
R is aR=R1 < 8

ffiffiffiffiffiffiffiffiffiffiffiffi
ρm=ρc

p
. Clearly, for initial profiles with

ρm ≪ ρc, this is a strong constraint on a.
For this second model, shell-crossing singularities can

occur close to the origin in the innermost region, with larger
value of a ensuring that shell-crossing singularities will
occur closer to the origin. Also, even if a is chosen to be
sufficiently small so that a shell-crossing singularity does
not occur in the innermost region R < R1, shell-crossing
singularities will necessarily occur in the intermediate
region R1 < R < R2, whose initial energy density profile
is identical to the intermediate region of the first model, and
where it was shown that a shell-crossing singularity will
necessarily form.

C. General initial profiles with E = 0

There is a very large class of profiles that will eventually
lead to the formation of a shell-crossing singularity. As
shall be shown here, for the case E ¼ 0, the condition for a
shell-crossing singularity to form is that the dust energy
density be sufficiently inhomogeneous, or go sufficiently
close to zero. Importantly, this includes all initial (con-
tinuous) profiles for ρðR; t0Þ that are of compact support
(and with nonvanishing m, i.e., non-Minkowski): every
such initial profile will inevitably lead to the formation of a
shell-crossing singularity.
To determine whether a shell-crossing singularity will

occur at some radial coordinate R ¼ R1, it is convenient to
introduce the average initial energy density from the origin
to R1, defined as

ϱ̄1 ¼
3mðR1Þ
4πR3

1

; ð41Þ

and to express the initial energy density at R1, given by
ϱðR1Þ ¼ ρðR1; t0Þ ¼ ∂RmðR1Þ=ð4πR2

1Þ, as

ϱ1 ≔ ϱðR1Þ ¼ ϱ̄1 þ δϱ1: ð42Þ

Note that we use the notation ϱ for these quantities since
they depend only on R, unlike the energy density ρ which
of course is dynamical. Note also that all of these quantities
depend on the radial coordinate R1; in particular, ϱ̄1 is the
average initial energy density from the origin to R1, so it
also depends on R1.
From these definitions, it follows that

∂Rm
m






R¼R1

¼ 3ϱ1
R1ϱ̄1

; ð43Þ

and (for E ¼ 0) ∂Rα can be calculated directly from (27),

∂Rα ¼ R2

2Gm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3

2Gm − Δ
q �

1 −
R∂Rm
3m

�
; ð44Þ

which, for R ¼ R1, can be rewritten as

∂RαðR1Þ ¼ −
ffiffiffiffi
Δ

p

R1

·
δϱ1
ϱ̄1

ffiffiffiffiffi
ρc
ϱ̄1

r
1ffiffiffiffiffiffiffiffiffiffiffi
1 − ϱ̄1

ρc

q : ð45Þ

Combining these calculations, at R ¼ R1

m∂Rα

∂Rm
¼ −

ffiffiffiffi
Δ

p

3

δϱ1
ϱ1

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϱ̄1
ρc

�
1 −

ϱ̄1
ρc

�s #−1
; ð46Þ

where ρc ¼ 3=ð8πGΔÞ is the critical energy density of loop
quantum cosmology.
As a result, the condition (30) becomes

jδϱ1j
ϱ1

≥ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϱ̄1
ρc

�
1 −

ϱ̄1
ρc

�s
: ð47Þ

For any radial coordinate R where ∂Rm ≠ 0, if either jδϱ1j
is sufficiently large or ϱ1 is sufficiently small, so that (47) is
satisfied, then a shell-crossing singularity will necessarily
form, at the latest at t ¼ αþ 2

ffiffiffiffi
Δ

p
=3, as shown in (32).

We emphasize that it is easy to find initial conditions
such that this condition is satisfied; in particular, it is
satisfied for any initial configuration with nonzeromwhere
the initial energy density is continuous and of compact
support.
Theorem. For the case E ¼ 0, a shell-crossing singularity

forms if the initial distribution of the dust energy density
ρðR; t0Þ is non-negative, continuous, of compact support,
and for which mðRÞ is not everywhere zero.
Proof. Since mðRÞ is not everywhere zero, there must

exist some finite open interval ðR1; R2Þ where the non-
negative function ρðR; t0Þ is strictly positive and ∂Rm > 0.
Further, since ρðR; t0Þ has compact support, by definition it
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is possible to find such an interval where R2 satisfies the
condition that ρðR2; t0Þ ¼ 0. Then, by continuity it is
possible to find a positive and arbitrarily small ρðR; t0Þ
for some R∈ ðR1; R2Þ (in particular by taking R arbitrarily
close to R2), so it also follows that ϱðRÞ can also be made
arbitrarily small. Since ϱðRÞ can be made arbitrarily small
with R < R2 and m is a nondecreasing function, it is
possible to ensure that ϱðRÞ < 3mðRÞ=ð4πR3Þ ¼ ϱ̄ðRÞ,
so that δϱðRÞ is negative, and jδϱðRÞj is bounded below
as R is chosen to make ϱðRÞ arbitrarily small. Therefore,
the denominator of jδϱðRÞj=ϱðRÞ can be made arbitrarily
small while the numerator is bounded below, guaranteeing
that the inequality (47) is satisfied for some R∈ ðR1; R2Þ. It
follows that ∂Rr ¼ 0 will occur at some time for that R, and
since ∂Rm ≠ 0 for all R∈ ðR1; R2Þ, therefore when ∂Rr ¼ 0
a shell-crossing singularity will occur. ▪
Of course, the constraint (47) holds much more generally

than just for profiles of compact support—it can also be
applied to noncompact configurations, although in this case
it is necessary to check whether the inequality holds on a
case by case basis for each choice of initial conditions.
Given that the right side is suppressed by a factor of 1=

ffiffiffiffiffi
ρc

p
,

it is clear that it is not difficult to find initial conditions for
which a shell-crossing singularity will occur, whether the
initial profile for the energy density of the dust field is
compact or not.

D. The dust-time gauge

As we have seen, relaxing the areal gauge is not
sufficient to avoid shell-crossing singularities when con-
sidering models beyond Oppenheimer-Snyder—in fact, at
all times up until the shell-crossing singularity occurs, it
can be verified that the areal gauge holds (and the solutions
to the equations of motion in comoving coordinates cannot
be used beyond the shell-crossing singularity). But what
about relaxing the dust-time gauge?
One may hope that by using a different time coordinate,

it may be possible to avoid characteristics crossing. This
may be the case in vacuum as argued in [14], where caustics
in the coordinate system could just indicate the failure of
the coordinates, and in such a situation it is possible to
simply use a different set of coordinates. On the other hand,
shell-crossing singularities (although weak) are curvature
singularities, with curvature scalars diverging—and curva-
ture singularities cannot be avoided by introducing a new
coordinate system.

V. PHYSICS OF SHOCKS IN
GRAVITATIONAL COLLAPSE

The perspective from fluid dynamics, where shocks are
a common and well-understood phenomenon provides
some insight for shock formation in gravitational collapse.
Indeed, it has recently been suggested that shocks may
occur in analog gravity models where the medium’s energy

density becomes sufficiently concentrated, and this too may
yield insights for shock formation in quantum gravity [30].
Fluid dynamics is a macroscopic continuum approxi-

mation of the collective motion of a large number of
molecules described by coarse-grained quantities such as
density ρ and pressure p that are normally treated as
continuous functions of space and time. Coarse-graining
presupposes the existence of regions that contain sufficient
numbers of molecules, and it is possible that adjacent
regions give significantly different values for these quan-
tities. Thus the assumption of continuity of ρ and p is not
always justified. Shocks are emergent macroscopic dis-
continuities, and do not reflect any underlying microscopic
discontinuity.
With this perspective, shocks are not surprising in

quantum gravity if one assumes that spacetime is emergent
from a large number of geometry quanta, as proposed for
instance in LQG. Conversely, the appearance of shocks in
classical or effective LQG gravity (as discussed above)
provides an argument for a hydrodynamic picture of
spacetime with a discrete underlying microstructure.
In general, a weak solution is one where one or more

coarse-grained observables are not differentiable, as sum-
marized in the Introduction. Although a partial differential
equation has a unique differentiable solution on a specified
domain (if it satisfies some appropriate conditions), this is
not the case for integral equations, where the solution need
not be continuous or differentiable on the domain. Weak
solutions are not unique because they depend on the choice
of the field in terms of which the integral form of the
equations of motion are expressed [15], in particular
nonlinear redefinitions of the field lead to shocks propa-
gating at different speeds. Hence it is important to select
appropriate “fundamental” fields for the integral equations.
This requires additional intuition from the underlying
physics (quantum gravity in this case).
While this lack of uniqueness for weak solutions may

initially seem disconcerting, the choice of fundamental
fields contains information about the underlying physical
constituents of the coarse-grained observable: in fluid
dynamics the physical ingredient may be the conservation
of mass or particle number, which indicates that the
appropriate field for expressing the integral form of
dynamics is mass or number density [15]. As a result, in
weak solutions, microscopic degrees of freedom can have a
significant impact on the macroscopic dynamics—this is of
particular interest for quantum gravity where guidance
from empirical observation is very limited.
For LTB models of gravitational collapse, this raises two

questions. The first concerns the physics underlying the
assumption of vanishing pressure: should zero pressure be
assumed in all situations, or as an approximation that holds
unless particle shells approach each other? In the first case,
it may be natural to select weak solutions where shells pass
directly through each other without resistance if a shell
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crossing occurs (see, e.g., the analysis in [31]); in the
second case, which seems more realistic, it is natural to
expect resistance to shells passing through each other (due
to pressure not being negligible at sufficiently high particle
density), and thus leading to shells piling up and forming
a shock.
The second question for selecting the physically correct

weak solution concerns the appropriate dynamics for
shocks: what is the microscopic input from quantum
gravity that determines the physically appropriate weak
solution for gravitational collapse? From the perspective of
LQG, it seems natural to expect that (the integral form)
of the dynamics use the Ashtekar-Barbero variables (as
in [7,8]). However, other choices may be of interest. This is
a potentially promising question to explore since it may
provide more insight into the connection between micro-
scopic degrees of freedom in LQG and the emergent
macroscopic dynamics of shocks.
A final point to consider is whether the effective

solutions remain valid up to the point where characteristics
cross, and whether the weak effective solutions discussed
in [7,8] are valid beyond such a shell-crossing. While a
detailed answer to this question requires further work, the
comparison to fluid mechanics is illuminating. In fluid
mechanics, at characteristic crossings it does not become
necessary to consider the atomistic or quantum nature of
the fluid’s constituents to determine the dynamics (at least
if we are only probing the system at length scales much
larger than the atomic scale); rather, it is sufficient to find
weak solutions to the dynamics. This comparison suggests
that the same may reasonably be expected to be true here: at
length scales much larger than lPl, weak solutions to the
integrated effective equations can be used, and a recourse to
fully quantum equations does not seem necessary.

VI. DISCUSSION

Shell-crossing singularities occur in the LQG effective
dynamics for marginally bound (E ¼ 0) LTB spacetimes
for initial distributions of the energy density ρðt0Þ ≥ 0 that
are either (i) sufficiently inhomogeneous or (ii) become
sufficiently close to zero at a point, including all continuous
profiles of compact support.
These shell-crossing singularities indicate the failure of

comoving coordinates due to characteristics crossing, and
therefore show the necessity of seeking weak solutions. In
turn, the weak solutions that arise beyond the point of
characteristic crossing are shock waves.
Our results stand in contrast to recent claims [11,14] that

shocks in dust collapse in effective LQG are coordinate
artefacts; these claims are based on analyses focused on
the OS model, and the implicit assumption that it is a
representative example. We have shown that this is not the
case by exhibiting families of initial energy density profiles
(see models 1 and 2 in Sec. IV) that are arbitrarily close

to OS data for which shell-crossing singularities neces-
sarily occur.
Since comoving coordinates break down at shell-

crossing singularities, it becomes necessary to use other
coordinates past such crossings. The areal gauge still holds
at the time the first shell-crossing singularity forms—this is
because the singularity initially forms precisely at the first
point Rs where ∂Rr ¼ 0 (and this derivative remains strictly
positive either side of that point, since by definition this is
the first point where ∂Rr vanishes), so Rs is an inflexion
point for r (not an extremum), and r also increases
everywhere else. In particular, since r remains an increasing
function at the shell-crossing singularity, the areal gauge
can be used at such points. This suggests that it is possible
to use the integral form of the nonlinear wave equation in
the areal gauge to find the appropriate weak solutions, as
proposed in [7,8]. Nevertheless it would be valuable to use
the general framework developed in [10] to find other
coordinates (that are not comoving and do not use the areal
gauge) to study the weak solutions that are expected to hold
beyond the shell-crossing singularity.
In summary, we have shown that characteristic crossing

and the formation of shell-crossing singularities commonly
occur for the PDEs that describes LTB dust collapse in
effective LQG; the inevitable consequence of this fact is the
necessity of seeking weak solutions.
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APPENDIX: GENERALIZED PAINLEVÉ-
GULLSTRAND COORDINATES

IN LTB SPACETIMES

The effective LQG dynamics for the LTB spacetime can
be derived in terms of the generalized Painlevé-Gullstrand
coordinates by imposing the areal and dust-time gauge, and
then performing a loop quantization on the resulting gauge-
fixed system, for details see Ref. [4].
The metric then has the form

ds2 ¼ −dt2 þ ðEbÞ2
r2

ðdrþ NrdtÞ2 þ r2dΩ; ðA1Þ

where the shift vector is

Nr ¼ −
rffiffiffiffi
Δ

p sin

ffiffiffiffi
Δ

p
b

r
cos

ffiffiffiffi
Δ

p
b

r
; ðA2Þ

and b and Eb are, respectively, the remaining components
of the Ashtekar-Barbero connection and of the densitized
triad, and are canonically conjugate
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fbðr1; tÞ; Ebðr2; tÞg ¼ Gδðr1 − r2Þ: ðA3Þ

The dynamics are generated by the physical Hamiltonian
(which is not a constraint after the gauge-fixing)

H ¼ 1

2G

�
Eb

r
∂r

�
r3

Δ
sin2

ffiffiffiffi
Δ

p
b

r

�
−
3r
Eb

þ 2r2

ðEbÞ2 ∂rðE
bÞ þ Eb

r

�
; ðA4Þ

giving the equations of motion

ḃ ¼ −
1

2Δr
∂r

�
r3sin2

ffiffiffiffi
Δ

p
b

r

�
þ 1

2

�
r

ðEbÞ2 −
1

r

�
; ðA5Þ

Ėb ¼ −
r2ffiffiffiffi
Δ

p sin

ffiffiffiffi
Δ

p
b

r
cos

ffiffiffiffi
Δ

p
b

r
∂r

�
Eb

r

�
; ðA6Þ

and the energy density of the dust field is

ρ ¼ −
H

4πrEb : ðA7Þ

These equations can be simplified by the redefinition of
Eb in terms of E through

Eb ¼ rffiffiffiffiffiffiffiffiffiffiffi
1þ E

p ; ðA8Þ

and then the equations of motion become

ḃ ¼ −
1

2Δr
∂r

�
r3sin2

ffiffiffiffi
Δ

p
b

r

�
þ E
2r

; ðA9Þ

Ė ¼ −
rffiffiffiffi
Δ

p sin

ffiffiffiffi
Δ

p
b

r
cos

ffiffiffiffi
Δ

p
b

r
∂rE; ðA10Þ

while in terms of E the energy density is

ρ ¼ 1

8πGr2
∂r

�
r3

Δ
sin2

ffiffiffiffi
Δ

p
b

r
− rE

�
; ðA11Þ

motivating the definition of the gravitational mass

mðrÞ ¼ 4π

Z
r

0

dr̃ r̃2ρðr̃Þ

¼ 1

2G

�
r3

Δ
sin2

ffiffiffiffi
Δ

p
b

r
− rE

�
: ðA12Þ

Using the equations of motion for b and E,

ṁ ¼ −
rffiffiffiffi
Δ

p sin

ffiffiffiffi
Δ

p
b

r
cos

ffiffiffiffi
Δ

p
b

r
∂rm: ðA13Þ

The PDEs (A10) and (A13) are precisely those given
in (12) and (13), with f ¼ −Nr, see Eq. (A2).
To recover the characteristic equations for the LTB

spacetime, it is sufficient to introduce characteristic curves
ðrðsÞ; tðsÞÞ, whose parametric equations satisfy

dt
ds

¼ 1;
dr
ds

¼ rffiffiffiffi
Δ

p sin

ffiffiffiffi
Δ

p
b

r
cos

ffiffiffiffi
Δ

p
b

r
; ðA14Þ

so the dynamics for m and E along the characteristics
trivialize to

dm
ds

¼ 0;
dE
ds

¼ 0: ðA15Þ

Using (A12) to express the characteristic equation for rðtÞ
in terms of m and E gives

ṙ2 ¼ r2
�
2Gm
r3

þ E
r2

��
1 − Δ

�
2Gm
r3

þ E
r2

��
: ðA16Þ

These are precisely Eqs. (9) and (10) derived using the
comoving coordinate R. Note also that the equation for
the gravitational mass m expressed in terms of R (7)
follows from changing variables from r to R in (A12).
As emphasized in the text, these equations derived using
the method of characteristics only hold so long as character-
istic curves do not cross.
Finally, as mentioned at the end of Sec. II, despite the

relative simplicity of the equations of motion for m and E
(and their similarity to each other), these are not the ideal
choice of fundamental variables since together they do not
determine the sign of the velocity of the fields given by
−Nr, rather the variable b is needed for this. Because of
this, even though the equation of motion for b is slightly
more complicated, it is nonetheless necessary to look
for weak solutions (allowing for the possibility of charac-
teristics crossing) for b and E, and once these quantities
are known then it is straightforward to calculate m from
(A12); this has been done both for the case E ¼ 0 [7,8]
and E ≠ 0 [32].
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