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There has been recent progress in extending the zeroth and second laws of black hole mechanics to
gravitational effective field theories (EFTs). We generalize these results to a much larger class of EFTs
describing gravity coupled to electromagnetism and a real scalar field. We also show that the zeroth law
holds for the EFT of gravity coupled to electromagnetism and a charged scalar field.
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I. INTRODUCTION

The laws of black hole mechanics are a set of theorems
determining the classical properties of black holes. Their
striking resemblance to the laws of thermodynamics leads
to an interpretation of black holes as thermodynamic
objects, which is made concrete through the mechanism
of Hawking radiation.
The original proofs of the laws [1,2] require that the

theory of gravity is the two-derivative Einstein-Hilbert
action, with a theory of matter, such as Maxwell theory
or a minimally coupled scalar field, that satisfies suitable
energy conditions. However, we know that two-derivative
Einstein-Maxwell theory cannot be the complete descrip-
tion of gravity and electromagnetism on all scales as it is
not a UV complete theory. Generically we expect any low
energy limit of a UV theory of gravity to come with higher
derivative corrections, which will invalidate the standard
proofs of the laws of black hole mechanics. Since we do not
expect these corrections to change the physical interpreta-
tion of black holes as thermodynamic objects, this is a
problem.
There have been a variety of attempts to reconcile the

laws in higher derivative theories of gravity, some of which
are reviewed by Sarkar in 2019 in [3]. In particular, Wald
proved in [4] that a modified, but still geometric, definition
of black hole entropy could be used to prove the “equi-
librium state” version of the first law in any diffeomor-
phism-invariant theory of gravity with arbitrary matter
fields. However, this definition of the entropy fails to

satisfy a second law, and he had to assume that the zeroth
law holds via the assumption of a bifurcate Killing horizon.
Recently, however, there were several developments in

proving the zeroth, first, and second laws in the setting of
effective field theory (EFT). This setting requires assuming
two things: (a) the Lagrangian is a series of terms with
increasing derivatives coming with coefficients that scale in
appropriate powers of some UV length scale l, and (b) any
time or length scale L associated with the solution satisfies
L ≫ l. The first assumption is physically reasonable if we
view our theory as a low energy limit of some UV complete
theory of gravity. The second assumption means that higher
derivative terms are less important, and so our solution
remains in the regime of validity of the EFT.
Let us briefly review the spate of recent results.
Zeroth law. Bhattacharyya et al. [5] proved that the

zeroth law holds for any diffeomorphism-invariant EFT of
gravity without matter. The zeroth law states that the
surface gravity κ of a stationary black hole is constant
across the horizon.1 The proof uses Gaussian null coor-
dinates and the concept of “boost weight” to show that
derivatives of κ tangent to the horizon are proportional to a
component of the equations of motion, which is set to 0.
First law. Biswas et al. [8] generalized the Wald entropy

[4] to prove the “physical process” version of the first law
for an arbitrary higher derivative diffeomorphism-invariant,
gauge-independent theory of gravity, electromagnetism,
and a real scalar field. The physical process version of
the first law concerns a stationary black hole that is
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1Note that, in order to define the surface gravity, the horizon of
the black hole must be a Killing horizon. Hawking proved this is
always the case for two-derivative general relativity (GR) in his
rigidity theorem [6], under the assumption of analyticity. Recent
work by Hollands et al. [7] has proved the rigidity theorem also
holds in the EFT of gravity with no matter, also under the
assumption of analyticity.
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perturbed by some matter before settling down to a new
stationary configuration. It relates the change in entropy δS
to the mass δM, angular momentum δJ, and charge δQ of
the matter perturbation,

κ

2π
δS ¼ δM −ΩHδJ −ΦbhδQ; ð1Þ

where ΩH is the angular velocity of the horizon and Φbh is
the electrostatic potential.
Second law. Hollands et al. (HKR) [9], following up

from work by Wall [10] and Bhattacharyya et al. [11],
proved a version of the second law for any diffeomorphism-
invariant EFT of gravity and a real scalar field. The second
law states that the entropy of a dynamical black hole is
nondecreasing in time, Ṡ ≥ 0. HKR consider a dynamical
black hole settling down to an equilibrium stationary state
and that remains in the regime of validity of the EFT as
described above. They were able to define an entropy
which is nondecreasing to quadratic order in perturbations
around the stationary state, up to OðlNÞ terms, where lN is
the order up to which we know our EFT. Furthermore, this
entropy reduces to the Wald entropy in equilibrium.
Finally, in the companion to this paper [12], Davies and

Reall were able to show that a further extension of the HKR
procedure can strengthen the second law result significantly
by dropping its perturbative nature. They define an entropy
which satisfies a nonperturbative second law in vacuum
gravity EFT, up toOðlNÞ terms. This entropy reduces to the
Wald entropy in equilibrium, satisfies the first law, and is
purely geometrically defined for theories with up to six
derivatives.
Taken together, these results mean we now have a much

better understanding of the laws of black hole mechanics in
EFT. However, the results we have for the zeroth law and
second law are only applicable to gravity with minimal
matter couplings or to gravity with the simplest matter field,
a scalar field. Here we ask, are these results robust to the
addition of nonminimal couplings of some more compli-
cated matter field? The only field other than the metric and
scalar field for which we know the classical approximation
may be valid is the Maxwell field, and hence this seems like
an important addition to make.
In this paper we extend the aforementioned works by

completing the story for the EFT of gravity, electromag-
netism, and a real (uncharged) scalar field. We prove a
generalized zeroth law holds exactly and that the second
law holds in the sense of Davies and Reall. Taken all
together, this means there is now a zeroth, first, and second
law for such theories. Along the way we will also show the
zeroth law still holds even if the scalar field is charged and
discuss how the second law could be generalized in this
case. This gives further evidence that these proofs are
robust to more complicated matter models and that, even in
higher derivative theories of gravity, black holes will still
obey the laws.

The paper is broken down as follows. In Sec. II, we
define our Einstein-Maxwell-scalar EFT. In Sec. III, we
define two distinct choices of Gaussian null coordinates
(GNCs) and the notion of boost weight. We will work in
GNCs throughout the paper. In Sec. IV, we state the
generalized zeroth law and sketch its proof for Einstein-
Maxwell-scalar EFT. Section V contains the details of this
proof. We also show how the proof can be modified if the
scalar field is charged. In Sec. VI, we make precise the
scenario in which we will prove the second law and review
the previous work on the matter. In Sec. VII, we prove the
second law for Einstein-Maxwell-scalar EFTand discuss its
generalization if the scalar is charged.

II. EINSTEIN-MAXWELL-SCALAR EFT

We consider the EFT of gravity, electromagnetism, and a
real2 scalar field ϕ, which we shall refer to as Einstein-
Maxwell-scalar EFT. In EFT, the Lagrangian is a sum of
terms ordered by their number of derivatives. We assume
diffeomorphism invariance and electromagnetic gauge
invariance,3 so that the Lagrangian consists only of con-
tractions of Rαβγδ, Fαβ, ϕ, and their covariant derivatives,

L¼Lðgαβ;Rαβγδ;∇αRαβγδ;…;Fαβ;∇αFαβ;…;ϕ;∇αϕ;…Þ:
ð2Þ

The most general Lagrangian of this form with up to two
derivatives can be written as4

L2 ¼ R − VðϕÞ − 1

2
∇αϕ∇αϕ −

1

4
c1ðϕÞFαβFαβ

þ c2ðϕÞFαβFγδϵ
αβγδ: ð3Þ

An arbitrary function of ϕ multiplying R can be eliminated
by redefining the metric, while an arbitrary function of ϕ
multiplying ∇αϕ∇αϕ can be eliminated by redefining
ϕ [14]. Here we have taken units with 16πG ¼ 1 and
rescaled Fαβ appropriately. The final term only appears in
d ¼ 4, where the volume form ϵαβγδ has four indices; in
higher dimensions, it is taken that this term is not present.

2The EFT of a charged, complex scalar field is discussed in
Sec. V E.

3The assumption that the Lagrangian is invariant under an
electromagnetic gauge transformation Aα → Aα þ∇αχ will rule
out, for example, Chern-Simons terms, which are not themselves
gauge invariant but do produce gauge-invariant equations of
motion. See very recent work [13] for a linearized second law for
Chern-Simons terms.

4We have included the zero-derivative term VðϕÞ in the two-
derivative Lagrangian L2. Naively, in EFT, we should expect
VðϕÞ to come with a factor 1=l2. However, we assume VðϕÞ is
comparable to the cosmological constant Λ, which is extremely
small for somewhat mysterious reasons. More precisely, we
assume jVj ≤ 1=L2, where L is any typical length scale of the
solution, and so VðϕÞ is of no larger scale than the two-derivative
terms.
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The only condition we put on the arbitrary functions
VðϕÞ; c1ðϕÞ, and c2ðϕÞ is that c1ðϕÞ > 0. This is a sufficient
condition for the energy-momentum tensor of the leading
order two-derivative theory to satisfy the null energy con-
dition (NEC). For Einstein-Maxwell theory without a scalar
field, c1 ¼ 1, so this positivity condition is also motivated on
the grounds that we do not expect the scalar field to change
the sign of c1. If we were additionally to impose VðϕÞ ≥ 0
then the two-derivative energy-momentum tensorwould also
satisfy the dominant energy condition (DEC), which is the
condition assumed in the original proof of the zeroth law by
Bardeen et al. [2]. However, the proof still goes through if the
two-derivative energy-momentum tensor minus any parts
proportional to themetric satisfies the DEC. SinceVðϕÞ only
appears in Tμν multiplying gμν, this is satisfied by our two-
derivative theory regardless of the sign ofVðϕÞ (for example,
we can include the case of a negative cosmological constant
which is excluded by the DEC). Indeed, in the following
proofs we will require no condition on VðϕÞ.
In the full EFT action, higher derivative terms come with

a factor of some UV scale l for each extra derivative,

S ¼
Z

ddx
ffiffiffiffiffiffi
−g

p �
L2 þ

X∞
n¼1

lnLnþ2

�
; ð4Þ

where Lnþ2 contains all terms with nþ 2 derivatives.
The equations of motion for this action are

Eαβ ¼ 0; Eα ¼ 0; E ¼ 0, where

Eαβ ≡ 1ffiffiffiffiffiffi−gp δS
δgαβ

¼ Eð0Þ
αβ þ

X∞
n¼1

lnEðnÞ
αβ ;

Eα ≡ −
1ffiffiffiffiffiffi−gp gαβ

δS
δAβ

¼ Eð0Þ
α þ

X∞
n¼1

lnEðnÞ
α ;

E≡ 1ffiffiffiffiffiffi−gp δS
δϕ

¼ Eð0Þ þ
X∞
n¼1

lnEðnÞ; ð5Þ

where Eð0Þ
αβ ; E

ð0Þ
α ; Eð0Þ are the result of varying the two-

derivative terms from L2, i.e.,

Eð0Þ
αβ ¼ Rαβ −

1

2
∇αϕ∇βϕ −

1

2
c1ðϕÞFαδFβ

δ

−
1

2
gαβ

�
R − VðϕÞ − 1

2
∇γϕ∇γϕ −

1

4
c1ðϕÞFγδFγδ

�
;

ð6Þ

Eð0Þ
α ¼ ∇β

h
c1ðϕÞFαβ − 4c2ðϕÞFγδϵαβγδ

i
; ð7Þ

Eð0Þ ¼ ∇α∇αϕ − V 0ðϕÞ − 1

4
c01ðϕÞFαβFαβ

þ c02ðϕÞFαβFγδϵ
αβγδ: ð8Þ

III. GAUSSIAN NULL COORDINATES

We will be concerned with quantities on the event
horizon N of a black hole, which is a null hypersurface.
We assumeN is smooth and has generators that have affine
parameters extending to the infinite future. The smoothness
assumption will always be true in the stationary setting of
the zeroth law, but is not generally true when considering
dynamical black holes, as in the second law. However, it
seems a reasonable assumption for the situation of a black
hole settling down to equilibrium, as envisioned in [9–11].
To describe quantities near N , we will use two appro-

priate choices of Gaussian null coordinates. The first
applies to both the stationary and dynamical setting, while
the second will only be used in the stationary case to prove
the zeroth law.

A. Affinely parametrized GNCs

Here we use the same notation as [9,15]. Assume all
generators intersect a spacelike cross section C exactly
once, and take xA to be a codimension-2 coordinate chart
on C. Let the null geodesic generators have affine param-
eter v and future-directed tangent vector lα such that l ¼ ∂v
and v ¼ 0 on C. We can transport C along the null geodesic
generators a parameter distance v to obtain a foliation CðvÞ
ofN . Finally, we uniquely define the null vector field nα by
n · ð∂=∂xAÞ ¼ 0 and n · l ¼ 1. The coordinates ðr; v; xAÞ
are then assigned to the point affine parameter distance r
along the null geodesic starting at the point on N with
coordinates ðv; xAÞ and with tangent nα there. The metric in
these GNCs is given by

g ¼ 2dvdr − r2αðr; v; xCÞdv2 − 2rβAðr; v; xCÞdvdxA
þ μABðr; v; xCÞdxAdxB; l ¼ ∂v; n ¼ ∂r: ð9Þ

This choice of coordinates will be referred to as “affinely
parametrized GNCs.” N is the surface r ¼ 0, and C is the
surface r ¼ v ¼ 0. The inverse of μAB is denoted by μAB,
and we raise and lower A;B; C;… indices with μAB and
μAB. We denote the induced volume form on CðvÞ by
ϵA1…Ad−2

¼ ϵrvA1…Ad−2
where d is the dimension of the

spacetime. The covariant derivative on CðvÞ with respect to
μAB is denoted by DA. We also define

KAB ≡ 1

2
∂vμAB; K̄AB ≡ 1

2
∂rμAB;

K ≡ KA
A; K̄ ≡ K̄A

A: ð10Þ
KAB describes the expansion and shear of the horizon
generators. K̄AB describes the expansion and shear of the
ingoing null geodesics orthogonal to a horizon cut CðvÞ.
Affinely parametrized GNCs are not unique: we are free

to change the affine parameter on each generator of N by
v0 ¼ v=aðxAÞ with arbitrary aðxAÞ > 0. This will lead to a
change ðv; r; xAÞ → ðv0; r0; x0AÞwith v0 ¼ v=aðxAÞ þOðrÞ,
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r0 ¼ aðxAÞrþOðr2Þ, x0A ¼ xA þOðrÞ near the horizon.
Details of how this transformation changes the quantities
above are given in [9]. The remaining freedom in our
affinely parametrized GNCs is to change our coordinate
chart xA on C; however, all calculations in this paper are
manifestly covariant in A;B;… indices and so this freedom
will not change any of the expressions.

1. Boost weight

An important concept in this set of GNCs is the boost
weight of a quantity. Suppose we take a to be constant and
consider the rescaling v0 ¼ v=a; r0 ¼ ar, which preserves
the form of the GNCs above. If a quantity T transforms as
T 0 ¼ abT, then T is said to have boost weight b. See [9] for
a full definition. Some important facts are stated here:

(i) A tensor component Tμ1…μn
β1…βm

has boost weight given
by the sum of þ1 for each v subscript and each r
superscript and −1 for each r subscript and v
superscript. A; B;… indices contribute 0, e.g.,
TA
vvrB has boost weight þ1.

(ii) α, βA, and μAB have boost weight 0. KAB and K̄AB
have boost weight þ1 and −1, respectively.

(iii) If T has boost weight b, then DA1
…DAn

∂
p
v∂

q
rT has

boost weight bþ p − q.
(iv) If Xi has boost weight bi and T ¼ Q

i Xi, then T has
boost weight b ¼ P

i bi.
In Lemma 2.1 of [9], it is proved that boost weight is

independent of the choice of affinely parametrized GNCs
onN . More precisely, a quantity of certain boost weight in
ðr; v; xAÞ GNCs onN can be written as the sum of terms of
the same boost weight in ðr0; v0; x0AÞ GNCs on N , where
v0 ¼ v=aðxAÞ on N .

B. Killing vector GNCs

In the stationary setting of the zeroth law wewill also use
another choice of GNCs, hereafter referred to as “Killing
vector GNCs.”
In standard two-derivative GRwith a wide range of matter

models, it can be proved that the future event horizonN of a
stationary analytic black hole spacetime is a Killing horizon
whose normal is some Killing vector ξ [1]. Recent work by
Hollands et al. [7] has extended this result to arbitrary higher
derivative effective field theories of gravity with no matter
fields present. Here we assume this result still holds for our
Einstein-Maxwell-scalar EFT and that we can drop the
analyticity assumption.
Therefore, we can take a similar construction to the

above, except with the null geodesic generators having
nonaffinely parametrized, future-directed tangent vectors
ξ ¼ ∂τ. In the notation of [5], this leads to coordinates
ðρ; τ; xAÞ with metric

g ¼ 2dτdρ − ρXðρ; xCÞdτ2 þ 2ρωAðρ; xCÞdτdxA
þ hABðρ; xCÞdxAdxB; ξ ¼ ∂τ; χ ¼ ∂ρ: ð11Þ

N is the surface ρ ¼ 0, and C is the surface ρ ¼ τ ¼ 0. In
these coordinates, we raise A;B; C;… indices with hAB and
hAB and denote the induced volume form on CðτÞ by
εA1…Ad−2

¼ ϵρτA1…Ad−2
. The covariant derivative on CðτÞ

with respect to hAB is denoted by DA.
The differences between the two GNCs are twofold.

First, since ξ ¼ ∂τ is a Killing vector, the unknown metric
coefficients X;ωA and hAB are independent of τ. Second,
the fact that τ is not necessarily an affine parameter means
the coefficient of dτ2 only comes with a factor of ρ, whereas
dv2 comes with a factor of r2 in the affinely parame-
trized GNCs.
The relationship between these two forms of GNCs is

crucial to prove the zeroth law for this theory, following the
method of [5].

IV. THE GENERALIZED ZEROTH LAW

We proceed to prove a generalized zeroth law of black
hole mechanics for this theory. The zeroth law concerns
stationary black hole solutions ðgαβ; Fαβ;ϕÞ to the equa-
tions of motion above.

A. Assumptions

Wemake the following assumptions in order to prove the
generalized zeroth law:
(1) The rigidity theorem of [7] can be extended to this

theory, i.e., that the future event horizon N of the
black hole is a Killing horizon with Killing vector ξ.

(2) The matter fields are invariant under this Killing
vector, i.e.,

LξF ¼ 0; Lξϕ ¼ 0: ð12Þ
In Killing vector GNCs, these imply that ∂τFμν ¼ 0

and ∂τϕ ¼ 0.
(3) The black hole solution is analytic in l, i.e., we can

write

gαβ ¼ gð0Þαβ þ lgð1Þαβ þ l2gð2Þαβ þ…;

Fαβ ¼ Fð0Þ
αβ þ lFð1Þ

αβ þ l2Fð2Þ
αβ þ…;

ϕ ¼ ϕð0Þ þ lϕð1Þ þ l2ϕð2Þ þ…: ð13Þ

In particular, we can write the Killing vector GNC
metric components as series in l,

X ¼ Xð0Þ þ lXð1Þ þ l2Xð2Þ þ…;

ωA ¼ ωð0Þ
A þ lωð1Þ

A þ l2ωð2Þ
A þ…;

hAB ¼ hð0ÞAB þ lhð1ÞAB þ l2hð2ÞAB þ…: ð14Þ

(4) Any spacelike cut C of the horizon is compact and
simply connected. The second assumption implies
every closed 1-form onC is exact. These assumptions
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hold, e.g., ifC has spherical Sd−2 topologywith d ≥ 4
but not, e.g., if C has the topology of a black
ring S1 × Sd−3.

B. Statement of generalized zeroth law

The surface gravity of the horizon N of a stationary
black hole is defined by

ξβ∇βξα

���
N

¼ κξα: ð15Þ

The zeroth law of black hole mechanics is the statement
that κ is constant onN . One can compute both sides of this
equation in the Killing vector GNCs of Sec. III B and find

κ ¼ 1

2
Xðρ; xCÞ

���
ρ¼0

: ð16Þ

From this we see that κ is clearly independent of τ.
Therefore, to prove the zeroth law we must show that

∂AXðρ; xCÞ
���
ρ¼0

¼ 0: ð17Þ

When electromagnetic fields are included in a black hole
theory, the zeroth law is usually generalized to include a
statement about their behavior on the horizon. Our “gen-
eralized zeroth law” formulation is

∂AXðρ; xCÞ
���
ρ¼0

¼ 0; and FτAðρ; xCÞ
���
ρ¼0

¼ 0: ð18Þ

The interpretation of the second condition can be seen as
follows. By the Cartan formula, LξF ¼ dðιξFÞ þ ιξdF.
dF ¼ 0 because F is a Maxwell field. We have also
assumed LξF ¼ 0 above. Hence dðιξFÞ ¼ 0, and so, at
least locally, ιξF ¼ dΦ for some scalar Φ. This scalar is the
“electric potential” from the definition of the first law. The
condition FτAjρ¼0 ¼ 0 is then equivalent to ∂AΦjρ¼0 ¼ 0,
which says that the electric potential is constant on the
horizon.
In the course of the proof, we will see that the two

conditions in (18) are not independent. In fact, we will need

to show FτA

���
ρ¼0

¼ 0 in order to prove ∂AX
���
ρ¼0

¼ 0.

C. Plan of the proof

In [5], Bhattacharyya et al. prove the zeroth law for
gravitational EFTs without matter. Here we generalize their
method to apply to our Einstein-Maxwell-scalar EFT. The
gravitational parts go through largely unchanged, while
additional steps are needed to deal with the Maxwell and
scalar fields. Here, we sketch the main ideas of the proof.
Let ΦI denote the collection of fields ðgμν; Fμν;ϕÞ. We

have assumed we can write this as a series in l:

ΦI ¼ Φð0Þ
I þ lΦð1Þ

I þ l2Φð2Þ
I þ � � �. Let EI½ΦJ� denote the

collection of variations of the action S defined in (5). The
equations of motion are

EI½ΦJ�≡ Eð0Þ
I ½ΦJ� þ

X∞
n¼1

lnEðnÞ
I ½ΦJ� ¼ 0; ð19Þ

where lnEðnÞ
I ½ΦJ� comes from varying lnLnþ2. This equa-

tion must hold to each order in l individually. The order l0

part is simply

Eð0Þ
I ½Φð0Þ

J � ¼ 0: ð20Þ

We will show that in Killing vector GNCs on the

horizon, Eð0Þ
τA and Eð0Þ

ττ evaluate to

Eð0Þ
τA ½ΦJ�

���
ρ¼0

¼ −
1

2
∂AX −

1

2
c1ðϕÞðFABhBC − Fτρδ

C
AÞFτC;

Eð0Þ
ττ ½ΦJ�

���
ρ¼0

¼ −
1

2
c1ðϕÞFτAFτBhAB: ð21Þ

From the first component, we see that Eð0Þ
τA ½Φð0Þ

J ���ρ¼0
¼ 0

implies ∂AXð0Þ��
ρ¼0

¼ 0 if Fð0Þ
τA

��
ρ¼0

¼ 0. But from the

second component, Eð0Þ
ττ ½Φð0Þ

J ���ρ¼0
¼0 implies Fð0Þ

τA

��
ρ¼0

¼ 0

because hð0ÞAB is positive definite and we assumed c1 > 0.
Thus, the generalized zeroth law holds to zeroth order in l.
The proof will then proceed by induction. We will

assume that ∂AXðnÞjρ¼0 ¼ 0 and FðnÞ
τA

��
ρ¼0

¼ 0 for n < k,

and then prove that ∂AXðkÞjρ¼0 ¼ 0 and FðkÞ
τA

��
ρ¼0

¼ 0.

To do this, we will consider the order lk part of two
components of (19). In a similar fashion to Bhattacharyya
et al., we will show that EτA½ΦJ� greatly simplifies on the
horizon, regardless of the higher order terms in the EFT. In
particular, its order lk part is of the following form:

at order lk; EτA½ΦJ�
��
ρ¼0

¼−
1

2
lk∂AXðkÞ þ lkMA

CFðkÞ
τC ¼ 0;

ð22Þ

where MA
C is a function only of the lowest order fields

Φð0Þ
I . From this we can see that the two statements in

the generalized zeroth law are not independent: if we

can show that FðkÞ
τA

��
ρ¼0

¼ 0, then we immediately

have ∂AXðkÞ��
ρ¼0

¼ 0.
To do this, final step we must look at another com-

ponent of the equation of motion. We will show that the
order lk part of Eτ½ΦJ�jρ¼0 can be brought into the
following form:

at order lk; Eτ½ΦJ�
��
ρ¼0

¼ lkDð0Þ
A

h
NABFðkÞ

τB

i
¼ 0; ð23Þ

ZEROTH AND SECOND LAWS OF BLACK HOLE MECHANICS IN … PHYS. REV. D 109, 084051 (2024)

084051-5



where NAB is a function only of the lowest order fieldsΦð0Þ
I ,

and Dð0Þ
A is the covariant derivative with respect to hð0ÞAB.

Wewill show that this equationhas nonontrivial solutions for

FðkÞ
τA

��
ρ¼0

if every closed 1-form on CðτÞ is exact. This
condition follows from our assumptions on the topology
of CðτÞ, and thus the generalized zeroth law is proved in
this case.
In order to simplify EτA½ΦJ�jρ¼0 and Eτ½ΦJ�jρ¼0 to the

forms in (22) and (23), we will need to prove a crucial fact:
the generalized zeroth law implies5 that all positive boost
weight, gauge-independent quantities vanish on the horizon
N . In [5], it is shown that a relation between Killing vector
GNCs and affinely parametrized GNCs can be used to
show the zeroth law implies that positive boost weight
quantities built only out of metric components vanish on
N . In Sec. V C we will show this relation can also be
applied to positive boost weight quantities built out of the
Maxwell field Fμν and the scalar field ϕ.

V. PROOF OF THE GENERALIZED ZEROTH LAW

A. The base case: The generalized zeroth law
for two-derivative Einstein-Maxwell-scalar theory

The first step in our proof will be to show that the
generalized zeroth law holds at lowest order in l, i.e., that

∂AXð0Þ
���
ρ¼0

¼ 0; and Fð0Þ
τA

���
ρ¼0

¼ 0: ð24Þ

This is equivalent to proving the generalized zeroth law for
the two-derivative Einstein-Maxwell-scalar Lagrangian L2

given in (3). The original proof of the zeroth law by Bardeen
et al. [2] would achieve this, because the two-derivative
theory satisfies the dominant energy condition up to parts
proportional to themetric, as discussed above.Herewegive a
reformulation of the proof that motivates many of the steps
used in the later proof for full Einstein-Maxwell-scalar EFT.

We proceed by studying Eð0Þ
I ½ΦJ�, which is the part of the

equation of motion arising from L2. Rewriting here for
convenience, the ðαβÞ component is

Eð0Þ
αβ ½ΦJ�¼Rαβ−

1

2
∇αϕ∇βϕ−

1

2
c1ðϕÞFαδFβ

δ

−
1

2
gαβ

�
R−VðϕÞ−1

2
∇γϕ∇γϕ−

1

4
c1ðϕÞFγδFγδ

�
:

ð25Þ
We will evaluate two components in Killing vector GNCs

on the horizon. First we will evaluate Eð0Þ
τA ½ΦJ�jρ¼0. The

Ricci component RτAjρ¼0 is evaluated in [5],

RτAjρ¼0 ¼ −
1

2
∂AX

���
ρ¼0

: ð26Þ

The second term ∇τϕ∇Aϕ vanishes because we assumed
the scalar field is invariant under the Killing vector ξ, which
implied ∂τϕ ¼ 0. The third term c1ðϕÞFτγFAδgγδ simplifies
on the horizon where gγδ is particularly straightforward,

c1ðϕÞFτγFAδgγδjρ¼0 ¼ c1ðϕÞðFτρFAτ þ FτCFABhBCÞ
¼ c1ðϕÞðFABhBC − Fτρδ

C
AÞFτC: ð27Þ

The final bracketed term also vanishes on the horizon
because the prefactor gτAjρ¼0 ¼ 0. This leaves us with the
first equation from (21), and as discussed, we can substitute
this into the order l0 part of the equation of motion

Eð0Þ
I ½Φð0Þ

J � ¼ 0 to get that ∂AXð0Þjρ¼0 ¼ 0 if Fð0Þ
τC jρ¼0 ¼ 0.

In pursuit of proving Fð0Þ
τC jρ¼0 ¼ 0, let us now evaluate

another component on the horizon, Eð0Þ
ττ ½ΦJ�jρ¼0. The first

term is Rττjρ¼0 ¼ Rμνξ
μξνjN which vanishes by the

Raychaudhuri equation. The second term ∇τϕ∇τϕ once
again vanishes by ∂τϕ ¼ 0. The third term is

c1ðϕÞFτγFτδgγδ
���
ρ¼0

¼ c1ðϕÞFτAFτBhAB: ð28Þ

The bracketed term vanishes again since gττjρ¼0 ¼ 0.
Therefore, we retrieve the second equation from (21),
which we can substitute into the l0 part of the equation
of motion to get

c1ðϕð0ÞÞFð0Þ
τA F

ð0Þ
τB h

ð0ÞAB ¼ 0: ð29Þ
Now, hAB is the induced metric on the spacelike cut CðτÞ,
therefore it is positive definite. This implies hð0ÞAB is also

positive definite since hð0ÞAB ¼ hABjl¼0. Furthermore, we

assumed c1 > 0. Therefore, (29) implies Fð0Þ
τA jρ¼0 ¼ 0, and

so we have proved the generalized zeroth law to order l0.

B. The inductive step

We prove the generalized zeroth law to all orders in l by

induction. Let us assume ∂AXðnÞjρ¼0 ¼ 0 and FðnÞ
τA jρ¼0 ¼ 0

for n < k. We now aim to prove that ∂AXðkÞjρ¼0 ¼ 0

and FðkÞ
τA

���
ρ¼0

¼ 0.

To do this, let us consider the order lk part of the full

equation of motion (19). This is not simply lkEðkÞ
I ½ΦJ�

because ΦJ is itself a series in l. However, it will certainly

not depend on EðnÞ
I or ΦðnÞ

J for n > k because they come
with too high powers of l. Let us introduce the notation

5In case it is confusing why we will assume the generalized
zeroth law while in the middle of proving it, we will be using this
result up to and including order lk−1 to complete an inductive loop
at order lk.
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f½n� ¼
Xn
m¼0

lmfðnÞ: ð30Þ

Then the order lk part of (19) will be a subset of the terms in

E½k�
I ½Φ½k�

J �. Furthermore, since ΦðkÞ
J already comes with a

factor lk, the only place ΦðkÞ
J can appear is in Eð0Þ

I ½Φ½k�
J �. In

particular, it will appear as Eð0Þ
I ½Φð0Þ

J þ lkΦðkÞ
J � linearized

around the background Φð0Þ
J . Therefore, we can write the

order lk part of (19) as follows:

at order lk;

EI½ΦJ� ¼ E½k�
I ½Φ½k−1�

J �

þ lk
�
ΦðkÞ

J
δEð0Þ

I

δΦJ
½Φð0Þ

J � þ ∂μΦ
ðkÞ
J

δEð0Þ
I

δð∂μΦJÞ
½Φð0Þ

J � þ � � �
�
;

ð31Þ

where it is given that we only take order lk terms in the first

term, and the bracketed term is Eð0Þ
I ½Φð0Þ

J þ lkΦðkÞ
J � linear-

ized around Φð0Þ
J . Setting this to zero allows us to solve for

the fields ΦJ order by order in l: once we have solved for

Φð0Þ
J we can study (31) at order l to solve for Φð1Þ

J , then at

order l2 to solve for Φð2Þ
J and so on.

It is difficult to study (31), however, because we do not

know the form of E½k�
I . It comes from the variation of the

higher derivative parts of our EFT Lagrangian, which in
theory could take a variety of forms. The only part we do

know the form of is Eð0Þ
I . Therefore, we would like to find a

scenario where the dependence on the unknown E½k�
I

vanishes.
It turns out that, on the horizon, certain components of

E½k�
I ½Φ½k−1�

J � do necessarily vanish by our inductive hypoth-

esis. In particular,E½k�
τA½Φ½k−1�

J �jN ¼ 0 andE½k�
τ ½Φ½k−1�

J �jN ¼ 0.
The proof of these are left to the next two sections. In short, it
follows from the fact that they are proportional to positive
boost weight components in affinely parametrized GNCs. It
will be shown in Sec. V C that positive boost weight
quantities vanish on the horizon if the generalized zeroth
law holds. But by our inductive hypothesis, the generalized

zeroth law holds for the fields Φ½k−1�
J , which are all that

E½k�
τA½Φ½k−1�

J � and E½k�
τ ½Φ½k−1�

J � depend on.
Let us assume for now that these components do indeed

vanish on the horizon. Then at order lk, EτA½ΦJ�jρ¼0 and

Eτ½ΦJ�jρ¼0 are simply given by Eð0Þ
τA ½Φð0Þ

J þ lkΦðkÞ
J �jρ¼0 and

Eð0Þ
τ ½Φð0Þ

J þ lkΦðkÞ
J �jρ¼0 linearized around Φð0Þ

I .

During the proof of the base case, we calculated

Eð0Þ
τA ½ΦJ�

���
ρ¼0

¼ −
1

2
∂AX −

1

2
c1ðϕÞðFABhBC − Fτρδ

C
AÞFτC:

ð32Þ

We can now replace the fields X ¼ Xð0Þ þ lkXðkÞ,
Fμν ¼ Fð0Þ

μν þ lkFðkÞ
μν , etc., linearize around the order l0

fields Xð0Þ, Fð0Þ
μν , etc., and use that Fð0Þ

τC jρ¼0 ¼ 0 to get that,

at order lk;

EτA½ΦJ�
���
ρ¼0

¼ −
1

2
lk∂AXðkÞ

−
1

2
c1ðϕð0ÞÞðFð0Þ

ABh
ð0ÞBC − Fð0Þ

τρ δCAÞlkFðkÞ
τC ¼ 0: ð33Þ

Therefore,

∂AXðkÞ
���
ρ¼0

¼ MA
CFðkÞ

τC

���
ρ¼0

; ð34Þ

where MA
C ¼ −c1ðϕð0ÞÞ

�
Fð0Þ
ABh

ð0ÞBC − Fð0Þ
τρ δCA

�
is a func-

tion only of the lowest order fields Φð0Þ
I . Once again we see

that ∂AXðkÞjρ¼0 ¼ 0 if FðkÞ
τC jρ¼0 ¼ 0.

We now turn to Eð0Þ
τ ½ΦJ� in order to prove FðkÞ

τC jρ¼0 ¼ 0.
Rewriting from above, it is given by

Eð0Þ
τ ½ΦJ� ¼ ∇β

h
c1ðϕÞFτβ − 4c2ðϕÞFγδϵτβγδ

i
: ð35Þ

We can again evaluate this on the horizon in Killing vector
GNCs. The calculation involves evaluating Christoffel
symbols and is given in Appendix A 1 as an example of
using Killing vector GNCs. The result is

Eð0Þ
τ ½ΦJ�

���
ρ¼0

¼ hABDA

h
c1ðϕÞFτB − 8c2ðϕÞϵBCFτC

i
; ð36Þ

where DA is the covariant derivative with respect to hAB.

We again linearize all the fields around the backgroundΦð0Þ
J

and use Fð0Þ
τC jρ¼0 ¼ 0 to get,

at order lk;

Eτ½ΦJ�
���
ρ¼0

¼ lkhð0ÞABDð0Þ
A

×
h
c1ðϕð0ÞÞFðkÞ

τB − 8c2ðϕð0ÞÞϵð0ÞCB FðkÞ
τC

�
¼ 0; ð37Þ

where Dð0Þ is the covariant derivative with respect to hð0ÞAB.

For each τ, this is a differential equation for FðkÞ
τC jρ¼0 on the
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spacelike 2-slice CðτÞ. We will show that it has no non-
trivial solutions.
Note that since Fαβ is a Maxwell field, it satisfies

∂½αFβγ� ¼ 0. We can combine this with ∂τFαβ ¼ 0 to get

∂½τFAB� ¼ 0⟹ ∂AFτB − ∂BFτA ¼ 0: ð38Þ

This must hold to all orders in l, so

∂AF
ðkÞ
τB − ∂BF

ðkÞ
τA ¼ 0: ð39Þ

Now, we can view FðkÞ
τA jρ¼0 as a 1-form on the submanifold

CðτÞ. Call this 1-form VA ¼ FðkÞ
τA jρ¼0. Then Eq. (39)

becomes

dV ¼ 0; ð40Þ

where d is the exterior derivative on CðτÞ. We assumed that
every closed 1-form on CðτÞ is exact, and hence there exists
some function f on the whole of CðτÞ such that

V ¼ df; ð41Þ

where f is essentially just the order lk part of the electric
potential. The crucial thing is that we know we can define f
on the whole of CðτÞ, whereas we could not necessarily
define the electric potential globally.
We can substitute this into (37) to get

hð0ÞABDð0Þ
A

h
c1ðϕð0ÞÞDð0Þ

B f − 8c2ðϕð0ÞÞϵð0ÞCB Dð0Þ
C f

i
¼ 0:

ð42Þ

We now integrate this against
ffiffiffiffiffiffiffiffi
hð0Þ

p
f over CðτÞ,

Z
CðτÞ

dd−2x
ffiffiffiffiffiffiffiffi
hð0Þ

p
fhð0ÞABDð0Þ

A

×
h
c1ðϕð0ÞÞDð0Þ

B f − 8c2ðϕð0ÞÞϵð0ÞCB Dð0Þ
C f

i
¼ 0: ð43Þ

Apply the divergence theorem to get

−
Z
CðτÞ

dd−2x
ffiffiffiffiffiffiffiffi
hð0Þ

p h
c1ðϕð0ÞÞhð0ÞABDð0Þ

A fDð0Þ
B f

− 8c2ðϕð0ÞÞϵð0ÞABDð0Þ
A fDð0Þ

B f
i
¼ 0; ð44Þ

where the boundary term vanished because we assumed
CðτÞ was compact. The second term in the brackets is 0 by
the antisymmetry of ϵð0ÞAB, which just leaves the first term.

Since hð0ÞAB is positive definite and c1 > 0, for the integral to

be 0 we must have Dð0Þ
A f ¼ 0, or equivalently,

FðkÞ
τA

���
ρ¼0

¼ 0: ð45Þ

Therefore, the inductive step is proven.
Now all that remains is to fill the gap in our proof and

show that E½k�
τA½Φ½k−1�

J �jN ¼ 0 and E½k�
τ ½Φ½k−1�

J �jN ¼ 0. To do
this, we will need to prove a statement about positive boost
weight quantities on the horizon.

C. Positive boost weight quantities on the horizon

Following the method of [5], we will prove that the
generalized zeroth law implies that all positive boost
weight, electromagnetic gauge-independent quantities van-
ish on the horizon. Somewhat counterintuitively, this will
allow us to complete the inductive step and prove the
generalized zeroth law itself.
The boost weight of a quantity (defined in Sec. III A 1) is

determined in the affinely parametrized GNCs of Sec. III A.
The most basic electromagnetic gauge-independent quan-
tities we can make from the metric and matter fields in
these coordinates are of the form ∂A1

…∂An
∂
p
r ∂

q
vφ with

φ∈ fα; βA; μAB; μAB; Fvr; FAB; FvA; FrA;ϕg. We call such
terms “building blocks.” On the horizon r ¼ 0, all quan-
tities in our theory can be expanded out as expressions in
building blocks,6 e.g., ∇vFrAjρ¼0 ¼ ∂vFrA − 1

2
FABβCμ

BC−
1
2
FrB∂vμACμ

BC − 1
2
FrvβA.

The boost weights of these building blocks are as
follows:

(i) FvA has boost weight þ1.
(ii) α, βA, μAB, μAB, Fvr, FAB, and ϕ have boost

weight 0.
(iii) FrA has boost weight −1.
(iv) ∂v derivatives each add þ1 to the boost weight, ∂r

derivatives each add −1, and ∂A derivatives add 0.
Therefore, positive boost weight building blocks are of the
form

∂A1
…∂An

∂
p
r ∂

q
vφ with

φ∈fFvA;∂vα;∂vβA;∂vμAB;∂vμAB;∂vFvr;∂vFAB;∂vϕ;∂2vFrAg
and q≥p: ð46Þ

The terms in the expansion of a positive boost weight
quantity on the horizon must all have at least one factor of
the positive boost weight building blocks listed above.
Therefore, if we can show that all positive boost weight
building blocks vanish on the horizon, then we have shown
that all positive boost weight quantities vanish on the
horizon.
To do this, we shall employ a relation between affinely

parametrized GNCs and Killing vector GNCs.

6There is no explicit appearance of the coordinates ðv; xAÞ
because they do not appear explicitly in the metric.
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Let us assume the generalized zeroth law holds. Then FτAjρ¼0 ¼ 0 and Xjρ¼0 ¼ 2κ with κ constant. By smoothness,

Xðρ; xCÞ ¼ 2κ þ ρfðρ; xCÞ; FτAðρ; xCÞ ¼ ρfAðρ; xCÞ; ð47Þ
where fðρ; xCÞ and fAðρ; xCÞ are regular on the horizon. Then, in Killing vector GNCs, ðgαβ; Fαβ;ϕÞ are given by (with xC
dependence suppressed)

g ¼ 2dτdρ − ½2κρþ ρ2fðρÞ�dτ2 þ 2ρωAðρÞdxAdτ þ hABðρÞdxAdxB;
F ¼ FτρðρÞdτ ∧ dρþ FρAðρÞdρ ∧ dxA þ ρfAðρÞdτ ∧ dxA þ FABðρÞdxA ∧ dxB;

ϕ ¼ ϕðρÞ: ð48Þ
We now make the coordinate transformation7

ρ ¼ rðκvþ 1Þ; τ ¼ 1

κ
log ðκvþ 1Þ: ð49Þ

with the xC coordinates unchanged. In these new coordinates, the horizon is r ¼ 0 and C is v ¼ r ¼ 0. The transformation
also has the effect of putting the metric in affinely parametrized form,

g ¼ 2dvdr − r2fðrðκvþ 1ÞÞdv2 þ 2rωAðrðκvþ 1ÞÞdvdxA þ hABðrðκvþ 1ÞÞdxAdxB;
F ¼ Fτρðrðκvþ 1ÞÞdv ∧ drþ ðκvþ 1ÞFρAðrðκvþ 1ÞÞdr ∧ dxA

þ r
h
κFρAðrðκvþ 1ÞÞ þ fAðrðκvþ 1ÞÞ

i
dv ∧ dxA þ FABðrðκvþ 1ÞÞdxA ∧ dxB;

ϕ ¼ ϕðrðκvþ 1ÞÞ: ð50Þ

Thus, the ðr; v; xCÞ are a choice of affinely parametrized GNCs with (again suppressing xC dependence)

αðr; vÞ ¼ fðrðκvþ 1ÞÞ; βAðr; vÞ ¼ −ωAðrðκvþ 1ÞÞ;
μABðr; vÞ ¼ hABðrðκvþ 1ÞÞ; μABðr; vÞ ¼ hABðrðκvþ 1ÞÞ;
Fvrðr; vÞ ¼ Fτρðrðκvþ 1ÞÞ; FABðr; vÞ ¼ FABðrðκvþ 1ÞÞ;
FrAðr; vÞ ¼ ðκvþ 1ÞFρAðrðκvþ 1ÞÞ;
FvAðr; vÞ ¼ r

h
κFρAðrðκvþ 1ÞÞ þ fAðrðκvþ 1ÞÞ

i
;

ϕðr; vÞ ¼ ϕðrðκvþ 1ÞÞ: ð51Þ

The importance of this is that the v dependence of these
quantities is severely restricted by the τ independence of the
original Killing vector GNC quantities. The zero boost
weight quantities α, βA, μAB, μAB, Fvr, FAB, and ϕ depend
on v strictly through the combination rv. Therefore, taking
a ∂v of these quantities will produce an overall factor of r,
which vanishes on the horizon. The positive boost weight
quantity FvA already has a prefactor of r and also depends
on v strictly through rv. Finally,

∂
2
vFrA ¼ r½2κ∂ρFρAðrðκvþ 1ÞÞ

þ rκðκvþ 1Þ∂2ρFρAðrðκvþ 1ÞÞ�: ð52Þ
Thus, we can write all of the quantities φ∈ fFvA; ∂vα;

∂vβA; ∂vμAB; ∂vμAB; ∂vFvr; ∂vFAB; ∂vϕ; ∂2vFrAg from (46) in
the form

φ ¼ rfφðrðκvþ 1ÞÞ: ð53Þ
Taking a ð∂r∂vÞ derivative preserves this form, as does

taking ∂A derivatives. Thus, every positive boost weight
building block satisfies

∂A1
…∂An

∂
p
r ∂

q
vφ ¼ ∂

q−p
v ½∂A1

…∂An
ð∂r∂vÞpφ�

¼ ∂
q−p
v

h
rf∂A1…∂An ð∂r∂vÞpφðrðκvþ 1ÞÞ

i
∝ r1þq−p; ð54Þ

7Note this is slightly different from the choice in [5] in that we
have ðκvþ 1Þ, where they have κv. We have added the 1 so that
v ¼ 0 corresponds to τ ¼ 0 and also to put it in such a form that if
the black hole is extremal, i.e., κ ¼ 0, then the transformation is
the identity ρ ¼ r, τ ¼ v.
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with q ≥ p. Therefore, all positive boost weight building
blocks vanish on the horizon r ¼ 0.
This proves that all positive boost weight quantities vanish

on the horizon in the choice of affinely parametrized GNCs
given by the transformation (49). However, as discussed in
Sec. III A, there are infinitelymany choices of suchGNCs, all
related by v0 ¼ v=aðxAÞ on N for some arbitrary function
aðxAÞ > 0. To prove that positive boost weight quantities
vanish on the horizon in all choices of affinely parametrized
GNCs, we use Lemma 2.1 of [9], which states that on the
horizon a quantity of certain boost weight in ðr; v; xAÞGNCs
can bewritten as the sumof terms of the same boost weight in
ðr0; v0; xAÞGNCs. Thismeans that if all positive boostweight
quantities vanish on the horizon in one choice of affinely
parametrized GNCs, then they vanish in all choices of
affinely parametrized GNCs.

D. Completion of the inductive step

We will now use the statement about positive boost
weight quantities on the horizon to complete our inductive

step by proving E½k�
τA½Φ½k−1�

J �jN ¼ 0 and E½k�
τ ½Φ½k−1�

J �jN ¼ 0.
Our inductive hypothesis was that ∂AXðnÞjρ¼0 ¼ 0 and

FðnÞ
τA

���
ρ¼0

¼ 0 for n < k. Therefore, the fields Φ½k−1�
I ≡

Φð0Þ
I þ lΦð1Þ

I þ � � � þ lk−1Φðk−1Þ
I satisfy the generalized

zeroth law. In particular, X½k−1�jρ¼0 ¼ 2κ½k−1� is constant,
and we can make the coordinate transformation

ρ ¼ rðκ½k−1�vþ 1Þ; τ ¼ 1

κ½k−1�
log

�
κ½k−1�vþ 1

�
ð55Þ

to bring the fields Φ½k−1�
I ¼ ðg½k−1�μν ; F½k−1�

μν ;ϕ½k−1�Þ into the
affinely parametrized form of (50). Then, by the above proof,

any positive boost weight quantity made out of Φ½k−1�
I will

vanish on the horizon in these coordinates. In particular,

E½k�
vA½Φ½k−1�

J �
���
r¼0

¼ 0 and E½k�
v ½Φ½k−1�

J �
���
r¼0

¼ 0 ð56Þ

because they have boost weight þ1. But we also know how

E½k�
μν½Φ½k−1�

J � and E½k�
μ ½Φ½k−1�

J � transform under the change of
coordinates (55) because they are tensors. The inverse
coordinate transformation is

r ¼ ρe−κ
½k−1�τ v ¼ 1

κ½k−1�

�
eκ

½k−1�τ − 1
�
: ð57Þ

So,

E½k�
τA

h
Φ½k−1�

J

i
jρ¼0 ¼

∂x̃μ

∂τ

∂x̃ν

∂xA
E½k�
μν

h
Φ½k−1�

J

i
jr¼0

¼ eκ
½k−1�τE½k�

vA

h
Φ½k−1�

J

i
jr¼0

¼ 0: ð58Þ

Similarly,

E½k�
τ ½Φ½k−1�

J �jρ¼0 ¼
∂x̃μ

∂τ
E½k�
μ

h
Φ½k−1�

J

i
jr¼0

¼ eκ
½k−1�τE½k�

v

h
Φ½k−1�

J

i
jr¼0

¼ 0: ð59Þ
This completes the proof of the generalized zeroth law.

E. The generalized zeroth law for a charged scalar field

This proof of the generalized zeroth law can be modified
to apply to the EFT of gravity, electromagnetism, and a
charged scalar field. In this scenario, we assume we have a
global gauge potential Aμ with F ¼ dA. The dynamical
fields are ΦI ¼ ðgμν; Aμ;ϕÞ, the scalar field ϕ is complex
with some charge λ, and Aμ and ϕ transform under an
electromagnetic gauge transformation as

Aμ → Ãμ ¼ Aμ þ ∂μχ; ϕ → ϕ̃ ¼ eiλχϕ; ð60Þ
with χ an arbitrary real-valued function. We generalize our
leading order Lagrangian to

L2 ¼ R − Vðjϕj2Þ − gαβðDαϕÞ�Dβϕ

−
1

4
c1ðjϕj2ÞFαβFαβ þ c2ðjϕj2ÞFαβFγδϵ

αβγδ; ð61Þ

where Dα is the gauge covariant derivative Dα ¼ ∇α−
iλAμ. L2 is invariant under the gauge transform (60). Since
the charge λ adds a new scale into the theory, the EFT series
is now a joint series in derivatives and powers of λ. We
assume λ ≤ 1=L where L is a typical length scale of the
solution, so that λ is comparable to a one-derivative term.
This is reasonable if we want the classical approximation to
be valid. The EFT Lagrangian is

L ¼ L2 þ
X∞
n¼1

lnLnþ2; ð62Þ

where the Lnþ2 contains all gauge-independent terms with
nþ 2 derivatives or powers of λ.
The equations of motion are

EI½ΦJ�≡ Eð0Þ
I ½ΦJ� þ

X∞
n¼1

lnEðnÞ
I ½ΦJ�; ð63Þ

where the parts arising from the leading order theory,

Eð0Þ
I ½ΦJ�, are

Eð0Þ
αβ ¼ Rαβ − ðDðαϕÞ�DβÞϕ −

1

2
c1ðjϕj2ÞFαδFδ

β

−
1

2
gαβ

�
R − Vðjϕj2Þ − gγδðDγϕÞ�Dδϕ

−
1

4
c1ðjϕj2ÞFγδFγδ

�
; ð64Þ
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Eð0Þ
α ¼ iλ½ϕ�Dαϕ − ϕðDαϕÞ��

þ∇β
h
c1ðjϕj2ÞFαβ − 4c2ðjϕj2ÞFγδϵαβγδ

i
; ð65Þ

Eð0Þ ¼ gαβDαDβϕ − ϕV 0ðjϕj2Þ − 1

4
ϕc01ðjϕj2ÞFαβFαβ

þ ϕc02ðjϕj2ÞFαβFγδϵ
αβγδ: ð66Þ

We again assume that we have a stationary black hole
solution to these equations, with a Killing horizonN . What
needs more subtlety is our assumption of the invariance of
the matter fields on the symmetry corresponding to the
Killing vector ξ ¼ ∂

∂τ. The assumption that ϕ and Aμ are
independent of τ is no longer appropriate here because the
conditions ∂τϕ ¼ 0 and ∂τAμ ¼ 0 are not invariant under an
electromagnetic gauge transformation. Instead, we need to
modify our notion of a symmetry of the system.
For the metric, a Killing vector symmetry corresponds to

invariance under the diffeomorphism τ → τ þ s for all s,
i.e., gμνðτ þ sÞ ¼ gμνðτÞ. This diffeomorphism can be
viewed as a one-parameter coordinate gauge transformation
of the metric, labeled by s. A complete gauge trans-
formation of our matter fields ϕ and Aμ would be a
combined diffeomorphism and electromagnetic gauge
transformation. Hence, we assume the notion of symmetry
for ϕ and Aμ is their invariance under a one-parameter
combined diffeomorphism and electromagnetic gauge
transformation. More precisely, given any fixed gauge of
Aμ and ϕ, we assume there exists some one-parameter
family of functions θs with θ0 ¼ 0 such that

Aμðτ þ sÞ þ ∂μθs ¼ AμðτÞ; eiλθsϕðτ þ sÞ ¼ ϕðτÞ ð67Þ

for all s. We can take the derivative of this with respect to s
and set s ¼ 0 to obtain the conditions

∂τAμ ¼ −∂μΘ; ∂τϕ ¼ −iλΘϕ; ð68Þ

where Θ ¼ dθs
ds

���
s¼0

. These are the conditions8 which con-

strain the τ dependence of Aμ and ϕ. Note the first condition
implies ∂τFμν ¼ 0, which was the condition we assumed in
the real scalar field case.
Let us now make an electromagnetic gauge transforma-

tion of the form (60). Using (68), the τ dependence of Ãμ

and ϕ̃ can be found to be

∂τÃμ ¼ −∂μðΘ − ∂τχÞ; ∂τϕ̃ ¼ −iλðΘ − ∂τχÞϕ̃: ð69Þ

From this we see that conditions (68) are preserved
under an electromagnetic gauge transformation, so long
as we relabel Θ̃ ¼ Θ − ∂τχ. In particular, we can take
χ ¼ R

τ Θðτ0Þdτ0 to find a gauge in which

∂τÃμ ¼ 0; ∂τϕ̃ ¼ 0: ð70Þ

We will drop the tildes and work in this gauge to prove the
generalized zeroth law. It must then hold in all gauges
because the statements ∂AXjρ¼0 ¼ 0 and FτAjρ¼0 ¼ 0 are
gauge independent. Note that FτA ¼ −∂AAτ in this gauge.
To prove FτAjρ¼0 ¼ 0, we will actually show that
Aτjρ¼0 ¼ 0 in this gauge.
The proof follows in a similar fashion to that of

Einstein-Maxwell-scalar EFT above, with modifications
to deal with the fact that Aμ can now appear outside of
the gauge-independent combination Fμν. The relevant parts

of the equation of motion will be Eð0Þ
ττ ½ΦI�jρ¼0, E

ð0Þ
τA ½ΦI�jρ¼0,

and Eð0Þ
τ ½ΦI�jρ¼0 as before. In this gauge they can be found

to be

Eð0Þ
ττ ½ΦI�jρ¼0 ¼ −λ2A2

τ jϕj2 −
1

2
c1ðjϕj2ÞFτAFτBhAB; ð71Þ

Eð0Þ
τA ½ΦI�jρ¼0

¼ −
1

2
∂AX −

1

2
iλAτðϕ�

∂Aϕ − ϕ∂Aϕ
� − 2iλAAjϕj2Þ

−
1

2
c1ðjϕj2ÞðFABhBC − Fτρδ

C
AÞFτC; ð72Þ

Eð0Þ
τ ½ΦI�jρ¼0 ¼ 2λ2Aτjϕj2

þ hABDA

h
c1ðjϕj2ÞFτB − 8c2ðjϕj2ÞϵBCFτC

i
:

ð73Þ

For simplicity, we will assume ϕð0Þ is not identically 0
on N in the following proof. The case ϕð0Þjρ¼0 ≡ 0

adds a variety of technical difficulties that stray from the
main argument and is dealt with in Appendix A 2.
Let us first look at the equations of motion at order l0.

From Eð0Þ
ττ ½Φð0Þ

I �jρ¼0 ¼ 0, we get Að0Þ
τ ϕð0Þjρ¼0 ¼ 0 and

Fð0Þ
τA jρ¼0 ¼ 0. But since Fð0Þ

τA ¼ −∂AA
ð0Þ
τ , the latter condition

means Að0Þ
τ is constant on the horizon (∂τA

ð0Þ
τ ¼ 0 in this

gauge). Therefore, we can extract Að0Þ
τ jρ¼0 ¼ 0 from the

former condition because we are assuming ϕð0Þ is not

identically 0 on the horizon. Plugging Að0Þ
τ jρ¼0 ¼ 0 into

Eð0Þ
τA ½Φð0Þ

I �jρ¼0 ¼ 0, we get ∂AXð0Þjρ¼0 ¼ 0, and so the
generalized zeroth law is proved at order l0.

8These conditions can be proved to be equivalent to the
conditions assumed in (2.9) of [16] (a recent paper discussing
stationary black hole solutions with charged scalar hair). The
formulation above avoids the need to define the phase of ϕ
however.
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We now take our inductive hypothesis to be

∂AXðnÞjρ¼0 ¼ 0 and AðnÞ
τ jρ¼0 ¼ 0 for n < k. We again

decompose the order lk part of EI½ΦJ� ¼ 0 into

E½k�
I ½Φ½k−1�

J � plus Eð0Þ
I ½Φð0Þ

J þ lkΦðkÞ
J � linearized around Φð0Þ

J .

E½k�
τA½Φ½k−1�

J � and E½k�
τ ½Φ½k−1�

J � can again be shown to vanish
on the horizon by the statement that positive boost weight
quantities vanish on the horizon if ∂AXjρ¼0 ¼ 0 and
Aτjρ¼0 ¼ 0 in this gauge. The proof of this statement
follows exactly as in Sec. V C, except we must additionally
show that positive boost weight quantities made from Aμ,
such as Av; ∂vAA, and ∂vvAr, vanish on the horizon. To do
this, we again use the relation between Killing vector GNCs
and affinely parametrized GNCs.
Using ∂τAμ ¼ 0, we can write Aμ in Killing vector GNCs

as (suppressing xC dependence)

A ¼ AτðρÞdτ þ AρðρÞdρþ AAðρÞdxA: ð74Þ

We transform to affinely parametrizedGNCs, ρ¼ rðκvþ 1Þ,
τ ¼ 1

κ log ðκvþ 1Þ, to get

Avðr; vÞ ¼
1

κvþ 1
Aτðrðκvþ 1ÞÞ þ κrAρðrðκvþ 1ÞÞ;

Arðr; vÞ ¼ ðκvþ 1ÞAρðrðκvþ 1ÞÞ;
AAðr; vÞ ¼ AAðrðκvþ 1ÞÞ: ð75Þ

Positive boost weight quantities involving Aμ are given
by ∂A1

…∂An
∂
p
r ∂

q
vφ with φ∈ fAv; ∂vAA; ∂2vArg and q ≥ p. It

is easy to show that ∂vAA and ∂2vAr have the functional form
rfφðrðκvþ 1ÞÞ which, as shown in Sec. V C, means their
positive boost weight derivatives vanish on the horizon.
∂r∂vAv also has this functional form, so if q ≥ p ≥ 1 then
∂A1

…∂An
∂
p
r ∂

q
vAv vanishes on the horizon. This leaves only

terms with p ¼ 0, however, one can show

∂
q
vAvjr¼0 ¼

ð−κÞq
ðκvþ 1Þqþ1

Aτjρ¼0: ð76Þ

Therefore, if Aτjρ¼0 ¼ 0 then ∂A1
…∂An

∂
q
vAv also vanishes

on the horizon.
Therefore, we can return to our inductive step and look at

Eð0Þ
I ½Φð0Þ

J þ lkΦðkÞ
J �jρ¼0 linearized around Φð0Þ

J for I ¼ ðτAÞ
and I ¼ τ. For Eð0Þ

τA ½ΦI�jρ¼0, use Að0Þ
τ jρ¼0 ¼ 0 to obtain,

at order lk; EτA½ΦJ�
���
ρ¼0

¼ −
1

2
lk∂AXðkÞ −

1

2
ilkλAðkÞ

τ

�
ϕð0Þ�

∂Aϕ
ð0Þ − ϕð0Þ

∂Aϕ
ð0Þ� − 2iλAð0Þ

A jϕð0Þj2
�

−
1

2
c1ðjϕð0Þj2Þ

�
Fð0Þ
ABh

ð0ÞBC − Fð0Þ
τρ δCA

�
lkFðkÞ

τC ¼ 0; ð77Þ

which implies that ∂AXðkÞjρ¼0 ¼ 0 if AðkÞ
τ jρ¼0 ¼ 0.

Finally, for Eð0Þ
τ ½ΦI�jρ¼0 use Að0Þ

τ jρ¼0 ¼ 0 to get,

at order lk; Eτ½ΦJ�
���
ρ¼0

¼ 2λ2lkjϕð0Þj2AðkÞ
τ þ lkhð0ÞABDð0Þ

A

h
c1ðjϕð0Þj2ÞFðkÞ

τB − 8c2ðjϕð0Þj2Þϵð0ÞCB FðkÞ
τC

i
¼ 0: ð78Þ

Plugging in FðkÞ ¼ −∂AA
ðkÞ
τ gives

2λ2jϕð0Þj2AðkÞ
τ − hð0ÞABDð0Þ

A

h
c1ðjϕð0Þj2ÞDð0Þ

B AðkÞ
τ − 8c2ðjϕð0Þj2Þϵð0ÞCB Dð0Þ

C AðkÞ
τ

i
¼ 0: ð79Þ

Integrate this against
ffiffiffiffiffiffiffiffi
hð0Þ

p
AðkÞ
τ over CðτÞ, integrate by parts, and again use the antisymmetry of ϵð0ÞBC to obtainZ

CðτÞ
dd−2x

ffiffiffiffiffiffiffiffi
hð0Þ

p h
2λ2lkjϕð0Þj2ðAðkÞ

τ Þ2 þ c1ðjϕð0Þj2Þhð0ÞAB
�
∂AA

ðkÞ
τ

��
∂BA

ðkÞ
τ

�i
¼ 0: ð80Þ

Both terms in the integrand are manifestly non-negative, and hence AðkÞ
τ jρ¼0 ¼ 0, once again using our assumption that ϕð0Þ

is not identically 0 on the horizon.9 This completes the induction.
Therefore, ∂AXjρ¼0 ¼ 0 and FτAjρ¼0 ¼ 0 in this gauge. But since these statements are gauge independent, the generalized

zeroth law holds in all gauges for this charged scalar field EFT.

9
∂τϕ ¼ 0 in this gauge, so if ϕð0Þ is not identically 0 on the horizon, then it is also not identically 0 on any individual spatial cross

section CðτÞ.
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VI. THE SECOND LAW

The second law of black hole mechanics is the statement
that the entropy of dynamical (i.e., nonstationary and
therefore out of equilibrium) black hole solutions is
nondecreasing in time. This is assumed to be the classical
limit of the second law of thermodynamics that would
say the thermodynamic entropy of the whole system is
nondecreasing.
In standard two-derivative GR coupled to matter satisfy-

ing the null energy condition, it can be proved that the area
AðvÞ of a spacelike cross section of the horizon is always
nondecreasing in v. This supports a natural interpretation of
the entropy of a black hole as proportional to its area.
However, when we include higher derivative terms in the
metric or matter fields, AðvÞ is no longer necessarily
nondecreasing. Therefore, we need a generalization of
the definition of entropy in order to satisfy a second
law. While there has been no answer that applies to all
situations, a fruitful avenue has been to study dynamical
black holes that settle down to equilibrium at late times and
that are in the regime of validity of EFT.
Here we extend the recent work of [8,9,12] to define an

entropy that satisfies the second law up to an arbitrarily
high order lN in our EFT for Einstein-Maxwell-scalar
theory.

A. Perturbations around stationary black holes

We consider the scenario of a black hole settling down to
a stationary equilibrium. As such, we assume our dynami-
cal black hole solution tends to some stationary black hole
solution Φst

I at late times. In [8,9], the solution is assumed
to be close to Φst

I and they consider perturbation theory
around it. We will not need to do this and thus can include
highly dynamical situations, so long as their horizons
remain smooth for all future time (which is needed for
us to define GNCs). Therefore, situations like the period
after merger or gravitational collapse, or a black hole
interacting with weak gravitational waves, are applicable.
However, the order of perturbation around Φst

I will still
be an important concept to compare our definition to others.
To make this concept precise, we use the statement proved
in Sec. V C: positive boost weight quantities vanish on the
horizon of a stationary black hole solution. Our construc-
tion of the entropy SðvÞ will consist of manipulating
affinely parametrized GNC quantities evaluated on the
horizon, and so the number of factors of positive boost
weight quantities determines the order of perturbation. For
example, KAB has boost weight þ1 and so a term such as
KABKAB is quadratic order.
To zeroth order, our entropy SðvÞ will be the Wald

entropy of the stationary solution Φst
I . This is constant in

time, and so ṠðvÞ ¼ 0 to zeroth order.
To linear order, our entropy will be the one defined by

Biswas et al. (BDK) in [8], where it is proved to be constant

at linear order. Therefore, linearized around Φst
I , we

have δṠðvÞ ¼ 0.
This paper extends the BDK entropy by adding terms

quadratic in positive boost weight quantities in a similar
fashion to how Hollands et al. [9] and then Davies and
Reall [12] extended the Iyer-Wald-Wall entropy [10,11].
We will show that such an entropy satisfies the second law
nonpertubatively, i.e., ṠðvÞ is non-negative to all orders in
perturbations around a black hole. However, this can only
be done in the regime of validity of EFT.

B. Regime of validity of EFT

We shall not be interested in arbitrary black hole
solutions of our Einstein-Maxwell-scalar EFT. In general,
there will be pathological solutions that blow up in time or
exhibit rapid oscillations and are considered unphysical.
See Sec. IVof [17] for a discussion around the existence of
such solutions, which should not be expected to satisfy the
second law.
Instead, we shall consider only black hole solutions that

lie within the “regime of validity of the EFT.” This is
defined in [9] as follows. We assume we have a one-
parameter family of dynamical black hole solutions labeled
by a length scale L (e.g., the size of the black hole or some
other dynamical length/timescale) such that N is the event
horizon for all members of the family (this is a gauge
choice). We assume there exist affinely parametrized GNCs
defined near N such that any quantity constructed from n
derivatives of fα; βA; μAB;ϕg or n − 1 derivatives of Fμν is
bounded by Cn=Ln for some constant Cn, and that
jVjL2 ≤ 1. Then the solution lies within the regime of
validity of EFT if l=L << 1. This definition captures the
notion of a solution “varying over a length scale L” with L
large compared to the UV scale l.
Note that we are no longer assuming the black hole

solution is analytic in l, as we did in the proof of the zeroth
law. This is not an applicable assumption in a dynamical
situation because treating the solution as an expansion in l
can typically lead to secular growth. See footnote 1 of [15]
for an example of such a situation.

C. Order of the EFT

Our EFT action (4) is made up of potentially infinitely
many higher derivative terms. In practice, we will only
know finitely many of the coefficients of these terms, and
so there will be some N for which we know all the terms
with N þ 1 or fewer derivatives. In this case we only fully
know part of the equations of motion, which satisfies

E½N−1�
I ≡ Eð0Þ

I þ
XN−1

n¼1

lnEðnÞ
I ¼ OðlNÞ: ð81Þ

Since we only know our theory up to some accuracy of
order lN, it is reasonable to expect our second law to only be
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provable up to order lN terms. This is indeed what we will
show, i.e.,

ṠðvÞ ≥ −OðlNÞ; ð82Þ

where the rhs of the inequality signifies that ṠðvÞ might be
negative but only by an OðlNÞ amount. This means that the
better we know our EFT, the closer we can construct an
entropy satisfying a complete second law. The entropy SðvÞ
will contain terms of up to N − 2 derivatives.

D. Review of recent progress on the second law
in vacuum gravity EFT

Before we jump into proving the second law for our
Einstein-Maxwell-scalar EFT, we shall briefly review the
recent progress in Einstein-scalar EFTs that we are building
on. First, the Iyer-Wald-Wall entropy satisfies the second
law to linear order in perturbations around a stationary
black hole. Second, the extension made by HKR defines an
entropy that satisfies the second law to quadratic order
in perturbations, up to order lN terms. Finally, the very
recent work by Davies and Reall in the companion to this
paper [12] adds extra terms to the HKR entropy, which
result in the second law being satisfied nonperturbatively,
up to order lN terms.
The Iyer-Wald-Wall entropy was devised by Wall [10]

as an improvement on the entropy defined by Iyer and
Wald [18]. It was formalized by Bhattacharyya et al. [11]. It
applies to any theory of gravity and a scalar field with
diffeomorphism-invariant Lagrangian (under no EFT
assumption). The approach is to use affinely parametrized
GNCs and study the Evv equation of motion. They prove
that it can always be manipulated into the following form
on the horizon:

−Evv

���
N

¼ ∂v

	
1ffiffiffi
μ

p ∂vð ffiffiffi
μ

p
svIWWÞ þDAsA

�
þ � � � ; ð83Þ

where the ellipsis denotes terms that are quadratic or higher
order in positive boost weight quantities and hence quad-
ratic order in perturbations around a stationary black hole.
ðsvIWW; s

AÞ is denoted the Iyer-Wald-Wall entropy current.
They are only defined uniquely up to first order in positive
boost weight quantities, as any higher order terms can be
absorbed into the ellipsis. As proved in [9], the higher order
terms can be fixed so that svIWW is invariant under a change
of GNCs.
The Iyer-Wald-Wall entropy of the horizon cross section

CðvÞ is then defined as

SIWWðvÞ ¼ 4π

Z
CðvÞ

dd−2x
ffiffiffi
μ

p
svIWW: ð84Þ

Taking the v derivative of this gives

ṠIWW ¼ 4π

Z
CðvÞ

dd−2x
ffiffiffi
μ

p 	
1ffiffiffi
μ

p ∂vð
ffiffiffi
μ

p
svIWWÞ þDAsA

�

¼ −4π
Z
CðvÞ

dd−2x
ffiffiffi
μ

p

×
Z

∞

v
dv0∂v

	
1ffiffiffi
μ

p ∂vð ffiffiffi
μ

p
svIWWÞ þDAsA

�
ðv0; xÞ;

ð85Þ

where in the first line we trivially added the total derivativeffiffiffi
μ

p
DAsA to the integrand, and in the second line we

assumed the black hole settles to the stationary black hole
solution, so positive boost weight quantities vanish on the
horizon at late times. The integrand can then be swapped
for terms that are quadratic or higher in positive boost
weight quantities using (83) and the equation of motion
Evv ¼ 0. Thus, ṠIWW is quadratic order in perturbations
around a stationary black hole, and so ṠIWWjΦst

I
¼ 0 and the

first variation δṠIWW ¼ 0. Therefore, SIWW satisfies the
second law to linear order. Even stronger than that, its
change in time vanishes to linear order rather than being
non-negative.
To see a possible increase in the entropy, we must go to

quadratic order, which is what the extension by Hollands
et al. achieves in [9]. They show that if the theory and
solution lie in the regime of EFT, the ellipsis in (83) can be
manipulated into the following form:

−Evv

���
N

¼ ∂v

	
1ffiffiffi
μ

p ∂vð
ffiffiffi
μ

p
svIWWÞ þDAsA

�

þ ∂v

	
1ffiffiffi
μ

p ∂vð
ffiffiffi
μ

p
ςvÞ

�

þ ðKAB þ XABÞðKAB þ XABÞ

þ 1

2
ð∂vϕþ XÞ2 þDAYA þOðlNÞ: ð86Þ

XAB and X are linear in positive boost weight quantities,
and YA and the OðlNÞ terms are quadratic. To do this, they
go “on shell,” meaning they use the equations of motion to
swap out various terms. The entropy density is then defined
by svHKR ¼ svIWW þ ζv, and the Hollands-Kovács-Reall
entropy is given by

SHKRðvÞ ¼ 4π

Z
CðvÞ

dd−2x
ffiffiffi
μ

p
svHKR: ð87Þ

Just as in (85), we can take the v derivative of this and
substitute in (86) to get

ṠHKRðvÞ ¼ 4π

Z
CðvÞ

dd−2x
ffiffiffi
μ

p

×
Z

∞

v
dv0½W2 þDAYA þOðlNÞ�ðv0; xÞ; ð88Þ
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where W2 ¼ ðKAB þ XABÞðKAB þ XABÞ þ 1
2
ð∂vϕþ XÞ2.

SinceW2, YA, and theOðlNÞ terms are quadratic in positive
boost weight, they vanish on the horizon along with their
first variations, so once again we have ṠHKRjΦst

I
¼ 0

and δṠHKR ¼ 0.
Turning to the second variation, δ2W2 ¼ ðδWÞ2 is a

positive definite form so must be non-negative. The second
term is

Z
CðvÞ

dd−2x
ffiffiffi
μ

p ���
Φst

I

Z
∞

v
dv0DA

���
Φst

I

δ2YA: ð89Þ

The induced metric μAB is independent of v on the horizon
for the stationary solution Φst

I [see (51) with r ¼ 0].
Therefore, we can exchange the order of integrations
and see the integrand is a total derivative on CðvÞ.
Hence this integral vanishes and so ṠHKR is non-negative
to quadratic order, modulo OðlNÞ terms. Thus, it satisfies
the second law to quadratic order in the sense
of δ2ṠHKR ≥ −OðlNÞ.
Finally, the recent work by Davies and Reall [12] showed

that for vacuum gravity EFTs (i.e., with no scalar field ϕ)
we can manipulate the terms in the rhs of (88) further into
the form

ṠHKRðvÞ ¼ −
d
dv

�
4π

Z
CðvÞ

dd−2x
ffiffiffiffiffiffiffiffiffi
μðvÞ

p
σvðvÞ

�

þ 4π

Z
CðvÞ

dd−2x
ffiffiffi
μ

p Z
∞

v
dv0½ðKAB þ ZABÞ

× ðKAB þ ZABÞ þOðlNÞ�ðv; v0; xÞ; ð90Þ

where ZABðv; v0Þ is made up of so-called “bilocal” quan-
tities, meaning they depend on both on v and the integration
variable v0. The final integral is a positive definite form up
to OðlNÞ terms, and hence the entropy defined by

SðvÞ ¼ 4π

Z
CðvÞ

dd−2x
ffiffiffi
μ

p
sv ð91Þ

with sv ¼ svHKR þ σv satisfies ṠðvÞ ≥ −OðlNÞ; i.e., it sat-
isfies the second law nonperturbatively up to OðlNÞ terms.
We shall now show how the above methods can be

extended to define an entropy for Einstein-Maxwell-scalar
EFT (with real, uncharged scalar field) that satisfies the
second law in the same sense.

VII. PROOF OF THE SECOND LAW

A. The desired generalizations

Throughout the proof, we work exclusively in affinely
parametrized GNCs. Rewriting here for convenience,

g ¼ 2dvdr − r2αðr; v; xCÞdv2 − 2rβAðr; v; xCÞdvdxA
þ μABðr; v; xCÞdxAdxB: ð92Þ

We raise and lower A; B;C;… indices with μAB and denote
the covariant derivative with respect to μAB by DA. As well
as KAB ≡ 1

2
∂vμAB; K̄AB ≡ 1

2
∂rμAB defined previously, it will

be useful to define

KA ≡ FvA; K̄A ≡ FrA; ψ ¼ Fvr: ð93Þ

KA has boost weight þ1, K̄A has boost weight −1, and ψ
has boost weight 0.
The Iyer-Wald-Wall entropy has already been general-

ized to Einstein-Maxwell-scalar EFT with real scalar field
by Biswas et al. in [8], as discussed in Sec. VII C.
The main body of the proof consists of generalizing the

HKR entropy by studying the Evv component of the
equations of motion in affinely parametrized GNCs on
the horizon. Our generalization of Eq. (86) is as follows.
We will show that on shell [i.e., by using the known part of

the equations of motion E½N−1�
I ¼ OðlNÞ] we can bring

EvvjN into the form

−Evv

���
N

¼ ∂v

h 1ffiffiffi
μ

p ∂vð ffiffiffi
μ

p
svHKRÞ þDAsA

i
þ ðKAB þ XABÞðKAB þ XABÞ

þ 1

2
c1ðϕÞðKA þ XAÞðKA þ XAÞ

þ 1

2
ð∂vϕþ XÞ2 þDAYA þOðlNÞ; ð94Þ

where X ¼ P
N−1
n¼1 l

nXðnÞ; XA ¼ P
N−1
n¼1 l

nXðnÞ
A ; XAB ¼P

N−1
n¼1 l

nXðnÞ
AB (boost weights þ1) are linear or higher in

positive boost weight quantities, and YA ¼ P
N−1
n¼1 l

nYðnÞA

(boost weight þ2) and the OðlNÞ terms are quadratic.

svHKR ¼ P∞
n¼0 l

nsðnÞvHKR has boost weight 0 and sA ¼P∞
n¼1 l

nsðnÞA has boost weight þ1. They will be invariant
upon change of electromagnetic gauge.
The generalization of the HKR entropy of the spacelike

cross section CðvÞ is then defined to be

SHKRðvÞ ¼ 4π

Z
CðvÞ

dd−2x
ffiffiffi
μ

p
svHKR: ð95Þ

The proof that δ2Ṡ ≥ −OðlNÞ follows in the same way
as for SHKR detailed above, with the only change being
W2 ¼ ðKABþXABÞðKABþXABÞþ 1

2
ð∂vϕþXÞ2þ 1

2
c1ðϕÞ×

ðKAþXAÞðKAþXAÞ. The additional term is still a positive
definite form and so the same method holds.
The algorithm to write Evv in the form (94) is very

similar to the algorithm devised by Hollands et al. [9] (and
further detailed in [15]) for Einstein-scalar EFT. We will
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emphasize where we need to extend the HKR algorithm to
apply to our Einstein-Maxwell-scalar EFT.
Finally, we generalize the entropy defined by Davies and

Reall by proving we can write ṠHKRðvÞ as

ṠHKRðvÞ ¼ −
d
dv

�
4π

Z
CðvÞ

dd−2x
ffiffiffiffiffiffiffiffiffi
μðvÞ

p
σvðvÞ

�

þ 4π

Z
CðvÞ

dd−2x
ffiffiffi
μ

p Z
∞

v
dv0

h
ðKAB þ ZABÞ

× ðKAB þ ZABÞ þ 1

2
c1ðϕÞðKA þ ZAÞðKA þ ZAÞ

þ 1

2
ð∂vϕþ ZÞ2 þOðlNÞ

i
ðv; v0; xÞ ð96Þ

for bilocal ZAB; ZA, and Z. Thus, we can define an entropy

SðvÞ ¼ 4π

Z
CðvÞ

dd−2x
ffiffiffi
μ

p
sv ð97Þ

with sv ¼ svHKR þ σv that satisfies ṠHKRðvÞ ≥ −OðlNÞ as
desired.

B. Leading order Einstein-Maxwell-scalar theory

Let us look at how this works for the leading order
Einstein-Maxwell-scalar terms arising from L2. The lead-
ing order part of the ðαβÞ equation of motion is

Eð0Þ
αβ ¼ Rαβ −

1

2
∇αϕ∇βϕ −

1

2
c1ðϕÞFαδFδ

β

−
1

2
gαβ

�
R − VðϕÞ − 1

2
∇γϕ∇γϕ −

1

4
c1ðϕÞFγδFγδ

�
:

ð98Þ

In affinely parametrized GNCs on the horizon, we have

Eð0Þ
vv jN ¼ Rvv −

1

2
ð∂vϕÞ2 −

1

2
c1ðϕÞKAKA: ð99Þ

Using RvvjN ¼ −μAB∂vKAB þ KABKAB and ∂v
ffiffiffi
μ

p ¼ffiffiffi
μ

p
μABKAB, we can write this as

−Eð0Þ
vv jN ¼ ∂v

h 1ffiffiffi
μ

p ∂vð
ffiffiffi
μ

p Þ
i
þ KABKAB

þ 1

2
c1ðϕÞKAKA þ 1

2
ð∂vϕÞ2: ð100Þ

This is of the form (94) with sð0ÞvHKR ¼ 1 and

sð0ÞA ¼ Xð0Þ ¼ Xð0Þ
A ¼ Xð0Þ

AB ¼ Yð0Þ
A ¼ 0. Because there is

no total derivative term DAYð0ÞA, there are no further
manipulations needed to get to (96) with σv ¼ 0,

Zð0Þ ¼ Xð0Þ, Zð0Þ
A ¼ Xð0Þ

A , and Zð0Þ
AB ¼ Xð0Þ

AB. Thus, we have
proved our theory satisfies the second law nonperturbatively

at leading order l0 (which of course can be proved by the
usual proof of the second law on the two-derivative theory).
We will ultimately work through the higher order terms

order by order to mold them into the correct form. To get to
that point however, we must start with the Biswas-
Dhivakar-Kundu entropy.

C. The Biswas-Dhivakar-Kundu entropy

Our starting point is the generalization of the Iyer-Wald-
Wall entropy by Biswas et al. defined in [8]. They prove
that for any theory of gravity, electromagnetism and a real
(uncharged) scalar field with diffeomorphism-invariant and
electromagnetic gauge-independent Lagrangian, the Evv
component of the equations of motion can be brought into
the following form on the horizon10:

−EvvjN ¼ ∂v

	
1ffiffiffi
μ

p ∂vð ffiffiffi
μ

p
svBDKÞ þDAsA

�
þ � � � ; ð101Þ

where the ellipsis denotes terms at least quadratic in
positive boost weight quantities. We will call the quantity
ðsvBDK; sAÞ the BDK entropy current. It is proved to only
depend on the electromagnetic potential through Fμν and is
thus invariant upon a gauge transformation Aμ → Aμ þ ∂μχ.
sA is a vector in A; B;… indices on CðvÞ, while sv is a
scalar. They are only defined uniquely up to linear order in
positive boost weight quantities, as any higher order terms
can be absorbed into the ellipsis. As discussed in
Sec. VII G, we assume we can fix the higher order terms
so that svBDK is invariant under a change of GNCs.
The BDK entropy is then defined by

SBDKðvÞ ¼ 4π

Z
CðvÞ

dd−2x
ffiffiffi
μ

p
svBDK: ð102Þ

This can be proved to satisfy δṠBDK ¼ 0 in the same way as
above, since the ellipsis is quadratic in positive boost
weight quantities.
For our Einstein-Maxwell-scalar EFT, we can calculate

svBDK to all orders in l and take (101) as our starting point.
We group all the remaining terms in the ellipsis and define

H ≡ −Evv

���
N
− ∂v

	
1ffiffiffi
μ

p ∂vð ffiffiffi
μ

p
svBDKÞ þDAsA

�
: ð103Þ

We will use the fact that H is quadratic in positive boost
weight terms to show we can manipulate it so that (101)

10In [8], they have an additional Tvv in this defining equation,
which is the part of the energy-momentum tensor arising from the
minimal coupling part of the matter sector Lagrangian. However,
they also show that Tvv is quadratic in positive boost weight
quantities if Tμν satisfies the NEC, which is the case for our two-
derivative Einstein-Maxwell-scalar theory and hence we can
absorb Tvv into the ellipsis.
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becomes (94). The resulting generalization of the HKR
entropy density svHKR will be

svHKR ¼ svBDK þ
XN−1

n¼0

lnςðnÞv; ð104Þ

where the ςðnÞv are quadratic in positive boost weight
quantities. We will not need to add any terms to sA.
From (100), we can see that, for the leading order theory

L2, the BDK entropy density is sð0ÞvBDK ¼ 1 and we need no
correction, ςð0Þv ¼ 0.

D. Reducing to allowed terms

To generalize the HKR entropy we study the possible
quantities out of which H is made. H comes from the
equations of motion and is gauge invariant and so is made
from the fields gμν; Fμν, and ϕ and their derivatives. It is
also evaluated in affinely parametrized GNCs on the
horizon, and H is a scalar with respect to A;B;… indices.
Therefore, it is made from gauge-invariant affinely para-
metrized GNC quantities of the metric and matter fields that
are covariant in A;B;… indices, namely,

Dk
∂
p
v∂

q
rφ for

φ∈ fα; βA; μAB; RABCD½μ�; ϵA1…Ad−2
;ϕ; FAB; KA; KA;ψg;

ð105Þ

where k, p, q ≥ 0 and we have suppressed the indices
Dk ¼ DA1

…DAk
. KA; K̄A, and ψ are defined in (93).

Section 3.3 of [15] gives commutation rules for commuting
DA derivatives past ∂v and ∂r derivatives, which allow us to
have all DA derivatives on the left. RABCD½μ� is the induced
Riemann tensor with respect to μAB.
We will now show that we can reduce this set of possible

objects that can appear on the horizon by using the
equations of motion. It is worth emphasizing, this reduction
holds in an EFT sense, meaning it is only done up to OðlNÞ
terms. In the HKR procedure of [9] for Einstein-scalar EFT,
they show how to reduce the metric and scalar field terms
to the set μAB, ϵA1…Ad−2

, DkRABCD½μ�, DkβA, Dk
∂
p
vKAB,

Dk
∂
p
r K̄AB, Dk

∂
p
vϕ, Dk

∂
p
rϕ with p ≥ 0. This procedure still

holds in our Einstein-Maxwell-scalar EFT. To focus on
where we need to generalize the HKR procedure, we only
detail how to reduce the Maxwell terms.
We aim to reduce the set of Maxwell terms on the

horizon to

Dkψ ; DkFAB; Dk
∂
p
vKA; Dk

∂
q
r K̄A ð106Þ

To do this, we must eliminate any ∂v and ∂r derivative of
both ψ and FAB. We must also eliminate any ∂r derivative
of KA and any ∂v derivative of K̄A.

To begin we use the fact that

∂αFβγ þ ∂βFγα þ ∂γFαβ ¼ 0; ð107Þ

which follows from F ¼ dA. Taking α ¼ v; β ¼ A; γ ¼ B,
we can rearrange this to11

∂vFAB ¼ DAKB −DBKA: ð108Þ

Similarly, taking α ¼ v; β ¼ A; γ ¼ B gives

∂rFAB ¼ DAK̄B −DBK̄A: ð109Þ

These two relations allow us to eliminate all ∂v and ∂r
derivatives of FAB in favor of other Maxwell and met-
ric terms.
Furthermore, taking α ¼ v; β ¼ r; γ ¼ A, we get

∂vK̄A ¼ ∂rKA −DAψ ; ð110Þ

which allows us to eliminate any ∂v derivative or mixed ∂v

and ∂r derivative of K̄A.
To go further, we will have to use the equations of

motion for the Maxwell field. In particular, we inspect the

leading order part Eð0Þ
α ¼ OðlÞ,

∇β
h
c1ðϕÞFαβ − 4c2ðϕÞFγδϵαβγδ

i
¼ OðlÞ; ð111Þ

where in theory we know all the terms on the right-hand
side up to OðlNÞ. We can use ϵαβγδ∇βFγδ ¼ 0 [which
follows from (107)] to rewrite this as

∇βFαβ ¼
1

c1ðϕÞ
½4c02ðϕÞ∇βϕFγδϵαβγδ − c01ðϕÞ∇βϕFαβ�

þOðlÞ: ð112Þ

The order l0 terms on the right-hand only involve Maxwell
terms that we are not trying to eliminate. Let us now
evaluate the v component of ∇βFαβ in affinely parame-
trized GNCs,

∇βFvβ ¼ ∂vψ þDAKA þ ψK þ � � � ; ð113Þ

where the ellipsis denotes terms that vanish on N . We can
substitute this into (112) to get an expression for ∂vψ on the
horizon up to terms higher order in l,

11If we had explicitly picked a gauge Aμ, then this relation
would be trivially true and we would have fewer terms to
eliminate. However, we would like to keep the entropy current
manifestly gauge invariant, and hence we do not pick a gauge.
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∂vψ jN ¼ −DAKA − ψK

þ 1

c1ðϕÞ
½4c02ðϕÞϵABð2DAϕKB − ∂vϕFABÞ

− c01ðϕÞðψ∂vϕþ KADAϕÞ� þOðlÞ: ð114Þ

Therefore, wherever we find a ∂vψ inH, we can swap it out
order by order in l, pushing it to higher order with each
step. Eventually, it will only appear atOðlNÞ, at which point
it is not relevant to our analysis since we do not know the
equations of motion at that order.
Similarly, we can evaluate ∇βFrβ in affinely parame-

trized GNCs,

∇βFrβ ¼ −∂rψ þDAK̄A þ K̄AβA − ψK̄ þ � � � ; ð115Þ

where, again, the terms in the ellipsis vanish on the horizon.
We can substitute this into (112) to get an expression for
∂rψ on the horizon,

∂rψ jN ¼ DAK̄A þ K̄AβA − ψK̄

þ 1

c1ðϕÞ
½c01ðϕÞðK̄ADAϕ − ψ∂rϕÞ

− 4c02ðϕÞϵABð∂rϕFAB − 2DAϕK̄BÞ� þOðlÞ:
ð116Þ

This allows us to eliminate ∂rψ up to OðlNÞ in a similar
fashion.

We can take ∂v derivatives of (114) and (116) in order to
eliminate ∂

p
v∂

q
rψ for p ≥ 1 and q ¼ 0, 1. However, we

cannot naively take ∂r derivatives because these expres-
sions are evaluated on the horizon r ¼ 0. Instead, we must
take successive ∂r derivatives of (112) and (115), and then
evaluate them on r ¼ 0, possibly using substitution rules
already calculated for lower order derivatives. This will
involve taking care of the terms in the ellipsis in (116),
which are given in full in Appendix A 3. However, these
only ever involve lower order derivatives, for which we
already have substitution rules and hence do not cause an
issue. Therefore, we can eliminate all ∂v and ∂r derivatives
of ψ up to order OðlNÞ.
This just leaves ∂r derivatives of KA to be eliminated, for

which we look at ∇βFAβ,

∇βFAβ ¼ −2∂rKA þDAψ þDBFAB þ 2K̄BKAB þ 2KBK̄AB

− ψβA − K̄AK −KAK̄þFABβ
B þ � � � : ð117Þ

Substituting this into (112) gives us an expression which
we can use to eliminate ∂rKA on the horizon. Taking ∂r
derivatives of (117) again allows us to eliminate higher ∂r
derivatives of KA because the terms in the ellipsis only
involve lower order derivatives. This completes the reduc-
tion of Maxwell terms.
Combining the Maxwell terms with the metric and scalar

field terms already reduced through the HKR procedure,
we are left with a small set of “allowed terms,”

Allowed terms∶ μAB; μAB; ϵA1…Ad−2
; DkRABCD½μ�; DkβA; Dk

∂
p
vKAB; Dk

∂
q
r K̄AB;

Dkψ ; DkFAB; Dk
∂
p
vKA; Dk

∂
q
rKA; Dk

∂
p
vϕ; Dk

∂
q
rϕ: ð118Þ

In particular, the only allowed positive boost weight terms
are of the form Dk

∂
p
vKAB and Dk

∂
p
vKA with p ≥ 0, and

Dk
∂
p
vϕ with p ≥ 1. This will be the crucial fact that allows

us to manipulate the terms in H.

E. Manipulating terms order by order

Let us return to H. We use the above procedures to
eliminate any nonallowed terms up to OðlNÞ. Once doing
so, we can write it as a series in l,

H ¼ Hð0Þ þ
XN−1

n¼1

lnHðnÞ þOðlNÞ: ð119Þ

By construction, the HðnÞ are quadratic in positive boost
weight terms. Furthermore, Hð0Þ are the terms calculated
from the leading order part of the equation of motion in
(100),

Hð0Þ ¼ KABKAB þ 1

2
c1ðϕÞKAKA þ 1

2
ð∂vϕÞ2: ð120Þ

We proceed by induction order by order in l. Our
inductive hypothesis is that we have manipulated the terms
in H up to OðlmÞ into the form
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H ¼ ∂v

	
1ffiffiffi
μ

p ∂v

� ffiffiffi
μ

p Xm−1

n¼0

lnςðnÞv
��

þ
�
KAB þ

Xm−1

n¼0

lnXðnÞ
AB

��
KAB þ

Xm−1

n¼0

lnXðnÞAB
�

þ 1

2
c1ðϕÞ

�
KA þ

Xm−1

n¼0

lnXðnÞ
A

��
KA þ

Xm−1

n¼0

lnXðnÞA
�
þ 1

2

�
∂vϕþ

Xm−1

n¼0

lnXðnÞ
�2

þDA

Xm−1

n¼0

lnYðnÞA þ
XN−1

n¼m

lnHðnÞ þOðlNÞ; ð121Þ

where the HðnÞ may have gained extra terms compared to (119) but are still quadratic in positive boost weight terms.

By (120), this is true for m ¼ 1 with ςð0Þv ¼ Xð0Þ
AB ¼ Xð0Þ

A ¼ Xð0Þ ¼ Yð0ÞA ¼ 0. So assume it is true for
some 1 ≤ m ≤ N − 1.
We now consider HðmÞ. It is quadratic in positive boost weight quantities. However, we have reduced the set of allowed

positive boost weight quantities. Therefore, we can write it as a sum

HðmÞ ¼
X

k1;k2;p1;p2;P1;P2

ðDk1∂
p1
v P1ÞðDk2∂

p2
v P2ÞQk1;k2;p1;p2;P1;P2

; ð122Þ

where P1; P2 ∈ fKAB;KA; ∂vϕg and Qk1;k2;p1;p2;P1;P2
is some linear combination of allowed terms. Note that we have

dropped A; B;… indices here for notational ease, and they can be contracted in any way.
We now move the Dk

1∂
p1
v derivatives off the leading positive boost weight factor in each term in the sum. The method of

doing so is identical to the HKR procedure detailed in Sec. 3.5 of [15] but with P1, P2 in the place of factors of K, so we
shall not repeat it here. It produces extra total derivative terms, with the end result being

HðmÞ ¼
X

k;p;P1;P2

P1ðDk
∂
p
vP2ÞQk;p;P1;P2

þ ∂v

h 1ffiffiffi
μ

p ∂vð ffiffiffi
μ

p
ςðmÞvÞ

i
þDAYðmÞA; ð123Þ

with ςðmÞv and YðmÞA quadratic in positive boost weight quantities. It also produces terms that are higher order in l. These are
still quadratic in positive boost weight quantities so can be absorbed into

P
N−1
n¼mþ1 l

nHðnÞ.
We now split the sum over P1 ∈ fKAB; KA; ∂vϕg, write the remaining sums as 2XðmÞAB, c1ðϕÞXðmÞA, and XðmÞ, and

substitute this into (121),

H ¼ ∂v

	
1ffiffiffi
μ

p ∂v

� ffiffiffi
μ

p Xm
n¼0

lnςðnÞv
��

þ
�
KAB þ

Xm−1

n¼0

lnXðnÞ
AB

��
KAB þ

Xm−1

n¼0

lnXðnÞAB
�
þ 2lmKABXðmÞAB

þ 1

2
c1ðϕÞ

�
KA þ

Xm−1

n¼0

lnXðnÞ
A

��
KA þ

Xm−1

n¼0

lnXðnÞA
�
þ lmc1ðϕÞKAXðmÞA

þ 1

2

�
∂vϕþ

Xm−1

n¼0

lnXðnÞ
�2

þ lm∂vϕXðmÞ þDA

Xm
n¼0

lnYðnÞA þ
XN−1

n¼mþ1

lnHðnÞ þOðlNÞ: ð124Þ

We now complete the three squares to bring lmXðmÞAB,
lmXðmÞA, and lmXðmÞ into the sums. The extra terms

produced are Oðlmþ1Þ because Xð0Þ
AB ¼ Xð0Þ

A ¼ Xð0Þ ¼ 0

and are quadratic in positive boost weight quantities, so
can be absorbed into

P
N−1
n¼mþ1 l

nHðnÞ. This completes the
inductive step.
This can be repeated until all terms up toOðlNÞ are of the

correct form. Substituting this back into the definition of H
in (103), we can now write EvvjN in the desired form (94)
with

svHKR ¼ svBDK þ
XN−1

n¼0

lnςðnÞv: ð125Þ

This completes the generalization of the HKR entropy

SHKRðvÞ ¼ 4π

Z
CðvÞ

dd−2x
ffiffiffi
μ

p
svHKR; ð126Þ

which satisfies δ2ṠHKR ≥ −OðlNÞ.
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F. Further modification of the entropy

We now further modify this to generalize the entropy
defined by Davies and Reall in our companion paper [12].
Performing on SHKR the same steps used to get to (88),
we have

ṠHKRðv0Þ ¼ 4π

Z
Cðv0Þ

dd−2x
ffiffiffiffiffiffiffiffiffiffiffi
μðv0Þ

p

×
Z

∞

v0

dv½W2 þDAYA þOðlNÞ�ðvÞ; ð127Þ

where W2 ¼ ðKAB þ XABÞðKAB þ XABÞ þ 1
2
c1ðϕÞ×

ðKA þ XAÞðKA þ XAÞ þ 1
2
ð∂vϕþ XÞ2. We have sup-

pressed all x dependence and switched notation to v0
and v to match [12]. The obstruction to this integral being
non-negative up to OðlNÞ is DAYAðvÞ. Despite being a
divergence term, it does not integrate to zero because it is
evaluated at the integration variable v, whereas the area
element

ffiffiffiffiffiffiffiffiffiffiffi
μðv0Þ

p
is evaluated at v0. Define

aðv0; vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
μðvÞ
μðv0Þ

s
; ð128Þ

which measures the change in the area element from v0 to
v. Then, if we try to integrate DAYAðvÞ by parts, we get12

Z
C
dd−2x

ffiffiffiffiffiffiffiffiffiffiffi
μðv0Þ

p Z
∞

v0

dvDAYAðvÞ

¼
Z

∞

v0

dv
Z
C
dd−2x

ffiffiffiffiffiffiffiffiffi
μðvÞ

p
a−1ðv0; vÞDAYAðvÞ

¼ −
Z

∞

v0

dv
Z
C
dd−2x

ffiffiffiffiffiffiffiffiffi
μðvÞ

p
YAðvÞDAa−1ðv0; vÞ

¼
Z
C
dd−2x

ffiffiffiffiffiffiffiffiffiffiffi
μðv0Þ

p Z
∞

v0

dvYAðvÞDA logaðv0; vÞ: ð129Þ

Now, YAðvÞ is quadratic in positive boost weight quantities
and so is a sum of terms of the form ðDk1∂

p1
v P1Þ ðDk2∂

p2
v P2Þ

QðvÞ where, as before, P1; P2 ∈ fKAB; KA; ∂vϕg and QðvÞ
is some linear combination of allowed terms. Therefore,
this integrand closely resembles the terms we manipulated
in the previous section, except with factors of
DA log aðv0; vÞ. We will show that these terms can still
be absorbed into the positive definite terms in (127). We
will do this via a similar induction over powers of l.
Our inductive hypothesis is that we have manipulated

ṠHKRðv0Þ up to OðlmÞ into the form

ṠHKRðv0Þ ¼ −
d
dv

�
4π

Z
CðvÞ

dd−2x
ffiffiffiffiffiffiffiffiffi
μðvÞ

p
σvmðvÞ

�

þ 4π

Z
C
dd−2x

ffiffiffiffiffiffiffiffiffiffiffi
μðv0Þ

p
×
Z

∞

v0

dv
h
ðKAB þ ZAB

m ÞðKAB þ ZmABÞ

þ 1

2
c1ðϕÞðKA þ ZmAÞðKA þ ZA

mÞ

þ 1

2
ð∂vϕþ ZmÞ2 þ Rm þOðlNÞ

i
ðv0; vÞ;

ð130Þ

where ZAB
m ðv0; vÞ, ZA

mðv0; vÞ, and Zmðv0; vÞ areOðlÞ and at
least linear in positive boost weight quantities, and
Rmðv0; vÞ is of the form

Rmðv0; vÞ ¼
XN−1

n¼m

ln
X

k1;k2;p1;p2;P1;P2

ðDk1∂
p1
v P1Þ

× ðDk2∂
p2
v P2ÞQk1;k2;p1;p2;P1;P2;m;nðv0; vÞ; ð131Þ

and, in particular, ZAB
m ðv0; vÞ, ZA

mðv0; vÞ, Zmðv0; vÞ, and
Qk1;k2;p1;p2;P1;P2;m;nðv0; vÞ is each a linear combination of
terms, where each term is a product of factors of two
possible types: (i) allowed terms evaluated at v and
(ii) Dq log aðv0; vÞ with q ≥ 1 (DA evaluated at time v).
If a factor of type (ii) is present, then the term is bilocal;
otherwise it is local. All covariant derivatives D are
constructed from μABðvÞ, and all P1, P2 terms are evaluated
at v.
By (127) and (129), the base casem ¼ 0 is satisfied with

ZAB
0 ¼ XAB, ZA

0 ¼ XA, Z0 ¼ X, and R0 ¼ YADA log a.
Assuming true for m, the obstruction to proceeding is
the order lm terms in the sum in Rm, which are of the form
lmðDk1∂

p1
v P1Þ ðDk2∂

p2
v P2Þ Qðv0; vÞ. We aim to remove the

Dk1∂
p1
v from each term and then complete the square.

We first reduce k1 by 1 in each term via a spatial
integration by parts,

Z
C
dd−2x

ffiffiffiffiffiffiffiffiffiffiffi
μðv0Þ

p Z
∞

v0

dvðDk1∂
p1
v P1ÞðDk2∂

p2
v P2ÞQ

¼ −
Z

∞

v0

dv
Z
C
dd−2x

ffiffiffiffiffiffiffiffiffi
μðvÞ

p
ðDk1−1∂

p1
v P1Þ

×D½a−1ðDk2∂
p2
v P2ÞQ�

¼ −
Z
C
dd−2x

ffiffiffiffiffiffiffiffiffiffiffi
μðv0Þ

p Z
∞

v0

dvðDk1−1∂
p1
v P1Þ

×
h
ðDk2þ1

∂
p2
v P2ÞQþ ðDk2∂

p2
v P2ÞDQ

− ðDk2∂
p2
v P2ÞQD log a

i
; ð132Þ12All cross sections CðvÞ are diffeomorphic to each other, and

thus we write them all as C for this section.
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where in the last step we used aDða−1Þ ¼ −D log a.
We repeat to bring k1 to 0 in all terms, leaving us with
terms of the form lmð∂p1

v P1ÞðDk
∂
p2
v P2ÞQ, with Q still

made exclusively from local allowed terms and factors
of Dq log aðv0; vÞ.
We now aim to reduce p1 to 0 by v integration by parts.

However, to avoid surface terms we must treat local and
bilocal terms separately.

1. Bilocal terms

Bilocal terms have at least one factor of Dq log aðv0; vÞ.
Their v integration by parts follows simply

Z
∞

v0

dvð∂p1
v P1ÞðDk

∂
p2
v P2ÞQDq log aðv0; vÞ

¼ ½ð∂p1−1
v P1ÞðDk

∂
p2
v P2ÞQDq logaðv0; vÞ�∞v0

−
Z

∞

v0

dvð∂p1−1
v P1Þ∂v½ðDk

∂
p2
v P2ÞQDq log aðv0; vÞ�:

ð133Þ

The boundary term vanishes at v ¼ ∞ because we assume
the black hole settles down to stationarity, and so positive
boost weight quantities vanish. The boundary term also
vanishes at v ¼ v0 because aðv0; v0Þ≡ 1 and hence
Dq log a ¼ 0. In the remaining v integral, we can commute
the ∂v past any D derivatives using the formula

½∂v; DA�tB1…Bn
¼

Xn
i¼1

μCDðDDKABi
−DAKDBi

−DBi
KADÞ

× tB1…Bi−1CBiþ1…Bn
; ð134Þ

which will produce additional terms proportional to some
Dk0K. Commuting ∂v past Dq will leave Dq

∂v loga, which
initially looks like a new type of bilocal term; however, one
can calculate that

∂v log a ¼ μABKAB; ð135Þ

and so this term is actually proportional to DqK. Similarly,
in ∂vQ, any v derivative of Dq0 loga can be dealt with by
commuting and then using ([135]), and any nonallowed
terms such as ∂vβ or ∂vrϕ can be swapped out to OðlNÞ
using the equations of motion, which will generate addi-
tional terms in Rm of Oðlmþ1Þ.
Therefore, we are left with two types of terms at order lm:

(i) terms that retain their factor ofDq loga, which will be of
the form ð∂p1−1

v P1ÞðDk
∂
p2
v P2ÞQDq logaðv0; vÞ (with pos-

sibly changed k, p2, andQ), and (ii) terms that hadDq log a
hit by ∂v, which will be of the form ðDk0KÞð∂p1−1

v P1ÞQ for
some k0 and Q. This second type of term can potentially
be local.

The v integration by parts can be repeated on terms of
type (i) until p1 is reduced to 0, producing more terms of
type (ii) along the way (which will have varying p1’s). To
terms of type (ii) we move the Dk0 derivatives off of K via
the same spatial integration by parts as in (132). This brings
them proportional to K, and hence, after relabeling this K
as P1 and the old P1 as P2, they also effectively have p1

reduced to 0.

2. Local terms

Local terms are of the form ð∂p1
v P1ÞðDk

∂
p2
v P2ÞQðvÞ

with QðvÞ made exclusively from allowed terms evalu-
ated at v. We can no longer simply do a v integration by
parts on this because there is no Dq log a to make the
boundary term vanish at v ¼ v0. However, we can
manipulate these terms in the same fashion as in the
HKR procedure, namely, by noting there exist unique
numbers aj such that

ð∂p1
v P1ÞðDk

∂
p2
v P2ÞQ

¼ ∂v

(
1ffiffiffi
μ

p ∂v

" ffiffiffi
μ

p Xp1þp2−1

j¼1

ajð∂p1þp2−1−j
v P1ÞðDk

∂
j−1
v P2ÞQ

#)

þ���; ð136Þ

where the ellipsis denotes terms of the form ð∂p̄1
v P1Þ

ðDk̄
∂
p̄2
v P2ÞQ̃ with p̄1 þ p̄2 < p1 þ p2 or p̄1 ¼ 0 or

p̄2 ¼ 0. The proof follows identically to Appendix A.2
of [15] but with P1, P2 in the place of factors of K. The
new Q̃ are still local, but do include terms like ∂vQ
which will involve nonallowed terms. However, these can
be swapped out to OðlNÞ using the equations of motion,
generating more Oðlmþ1Þ in Rm.
We repeat this procedure on the terms in the ellipsis with

p̄1 þ p̄2 < p1 þ p2 until eventually p̄1 ¼ 0 or p̄2 ¼ 0
for all terms. This must eventually happen because
p̄1 þ p̄2 must decrease by at least 1 if the new p̄1 ≠ 0
and p̄2 ≠ 0, and hence p̄1 þ p̄2 eventually falls below 2,
meaning one of p̄1 and p̄2 must be 0. Therefore, we can
write all local terms as a sum of terms of the form

(i) ∂v

n
1ffiffi
μ

p ∂v½ ffiffiffi
μ

p
σvðvÞ�

o
with σv local and quadratic in

positive boost weight quantities, (ii) P1ðDk̄
∂
p̄2
v P2ÞQ̃ðvÞ,

and (iii) ð∂p̄1
v P1ÞðDk̄P2ÞQ̃ðvÞ.

We have successfully reduced k1 ¼ p1 ¼ 0 to 0 in
terms of type (ii). For terms of type (iii), we can
relabel P1 ↔ P2 and then remove the Dk̄ derivatives
from P1 by using spatial integration by parts, as in
(132). This will introduce bilocal factors of Dq log a,
but this is fine: the resulting terms will all be of the
desired form P1ðDk

∂
p̃
vP2ÞQðv0; vÞ, i.e., they also

have k1 ¼ p1 ¼ 0.
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Let us look at what happens to terms of type (i) when
they are placed in the integral,

Z
C
dd−2x

ffiffiffiffiffiffiffiffiffiffiffi
μðv0Þ

p Z
∞

v0

dv∂v



1ffiffiffi
μ

p ∂v½
ffiffiffi
μ

p
σvðvÞ�

�

¼ −
Z
C
dd−2x∂vð

ffiffiffiffiffiffiffiffiffi
μðvÞ

p
σvðvÞÞ

���
v¼v0

¼ −
d
dv

�Z
C
dd−2x

ffiffiffiffiffiffiffiffiffi
μðvÞ

p
σvðvÞ

����
v¼v0

; ð137Þ

where in the first equality we set the boundary term at
v ¼ ∞ to zero because we assume the black hole settles
down to stationarity. These are the terms which will modify
our definition of the entropy.

3. Completion of the induction

To summarize, we have rewritten all order lm terms
in Rm as

−
d
dv

�
lm
Z
C
dd−2x

ffiffiffiffiffiffiffiffiffi
μðvÞ

p
σvðvÞ

����
v¼v0

þ lm
Z
C
dd−2x

ffiffiffiffiffiffiffiffiffiffiffi
μðv0Þ

p
×
Z

∞

v0

dv
X

k;p;P1;P2

P1ðDk
∂
p
vP2ÞQk;p;P1;P2

ðv0;vÞ; ð138Þ

where Qk;p;P1;P2
ðv0; vÞ is a linear combination of allowed

terms evaluated at v and factors of Dq log aðv0; vÞ
with q ≥ 1.
Similar to Sec. VII E, the final step in the induction is to

split the sum over P1 ∈ fKAB; KA; ∂vϕg and write the
remaining sums as 2lmZ̃AB, lmc1ðϕÞZ̃A, and lmZ̃. We then
absorb them into the positive definite terms in (130) by
completing the squares and setting ZAB

mþ1 ¼ ZAB
m þ lmZ̃AB,

ZA
mþ1 ¼ ZA

m þ lmZ̃A, and Zmþ1 ¼ Zm þ lmZ̃. The remain-
der terms will be Oðlmþ1Þ [because ZAB

m , etc. are OðlÞ],
quadratic in positive boost weight (because ZAB

m , etc. are
linear), and linear combinations of local allowed terms
and factors of Dq log a (because ZAB

m , etc. are such linear
combinations). Furthermore, ZAB

mþ1, ZA
mþ1, and Zmþ1

retain these properties. Finally, we label
σvmþ1 ¼ σvm þ lmσv. Thus, the induction proceeds.
We continue the induction until m ¼ N, at which point

RN is OðlNÞ. Therefore, the entropy defined by

SðvÞ ≔
Z
C
dd−2x

ffiffiffiffiffiffiffiffiffi
μðvÞ

p
svðvÞ ð139Þ

with sv ¼ svHKR þ σvN satisfies a nonperturbative second
law up to OðlNÞ.

G. Gauge (non)invariance of entropy

Through the above procedure we have constructed an
entropy SðvÞ that depends on the local geometry of the

“constant time” slice CðvÞ and satisfies a nonperturbative
second law for Einstein-Maxwell-scalar EFT. Furthermore,
its entropy density sv differs from the BDK entropy density
svBDK defined in Sec. VII C by terms that are quadratic in
perturbations around a stationary black hole. Thus, the facts
that the BDK entropy reduces to the Wald entropy in
equilibrium and satisfies the first law [8] imply they also
hold for SðvÞ. Therefore, SðvÞ satisfies many of the
properties we should expect in a definition of the entropy
of a black hole.
However, we should ask, is this definition of the entropy

gauge invariant? There are two types of gauges in our
theory: the choice of electromagnetic gauge and our choice
of coordinates.
By construction, sv only depends on Maxwell quantities

through Fμν, which is invariant under a change of electro-
magnetic gauge. Therefore, the entropy SðvÞ is independent
of electromagnetic gauge.
As for coordinate independence, our procedure was

performed in affinely parametrized GNCs with r¼ v¼
0 on a given spacelike cross section C of N (the GNCs
can be defined starting from any horizon cross section,
so the restriction r ¼ v ¼ 0 is not restricting the choice
of cross section considered). However, as discussed in
Sec. III A, such affinely parametrized GNCs are not
unique: we can reparametrize the affine parameter on
each horizon generator by v0 ¼ v=aðxAÞ. This will
produce a new foliation C0ðv0Þ of the horizon. We
should not expect S0ðv0Þ ¼ SðvÞ for all v, because
S0ðv0Þ and SðvÞ measure the entropy of the different
surfaces C0ðv0Þ and CðvÞ. However, we should hope that
S0ð0Þ ¼ Sð0Þ because C0ð0Þ ¼ Cð0Þ ¼ C. Therefore, we
should investigate how our entropy density sv trans-
forms under such a gauge transformation at r ¼ v ¼ 0.
By construction, sv can be split into two parts: svBDK

and the modification terms that are quadratic or higher
order in positive boost weight terms. A proof that svBDK
is gauge invariant on C is beyond the scope of this
paper, and we will just assume it holds here. Why
should we expect it to be gauge invariant? Well, it is the
generalization of the Iyer-Wald-Wall entropy density
from Einstein-scalar EFT to Einstein-Maxwell-scalar
EFT. It is proved in [9] that the Iyer-Wald-Wall entropy
density is gauge invariant on C to linear order and can
be made gauge invariant nonperturbatively by adjusting
the nonunique higher order terms. We expect the proof
can be extended to the Einstein-Maxwell-scalar EFT
case. However, to delve into the covariant phase space
formalism of the proof would divert somewhat from the
material here.
Thus, we will solely concern ourselves with the quad-

ratic or higher order modification terms. The gauge
invariance of these terms for the HKR entropy in the
Einstein-scalar case was discussed in Sec. 4 of [15],
which found they are gauge invariant on C up to and
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including order l4. This was done by noting that, by the
HKR construction, ςðnÞv consists of terms with n derivatives
that are of the form ∂

p1
v P1ðDk

∂
p2
v P2ÞQn;k;p1;p2

with
P1; P2 ∈ fKAB; ∂vϕg. Using that the overall boost weight
is 0, we can classify the allowed terms that can appear
up to four total derivatives. The result is that only
KAB; K̄AB; ∂rK̄AB; ∂vϕ; ∂rϕ; ∂2rϕ; μAB, and ϵA1…Ad−2 can
appear, all of which are gauge invariant on r ¼ v ¼ 0
using the transformation rules given in Sec. 2.1 of [9].
The same analysis follows in the Einstein-Maxwell-

scalar EFT here, with the differences being P1; P2 ∈
fKAB; KA; ∂vϕg and Qn;k;p1;p2

can additionally consist of
allowed Maxwell terms. The result is that KA; K̄A, and
∂rK̄A can appear up to and including order l4, all of which
are still gauge invariant on r ¼ v ¼ 0. Therefore, sv is
gauge invariant to the same order as in the Einstein-scalar
EFT case. As in that case, there are nongauge-invariant
terms like βA;DA∂vϕ, and DAKB that can appear at higher
orders in l.

H. Discussion of the second law
for a charged scalar field

We can ask, can we generalize our proof of the second
law to the EFT of gravity, electromagnetism, and a
charged scalar field as defined in Sec. V E? Our starting
point in the above was the BDK entropy defined in
Sec. VII C, which satisfies a linearized second law.
However, such an entropy is only defined for a real
uncharged scalar, and its generalization to a charged
scalar does not exist in the literature. Proving such a
generalization exists is beyond the scope of this paper as
it would involve delving into phase space formalism, and
therefore this section is merely a discussion. However, it
seems reasonable that such a generalization would exist,
in which case the following completes the generalization
of the proof of the second law.
In the analysis of the real scalar field EFT, we could

use positive boost weight quantities as a proxy for order
of perturbation around a stationary black hole because in
Sec. V C we proved all such quantities vanish on the
horizon in equilibrium. However, in the charged scalar
case things are more subtle because while, e.g., ∂vϕ may
vanish in one electromagnetic gauge, it does not in
another.
In our proof of the generalized zeroth law for a

charged scalar in Sec. V E, we were able to prove in
a particular choice of gauge that all positive boost weight
quantities vanish on the horizon in equilibrium. However,
that gauge was defined by the Killing vector symmetry
which is no longer present in the dynamical setting of the
second law, so we cannot use it directly. What we can
infer, however, is that positive boost weight quantities
made from gauge-invariant quantities like Fμν vanish on
the horizon in equilibrium in all gauges. Similarly,

positive boost weight components of the gauged deriv-
atives

ð∂μ1 − iλAμ1Þ…ð∂μn − iλAμnÞϕ ð140Þ

vanish because if they vanish in one gauge then they
vanish in all gauges.
We can apply these facts to a choice of gauge particularly

suited to our affinely parametrized GNCs. By a suitable
gauge transformation, we can always achieve [9]

A ¼ rηdvþ AAdxA ð141Þ

for some function ηðr; v; xAÞ regular on the horizon. η and
AA have boost weight 0. In this gauge

∂
p
r ηjN ¼∂

p
r FrvjN ; ∂

q
rAAjN ¼∂

q−1
r FrAjN ; ∂vAAjN ¼FvAjN

ð142Þ

for p ≥ 0, q ≥ 1, and hence all positive boost weight
derivatives of η and AA can be written as positive boost
weight derivatives of Fμν on the horizon. Similarly,

∂
p
v∂

q
rϕjN ¼ ð∂v − iλAvÞpð∂r − iλArÞqϕjN ; ð143Þ

and hence all positive boost weight derivatives of ϕ can
be written as positive boost weight components of (140)
(or their ∂A derivatives) on the horizon. Therefore, in
this gauge all positive boost weight quantities still
vanish on the horizon in equilibrium and hence can
still be used as a proxy for perturbations around a
stationary black hole.
In this gauge, the leading order two-derivative part of

EvvjN can be written as

−Eð0Þ
vv jN ¼ ∂v

	
1ffiffiffi
μ

p ∂vð ffiffiffi
μ

p Þ
�
þ KABKAB

þ 1

2
c1ðjϕj2ÞhAB∂vAA∂vAB þ j∂vϕj2: ð144Þ

For the higher derivative terms, let us now assume that
we can generalize the BDK entropy to the charged scalar
case. That is, we assume we can write

−Evv

���
N

¼ ∂v

	
1ffiffiffi
μ

p ∂vð ffiffiffi
μ

p
svBDKÞ þDAsA

�
þ � � � ð145Þ

for some real entropy current ðsvBDK; sAÞ and where the
ellipsis denotes terms that are quadratic in positive boost
weight quantities.
We can now generalize the HKR procedure as follows.

We first reduce, up toOðlNÞ, to a set of allowed terms given
by the following:
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Allowed terms∶ μAB; μAB; ϵA1…Ad−2 ; DkRABCD½μ�; DkβA; Dk
∂
p
vKAB; Dk

∂
q
r K̄AB;

Dkη; Dk
∂
p
vAA; Dk

∂
q
rAA; Dk

∂
p
vϕ; Dk

∂
q
rϕ; Dk

∂
p
vϕ�; Dk

∂
q
rqϕ�: ð146Þ

The reduction of the metric terms follows straightforwardly in the same way as vacuum gravity by using the Eð0Þ
μν ¼ OðlÞ

equations of motion. We can eliminate mixed v and r derivatives of ϕ by using Eð0Þ ¼ OðlÞ and evaluating Eð0Þ in affinely
parametrized GNCs in this gauge,

Eð0Þ ¼ 2∂r∂vϕþDADAϕþ KA
A∂rϕþ βADAϕþ K̄A

A∂vϕ − 2iλAADAϕ − iλϕDAAA − iληϕ − iλβAAAϕ − λ2AAAAϕþ � � � ;
ð147Þ

where the ellipsis denotes terms that vanish on the horizon. The reduction of the Maxwell terms is achieved by using the
equation of motion

Eð0Þ
μ ¼ c1ðjϕj2Þ∇νFμν þ Fμν∇ν½c1ðjϕj2Þ� − 4ϵμναβFαβ∇ν½c2ðjϕj2Þ� þ iλ½ϕ�Dμϕ − ϕðDμϕÞ�� ¼ OðlÞ ð148Þ

and by substituting our choice of gauge ψ ¼ ηþ r∂rη,KA ¼ ∂vAA − rDAη, K̄A ¼ ∂rAA into our affinely parametrized GNC
expressions for ∇νFμν given in Appendix A 3. These allow us to eliminate v and r derivatives of η and mixed v and r
derivatives of AA.
In particular, the only positive boost weight allowed terms are Dk

∂
p
vKAB with p ≥ 0 and Dk

∂
p
vAA, Dk

∂
p
vϕ, and Dk

∂
p
vϕ�

with p ≥ 1. Therefore, we can rewrite all the terms in the ellipsis in (145), which we labelH, up toOðlNÞ as a sum of terms
of the form

ðDk1∂
p1
v P1ÞðDk2∂

p2
v P2ÞQ ð149Þ

with P1; P2 ∈ fKAB; ∂vAA; ∂vϕ; ∂vϕ�g, and where Q is made from allowed terms.
Now, since ðsvBDK; sAÞ is real, the overall sum of these terms H is real. Hence we can pair each of these terms up with its

complex conjugate (or itself if it is real) and write H as

H ¼
X

k1;k2;p1;p2;P1;P2

½ðDk1∂
p1
v P1ÞðDk2∂

p2
v P2ÞQk1;k2;p1;p2;P1;P2

þ ðDk1∂
p1
v P�

1ÞðDk2∂
p2
v P�

2ÞQ�
k1;k2;p1;p2;P1;P2

� ð150Þ

with P1; P2 ∈ fKAB; ∂vAA; ∂vϕg.
We now generalize our inductive hypothesis (121) to

H ¼ ∂v

	
1ffiffiffi
μ

p ∂v

� ffiffiffi
μ

p Xm−1

n¼0

lnςðnÞv
��

þ
�
KAB þ

Xm−1

n¼0

lnXðnÞ
AB

��
KAB þ

Xm−1

n¼0

lnXðnÞAB
�

þ 1

2
c1ðjϕj2Þ

�
∂vAA þ

Xm−1

n¼0

lnXðnÞ
A

��
∂vAA þ

Xm−1

n¼0

lnXðnÞA
�
þ
�
∂vϕþ

Xm−1

n¼0

lnXðnÞ
��

∂vϕþ
Xm−1

n¼0

lnXðnÞ
��

þDA

Xm−1

n¼0

lnYðnÞA þ
XN−1

n¼m

lnHðnÞ þOðlNÞ; ð151Þ

where the HðnÞ, XðnÞ
AB, etc. are real. To proceed the induction we manipulate the terms in Hm exactly as in Sec. VII E, except

we always keep complex conjugates paired up and perform identical operations on them. This will ensure that when we get
to the equivalent of (124) we can split the sum over P1 ∈ fKAB; ∂vAA; ∂vϕg and get

H ¼ ∂v

	
1ffiffiffi
μ

p ∂v

� ffiffiffi
μ

p Xm−1

n¼0

lnςðnÞv
��

þ
�
KAB þ

Xm−1

n¼0

lnXðnÞ
AB

��
KAB þ

Xm−1

n¼0

lnXðnÞAB
�
þ 2lmKABXðmÞAB

þ 1

2
c1ðjϕj2Þ

�
∂vAA þ

Xm−1

n¼0

lnXðnÞ
A

��
∂vAA þ

Xm−1

n¼0

lnXðnÞA
�
þ lmc1ðjϕj2Þ∂vAAXðmÞA þ

�
∂vϕþ

Xm−1

n¼0

lnXðnÞ
�

×

�
∂vϕþ

Xm−1

n¼0

lnXðnÞ
��

þ lm∂vϕXðmÞ� þ lm∂vϕ�XðmÞ þDA

Xm
n¼0

lnYðnÞA þ
XN−1

n¼mþ1

lnHðnÞ þOðlNÞ; ð152Þ
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and thus we can still absorb the order lm terms into the
positive definite terms by completing the squares. The
remainder terms are real, and thus the induction can proceed.
Generalizing the further modifications of Sec. VII F

would follow similarly.
Thus, we can get a nonperturbative second law for a

charged scalar field if we assume a BDK entropy exists in
such a scenario. The procedure outlined here does not
produce an entropy that is manifestly electromagnetic
gauge-independent like in the real scalar field case.
However, it seems reasonable this could be achieved if
the hypothesized BDK entropy was gauge invariant. One
could take a more careful approach to the gauge field, for
example, by keeping derivatives of ϕ in terms of gauged
derivatives ðDA − iλAAÞ, ð∂v − iλAvÞ, etc.

VIII. DISCUSSION

This paper adds another brick in the wall of proving the
laws of black hole mechanics for higher derivative theories
of gravity. To summarize where it leaves us, we have a
zeroth law, first law, and second law for the EFT regime of
higher derivative theories of gravity, electromagnetism, and
a real scalar field. The dynamical black hole entropy which
is constructed along the way is independent of electro-
magnetic gauge for theories with any number of derivatives
and is purely geometric for theories with up to six
derivatives (order l4). It reduces to the standard factor of
the area in two-derivative GR and reduces to the Wald
entropy in equilibrium for any number of derivatives. In
addition, we have shown the zeroth law continues to hold if
the scalar is charged, and there is strong motivation to think
the second law would hold. This suggests a more general
result involving theories of gravity with any matter fields
that satisfy the NEC at two-derivative level may be
provable. For example, it would be interesting to extend
the result to Yang-Mills fields.
Our proofs of the zeroth and second laws are perhaps not

as general as we would like them to be. For the zeroth law
we required our solution to be analytic in l and excluded

certain horizon topologies. For the second law we required
our horizon to be smooth. Recent work [19] has considered
the case of nonsmooth horizons and suggested there may be
additional contributions to black hole entropy motivated by
quantum entanglement entropy. They also demonstrate that
certain terms in the entropy current defined above can
diverge when integrated over nonsmooth features on the
horizon. Furthermore, our definition of the entropy is
dependent on our choice of GNCs above order l4, which
raises question about the uniqueness of black hole entropy.
Therefore, there is still work to be done in this area.
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APPENDIX

1. Evaluation of Eð0Þ
τ on the horizon

We would like to evaluate

Eð0Þ
τ ½ΦJ� ¼ gαβ∇α

h
c1ðϕÞFτβ − 4c2ðϕÞFγδϵτβγδ

i
ðA1Þ

in Killing vector GNCs on the horizon. The metric in
Killing vector GNCs is given by

g ¼ 2dτdρ − ρXðρ; xCÞdτ2 þ 2ρωAðρ; xCÞdτdxA
þ hABðρ; xCÞdxAdxB: ðA2Þ

On the horizon it is simply

gjρ¼0 ¼ 2dτdρþ hABdxAdxB: ðA3Þ

We can calculate the Christoffel symbols on the horizon in
this metric. The nonzero components are

Γτ
ττ ¼

1

2
X; Γτ

τA ¼ −
1

2
ωA; Γτ

AB ¼ −
1

2
∂ρhAB; Γρ

ρτ ¼ −
1

2
X;

Γρ
ρA ¼ 1

2
ωA; ΓA

ρτ ¼
1

2
ωBhAB; ΓA

ρB ¼ 1

2
∂ρhBChAC; ΓA

BC ¼ ΓA
BC½h�; ðA4Þ

where ΓA
BC½h� is the Christoffel symbol built out of the induced metric hAB.

Now, for notational convenience, let

Hαβ ¼ c1ðϕÞFαβ − 4c2ðϕÞFγδϵαβγδ: ðA5Þ

Note this is antisymmetric. Then we can evaluate
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Eð0Þ
τ ½ΦJ�

���
ρ¼0

¼ gαβ∇αHτβ

¼ ∇τHτρ þ hAB∇AHτB

¼ −Γμ
ττHμρ − Γμ

τρHτμ þ hABð∂AHτB − Γμ
AτHμB − Γμ

ABHτμÞ; ðA6Þ

where in the last line we used the fact that everything is
independent of τ. Substituting in the Christoffel symbols
computed above, we get some cancellations with the result
being

Eð0Þ
τ ½ΦJ�

���
ρ¼0

¼ hABð∂AHτB − ΓC
ABHτCÞ

¼ hABDAHτB; ðA7Þ

whereDA is the covariant derivative with respect to hAB and
only acts on A; B;… indices. Finally,

HτA

���
ρ¼0

¼ c1ðϕÞFτA − 4c2ðϕÞFγδϵτAγδ

¼ c1ðϕÞFτA − 8c2ðϕÞϵBAFτB; ðA8Þ

where we used our convention ϵAB ¼ ϵρτAB. Therefore,

Eð0Þ
τ ½ΦJ�

���
ρ¼0

¼ hABDA

h
c1ðϕÞFτB − 8c2ðϕÞϵCBFτC

i
: ðA9Þ

2. Zeroth law for a charged scalar field
in the case ϕð0Þjρ= 0 ≡ 0

We now deal with the case excluded in Sec. V E, in
which ϕð0Þ vanishes identically on the horizon. Moreover,
we assume ϕ vanishes on the horizon up to and including
order lm for some m ≥ 0, i.e., ϕ½m�jρ¼0 ≡ 0.
The proof in Sec. V E breaks down for the following

reasons: in the base case of our induction we can no longer

extract Að0Þ
τ jρ¼0 ¼ 0 from the equation Að0Þ

τ ϕð0Þjρ¼0 ¼ 0,
and similarly in the inductive step, we can no longer prove

AðkÞ
τ jρ¼0 ¼ 0. These were essential steps for the induction to

proceed because they were used to prove the positive boost
weight quantities ∂A1

…∂An
∂
q
vAv vanish on the horizon at

each order [see Eq. (76)]. Without this fact, we cannot
ignore the higher derivative parts of the equations of motion

E½k�
τA½Φ½k−1�

J � and E½k�
τ ½Φ½k−1�

J � at each order in l.
The solution comes from the fact that Eμν and Eμ are

electromagnetic gauge invariant. This means any appear-
ance of Aμ is either inside a Fμν or arises from a term of
schematic form ðDpϕÞ�Dqϕ, in which case it will appear in
the combination ∂

aϕ�
∂
bAμ∂

cϕ. In the former case, we can
use the methods from Sec. V C to show it vanishes at each
order in the induction. In the latter case, we will show that

the vanishing of ϕ½m� on the horizon implies positive boost
weight quantities involving ∂

aϕ�
∂
bAμ∂

cϕ also vanish to
sufficiently high order for the induction to proceed.

From Eð0Þ
ττ ½Φð0Þ

J �jρ¼0 ¼ 0 and Eð0Þ
τA ½Φð0Þ

J �jρ¼0 ¼ 0 we can

still deduce Fð0Þ
τA jρ¼0 ¼ 0 and ∂AXð0Þjρ¼0 ¼ 0, respectively,

and so we still have the generalized zeroth law holding at
order l0. This means κð0Þ is constant. We split the analysis
into two cases: (1) κð0Þ ≠ 0 and (2) κð0Þ ¼ 0.

a. Case 1: κð0Þ ≠ 0

To proceed, we prove a lemma:
Lemma 1. If ϕ vanishes on the horizon up to and

including order lm, and κð0Þ ≠ 0, then all derivatives of ϕ
vanish on the horizon up to and including order lm.
Proof. Clearly all tangential derivatives ∂

p
τ ∂

q
A1…Aq

ϕ
vanish on the horizon up to and including order lm. To
investigate the remaining ρ derivatives, we will inspect the
scalar field equation of motion, E½ΦJ� ¼ 0. At order l0, this

is Eð0Þ½Φð0Þ
J � ¼ 0. Equation (66) has the explicit form for

Eð0Þ½ΦJ�. We can evaluate it in Killing vector GNCs in our
choice of electromagnetic gauge and find

Eð0Þ½ΦJ� ¼ ðX − 2iλAτÞ∂ρϕþ ρX∂2ρϕ

þ ρ2hABωAωB∂
2
ρϕþ � � � ; ðA10Þ

where the ellipsis denotes terms that are proportional to ϕ
or its spatial derivatives ∂qA1…Aq

ϕ. Therefore, plugging this

and ϕð0Þjρ¼0 ≡ 0 into Eð0Þ½Φð0Þ
J �jρ¼0 ¼ 0 gives

ðXð0Þ − 2iλAð0Þ
τ Þ∂ρϕð0Þjρ¼0 ¼ 0: ðA11Þ

We have that Xð0Þjρ¼0 ¼ 2κð0Þ, which is a constant we have
assumed is nonzero. Therefore, ∂ρϕð0Þjρ¼0 ≡ 0. Inductively

assuming ∂
k
ρϕ

ð0Þjρ¼0 ≡ 0 for all k ≤ s for some s ≥ 1, we

substitute (A10) into ∂
s
ρEð0Þ½Φð0Þ

J �jρ¼0 ¼ 0 to get

h
ðsþ 1ÞXð0Þ − 2iλAð0Þ

τ

i
∂
sþ1
ρ ϕð0Þjρ¼0 ¼ 0; ðA12Þ

and so ∂
sþ1
ρ ϕð0Þjρ¼0 ≡ 0. Hence all derivatives of ϕð0Þ

vanish on N , which proves the case m ¼ 0. This means
any appearance of ϕ is at least order l on the horizon.
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Now assume m ≥ 1. Inductively, let us assume all
derivatives of ϕ vanish on the horizon up to and including
order ln for some n, 0 ≤ n < m. Therefore, any appearance
of ϕ or its derivatives in EI½ΦJ�jρ¼0 is at least order lnþ1.
The Lagrangian L is electromagnetic gauge invariant,

therefore wherever a ϕ or its derivatives appears, it must be
multiplied by ϕ� or its derivatives, and vice versa. This
means that every term in E½ΦJ�, which is the equation of
motion arising from varying ϕ�, must be at least linear in ϕ
or its derivatives.
Therefore, E½ΦJ�jρ¼0 is already Oðlnþ1Þ, and its order

lnþ1 part is Eð0Þ½gð0Þμν ; A
ð0Þ
μ ; lnþ1ϕðnþ1Þ�jρ¼0. This is 0 by the

equations of motion, and using (A10) and ϕðnþ1Þjρ¼0 ≡ 0

similar to above, we get

ðXð0Þ − 2iλAð0Þ
τ Þ∂ρϕðnþ1Þjρ¼0 ¼ 0: ðA13Þ

This implies ∂ρϕ
ðnþ1Þjρ¼0 ≡ 0, and similarly we can suc-

cessively look at ∂
s
ρEð0Þ½gð0Þμν ; A

ð0Þ
μ ; lnþ1ϕðnþ1Þ�jρ¼0 ¼ 0 to

deduce ∂
sþ1
ρ ϕðnþ1Þjρ¼0 ≡ 0. Therefore, all derivatives of ϕ

vanish on N up to and including lnþ1 and so the induction
proceeds. ▪
This lemma implies that if ϕ vanishes to all orders on the

horizon, then all its derivatives vanish on the horizon.
Therefore, a term of the form ∂

aϕ�
∂
bAμ∂

cϕ would iden-
tically vanish on the horizon, and so Aμ could only appear
inside an Fμν. But in this case there would be no new
positive boost weight quantities to deal with over the real
scalar field case, and the equations of motion would look
identical. Hence, the generalized zeroth law would follow
trivially from the real scalar field proof above.
Therefore, let us assume that ϕðmþ1Þ is the lowest order at

which ϕ does not identically vanish on the horizon, i.e., that
ϕ½m�jρ¼0 ≡ 0 and ϕðmþ1ÞðxAÞjρ¼0 is nonzero for some xA.
Then by the above lemma, all derivatives of ϕ vanish on the
horizon up to and including order lm, and so any appear-
ance of ϕ is Oðlmþ1Þ on the horizon. But this means the
problematic terms of the form ∂

aϕ�
∂
bAμ∂

cϕ are already at
least order l2mþ2, and so will not appear in our induction
until that order.
To make this precise, we take our inductive hypothesis to

be ∂AX½k−1�jρ¼0 ¼ 0, F½k−1�
τA jρ¼0 ¼ 0 and A½k−2m−3�

τ jρ¼0 ¼ 0.
This is true for the base case k ¼ 1 because we proved

above that ∂AXð0Þjρ¼0 ¼ 0 and Fð0Þ
τA jρ¼0 ¼ 0, and trivially

AðnÞ
τ jρ¼0 ¼ 0 for n < 0 by analyticity in l.
Assuming the hypothesis holds, we would like to study

EτAjρ¼0 and Eτjρ¼0 at order lk. By gauge invariance, any
appearance of Aμ not inside an Fμν will come multiplied by

∂
aϕ�

∂
bϕ and so can only involve A½k−2m−2�

μ . Therefore,
separating out the dependence on Aμ and Fμν, we have the
following:

at order lk; EI½ΦJ�
���
ρ¼0

¼E½k�
I ½g½k�μν;F

½k�
μν;ϕ½k�;A½k−2m−2�

μ �jρ¼0

ðA14Þ

for I ¼ ðτAÞ or I ¼ τ. Additionally, the highest order pieces

gðkÞμν ; F
ðkÞ
μν ;ϕðkÞ; Aðk−2m−2Þ

μ can only appear in Eð0Þ
I because

they will already come with lk,

at order lk;

EI½ΦJ�jρ¼0 ¼ Eð0Þ
I ½g½k�μν; F

½k�
μν;ϕ½k�; A½k−2m−2�

μ �jρ¼0

þ
Xk
s¼1

lsEðsÞ
I ½g½k−1�μν ; F½k−1�

μν ;ϕ½k−1�; A½k−2m−3�
μ �jρ¼0: ðA15Þ

The first two inductive hypotheses ∂AX½k−1�jρ¼0 ¼ 0 and

F½k−1�
τA jρ¼0 ¼ 0 imply positive boost weight quantities

involving g½k−1�μν ; F½k−1�
μν , and ϕ½k−1� vanish on the horizon

by Secs. V C and VD. Furthermore, as discussed around
Eqs. (74)–(76), combining them with the third hypothesis

A½k−2m−3�
τ jρ¼0 ¼ 0 will imply all positive boost weight

quantities involving A½k−2m−3�
μ vanish on the horizon.

Therefore, for the components I ¼ ðτAÞ and I ¼ τ we
see that the higher derivative parts still vanish on the
horizon because they are proportional to positive boost
weight components when we make the coordinate trans-
formation ρ ¼ rðκ½k−1�vþ 1Þ, τ ¼ 1

κ½k−1� logðκ½k−1�vþ 1Þ and
only involve the fields g½k−1�μν ; F½k−1�

μν ;ϕ½k−1�; A½k−2m−3�
μ . Thus,

we need only look at Eð0Þ
I jρ¼0 for these components.

First up, Eτ½ΦJ�jρ¼0, is

at order lk;

Eτ½ΦJ�jρ¼0 ¼ 2λ2lkjϕðmþ1Þj2Aðk−2m−2Þ
τ

þ lkhð0ÞABDð0Þ
A ½c1ð0ÞFðkÞ

τB − 8c2ð0Þϵð0ÞCB FðkÞ
τC � ¼ 0:

ðA16Þ

Integrate this against
ffiffiffiffiffiffiffiffi
hð0Þ

p
over CðτÞ to get

2λ2lk
Z
CðτÞ

dd−2x
ffiffiffiffiffiffiffiffi
hð0Þ

p
jϕðmþ1Þj2Aðk−2m−2Þ

τ ¼ 0; ðA17Þ

where the integral over the second term vanished because it

was a total derivative. We have ∂AA
ðk−2m−2Þ
τ jρ¼0 ¼

−Fðk−2m−2Þ
τA jρ¼0 ¼ 0 by our inductive hypothesis, so

Aðk−2m−2Þ
τ jρ¼0 is a constant. Hence we can take it out of

the integral to get

Aðk−2m−2Þ
τ jρ¼0

Z
CðτÞ

dd−2x
ffiffiffiffiffiffiffiffi
hð0Þ

p
jϕðmþ1Þj2 ¼ 0: ðA18Þ

ZEROTH AND SECOND LAWS OF BLACK HOLE MECHANICS IN … PHYS. REV. D 109, 084051 (2024)

084051-27



However, ϕðmþ1Þ is the lowest order piece of ϕ that does not
identically vanish on the horizon, and so the integral is

nonzero. Therefore, Aðk−2m−2Þ
τ jρ¼0 ¼ 0.

Plugging this back into (A16), let us now integrate it

against
ffiffiffiffiffiffiffiffi
hð0Þ

p
AðkÞ
τ over CðτÞ. In a similar fashion to the

ϕð0Þjρ¼0 ≡ 0 case, we get

Z
CðτÞ

dd−2x
ffiffiffiffiffiffiffiffi
hð0Þ

p
c1ð0Þhð0ÞAB

�
∂AA

ðkÞ
τ

��
∂BA

ðkÞ
τ

�
¼ 0

ðA19Þ

and thus FðkÞ
τA jρ¼0 ¼ 0.

Finally, we look at EτA½ΦJ�jρ¼0 at order lk. This is

at order lk; EτA½ΦJ�jρ¼0 ¼ −
1

2
lk∂AXðkÞ −

1

2
ilkλAðk−2m−2Þ

τ

�
ϕðmþ1Þ�

∂Aϕ
ðmþ1Þ − ϕðmþ1Þ

∂Aϕ
ðmþ1Þ� − 2iλAð0Þ

A jϕðmþ1Þj2
�

−
1

2
c1ð0Þ

�
Fð0Þ
ABh

ð0ÞBC − Fð0Þ
τρ δCA

�
lkFðkÞ

τC ¼ 0: ðA20Þ

Substituting in Aðk−2m−2Þ
τ jρ¼0 ¼ 0 and FðkÞ

τA jρ¼0 ¼ 0 we get
∂AXðkÞjρ¼0 ¼ 0, and thus the induction proceeds and we
have proved the generalized zeroth law.

b. Case 2: κð0Þ = 0

Finally, we deal with the case κð0Þ ¼ 0. Moreover, we
assume κ½n� ¼ 0 for some n ≥ 0. The proof now gets rather
technical and mostly involves chasing powers of l. The
physical relevance of this proof is questionable as we are
heavily relying on analyticity in l, however we include it for
completeness.
In this case we cannot apply Lemma 1. Our aim is still to

prove Aτjρ¼0 ¼ 0. Suppose we have an obstruction to this,

in that A½N�
τ jρ¼0 ¼ 0 but AðNþ1Þ

τ jρ¼0 ≠ 0 for someN. We will
try to find a contradiction. In the previous cases we used the

2λ2Aτjϕj2 term in Eð0Þ
τ jρ¼0 to prove Aτ vanished at each

order. However, it is order l2mþNþ3, therefore we first need
to be able to run the induction all the way up to that order

before we can hope to conclude AðNþ1Þ
τ jρ¼0 ¼ 0. If N < n it

turns out we can prove a lemma that allows us to do this.
Before stating and proving the lemma, it is worth

emphasizing some logic we will use repeatedly below.

Suppose we have proved ∂AX½s�jρ¼0 ¼ 0 and F½s�
τAjρ¼0 ¼ 0

for some s ≥ 0. Then we can change to affinely para-
metrized coordinates via ρ ¼ rðκ½s�vþ 1Þ, τ ¼
1
κ½s� logðκ½s�vþ 1Þ in which all positive boost weight quan-

tities involving g½s�μν, F
½s�
μν, ϕ½s�, and A½s�

μ vanish on the horizon

except from ∂A1
…∂An

∂
q
vA

½s�
v . But earlier we calculated

∂
q
vA

½s�
v jr¼0 ¼

ð−κ½s�Þq
ðκ½s�vþ 1Þqþ1

A½s�
τ jρ¼0: ðA21Þ

Therefore, if κ½n� ¼ 0 and A½N�
τ jρ¼0 ¼ 0, then ∂

q
vA

½s�
v jr¼0 is at

least order lqðnþ1ÞþNþ1. Taking ∂A derivatives does not
change the order on the horizon, and so we will not

explicitly mention them in the analysis going forward.
Furthermore, we can calculate that the nonpositive boost
weight quantities made from ϕ½s�, namely, ∂av∂brϕ½s� with
b ≥ a have the following form on the horizon:

∂
a
v∂

b
rϕ

½s�jr¼0 ¼
b!

ðb − aÞ!
�
κ½q�

�
a
�
κ½q�vþ 1

�
b−a

∂
b
ρϕ

½s�jρ¼0:

ðA22Þ
Therefore, if we also happen to know that ∂bρϕ½Nb�jρ¼0 ¼ 0,

then ∂
a
v∂

b
rϕ

½s�jr¼0 is at least order laðnþ1ÞþNbþ1.
Onto the lemma:
Lemma 2. If ϕ½m�jρ¼0 ¼ 0, κ½n� ¼ 0, A½N�

τ jρ¼0 ¼ 0, and

AðNþ1Þ
τ jρ¼0 ≠ 0 with N < n then

∂AX½2mþNþ2�jρ¼0 ¼ 0; F½2mþNþ2�
τA jρ¼0 ¼ 0;

and ∀p ≥ 1∂
p
ρϕ½m−pðNþ1Þ�jρ¼0 ¼ 0: ðA23Þ

Proof. If Að0Þ
τ jρ¼0 ≠ 0, i.e., N ¼ −1, then the proof

follows in the same way as Lemma 1. This is because

Eq. (A11) becomes −2iλAð0Þ
τ ∂ρϕ

ð0Þjρ¼0 ¼ 0, from which
we can still conclude ∂ρϕ

ð0Þjρ¼0 ¼ 0. Similarly in (A12)
and (A13) we still find the ρ derivatives of ϕ vanish, and so
can conclude ∂

p
ρϕ½m�jρ¼0 ¼ 0 ∀ p as (A23) requires. We

then trivially get ∂AX½2mþ2�jρ¼0 ¼ 0 and F½2mþ2�
τA jρ¼0 ¼ 0

from the induction detailed in the rest of case 1 (and we get

our contradiction that Að0Þ
τ jρ¼0 ¼ 0 if there is some m such

that ϕðmþ1Þ ≢ 0).
Therefore, let N ≥ 0. We now proceed by induction on

0 ≤ k < m with hypothesis

∂AX½2kþNþ1�jρ¼0 ¼ 0; F½2kþNþ1�
τA jρ¼0 ¼ 0;

and ∀p ≥ 1∂
p
ρϕ½k−pðNþ1Þ�jρ¼0 ¼ 0: ðA24Þ

For the base case k ¼ 0, we note that A½N�
τ jρ¼0 ¼ 0 and

∂AX½N�jρ¼0 ¼ 0 because κ½n� ¼ 0 and N < n. This implies
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all positive boost weight quantities made from Φ½N� vanish
on the horizon. Therefore, at order lNþ1, the higher
derivative pieces in Eτjρ¼0 and EτAjρ¼0 vanish, and using
the same method as the real scalar field case we can prove

∂AX½Nþ1�jρ¼0 ¼ 0 and F½Nþ1�
τA jρ¼0 ¼ 0. Furthermore,

∂
p
ρϕ½−pðNþ1Þ�jρ¼0 ¼ 0 ∀ p ≥ 1 trivially.
So let us assume the hypothesis holds for k. For I ¼ ðτAÞ

and I ¼ τ we study

at order l2kþNþ2;

EI½ΦJ�jρ¼0 ¼ Eð0Þ
I ½Φ½2kþNþ2�

J �jρ¼0

þ l
X2kþNþ2

s¼1

ls−1EðsÞ
I ½Φ½2kþNþ1�

J �jρ¼0: ðA25Þ

We again change coordinates via ρ ¼ rðκ½2kþNþ1�vþ 1Þ,
τ ¼ 1

κ½2kþNþ1� logðκ½2kþNþ1�vþ 1Þ, in which I ¼ ðτAÞ and
I ¼ τ are proportional to positive boost weight compo-
nents. As discussed above, the only positive boost weight

quantity made from Φ½2kþNþ1�
J that does not vanish on the

horizon by the induction hypotheses is ∂
q
vA

½2kþNþ1�
v . By

gauge invariance, if an Aμ appears, so must a ∂
aϕ�

∂
bϕ.

Therefore, the only positive boost weight terms left must
have the combination

ð∂a1v ∂
b1
r ϕ�Þð∂q1v AvÞ…ð∂qMv AvÞð∂a2v ∂

b2
r ϕÞ ðA26Þ

for some M ≥ 1, with b1 ≥ a1, b2 ≥ a2, and overall boost
weight a1 þ a2 − b1 − b2 þM þP

qi ≥ 1. But by (A21),
(A22), and the inductive hypothesis [which implies
Nb ¼ k − bðN þ 1Þ], on the horizon this is of order

2kþ2þ
�
a1þa2þ

X
qi

�
ðnþ1ÞþðM−b1−b2ÞðNþ1Þ

≥2kþ2þ
�
a1þa2−b1−b2þMþ

X
qi

�
ðNþ1Þ

≥2kþ2þNþ1: ðA27Þ

Therefore, since the higher derivative terms in (A25)
come with at least one extra power of l, the remaining
positive boost weight quantities (A26) cannot appear until
order l2kþNþ4. Hence the higher derivative terms can be
safely ignored at order l2kþNþ2 and we can get

∂AX½2kþNþ2�jρ¼0 ¼ 0 and F½2kþNþ2�
τA jρ¼0 ¼ 0 using the same

method as the real scalar field case (k < m so the Aτϕ
�ϕ

terms do not appear in Eð0Þ
I at this order). Furthermore, we

can repeat this at order l2kþNþ3 to get ∂AX½2kþNþ3�jρ¼0 ¼ 0

and F½2kþNþ3�
τA jρ¼0 ¼ 0, which lets the first two inductive

hypotheses proceed.

Turning to the third hypothesis, we start with p ¼ 1, i.e.,
we show ∂ρϕ

ðkþ1−ðNþ1ÞÞjρ¼0 ¼ 0. To do this, we study

at order lkþ1;

E½ΦJ�jρ¼0 ¼ Eð0Þ½Φ½kþ1�
J �jρ¼0 þ l

Xkþ1

s¼1

ls−1EðsÞ½Φ½k�
J �jρ¼0:

ðA28Þ

As ever, make the coordinate change ρ ¼ rðκ½k�vþ 1Þ, τ ¼
1
κ½k� logðκ½k�vþ 1Þ in the higher derivative terms. As dis-
cussed in Lemma 1, every term in E½ΦJ� is at least linear in
ϕ or its derivatives. ϕ½m�jρ¼0 ¼ 0 so it cannot appear
undifferentiated in the above. By (A22) and the inductive
hypothesis, zero boost weight derivatives ð∂v∂rÞaϕ½k� are at
least order aðnþ 1Þ þ k − aðN þ 1Þ þ 1 ≥ kþ 1 on the
horizon, and so cannot appear in the higher derivative terms
due to the extra factor of l. Furthermore, all positive boost
weight derivatives of ϕ½k� also vanish on the horizon
because ∂AX½k�jρ¼0 ¼ 0. This leaves negative boost weight
derivatives of ϕ, however, since E½ΦJ� is overall zero boost
weight, these must come multiplied by positive boost

weight factors. The only Φ½k�
J positive boost weight quan-

tities that are nonvanishing on the horizon are ∂qvA
½k�
v , hence

we are left with combinations of the form

ð∂av∂brϕÞð∂q1v AvÞ…ð∂qMv AvÞ ðA29Þ

with b > a and M ≥ 1 and overall non-negative boost
weight a − bþM þP

qi ≥ 0. But on the horizon this is
of order

kþ 1þ
�
aþ

X
qi

�
ðnþ 1Þ þ ðM − bÞðN þ 1Þ

≥ kþ 1þ
�
a − bþM þ

X
qi

�
ðN þ 1Þ

≥ kþ 1; ðA30Þ

and so once again cannot appear in the higher deri-
vative terms at order lkþ1 due to the extra factor of l.
Therefore, we can safely ignore these terms and just look at

Eð0Þ½Φ½kþ1�
J �jρ¼0, which gives

at order lkþ1;

E½ΦJ�jρ¼0 ¼ −2iλlkþ1AðNþ1Þ
τ ∂ρϕ

ðkþ1−ðNþ1ÞÞjρ¼0 ¼ 0;

ðA31Þ

therefore ∂ρϕ
ðkþ1−ðNþ1ÞÞjρ¼0 ¼ 0 as desired. Now

induct on the number of ρ derivatives, i.e., assume
∂
p
ρϕ½kþ1−pðNþ1Þ�jρ¼0 ¼ 0 for all p ≤ s for some s ≥ 1.
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Then look at ð∇ρÞsE½ΦJ� ¼ 0 on the horizon at order
lkþ1−sðNþ1Þ. Change coordinates and note that the result has
overall boost weight −s. Once again, it can be shown that
the higher derivative terms can be ignored by calculating
the order of the terms like (A29) that can appear and using
the inductive hypotheses. We end up with

at orderlkþ1−sðNþ1Þ;

ð∇ρÞsE½ΦJ�jρ¼0 ¼ −2iλlkþ1−sðNþ1ÞAðNþ1Þ
τ ∂

sþ1
ρ

× ϕðkþ1−ðsþ1ÞðNþ1ÞÞjρ¼0 ¼ 0; ðA32Þ

and therefore ∂
sþ1
ρ ϕðkþ1−ðsþ1ÞðNþ1ÞÞjρ¼0 ¼ 0. This com-

pletes the induction over ρ derivatives, which completes
the overall induction.
We can run the induction until k ¼ m to get

∂AX½2mþNþ1�jρ¼0 ¼ 0, F½2mþNþ1�
τA jρ¼0 ¼ 0, and ∀ p ≥

1∂
p
ρϕ½m−pðNþ1Þ�jρ¼0 ¼ 0. We cannot go a full step further

because ϕðmþ1Þjρ¼0 is not necessarily vanishing in

Eð0Þ½Φ½mþ1�
J �jρ¼0 at order lmþ1 and so Eq. (A31) would

be much more complicated. However, we can go one order
further in EI½ΦJ�jρ¼0 for I ¼ τ and I ¼ ðτAÞ because the
problem terms (A26) now do not appear until order l2mþNþ4

in the higher derivative terms, and the Aτϕ
�ϕ terms do not

appear in Eð0Þ
I until order l2mþNþ3. Hence we can prove

∂AX½2mþNþ2�jρ¼0 ¼ 0, F½2mþNþ2�
τA jρ¼0 ¼ 0, which completes

the lemma. ▪
If ϕ vanishes to all orders on the horizon (i.e., we can

takem → ∞), then we see ∂AXjρ¼0 and FτAjρ¼0 also vanish
to all orders and so the generalized zeroth law holds.
Therefore, let us assume that ϕðmþ1ÞðxAÞjρ¼0 is nonzero for
some xA. Let us try to go one step further in the induction
and look at Eτ½ΦJ�jρ¼0 at order l2mþNþ3. The higher
derivative terms still vanish because terms of the form
(A26) do not appear until order l2mþNþ4 as discussed

above. However, Aτjϕj2jρ¼0 ¼ l2mþNþ3AðNþ1Þ
τ jϕðmþ1Þj2jρ¼0

and so appears in Eð0Þ
τ ½ΦJ�jρ¼0,

at order l2mþNþ3; Eτ½ΦJ�
���
ρ¼0

¼ 2λ2l2mþNþ3AðNþ1Þ
τ jϕðmþ1Þj2

þ l2mþNþ3hð0ÞABDð0Þ
A

h
c1ð0ÞFð2mþNþ3Þ

τB − 8c2ð0Þϵð0ÞCB Fð2mþNþ3Þ
τC

i
¼ 0: ðA33Þ

However, we can now repeat the same analysis as case 1 by integrating against
ffiffiffiffiffiffiffiffi
hð0Þ

p
over CðτÞ to get AðNþ1Þ

τ jρ¼0 ¼ 0,

which contradicts our assumption that AðNþ1Þ
τ jρ¼0 ≠ 0.

Lemma 2 only holds for N < n, and hence this contradiction only applies up to N ¼ n − 1. Therefore, we can conclude

one of the following must be true from the logic so far: (a) A½n�
τ jρ¼0 ¼ 0 or (b) A½n�

τ jρ¼0 ≠ 0 and ϕjρ¼0 ≡ 0 to all orders in
which case the generalized zeroth law holds.
Taking forward (a), if κ vanishes to all orders (i.e., we can take n → ∞) then so does Aτ, which would prove the

generalized zeroth law. Therefore, we assume κðnþ1Þ ≠ 0, in which case we can prove another lemma:
Lemma 3. If ϕ½m�jρ¼0 ¼ 0, A½n�

τ jρ¼0 ¼ 0, κ½n� ¼ 0, and κðnþ1Þjρ¼0 ≠ 0, then

∂AX½2mþnþ2�jρ¼0 ¼ 0; F½2mþnþ2�
τA jρ¼0 ¼ 0; and ∀p ≥ 1∂

p
ρϕ½m−pðnþ1Þ�jρ¼0 ¼ 0: ðA34Þ

Proof. This proof follows using the same steps as the proof of Lemma 2 with N ¼ n except we use the nonvanishing of
κðnþ1Þ rather than AðNþ1Þ to conclude the vanishing of ρ derivatives of ϕ. For example, (A31) becomes

at order lkþ1; E½ΦJ�jρ¼0 ¼ lkþ1ðXðnþ1Þ − 2iλAðnþ1Þ
τ Þ∂ρϕðkþ1−ðnþ1ÞÞjρ¼0 ¼ 0: ðA35Þ

Xðnþ1Þjρ¼0 is proved to be constant in the base case of the main induction and is nonzero because κðnþ1Þjρ¼0 ≠ 0. Therefore,

we can conclude ∂ρϕ
ðkþ1−ðnþ1ÞÞjρ¼0 ¼ 0. Higher ρ derivatives follow similarly. ▪

We see once again that if ϕ vanishes to all orders on the horizon then the generalized zeroth law holds. Therefore, we are
left with the final case to deal with: ϕ½m�jρ¼0 ¼ 0, ϕðmþ1ÞðxAÞjρ¼0 is nonzero for some xA, κ½n� ¼ 0, κðnþ1Þjρ¼0 ≠ 0, and

A½n�
τ jρ¼0 ¼ 0. We perform our final induction on this case, which has hypothesis

∂AX½kþ2mþ1�jρ¼0 ¼ 0; F½kþ2mþ1�
τA jρ¼0 ¼ 0; A½k−1�

τ jρ¼0 ¼ 0 ðA36Þ

for k ≥ nþ 1. The base case k ¼ nþ 1 follows from Lemma 3, from which we also have ∀ p ≥ 1; ∂pρϕ½m−pðnþ1Þ�jρ¼0 ¼ 0.
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We now assume the hypothesis holds for k. For I ¼ ðτAÞ and I ¼ τ, we study

at order lkþ2mþ2; EI½ΦJ�jρ¼0 ¼ Eð0Þ
I ½Φ½kþ2mþ2�

J �jρ¼0 þ l
Xkþ2mþ2

s¼1

ls−1EðsÞ
I ½Φ½kþ2mþ1�

J �jρ¼0: ðA37Þ

Change coordinates via ρ ¼ rðκ½kþ2mþ1�vþ 1Þ, τ ¼ 1
κ½kþ2mþ1� logðκ½kþ2mþ1�vþ 1Þ, in which I ¼ ðτAÞ and I ¼ τ are propor-

tional to positive boost weight components. As in Lemma 2, the only positive boost weight quantities made fromΦ½kþ2mþ1�
J

that do not necessarily vanish on the horizon by the induction hypotheses are in the combination

ð∂a1v ∂
b1
r ϕ�Þð∂q1v AvÞ…ð∂qMv AvÞð∂a2v ∂

b2
r ϕÞ ðA38Þ

for some M ≥ 1, with b1 ≥ a1, b2 ≥ a2, and overall boost weight a1 þ a2 − b1 − b2 þM þP
qi ≥ 1. But by (A21),

(A22), and the inductive hypotheses, on the horizon this is of order

2mþ 2þ
�
a1 þ a2 − b1 − b2 þ

X
qi

�
ðnþ 1Þ þMk ≥ 2mþ 2þ nþ 1þMðk − n − 1Þ ≥ 2mþ 2þ k; ðA39Þ

where in the last step we used M ≥ 1 and k ≥ nþ 1. Therefore, we can once again ignore the higher derivative terms in
(A37) because they come with an additional power of l.
Hence,

at order lkþ2mþ2; Eτ½ΦJ�
���
ρ¼0

¼ 2λ2lkþ2mþ2AðkÞ
τ jϕðmþ1Þj2

þ lkþ2mþ2hð0ÞABDð0Þ
A

h
c1ð0ÞFðkþ2mþ2Þ

τB − 8c2ð0Þϵð0ÞCB Fðkþ2mþ2Þ
τC

i
¼ 0: ðA40Þ

Identical to case 1, we integrate this against
ffiffiffiffiffiffiffiffi
hð0Þ

p
and then against

ffiffiffiffiffiffiffiffi
hð0Þ

p
AðkÞ
τ to get AðkÞ

τ jρ¼0 ¼ 0 and Fðkþ2mþ2Þ
τA jρ¼0 ¼ 0,

respectively.
Finally,

at order lkþ2mþ2; EτA½ΦJ�jρ¼0 ¼ −
1

2
lkþ2mþ2

∂AXðkþ2mþ2Þ

−
1

2
ilkþ2mþ2λAðkÞ

τ

�
ϕðmþ1Þ�

∂Aϕ
ðmþ1Þ − ϕðmþ1Þ

∂Aϕ
ðmþ1Þ� − 2iλAð0Þ

A jϕðmþ1Þj2
�

−
1

2
c1ð0Þ

�
Fð0Þ
ABh

ð0ÞBC − Fð0Þ
τρ δCA

�
lkþ2mþ2Fðkþ2mþ2Þ

τC ¼ 0 ðA41Þ

into which we substitute AðkÞ
τ jρ¼0 ¼ 0 and Fðkþ2mþ2Þ

τA jρ¼0 ¼ 0 to get ∂AXðkþ2mþ2Þjρ¼0 ¼ 0. Hence, the induction proceeds
and we have proved the generalized zeroth law.

3. Full expressions for ∇βFαβ in affinely parametrized GNCs

The components of ∇βFαβ in affinely parametrized GNCs are as follows:

∇βFvβ ¼ ∂vψ þDAKA þ Kψ þ rð−DAψβA þ βA∂rKA −DAβBFAB − βAβAψ − K̄A
∂vβA

þ KAK̄βA −DAβAψ − 2KAK̄A
BβBÞ þ r2ð−α∂rψ − βAβA∂rψ − FABβA∂rβB

þDAβBK̄AβB þDAαK̄A −DAβBK̄BβA þ K̄AαβA − βA∂rβAψ − K̄αψ − K̄βAβAψ

þ 2K̄ABβAβBψÞ þ r3ð−K̄Aα∂rβA − K̄AβBβB∂rβA þ K̄AβAβ
B
∂rβB þ K̄AβA∂rαÞ; ðA42Þ

∇βFrβ ¼ −∂rψ þDAK̄A þ K̄AβA − K̄ψ þ rðβA∂rK̄A − 2K̄AK̄A
BβB þ K̄A

∂rβA þ K̄K̄AβAÞ; ðA43Þ
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∇βFAβ ¼ −∂rKA − ∂vK̄A þDBFAB þ 2KABK̄B þ 2KBK̄AB − βAψ − KK̄A − KAK̄ þ FA
BβB

þ r

�
−FBCK̄ABβC þDBβAK̄B þ K̄A

BβBψ − ∂rβAψ þ 1

2
K̄BβAβB þ FA

BK̄βB

−DBβBK̄A þ FA
B
∂rβB − K̄Aβ

BβB − 2K̄Aα

�
þ r2

�
K̄BK̄ABαþ K̄BK̄ABβ

CβC

þ 1

2
K̄BβB∂rβA − K̄K̄Aα − K̄K̄Aβ

BβB − K̄Aβ
B
∂rβB − K̄A∂rα

�
: ðA44Þ

These were calculated using the symbolic algebra program CADABRA [20–22]. To get Eq. (117), we use (110) to eliminate
∂vK̄A in (A44).
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