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in Einstein-Maxwell-scalar effective field theory
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There has been recent progress in extending the zeroth and second laws of black hole mechanics to
gravitational effective field theories (EFTs). We generalize these results to a much larger class of EFTs
describing gravity coupled to electromagnetism and a real scalar field. We also show that the zeroth law
holds for the EFT of gravity coupled to electromagnetism and a charged scalar field.
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I. INTRODUCTION

The laws of black hole mechanics are a set of theorems
determining the classical properties of black holes. Their
striking resemblance to the laws of thermodynamics leads
to an interpretation of black holes as thermodynamic
objects, which is made concrete through the mechanism
of Hawking radiation.

The original proofs of the laws [1,2] require that the
theory of gravity is the two-derivative Einstein-Hilbert
action, with a theory of matter, such as Maxwell theory
or a minimally coupled scalar field, that satisfies suitable
energy conditions. However, we know that two-derivative
Einstein-Maxwell theory cannot be the complete descrip-
tion of gravity and electromagnetism on all scales as it is
not a UV complete theory. Generically we expect any low
energy limit of a UV theory of gravity to come with higher
derivative corrections, which will invalidate the standard
proofs of the laws of black hole mechanics. Since we do not
expect these corrections to change the physical interpreta-
tion of black holes as thermodynamic objects, this is a
problem.

There have been a variety of attempts to reconcile the
laws in higher derivative theories of gravity, some of which
are reviewed by Sarkar in 2019 in [3]. In particular, Wald
proved in [4] that a modified, but still geometric, definition
of black hole entropy could be used to prove the ‘“‘equi-
librium state” version of the first law in any diffeomor-
phism-invariant theory of gravity with arbitrary matter
fields. However, this definition of the entropy fails to
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satisfy a second law, and he had to assume that the zeroth
law holds via the assumption of a bifurcate Killing horizon.
Recently, however, there were several developments in
proving the zeroth, first, and second laws in the setting of
effective field theory (EFT). This setting requires assuming
two things: (a) the Lagrangian is a series of terms with
increasing derivatives coming with coefficients that scale in
appropriate powers of some UV length scale /, and (b) any
time or length scale L associated with the solution satisfies
L > [. The first assumption is physically reasonable if we
view our theory as a low energy limit of some UV complete
theory of gravity. The second assumption means that higher
derivative terms are less important, and so our solution
remains in the regime of validity of the EFT.
Let us briefly review the spate of recent results.
Zeroth law. Bhattacharyya et al. [5] proved that the
zeroth law holds for any diffeomorphism-invariant EFT of
gravity without matter. The zeroth law states that the
surface gravity x of a stationary black hole is constant
across the horizon." The proof uses Gaussian null coor-
dinates and the concept of “boost weight” to show that
derivatives of k tangent to the horizon are proportional to a
component of the equations of motion, which is set to 0.
First law. Biswas et al. [8] generalized the Wald entropy
[4] to prove the “physical process” version of the first law
for an arbitrary higher derivative diffeomorphism-invariant,
gauge-independent theory of gravity, electromagnetism,
and a real scalar field. The physical process version of
the first law concerns a stationary black hole that is

"Note that, in order to define the surface gravity, the horizon of
the black hole must be a Killing horizon. Hawking proved this is
always the case for two-derivative general relativity (GR) in his
rigidity theorem [6], under the assumption of analyticity. Recent
work by Hollands et al. [7] has proved the rigidity theorem also
holds in the EFT of gravity with no matter, also under the
assumption of analyticity.

Published by the American Physical Society
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perturbed by some matter before settling down to a new
stationary configuration. It relates the change in entropy 65
to the mass 0M, angular momentum &J, and charge 6Q of
the matter perturbation,

%55 — 6M — Q6] — By 50, (1)
where Qp is the angular velocity of the horizon and @y, is
the electrostatic potential.

Second law. Hollands et al. (HKR) [9], following up
from work by Wall [10] and Bhattacharyya et al. [11],
proved a version of the second law for any diffeomorphism-
invariant EFT of gravity and a real scalar field. The second
law states that the entropy of a dynamical black hole is
nondecreasing in time, S > 0. HKR consider a dynamical
black hole settling down to an equilibrium stationary state
and that remains in the regime of validity of the EFT as
described above. They were able to define an entropy
which is nondecreasing to quadratic order in perturbations
around the stationary state, up to O(I") terms, where [V is
the order up to which we know our EFT. Furthermore, this
entropy reduces to the Wald entropy in equilibrium.

Finally, in the companion to this paper [12], Davies and
Reall were able to show that a further extension of the HKR
procedure can strengthen the second law result significantly
by dropping its perturbative nature. They define an entropy
which satisfies a nonperturbative second law in vacuum
gravity EFT, up to O(I") terms. This entropy reduces to the
Wald entropy in equilibrium, satisfies the first law, and is
purely geometrically defined for theories with up to six
derivatives.

Taken together, these results mean we now have a much
better understanding of the laws of black hole mechanics in
EFT. However, the results we have for the zeroth law and
second law are only applicable to gravity with minimal
matter couplings or to gravity with the simplest matter field,
a scalar field. Here we ask, are these results robust to the
addition of nonminimal couplings of some more compli-
cated matter field? The only field other than the metric and
scalar field for which we know the classical approximation
may be valid is the Maxwell field, and hence this seems like
an important addition to make.

In this paper we extend the aforementioned works by
completing the story for the EFT of gravity, electromag-
netism, and a real (uncharged) scalar field. We prove a
generalized zeroth law holds exactly and that the second
law holds in the sense of Davies and Reall. Taken all
together, this means there is now a zeroth, first, and second
law for such theories. Along the way we will also show the
zeroth law still holds even if the scalar field is charged and
discuss how the second law could be generalized in this
case. This gives further evidence that these proofs are
robust to more complicated matter models and that, even in
higher derivative theories of gravity, black holes will still
obey the laws.

The paper is broken down as follows. In Sec. II, we
define our Einstein-Maxwell-scalar EFT. In Sec. III, we
define two distinct choices of Gaussian null coordinates
(GNCs) and the notion of boost weight. We will work in
GNCs throughout the paper. In Sec. IV, we state the
generalized zeroth law and sketch its proof for Einstein-
Maxwell-scalar EFT. Section V contains the details of this
proof. We also show how the proof can be modified if the
scalar field is charged. In Sec. VI, we make precise the
scenario in which we will prove the second law and review
the previous work on the matter. In Sec. VII, we prove the
second law for Einstein-Maxwell-scalar EFT and discuss its
generalization if the scalar is charged.

II. EINSTEIN-MAXWELL-SCALAR EFT

We consider the EFT of gravity, electromagnetism, and a
real” scalar field ¢, which we shall refer to as Einstein-
Maxwell-scalar EFT. In EFT, the Lagrangian is a sum of
terms ordered by their number of derivatives. We assume
diffeomorphism invariance and electromagnetic gauge
invariance,’ so that the Lagrangian consists only of con-
tractions of Rs,5, Fop, ¢, and their covariant derivatives,

L= E(g(lﬂ’R(lﬁyﬁv VaRaﬁ},,;, . ..,Faﬁ,VaFaﬁ, .. .,¢, Vaqﬁ, . )
(2)

The most general Lagrangian of this form with up to two
derivatives can be written as’

1 1
‘CZ =R- V(¢) - Ev(z¢v(l¢ - ch (¢)F{“F(l/f
+ ¢ () F s F 5. (3)

An arbitrary function of ¢ multiplying R can be eliminated
by redefining the metric, while an arbitrary function of ¢
multiplying V,pV?¢p can be eliminated by redefining
¢ [14]. Here we have taken units with 162G =1 and
rescaled F,; appropriately. The final term only appears in
d = 4, where the volume form €,4,5 has four indices; in
higher dimensions, it is taken that this term is not present.

*The EFT of a charged, complex scalar field is discussed in
Sec. VE.

The assumption that the Lagrangian is invariant under an
electromagnetic gauge transformation A, — A, + Vy will rule
out, for example, Chern-Simons terms, which are not themselves
gauge invariant but do produce gauge-invariant equations of
motion. See very recent work [13] for a linearized second law for
Chern-Simons terms.

*We have included the zero-derivative term V(¢) in the two-
derivative Lagrangian £,. Naively, in EFT, we should expect
V(¢) to come with a factor 1/I>. However, we assume V(¢) is
comparable to the cosmological constant A, which is extremely
small for somewhat mysterious reasons. More precisely, we
assume |V| < 1/L?, where L is any typical length scale of the
solution, and so V(¢) is of no larger scale than the two-derivative
terms.
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The only condition we put on the arbitrary functions
V(¢), ci(¢), and c,(¢) is that ¢ (¢) > 0. This is a sufficient
condition for the energy-momentum tensor of the leading
order two-derivative theory to satisfy the null energy con-
dition (NEC). For Einstein-Maxwell theory without a scalar
field, c¢; = 1, so this positivity condition is also motivated on
the grounds that we do not expect the scalar field to change
the sign of ¢,. If we were additionally to impose V(¢) > 0
then the two-derivative energy-momentum tensor would also
satisfy the dominant energy condition (DEC), which is the
condition assumed in the original proof of the zeroth law by
Bardeen et al. [2]. However, the proof still goes through if the
two-derivative energy-momentum tensor minus any parts
proportional to the metric satisfies the DEC. Since V (¢) only
appears in T, multiplying g,,, this is satisfied by our two-
derivative theory regardless of the sign of V(¢) (for example,
we can include the case of a negative cosmological constant
which is excluded by the DEC). Indeed, in the following
proofs we will require no condition on V(¢).

In the full EFT action, higher derivative terms come with
a factor of some UV scale [ for each extra derivative,

S = /d"x\/—_g<£2 + nzijl l"ﬁn+2>’ (4)

where £, , contains all terms with n 4 2 derivatives.

The equations of motion for this action are
E,s=0,E,=0,E =0, where
Ey= ﬁ% =E{) + il I"EY),
E,=- \/l__ggaﬂ(;i = EY + n: rEY,
_ \/L__gg — EO 4 i pE®, (5)
where E,(I(}),),E&()),E(O) are the result of varying the two-

derivative terms from L,, i.e.,

0 1 1
Ef),;;) = Raﬂ ) Va¢vﬁ¢ ) 1 (¢)Fa5Fﬂ5

1 ! !
=5 Yap (R -V(g) - Evyff’vy(ﬁ ¢ (¢)F76Fy6>’
(6)
EY = v+ [Cl (@) Fop — 4c2(P)F réeaﬂﬁ] : ™
B0 = VY, V() - Ll )F
+ (D) F g F 5. (8)

ITII. GAUSSIAN NULL COORDINATES

We will be concerned with quantities on the event
horizon A of a black hole, which is a null hypersurface.
We assume N is smooth and has generators that have affine
parameters extending to the infinite future. The smoothness
assumption will always be true in the stationary setting of
the zeroth law, but is not generally true when considering
dynamical black holes, as in the second law. However, it
seems a reasonable assumption for the situation of a black
hole settling down to equilibrium, as envisioned in [9-11].

To describe quantities near A/, we will use two appro-
priate choices of Gaussian null coordinates. The first
applies to both the stationary and dynamical setting, while
the second will only be used in the stationary case to prove
the zeroth law.

A. Affinely parametrized GNCs

Here we use the same notation as [9,15]. Assume all
generators intersect a spacelike cross section C exactly
once, and take x* to be a codimension-2 coordinate chart
on C. Let the null geodesic generators have affine param-
eter v and future-directed tangent vector [* such that [ = 9,
and v = 0 on C. We can transport C along the null geodesic
generators a parameter distance » to obtain a foliation C(v)
of \V. Finally, we uniquely define the null vector field n* by
n-(0/0x*) =0 and n-I=1. The coordinates (r,v,x")
are then assigned to the point affine parameter distance r
along the null geodesic starting at the point on N with
coordinates (v, x*) and with tangent n® there. The metric in
these GNCs is given by

g = 2dvdr — r*a(r, v, x6)dv? = 2rp4(r, v, x)dvdx*

+ pag(r, v, x€)dxAdx?, =0, n=20, (9)

This choice of coordinates will be referred to as “affinely
parametrized GNCs.” \V is the surface r = 0, and C is the
surface r = v = 0. The inverse of y,p is denoted by A2,
and we raise and lower A, B, C, ... indices with y? and
Uap- We denote the induced volume form on C(v) by
€A,..A,, = €rva,..A,, Where d is the dimension of the
spacetime. The covariant derivative on C(v) with respect to
Uap is denoted by D4. We also define

_ 1
Kup = 5 O0rHAB>

KEKAA. (10)

1
Kpp = EavﬂABv

K= KAA,

K,p describes the expansion and shear of the horizon
generators. K5 describes the expansion and shear of the
ingoing null geodesics orthogonal to a horizon cut C(v).

Affinely parametrized GNCs are not unique: we are free
to change the affine parameter on each generator of N by
v = v/a(x*) with arbitrary a(x*) > 0. This will lead to a
change (v, r,x) = (v, 7, x"4) with v’ = v/a(x*) + O(r),
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¥ =a(x")r+ 0(r?), ¥4 = x* + O(r) near the horizon.
Details of how this transformation changes the quantities
above are given in [9]. The remaining freedom in our
affinely parametrized GNCs is to change our coordinate
chart x* on C; however, all calculations in this paper are
manifestly covariant in A, B, ... indices and so this freedom
will not change any of the expressions.

1. Boost weight

An important concept in this set of GNCs is the boost
weight of a quantity. Suppose we take a to be constant and
consider the rescaling v' = v/a, ¥ = ar, which preserves
the form of the GNCs above. If a quantity 7" transforms as
T’ = a®T, then T is said to have boost weight b. See [9] for
a full definition. Some important facts are stated here:

(i) A tensor component T’ " has boost weight given
by the sum of +1 for each v subscript and each r
superscript and —1 for each r subscript and »
superscript. A, B, ... indices contribute 0, e.g.,
T4 .5 has boost weight +1.

(i) a, B4, and pup have boost weight 0. K 45 and K 45
have boost weight 41 and —1, respectively.

(iii) If T has boost weight b, then D, ...D, 070]T has
boost weight b + p — q.

(iv) If X; has boost weight b; and T = [ [, X;, then T has
boost weight b = >, b;.

In Lemma 2.1 of [9], it is proved that boost weight is
independent of the choice of affinely parametrized GNCs
on V. More precisely, a quantity of certain boost weight in
(r, v, x*) GNCs on \ can be written as the sum of terms of
the same boost weight in (#/, 2/, x4) GNCs on N, where

v = v/a(x?) on N.

B. Killing vector GNCs

In the stationary setting of the zeroth law we will also use
another choice of GNCs, hereafter referred to as “Killing
vector GNCs.”

In standard two-derivative GR with a wide range of matter
models, it can be proved that the future event horizon A/ of a
stationary analytic black hole spacetime is a Killing horizon
whose normal is some Killing vector £ [1]. Recent work by
Hollands et al. [7] has extended this result to arbitrary higher
derivative effective field theories of gravity with no matter
fields present. Here we assume this result still holds for our
Einstein-Maxwell-scalar EFT and that we can drop the
analyticity assumption.

Therefore, we can take a similar construction to the
above, except with the null geodesic generators having
nonaffinely parametrized, future-directed tangent vectors
& = 0,. In the notation of [5], this leads to coordinates
(p, 7, x*) with metric

g = 2dzdp — pX(p,x)de? + 2pw, (p, x)dzdxA
+ hag(p, xO)dxtdx®,  £=0,  x=9, (1)

N is the surface p = 0, and C is the surface p =7 = 0. In
these coordinates, we raise A, B, C, ... indices with 448 and
hsg and denote the induced volume form on C(z) by
€a,..A,, = €pa,..A,,- The covariant derivative on C(7)
with respect to h,p is denoted by Dy.

The differences between the two GNCs are twofold.
First, since £ = 9, is a Killing vector, the unknown metric
coefficients X, w, and h,p are independent of 7. Second,
the fact that 7 is not necessarily an affine parameter means
the coefficient of dz> only comes with a factor of p, whereas
dv? comes with a factor of r? in the affinely parame-
trized GNCs.

The relationship between these two forms of GNCs is
crucial to prove the zeroth law for this theory, following the
method of [5].

IV. THE GENERALIZED ZEROTH LAW

We proceed to prove a generalized zeroth law of black
hole mechanics for this theory. The zeroth law concerns
stationary black hole solutions (g,4, Fys. ) to the equa-
tions of motion above.

A. Assumptions

We make the following assumptions in order to prove the

generalized zeroth law:

(1) The rigidity theorem of [7] can be extended to this
theory, i.e., that the future event horizon N of the
black hole is a Killing horizon with Killing vector &.

(2) The matter fields are invariant under this Killing
vector, 1.e.,

LF=0,  Lep=0. (12)

In Killing vector GNCs, these imply that 0. F,, = 0
and d,¢ = 0.

(3) The black hole solution is analytic in , i.e., we can
write

0 1 2
Gop = g,(,ﬁ) + lgé/} + lzgfzg + ey

(0 M), 22
F(lﬂ - F(lﬁ + lF‘lﬂ +l Faﬂ tee
¢ =0 1+ 1) + Pp@ 4 .. (13)

In particular, we can write the Killing vector GNC
metric components as series in /,

X=X +1xW 4 P2x® 4
ws =0 + 10\ + PP + ...,

hap = h)+ 1) + PR + .. (14)

(4) Any spacelike cut C of the horizon is compact and
simply connected. The second assumption implies
every closed 1-form on C is exact. These assumptions
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hold, e.g., if C has spherical S92 topology with d > 4
but not, e.g., if C has the topology of a black
ring S' x §473.

B. Statement of generalized zeroth law

The surface gravity of the horizon N of a stationary
black hole is defined by

§ﬂv/}§a 1% = Kéa' (15)

The zeroth law of black hole mechanics is the statement
that k is constant on /. One can compute both sides of this
equation in the Killing vector GNCs of Sec. III B and find

1
—X(px) . 16
=5 X(.xO)| (16)
From this we see that x is clearly independent of .
Therefore, to prove the zeroth law we must show that

6AX(p,xC)‘ —0. (17)
p=0

When electromagnetic fields are included in a black hole
theory, the zeroth law is usually generalized to include a
statement about their behavior on the horizon. Our “gen-
eralized zeroth law” formulation is

x€) =0, and F(p,x°)] =0. (18)

04X (p,
A (.0 =0 =0

The interpretation of the second condition can be seen as
follows. By the Cartan formula, L:F = d(i:F) + 1.dF.
dF =0 because F is a Maxwell field. We have also
assumed L:F = 0 above. Hence d(i:F) =0, and so, at
least locally, 1:FF = d® for some scalar ®. This scalar is the
“electric potential” from the definition of the first law. The
condition F4|,_o = 0 is then equivalent to d,®|,_, = 0,
which says that the electric potential is constant on the
horizon.

In the course of the proof, we will see that the two
conditions in (18) are not independent. In fact, we will need

to show F_4 = 0 in order to prove d, X 0 0.

p=0 p=

C. Plan of the proof

In [5], Bhattacharyya et al. prove the zeroth law for
gravitational EFTs without matter. Here we generalize their
method to apply to our Einstein-Maxwell-scalar EFT. The
gravitational parts go through largely unchanged, while
additional steps are needed to deal with the Maxwell and
scalar fields. Here, we sketch the main ideas of the proof.

Let @, denote the collection of fields (g, . F,,.¢). We
have assumed we can write this as a series in [:

@, =0 + 10\ + 2o + ... Let E,[®,] denote the
collection of variations of the action S defined in (5). The
equations of motion are

E/[®,] = ¢,+Zz" [®,]=0 (19

where l”EE") [®,] comes from varying I"L, ,. This equa-
tion must hold to each order in [ individually. The order I
part is simply

EV[@] = 0. (20)

We will show that in Killing vector GNCs on the

horizon, Egg) and EE? evaluate to

1 1

0
EiA) (@] o _EaAX - ECI<¢><FABhBC — F,68)Frc.
EO))| = Lo @)FaFpnt 21
o | D] (@) FaFph™®. (21)
p=0 2
From the first component, we see that Eg [d)g())] |ﬂ:0 =0

= 0. But from the

—0 implies F¥ —
=0 implies F, ’p:O =0

—0 ; (0)
0_0 if FTA’p=0

second component, EY [d>§0)] |p:0

implies 9,X | _

because 1?48 is positive definite and we assumed ¢; > 0.
Thus, the generalized zeroth law holds to zeroth order in /.
The proof will then proceed by induction. We will

assume that d,X"| _, =0 and Fi;;)] =0 for n <k,
and then prove that 9,X[,_, = 0 and FTA ’ _,=0.

To do this, we will consider the order I* part of two
components of (19). In a similar fashion to Bhattacharyya
et al., we will show that E,,[®;] greatly simplifies on the
horizon, regardless of the higher order terms in the EFT. In
particular, its order [* part is of the following form:

1
atorder ¥, E4[®,]| —0__51kaAX(k)+lkMACF£kC):O,
(22)
where M ,€ is a function only of the lowest order fields

CDSO). From this we can see that the two statements in
the generalized zeroth law are not independent: if we
can show that Fiﬁ)|pzo =0,
have 9,XW| _; =0.

To do this, final step we must look at another com-
ponent of the equation of motion. We will show that the
order [* part of E.[®,]|,_, can be brought into the
following form:

then we immediately

atorder I, E[®)]| _, = 1p [NABF%)} =0, (23)

084051-5



IAIN DAVIES

PHYS. REV. D 109, 084051 (2024)

where N8 is a function only of the lowest order fields CD;O),

and Dgo) is the covariant derivative with respect to hgol;.

We will show that this equation has no nontrivial solutions for
F ‘E']/(‘i) | p=0
condition follows from our assumptions on the topology
of C(z), and thus the generalized zeroth law is proved in
this case.

In order to simplify E4[®,]|,—y and E;[®,]|,_, to the
forms in (22) and (23), we will need to prove a crucial fact:
the generalized zeroth law implies5 that all positive boost
weight, gauge-independent quantities vanish on the horizon
N.1In [5], it is shown that a relation between Killing vector
GNCs and affinely parametrized GNCs can be used to
show the zeroth law implies that positive boost weight
quantities built only out of metric components vanish on
N. In Sec. VC we will show this relation can also be

applied to positive boost weight quantities built out of the
Maxwell field F,, and the scalar field ¢.

if every closed 1-form on C(r) is exact. This

V. PROOF OF THE GENERALIZED ZEROTH LAW

A. The base case: The generalized zeroth law
for two-derivative Einstein-Maxwell-scalar theory

The first step in our proof will be to show that the
generalized zeroth law holds at lowest order in [, i.e., that

9,XO| =0, and FY| =0. (24
p=0 p=0

This is equivalent to proving the generalized zeroth law for
the two-derivative Einstein-Maxwell-scalar Lagrangian £,
given in (3). The original proof of the zeroth law by Bardeen
et al. [2] would achieve this, because the two-derivative
theory satisfies the dominant energy condition up to parts
proportional to the metric, as discussed above. Here we give a
reformulation of the proof that motivates many of the steps
used in the later proof for full Einstein-Maxwell-scalar EFT.

We proceed by studying Ef,o) [®,], which is the part of the
equation of motion arising from £,. Rewriting here for
convenience, the (@) component is

1 1
Efl(;; [(Dﬂ = Raﬁ —zva¢vﬁ¢ —501 (¢)Fa6Fﬁ6
1 1 1
~ 5 Yap <R -V(¢) —Equﬁqub 1€ (¢)F75Fﬂs> .

(25)

We will evaluate two components in Killing vector GNCs

on the horizon. First we will evaluate Eig) [@,]],—o- The

°In case it is confusing why we will assume the generalized
zeroth law while in the middle of proving it, we will be using this
result up to and including order /*~! to complete an inductive loop
at order ¥,

Ricci component R4 | p—o 1s evaluated in [5],

1
Realpeo = _EaAX o (26)

The second term V_ ¢V ¢ vanishes because we assumed
the scalar field is invariant under the Killing vector &, which
implied d,¢p = 0. The third term ¢, (¢)F, F 459" simplifies
on the horizon where ¢’° is particularly straightforward,

c (¢)FTyFA5.gy§|p=O = c1(¢)(Fr,Far + F.cF gh®)
= Cl(¢)(FABhBC - Frp(sg)FrC‘ (27)

The final bracketed term also vanishes on the horizon
because the prefactor ¢,4| p—0 = 0. This leaves us with the
first equation from (21), and as discussed, we can substitute
this into the order [ part of the equation of motion

EV @] =0 to get that 9,X )|,y = 0 if FIY|,_o =0,

In pursuit of proving F 5%) | »—0 = 0, let us now evaluate
another component on the horizon, E\Y [@,]],—- The first
term is R.[,_o = R, &"¢"[y, which vanishes by the
Raychaudhuri equation. The second term V_¢V_ ¢ once
again vanishes by d;¢p = 0. The third term is

c1(¢)FﬂFT§gJ’5 =0 = cl<¢)FTAFTBhAB' (28)

The bracketed term vanishes again since g.| p=0 = 0.
Therefore, we retrieve the second equation from (21),
which we can substitute into the [ part of the equation
of motion to get

c1 (O P FG 048 = g, (29)

Now, h,p is the induced metric on the spacelike cut C(z),

therefore it is positive definite. This implies hgog is also

positive definite since hgol; = hapl,_o. Furthermore, we
assumed c; > 0. Therefore, (29) implies Fg | 0 = 0, and

so we have proved the generalized zeroth law to order [°.

B. The inductive step

We prove the generalized zeroth law to all orders in / by

induction. Let us assume 9,X"|,_, = 0 and Fﬁf;) ly=o =0
for n <k We now aim to prove that d,X*| p—0=0
and F gf‘) = 0.

p=0

To do this, let us consider the order I* part of the full
equation of motion (19). This is not simply lkE§k> (D]
because @; is itself a series in /. However, it will certainly
not depend on E\" or @\ for n > k because they come
with too high powers of [. Let us introduce the notation
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fil =3 g, (30)

m=0

Then the order /¥ part of (19) will be a subset of the terms in
[k] E/'[® ol ]] Furthermore, since @5 )

factor I¥, the only place @'/

already comes with a
can appear is in E [ ! ]] In

particular, it will appear as Ef, )[ S) lkCI><J )] linearized
. Therefore, we can write the

around the background (I)SO)
order [ part of (19) as follows:
at order [X,

Ei@)] = Ef[@) "]

0) 0
SE
Kol = (0] 4 9,0
+ < J 5¢)J[ J }—'_ n=J 6(6

where it is given that we only take order lk terms in the first

term, and the bracketed term is E; >[ + I*®

ized around CD(JO). Setting this to zero allows us to solve for

the fields ®; order by order in /: once we have solved for

CI>§O) we can study (31) at order [ to solve for d)sl), then at

order 2 to solve for (1332) and so on.

It is difficult to study (31), however, because we do not
(4]

know the form of E;". It comes from the variation of the
higher derivative parts of our EFT Lagrangian, which in
theory could take a variety of forms. The only part we do

know the form of is Eﬁo)

] linear-

. Therefore, we would like to find a
scenario where the dependence on the unknown El[,k]
vanishes.

It turns out that, on the horizon, certain components of

[k][ [k_l]] do necessarily vanish by our inductive hypoth-

esis. In particular, E[k] [<I)[Jk_ ]H = 0and EL][CD[]( 1]]| =0.
The proof of these are left to the next two sections. In short, it
follows from the fact that they are proportional to positive
boost weight components in affinely parametrized GNCs. It
will be shown in Sec. V C that positive boost weight
quantities vanish on the horizon if the generalized zeroth
law holds. But by our inductive hypothesis, the generalized
zeroth law holds for the fields Cb[k_l], which are all that
E[k] [CD[ ]} and EY [CD[Jk l]] depend on.

Let us assume for now that these components do indeed
vanish on the horizon. Then at order I, E_,[® ,]| »—o and
E.[®)]],—o are simply given by Eg [Q( ) 4+ lktb ]|p o and

Vel + k]| ,—o linearized around o\,

During the proof of the base case, we calculated

0 _ 1 1

—Z0,X — —
2 A% T5¢

1(¢)(FABhBC - F1/15/§)Frc

(32)
We can now replace the fields X = X(© 4 [kx(*),

F, = F,(,(,l) + lkF,(,IZ), etc
fields X, F ,S?,), etc., and use that F 5%) | p—0 = 0 to get that,

, linearize around the order [°

at order I*,
Eaf@)|  =-3rax®
— e @O FHOme — FYG Y < 0. (33)
Therefore,
0AX(")‘ = MY o (34)

where M, = —c, (") (Fﬁ?;h(o)BC - F£2)5C> is a func-

tion only of the lowest order fields CI) ). Once again we see
that 9, X |, —OlfF \p 0 =0.

We now turn to E >[(I> ;] in order to prove F o
Rewriting from above, it is given by

|p 0o =0.

EV@,] = VP ey(¢)Fop = 4e2(9) Foeyys] . (35)

We can again evaluate this on the horizon in Killing vector
GNCs. The calculation involves evaluating Christoffel
symbols and is given in Appendix A 1 as an example of
using Killing vector GNCs. The result is

EY (@]

p=0 = hABDA [Cl (¢>FTB

—8e:(@)esCFoc]. (36)

where D, is the covariant derivative with respect to /i,p.
We again linearize all the fields around the background q)§0>

and use Fi%) l,—o = 0 to get,

at order [*,

_ lkh(O)ABD<AO)

E‘r {q)J]

x [er(@ )P = 8ea(p e FR| =0, (37)

where D) is the covariant derivative with respect to hgolg.

For each 7, this is a differential equation for F° Ekc) |,—o on the
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spacelike 2-slice C(z). We will show that it has no non-
trivial solutions.

Note that since F,; is a Maxwell field, it satisfies
djaF 5 = 0. We can combine this with d.F,5 = 0 to get

O[TFAB] - 0 — OAFTB - GBFTA - O (38)

This must hold to all orders in /, so

0, FU —a,Fl) =0, (39)

Now, we can view F | 4 =0 as a 1-form on the submanifold

C(z). Call this 1-form V, = Fy;) l,—o- Then Eq. (39)
becomes

dv =0, (40)

where d is the exterior derivative on C(z). We assumed that
every closed 1-form on C(7) is exact, and hence there exists
some function f on the whole of C(z) such that

v =df. (41)
where f is essentially just the order /¥ part of the electric
potential. The crucial thing is that we know we can define f
on the whole of C(z), whereas we could not necessarily

define the electric potential globally.
We can substitute this into (37) to get

HOABDY e, (HO)D f = 8ex( el “DEf| =o0.

We now integrate this against V4% f over C(z),

/ d9-2x\/ 10 fh(o)ABDEXO)
C(z)
x [erl@ VDR f = 8ea(p ey DI s = 0. (43)

Apply the divergence theorem to get

_ / d4-2x\/ 1) [Cl (¢(0))h(O)ABD£‘0)ng))f
C(r)
—8¢,(¢)e 04D DR £| = o0, (44)

where the boundary term vanished because we assumed
C(r) was compact. The second term in the brackets is O by
the antisymmetry of (48 which just leaves the first term.

Since h(O; is positive deﬁnite and c¢; > 0, for the integral to

be 0 we must have D f 0, or equivalently,

FOI - =o. (45)

Therefore, the inductive step is proven.
Now all that remains is to fill the gap in our proof and

show that E[le[d)[f_ ]]| =0 and E[k][ [Jk_l]]w = 0. To do
this, we will need to prove a statement about positive boost
weight quantities on the horizon.

C. Positive boost weight quantities on the horizon

Following the method of [5], we will prove that the
generalized zeroth law implies that all positive boost
weight, electromagnetic gauge-independent quantities van-
ish on the horizon. Somewhat counterintuitively, this will
allow us to complete the inductive step and prove the
generalized zeroth law itself.

The boost weight of a quantity (defined in Sec. III A 1) is
determined in the affinely parametrized GNCs of Sec. [IT A.
The most basic electromagnetic gauge-independent quan-
tities we can make from the metric and matter fields in
these coordinates are of the form d, ...0, 07dl¢ with
pe {avﬂAvl"AB»/’tABv FL'V’ FAB’ FUA’ FrAv ¢} We call such
terms “building blocks.” On the horizon r = 0, all quan-
tities in our theory can be expanded out as expressions in
building blocks,’ e.g., V,F4|,_o = 0,F,4 — 1 FypBcu®C—

FrBav/"AC,uBC - %FrvﬁA'
The boost weights of these building blocks are as
follows:
(i) F,4 has boost weight +1.
(i) a, fa, pag, B, F,., Fap, and ¢ have boost
weight 0.
(iii) F,4 has boost weight —1.
(iv) 0, derivatives each add +1 to the boost weight, o,
derivatives each add —1, and d, derivatives add O.
Therefore, positive boost weight building blocks are of the
form

GAI OAnaf()ZQD with
(pe{FDA,apa’aUﬂA7aﬂ/‘AB?avﬂAB’avFur’a1/FAB’a1)¢’avarA}
and g>p. (46)

The terms in the expansion of a positive boost weight
quantity on the horizon must all have at least one factor of
the positive boost weight building blocks listed above.
Therefore, if we can show that all positive boost weight
building blocks vanish on the horizon, then we have shown
that all positive boost weight quantities vanish on the
horizon.

To do this, we shall employ a relation between affinely
parametrized GNCs and Killing vector GNCs.

®There is no explicit appearance of the coordinates (v, x*)
because they do not appear explicitly in the metric.
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Let us assume the generalized zeroth law holds. Then F4|,_o = 0 and X|,_, = 2« with k constant. By smoothness,

X(p,x€) =2k +pf(p, xE),  Fealp,x€) = pfalp, x), (47)

where f(p,x¢) and f4(p, x©) are regular on the horizon. Then, in Killing vector GNCS, (g4, Fop. ¢) are given by (with x¢

dependence suppressed)

g = 2dedp — [2kp + p* f(p)]dz* + 2pw(p)dxtdz + hyp(p)dxtdx®,
F=F_(p)dr Adp+ Fu(p)dp A dx* + pfa(p)de A dx? + Fyp(p)dx? A dx®,
¢ = ¢(p). (48)

. .7
We now make the coordinate transformation

1
p=rkv+1), 7 =—log (kv +1). (49)
K

with the x€ coordinates unchanged. In these new coordinates, the horizon is » = 0 and C is v = r = 0. The transformation
also has the effect of putting the metric in affinely parametrized form,

g = 2dvdr — r*f(r(kv + 1))dv? + 2rw, (r(xv + 1))dvdx? + hyp(r(cv + 1))dxAdx5,
F =F_,(r(kv+1))do Adr+ (kv + 1)F,,(r(kv + 1))dr A dx?
+ F[KFPA(F(KU + 1)) + falr(kv+ 1))}dv A dx? + Fyup(r(kv + 1))dx? A dxB,
¢ = ¢(r(kv+1)). (50)

Thus, the (7, v, x¢) are a choice of affinely parametrized GNCs with (again suppressing x¢ dependence)

a(r,v) = f(r(kv+1)),  Pa(r,v) = —o(r(xv + 1)),
pap(r,v) = hag(r(cko + 1)),  p*(r,0) = K8 (r(kv + 1)),
F, (r.v) = F,(r(kv+1)),  Fag(r.v) = Fag(r(kv + 1)),
Foa(r.v) = (cv+ DFpu(r(xo + 1)),
Fualrv) = r[cFpa(r(v + 1) + f4(r(co 4+ 1)),
¢(r.v) = ¢(r(kv+1)). (51)

02F 5 = r[2k0,F \4 (r(kv + 1))
+ re(kv 4+ 1)BF 4 (r(kv + 1)) (52)

The importance of this is that the v dependence of these
quantities is severely restricted by the 7 independence of the
original Killing vector GNC quantities. The zero boost
weight quantities a, B4, pag, 2, F,,, F4p, and ¢ depend
on v strictly through the combination rv. Therefore, taking
a d, of these quantities will produce an overall factor of r,
which vanishes on the horizon. The positive boost weight
quantity F,, already has a prefactor of r and also depends
on v strictly through rv. Finally,

Thus, we can write all of the quantities ¢ € {F 4, d,q,
avﬁAv a?}/"ABv av/'{AB’ aver’ avFABv avd)’ a%I?rA} from (46) in
the form

¢ = rfy(r(kv +1)). (53)

Taking a (0,0,) derivative preserves this form, as does
taking d, derivatives. Thus, every positive boost weight
building block satisfies

Pl — 31" »
"Note this is slightly different from the choice in [5] in that we 0a,-+-04,07 019 = 01" [04, .04, (0,0,)" 9]

have (kv + 1), where they have xv. We have added the 1 so that

v = 0 corresponds to 7 = 0 and also to put it in such a form that if
the black hole is extremal, i.e., k = 0, then the transformation is
the identity p = r, 7 = v.

*aqp[”faA L (0,0,)7 ((KUﬂLl))}
o« rltap, (54)
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with g > p. Therefore, all positive boost weight building
blocks vanish on the horizon r = 0.

This proves that all positive boost weight quantities vanish
on the horizon in the choice of affinely parametrized GNCs
given by the transformation (49). However, as discussed in
Sec. IIT A, there are infinitely many choices of such GNCs, all
related by v/ = v/a(x*) on N for some arbitrary function
a(x*) > 0. To prove that positive boost weight quantities
vanish on the horizon in all choices of affinely parametrized
GNCs, we use Lemma 2.1 of [9], which states that on the
horizon a quantity of certain boost weight in (r, v, x4) GNCs
can be written as the sum of terms of the same boost weight in
(7', v', x*) GNCs. This means that if all positive boost weight
quantities vanish on the horizon in one choice of affinely
parametrized GNCs, then they vanish in all choices of
affinely parametrized GNCs.

D. Completion of the inductive step

We will now use the statement about positive boost
weight quantities on the horizon to complete our inductive
step by proving Eyj [dJ[,k_l]HN =0 and EX [@Lk_l]HN =0.

Our inductive hypothesis was that d,X | »—0 =0 and
Fi , =0 for n <k Therefore, the fields ol =

p:
<I>50) + ZCDSI) +--+ lk—1®§k‘1) satisfy the generalized
zeroth law. In particular, X*~1| p0 = 2kl*=11" is constant,
and we can make the coordinate transformation

I
p=rl o), r= log( k= ‘1v+1) (55)

to bring the fields d)[,k_l] = (g,[,kl, 1 k U g1 into the

affinely parametrized form of (50). Then by the above proof,
any positive boost weight quantity made out of <I>Ek_1] will
vanish on the horizon in these coordinates. In particular,

k]

EM@ =0 and EV[@l] ,=0 (56)

r=0 r=
because they have boost weight +1. But we also know how

Ef ][<I>[] ]] and Elf ][ [Jk_l]] transform under the change of
coordinates (55) because they are tensors. The inverse
coordinate transformation is

_ 1 -
—xclk=1] [k=1]
r=pe™ T p=—-—|¢€" T—l). 57
p S ( (57)

So,
T ] P T
et [0l
=0. (58)

Similarly,
A ox* k=
EX @) =SB 01|,
g
—0. (59)

This completes the proof of the generalized zeroth law.

E. The generalized zeroth law for a charged scalar field

This proof of the generalized zeroth law can be modified
to apply to the EFT of gravity, electromagnetism, and a
charged scalar field. In this scenario, we assume we have a
global gauge potential A, with F' = dA. The dynamical
fields are ®; = (g,,.A,. ¢), the scalar field ¢ is complex
with some charge 4, and A, and ¢ transform under an
electromagnetic gauge transformation as

¢—¢=egp, (60)

with y an arbitrary real-valued function. We generalize our
leading order Lagrangian to

9 (Da) Dy

_ch<|¢|2)FaﬂFaﬂ+c2(|¢|2)FaﬁFy5€aﬁy5’ (61)

Aﬂ—>Aﬂ:AM+6;

Ly=R-V(l¢P) -

where D, is the gauge covariant derivative ®, = V,—
iAA,. L, is invariant under the gauge transform (60). Since
the charge 4 adds a new scale into the theory, the EFT series
is now a joint series in derivatives and powers of 1. We
assume A < 1/L where L is a typical length scale of the
solution, so that 1 is comparable to a one-derivative term.
This is reasonable if we want the classical approximation to
be valid. The EFT Lagrangian is

L=1L+ Z I"Lpis, (62)

n=1

where the £, , contains all gauge-independent terms with
n + 2 derivatives or powers of A.
The equations of motion are

Efo)=EV @, + S rEP®,]  (63)

n=1

where the parts arising from the leading order theory,
Eﬁo) [®,], are

EY) = Ry~ (Do) Dy ——c1<|¢| VF o F
1
3 (R= V(IR = #°(2,0) D0

- (4RI ) (64)
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EL = il Datp — $(Dugh)']
+ VP e1(|P) Fap = 4ea(9P)Foeusys). (65

1
EO = g9D, Dy — pV'(|$]2) - 191 (PP ) FapF”

+ (|1 )FopF e (66)

We again assume that we have a stationary black hole
solution to these equations, with a Killing horizon A/. What
needs more subtlety is our assumption of the invariance of
the matter fields on the symmetry corresponding to the
Killing vector & = %. The assumption that ¢ and A, are
independent of 7 is no longer appropriate here because the
conditions d.¢p = 0 and d,A,, = 0 are not invariant under an
electromagnetic gauge transformation. Instead, we need to
modify our notion of a symmetry of the system.

For the metric, a Killing vector symmetry corresponds to
invariance under the diffeomorphism = — 7+ s for all s,
ie., gu(t+s)=g,(r). This diffeomorphism can be
viewed as a one-parameter coordinate gauge transformation
of the metric, labeled by s. A complete gauge trans-
formation of our matter fields ¢ and A, would be a
combined diffeomorphism and electromagnetic gauge
transformation. Hence, we assume the notion of symmetry
for ¢ and A, is their invariance under a one-parameter
combined diffeomorphism and electromagnetic gauge
transformation. More precisely, given any fixed gauge of
A, and ¢, we assume there exists some one-parameter
family of functions 6, with 8, = 0 such that
Aets) +9,0,=A0). e plets) =) (67)
for all 5. We can take the derivative of this with respect to s
and set s = 0 to obtain the conditions

d.A, = —0,0,

0.9 = —ilOgp, (68)

where © = 4 . These are the conditions® which con-

ds

strain the 7 depéndence of A, and ¢. Note the first condition

implies 0. F,, = 0, which was the condition we assumed in
the real scalar field case.

Let us now make an electromagnetic gauge transforma-

tion of the form (60). Using (68), the 7 dependence of Aﬂ

and ¢ can be found to be

a‘L'Aﬂ = _aﬂ<® - 07)()’ arqz = —lﬂ(@ - 0.,){)55 (69)

These conditions can be proved to be equivalent to the
conditions assumed in (2.9) of [16] (a recent paper discussing
stationary black hole solutions with charged scalar hair). The
formulation above avoids the need to define the phase of ¢
however.

From this we see that conditions (68) are preserved
under an electromagnetic gauge transformation, so long
as we relabel ® = ® — d,y. In particular, we can take
x = J7O(<')d7 to find a gauge in which
9.9 =0. (70)
We will drop the tildes and work in this gauge to prove the
generalized zeroth law. It must then hold in all gauges
because the statements 9,X|,_o =0 and F4|,_, = 0 are
gauge independent. Note that F_, = —d,A, in this gauge.
To prove Fi4l,_o=0, we will actually show that
A;|,—o = 0 in this gauge.

The proof follows in a similar fashion to that of
Einstein-Maxwell-scalar EFT above, with modifications
to deal with the fact that A, can now appear outside of
the gauge-independent combination F, . The relevant parts

of the equation of motion will be EY [@,]],—0, Egg) [@,]],—0»

and E [@)]| y—o as before. In this gauge they can be found
to be
1

E(@)],— = —RAHPP =S c1 (1) FuFoph®®. (71)
@1l

1 1 . * * H
= _EaAX ) iAAL (¢ 0adp — POx¢" — 2idA4|B1%)

1

_§c1(|¢|2)(FABhBC_Frp55>FrC’ (72)

0
EQ ]|, = 222A,[¢2

+ WD, [1(|91) o = 8ea(|dP)es Foc.
(73)

For simplicity, we will assume ¢(© is not identically 0
on N in the following proof. The case ¢ | =0
adds a variety of technical difficulties that stray from the
main argument and is dealt with in Appendix A 2.

Let us first look at the equations of motion at order .

From EY[@\"]] ,—0 =0, we get AL )] ,—0 =0 and

F 5?4) |p:0 = 0. But since F EOA) = —OAAgo), the latter condition

(0)

means A; 1S constant on the horizon (d,AgO) =0 in this

gauge). Therefore, we can extract AY l,—o = 0 from the
former condition because we are assuming ¢© is not

o = 0 into

identically O on the horizon. Plugging AY |,=

0 0
£ [@)"]],-

generalized zeroth law is proved at order [°.

0=0, we get 9, X¥| =0, and so the
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to be
0,X"|,_y=0 and AY |,—0 =0 for n <k We again
decompose the order ¥ part of E;[®;]=0 into
EX @] plus £\ [0 + @] linearized around .

E L’j [d>[Jk_l]} and EY [d>[Jk_l]] can again be shown to vanish
on the horizon by the statement that positive boost weight
quantities vanish on the horizon if d,X|,_o =0 and
A;|,—o =0 in this gauge. The proof of this statement
follows exactly as in Sec. V C, except we must additionally
show that positive boost weight quantities made from A,
such as A,,d,A,, and d,,A,, vanish on the horizon. To do
this, we again use the relation between Killing vector GNCs
and affinely parametrized GNCs.

Using d,A, = 0, we can write A, in Killing vector GNCs
as (suppressing x¢ dependence)

We now take our inductive hypothesis

A=A (p)dr+A,(p)dp + Ap(p)dxt.  (74)

We transform to affinely parametrized GNCs, p = r(kv + 1),
T =1log (kv + 1), to get
|

1
at order ¥, E4[®@)] - —ElkaAXU‘)

p=

1
—5it2a (40,

A,(r,v) = mAT(r(KU + 1)) +«xrA,(r(kv + 1)),
A (r,v) = (kv +1)A,(r(kv + 1)),
Au(r,v) = Ap(r(kv +1)). (75)

Positive boost weight quantities involving A, are given
by 0y, ...04, 07 0l with p € {A,,0,A4,07A,} and ¢ > p. It
is easy to show that d,A, and 02A, have the functional form
rf,(r(kv + 1)) which, as shown in Sec. V C, means their
positive boost weight derivatives vanish on the horizon.
d,0,A, also has this functional form, so if ¢ > p > 1 then
04,...04 0¥ 0%A, vanishes on the horizon. This leaves only
terms with p = 0, however, one can show

(=x)*

q —
a1}Av|r=0 - (K’U + 1)q+1

AT |p=0 . (76)

Therefore, if A,| p—0 = 0 then 9y ..
on the horizon.
Therefore, we can return to our inductive step and look at

Eﬁ") [<I)<JO) + lkCD(Jk)] | ,—o linearized around CI)BO) for I = (zA)

and I = 7. For Eig) [@,]],—0» use A |,—o = 0 to obtain,

.04 0%A, also vanishes

= 00,90 = 2024 | O

1 0 0 k
—5ei(|9OP) (Fiph O — FO6C) P = o, (77)

N
,mo=0if AY], =0
Finally, for EV® [@,]],—0 use A0 l,—0 = 0 to get,

which implies that 9, X ¥

at order I¥,  E,[®)] 0:2/121k|¢<°>|2A§k>
/):

Plugging in F®) = —9,A" gives

221p0RAY = OBDY (¢, (190 )P

+ EhODY [, (6O P - 8¢:(6OP)el) FE| =0 (78)
A = 8oy (| P)e DAY | <o, (79)

Integrate this against VA©AY over C(), integrate by parts, and again use the antisymmetry of e®5C to obtain

L 4O RGO P e Py

Both terms in the integrand are manlfestly non-negative, and hence A

AB (aAAi")) (aBAS’”)} —0. (80)

| ,—o = 0, once again using our assumption that H0

is not identically O on the horizon.” This completes the induction.
Therefore, 0, X]| p—0 = 0and Fy | »—o = 01n this gauge. But since these statements are gauge independent, the generalized
zeroth law holds in all gauges for this charged scalar field EFT.

%0,¢p = 0 in this gauge, so if ¢® is not identically O on the horizon, then it is also not identically 0 on any individual spatial cross

section C(7).
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VI. THE SECOND LAW

The second law of black hole mechanics is the statement
that the entropy of dynamical (i.e., nonstationary and
therefore out of equilibrium) black hole solutions is
nondecreasing in time. This is assumed to be the classical
limit of the second law of thermodynamics that would
say the thermodynamic entropy of the whole system is
nondecreasing.

In standard two-derivative GR coupled to matter satisfy-
ing the null energy condition, it can be proved that the area
A(v) of a spacelike cross section of the horizon is always
nondecreasing in v. This supports a natural interpretation of
the entropy of a black hole as proportional to its area.
However, when we include higher derivative terms in the
metric or matter fields, A(v) is no longer necessarily
nondecreasing. Therefore, we need a generalization of
the definition of entropy in order to satisfy a second
law. While there has been no answer that applies to all
situations, a fruitful avenue has been to study dynamical
black holes that settle down to equilibrium at late times and
that are in the regime of validity of EFT.

Here we extend the recent work of [8,9,12] to define an
entropy that satisfies the second law up to an arbitrarily
high order [V in our EFT for Einstein-Maxwell-scalar
theory.

A. Perturbations around stationary black holes

We consider the scenario of a black hole settling down to
a stationary equilibrium. As such, we assume our dynami-
cal black hole solution tends to some stationary black hole
solution ®j’ at late times. In [8,9], the solution is assumed
to be close to @} and they consider perturbation theory
around it. We will not need to do this and thus can include
highly dynamical situations, so long as their horizons
remain smooth for all future time (which is needed for
us to define GNCs). Therefore, situations like the period
after merger or gravitational collapse, or a black hole
interacting with weak gravitational waves, are applicable.

However, the order of perturbation around @} will still
be an important concept to compare our definition to others.
To make this concept precise, we use the statement proved
in Sec. V C: positive boost weight quantities vanish on the
horizon of a stationary black hole solution. Our construc-
tion of the entropy S(v) will consist of manipulating
affinely parametrized GNC quantities evaluated on the
horizon, and so the number of factors of positive boost
weight quantities determines the order of perturbation. For
example, K, has boost weight +1 and so a term such as
K 4,5 KA? is quadratic order.

To zeroth order, our entropy S(v) will be the Wald
entropy of the stationary solution @j’. This is constant in
time, and so S(v) = 0 to zeroth order.

To linear order, our entropy will be the one defined by
Biswas et al. (BDK) in [8], where it is proved to be constant

at linear order. Therefore, linearized around @), we
have 88(v) = 0.

This paper extends the BDK entropy by adding terms
quadratic in positive boost weight quantities in a similar
fashion to how Hollands er al. [9] and then Davies and
Reall [12] extended the Iyer-Wald-Wall entropy [10,11].
We will show that such an entropy satisfies the second law
nonpertubatively, i.e., S(v) is non-negative to all orders in
perturbations around a black hole. However, this can only
be done in the regime of validity of EFT.

B. Regime of validity of EFT

We shall not be interested in arbitrary black hole
solutions of our Einstein-Maxwell-scalar EFT. In general,
there will be pathological solutions that blow up in time or
exhibit rapid oscillations and are considered unphysical.
See Sec. IV of [17] for a discussion around the existence of
such solutions, which should not be expected to satisfy the
second law.

Instead, we shall consider only black hole solutions that
lie within the “regime of validity of the EFT.” This is
defined in [9] as follows. We assume we have a one-
parameter family of dynamical black hole solutions labeled
by a length scale L (e.g., the size of the black hole or some
other dynamical length/timescale) such that A/ is the event
horizon for all members of the family (this is a gauge
choice). We assume there exist affinely parametrized GNCs
defined near A\ such that any quantity constructed from n
derivatives of {a. 4. pap. ¢} or n — 1 derivatives of F, is
bounded by C,/L" for some constant C,, and that
|VIL?> < 1. Then the solution lies within the regime of
validity of EFT if I/L << 1. This definition captures the
notion of a solution “varying over a length scale L with L
large compared to the UV scale /.

Note that we are no longer assuming the black hole
solution is analytic in /, as we did in the proof of the zeroth
law. This is not an applicable assumption in a dynamical
situation because treating the solution as an expansion in /
can typically lead to secular growth. See footnote 1 of [15]
for an example of such a situation.

C. Order of the EFT

Our EFT action (4) is made up of potentially infinitely
many higher derivative terms. In practice, we will only
know finitely many of the coefficients of these terms, and
so there will be some N for which we know all the terms
with N + 1 or fewer derivatives. In this case we only fully
know part of the equations of motion, which satisfies

N-1
EN=E Y e = o). (81
n=1

Since we only know our theory up to some accuracy of
order [V, it is reasonable to expect our second law to only be
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provable up to order [V terms. This is indeed what we will
show, 1.e.,

S(v) > —o(IY), (82)
where the rhs of the inequality signifies that S(v) might be
negative but only by an O(/") amount. This means that the
better we know our EFT, the closer we can construct an

entropy satisfying a complete second law. The entropy S(v)
will contain terms of up to N — 2 derivatives.

D. Review of recent progress on the second law
in vacuum gravity EFT

Before we jump into proving the second law for our
Einstein-Maxwell-scalar EFT, we shall briefly review the
recent progress in Einstein-scalar EFTs that we are building
on. First, the Iyer-Wald-Wall entropy satisfies the second
law to linear order in perturbations around a stationary
black hole. Second, the extension made by HKR defines an
entropy that satisfies the second law to quadratic order
in perturbations, up to order /N terms. Finally, the very
recent work by Davies and Reall in the companion to this
paper [12] adds extra terms to the HKR entropy, which
result in the second law being satisfied nonperturbatively,
up to order /N terms.

The Iyer-Wald-Wall entropy was devised by Wall [10]
as an improvement on the entropy defined by Iyer and
Wald [18]. It was formalized by Bhattacharyya et al. [11]. It
applies to any theory of gravity and a scalar field with
diffeomorphism-invariant Lagrangian (under no EFT
assumption). The approach is to use affinely parametrized
GNCs and study the E,, equation of motion. They prove
that it can always be manipulated into the following form
on the horizon:

1
=4d,|—0, 4 D s4 83
N v |:\//7 1/(\//7SIWW)+ AS + ’ ( )

where the ellipsis denotes terms that are quadratic or higher
order in positive boost weight quantities and hence quad-
ratic order in perturbations around a stationary black hole.
(shww-s) is denoted the Iyer-Wald-Wall entropy current.
They are only defined uniquely up to first order in positive
boost weight quantities, as any higher order terms can be
absorbed into the ellipsis. As proved in [9], the higher order
terms can be fixed so that sfyy, 1S invariant under a change
of GNCs.

The Iyer-Wald-Wall entropy of the horizon cross section
C(v) is then defined as

_Evv

Sww (v) = 471/

C(v)

A2 x /sty - (84)

Taking the v derivative of this gives

. 1
(— / 425, /i {— 9,
C(v) \//7

= —471/ d=2x\/u
C(v)

(styw) + D}

x / " dv'o, [ﬁ 0, (\/Histy) + DASA:| (v, x),
(85)

where in the first line we trivially added the total derivative
VHD 154 to the integrand, and in the second line we
assumed the black hole settles to the stationary black hole
solution, so positive boost weight quantities vanish on the
horizon at late times. The integrand can then be swapped
for terms that are quadratic or higher in positive boost
weight quantities using (83) and the equation of motion
E,, = 0. Thus, Syyw is quadratic order in perturbations
around a stationary black hole, and so Syyw o = 0 and the

first variation 8Spww = 0. Therefore, Syyw satisfies the
second law to linear order. Even stronger than that, its
change in time vanishes to linear order rather than being
non-negative.

To see a possible increase in the entropy, we must go to
quadratic order, which is what the extension by Hollands
et al. achieves in [9]. They show that if the theory and
solution lie in the regime of EFT, the ellipsis in (83) can be
manipulated into the following form:

-E

U

1
= 0, |[—=0, (v/istw) + Das?
N 1,|:\/ﬁ b (VHStww) + AS}

+o, [% (Vi)

+ (Kap + Xap) (K48 + XAB)
1
30+ X+ DAY+ O(Y). (86)

XA and X are linear in positive boost weight quantities,
and Y and the O(I") terms are quadratic. To do this, they
go “on shell,” meaning they use the equations of motion to
swap out various terms. The entropy density is then defined
by sfkr = Stww + ¢% and the Hollands-Kovéics-Reall
entropy is given by

Sukr (v) = 4”/
C(v)

Just as in (85), we can take the v derivative of this and
substitute in (86) to get

d9=2x\/ushigr- (87)

Shkr (v) :4”/ d2x\/u

C(v)

« / T4 W2+ DaYA + O(M)](v.x),  (88)
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where W2 = (Kp + Xa5) (KA + X48) + 1 (0, + X)2.
Since W2, Y4, and the O(IV) terms are quadratic in positive
boost weight, they vanish on the horizon along with their
first variations, so once again we have SHKR|¢;, =0
and 68yxg = 0.

Turning to the second variation, 8*W? = (6W)? is a
positive definite form so must be non-negative. The second
term is

/ A2/ / oodv’DA‘ Srh(89)
C(v) @' Sy @)

The induced metric y4 5 is independent of v on the horizon
for the stationary solution @) [see (51) with r =0].
Therefore, we can exchange the order of integrations
and see the integrand is a total derivative on C(v).
Hence this integral vanishes and so Sykg is non-negative
to quadratic order, modulo O(/") terms. Thus, it satisfies
the second law to quadratic order in the sense
of 82 Syxr > —0(IY).

Finally, the recent work by Davies and Reall [12] showed
that for vacuum gravity EFTs (i.e., with no scalar field ¢)
we can manipulate the terms in the rhs of (88) further into

the form
_d <47‘L’/ d92x ,u(v)a“(v))
dv C(v)

+47r/ dd_zx\/ﬁ/oodv’[(KAB+ZAB)
C(v) v

x (KB + Z'B) + O(IM)](v, v/, %), (90)

st

1

SHKR(U) =

where Z,z(v, v') is made up of so-called “bilocal” quan-
tities, meaning they depend on both on v and the integration
variable v'. The final integral is a positive definite form up
to O(IV) terms, and hence the entropy defined by

S(v) :471/ d9=2x/us" (91)
C(v)

with s? = sfjgg + 0¥ satisfies S(v) > —O(IV); i.e., it sat-
isfies the second law nonperturbatively up to O(I") terms.

We shall now show how the above methods can be
extended to define an entropy for Einstein-Maxwell-scalar
EFT (with real, uncharged scalar field) that satisfies the
second law in the same sense.

VII. PROOF OF THE SECOND LAW

A. The desired generalizations

Throughout the proof, we work exclusively in affinely
parametrized GNCs. Rewriting here for convenience,

g = 2dvdr — r*a(r, v, x6)dv? = 2rB,(r, v, x)dvdx?
+ pag(r, v, xC)dxAdxB. (92)

We raise and lower A, B, C, ... indices with p45 and denote
the covariant derivative with respect to pu 5 by D,. As well
as Kup =1 0,pap. Kap = 30,4145 defined previously, it will
be useful to define

Ky =Foa, Ky =Fpa, w=F,. (93)
K 4 has boost weight +1, K, has boost weight —1, and y
has boost weight 0.

The Iyer-Wald-Wall entropy has already been general-
ized to Einstein-Maxwell-scalar EFT with real scalar field
by Biswas et al. in [8], as discussed in Sec. VIIC.

The main body of the proof consists of generalizing the
HKR entropy by studying the E,, component of the
equations of motion in affinely parametrized GNCs on
the horizon. Our generalization of Eq. (86) is as follows.
We will show that on shell [i.e., by using the known part of
the equations of motion EEN_I] =
E,, |y into the form

O(I")] we can bring

1
_Elm N = av [ﬁ 00(\/ﬁs€IKR) =+ DASA:|
+ (Kap + Xap) (K48 + X4B)
1
+5e1(¢)(Ka + Xa) (K" + X4)
1
E(a b+ X))+ D YA+ 0N,  (94)
where X =N x, =S N 1Z”XA X =

N- 1l”X (boost weights +1) are linear or higher 1n
PR AB g g
positive boost weight quantities, and Y4 = S N1 /7y

(boost weight +2) and the O(IV) terms are quadratic.

SUR = Z,‘;"Ol"s}?& has boost weight 0 and s* =

>, 1"s"™4 has boost weight +1. They will be invariant
upon change of electromagnetic gauge.

The generalization of the HKR entropy of the spacelike
cross section C(v) is then defined to be

Sukr(v) = 47 /c( )dd_zx\/ﬁslviKR- (95)

The proof that 6>S > —O(IV) follows in the same way
as for Sykr detailed above, with the only change being
W2 = (K + Xap) (KPP + X28) +-1(3,00 + X)2 + ey ()
(K4 + X 4) (KA +X4). The additional term is still a positive
definite form and so the same method holds.

The algorithm to write E,, in the form (94) is very
similar to the algorithm devised by Hollands et al. [9] (and
further detailed in [15]) for Einstein-scalar EFT. We will
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emphasize where we need to extend the HKR algorithm to
apply to our Einstein-Maxwell-scalar EFT.
Finally, we generalize the entropy defined by Davies and

Reall by proving we can write Syxg(v) as

. d - v
SHKR(U) = T dv (47[ /C(v) 7 /‘(”)6 (U)>
x (KA 4+ 748) + %61 (@) (Ka + Zs)(K* + Z%)
20+ 2P+ O] (0.0 ) (96)

for bilocal Z,5, Z4, and Z. Thus, we can define an entropy

S(v) = 471/ d9=2x/us" (97)
C(v)

with s¥ = sfigg + 0" that satisfies Sygg(v) > —O0(1V) as
desired.

B. Leading order Einstein-Maxwell-scalar theory

Let us look at how this works for the leading order
Einstein-Maxwell-scalar terms arising from £,. The lead-
ing order part of the (af) equation of motion is

1 1
Eﬁf” = Ra/i ) Va¢vﬁ¢ ) C1 (¢)FmsF}3

1 1 1

-3 (R=Vg) = 59,099 L @F,oF ).
(98)

In affinely parametrized GNCs on the horizon, we have

1 1
EY v =Ry — 2 (0,0)* — 501(¢)KAKA- (99)

USing va|/\/ = _:uABavKAB + KABKAB
VAU*EK up, we can write this as

and 0, /u =

1
—ESB;) v =0, [ﬁab(\/ﬁ)} + K pK*?

el )R 43 (0,002

5 (100)

This is of the form (94) with s =1 and
s0A = xO0 = xO0 = x0 — y© — 0. Because there is
no total derivative term D, YA there are no further
manipulations needed to get to (96) with 6" =0,
70 =xO0_ 70 = x and z{) = X% Thus, we have
proved our theory satisfies the second law nonperturbatively

at leading order [° (which of course can be proved by the
usual proof of the second law on the two-derivative theory).

We will ultimately work through the higher order terms
order by order to mold them into the correct form. To get to
that point however, we must start with the Biswas-
Dhivakar-Kundu entropy.

C. The Biswas-Dhivakar-Kundu entropy

Our starting point is the generalization of the Iyer-Wald-
Wall entropy by Biswas et al. defined in [8]. They prove
that for any theory of gravity, electromagnetism and a real
(uncharged) scalar field with diffeomorphism-invariant and
electromagnetic gauge-independent Lagrangian, the E,,
component of the equations of motion can be brought into
the following form on the horizon'":

1 .
av(\/ﬁsEDK)—f—DASA +oeee (101)

:av_
N vE

where the ellipsis denotes terms at least quadratic in
positive boost weight quantities. We will call the quantity
(s§pk>s?) the BDK entropy current. It is proved to only
depend on the electromagnetic potential through F,, and is
thus invariant upon a gauge transformation A, — A, + 9,.x.
s4 is a vector in A, B, ... indices on C(v), while s’ is a
scalar. They are only defined uniquely up to linear order in
positive boost weight quantities, as any higher order terms
can be absorbed into the ellipsis. As discussed in
Sec. VII G, we assume we can fix the higher order terms
so that sjp is invariant under a change of GNCs.
The BDK entropy is then defined by

-E

vv

Sepk () = 4”/

C(v)

d9=2x\ JsSp - (102)

This can be proved to satisfy 6Sgpx = 0 in the same way as
above, since the ellipsis is quadratic in positive boost
weight quantities.

For our Einstein-Maxwell-scalar EFT, we can calculate
Sppk to all orders in / and take (101) as our starting point.
We group all the remaining terms in the ellipsis and define

1
9,(Vlsgpx) + Das™|. (103)

I [ﬁ

We will use the fact that H is quadratic in positive boost
weight terms to show we can manipulate it so that (101)

H= _Em;

mm (8], they have an additional T, in this defining equation,
which is the part of the energy-momentum tensor arising from the
minimal coupling part of the matter sector Lagrangian. However,
they also show that T',, is quadratic in positive boost weight
quantities if 7', satisfies the NEC, which is the case for our two-
derivative Einstein-Maxwell-scalar theory and hence we can
absorb T, into the ellipsis.
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becomes (94). The resulting generalization of the HKR
entropy density sfjgg Will be

N-1

v — n ~(n)v
SHKR_SBDK+§:lg )
n=0

(104)

where the ¢(? are quadratic in positive boost weight
quantities. We will not need to add any terms to s*.

From (100), we can see that, for the leading order theory

L,, the BDK entropy density is Sgor))?( = 1 and we need no

correction, ¢(0? = 0.

D. Reducing to allowed terms

To generalize the HKR entropy we study the possible
quantities out of which H is made. H comes from the
equations of motion and is gauge invariant and so is made
from the fields g,,, F,, and ¢ and their derivatives. It is
also evaluated in affinely parametrized GNCs on the
horizon, and H is a scalar with respect to A, B, ... indices.
Therefore, it is made from gauge-invariant affinely para-
metrized GNC quantities of the metric and matter fields that

are covariant in A, B, ... indices, namely,

D¥oole for
pE{a. P tap Rapeplil.€a,a, & Fap. Ko Kgoy},
(105)

where k, p, ¢ >0 and we have suppressed the indices
D*=D, ..D,. K4,K,, and y are defined in (93).
Section 3.3 of [15] gives commutation rules for commuting
D, derivatives past d,, and 9, derivatives, which allow us to
have all D, derivatives on the left. R4gcp[u] is the induced
Riemann tensor with respect to pyp.

We will now show that we can reduce this set of possible
objects that can appear on the horizon by using the
equations of motion. It is worth emphasizing, this reduction
holds in an EFT sense, meaning it is only done up to O(IV)
terms. In the HKR procedure of [9] for Einstein-scalar EFT,
they show how to reduce the metric and scalar field terms
to the set pap, €a,..a,, D*Rapcplul, D*Ba, D*0VK 5,
D*0PK 45, D*0) ¢p, D*0? ¢p with p > 0. This procedure still
holds in our Einstein-Maxwell-scalar EFT. To focus on
where we need to generalize the HKR procedure, we only
detail how to reduce the Maxwell terms.

We aim to reduce the set of Maxwell terms on the
horizon to

DXy, D¥F 45, D¥OVK 4, DFolK,  (106)
To do this, we must eliminate any 0, and 0, derivative of
both y and F 5. We must also eliminate any o, derivative

of K, and any 0, derivative of K.

To begin we use the fact that
aaFﬂ}, + aﬂFya + (3},Faﬂ — 0, (107)

which follows from F = dA. Taking a = v, = A,y = B,
we can rearrange this to''

6UFAB :DAKB_DBKA' (108)
Similarly, taking @ = v, = A,y = B gives
arFAB :DAKB_DBI_{A' (109)

These two relations allow us to eliminate all d, and o,
derivatives of F,p in favor of other Maxwell and met-
ric terms.
Furthermore, taking a = v, = r,y = A, we get
avf(A = arI(A - DAW? (1 10)
which allows us to eliminate any 0, derivative or mixed 9,
and 0, derivative of K.

To go further, we will have to use the equations of
motion for the Maxwell field. In particular, we inspect the

leading order part EY = o(l),

VP [c1(§)Fap = 402($) Foeuyys| = O(1),  (111)

where in theory we know all the terms on the right-hand
side up to O(IV). We can use €,4,;V/F° =0 [which
follows from (107)] to rewrite this as

1
vﬂFaﬂ = [4C/2(¢)vﬂ¢F}/6€aﬂy6 - C,I <¢)vﬁ¢Faﬂ]
c1(¢)

+ O(1). (112)
The order [° terms on the right-hand only involve Maxwell
terms that we are not trying to eliminate. Let us now
evaluate the v component of V/F op 10 affinely parame-
trized GNCs,
VﬂFUﬁzavy/+DAKA+y/K+--~, (113)
where the ellipsis denotes terms that vanish on A/, We can

substitute this into (112) to get an expression for d,y on the
horizon up to terms higher order in [,

"If we had explicitly picked a gauge A,, then this relation
would be trivially true and we would have fewer terms to
eliminate. However, we would like to keep the entropy current
manifestly gauge invariant, and hence we do not pick a gauge.
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oy = —D*Ky —yK
1
cl(¢) [4cl2(¢)€AB(2DA¢KB - a?}¢FAB)

= c1(9)(wa, b + KuD'¢)] + O(1).

_|_
(114)

Therefore, wherever we find a d,y in H, we can swap it out
order by order in [, pushing it to higher order with each
step. Eventually, it will only appear at O(Z"), at which point
it is not relevant to our analysis since we do not know the
equations of motion at that order.

Similarly, we can evaluate VAF yp in affinely parame-
trized GNCs,

VﬁF,ﬁ:—arw+DAl_(A+I_(AﬁA—l/IK+, (115)
where, again, the terms in the ellipsis vanish on the horizon.
We can substitute this into (112) to get an expression for
0,y on the horizon,

0y = DKy + K*fs —wkK

., > AL
D =)
—4ch()e*B(0,9F ap — 2D 4K )] + O(1).

(116)

+

This allows us to eliminate d,i up to O(/") in a similar
fashion.
|

Allowed terms: HAB> //lAB, €A]."Ad_2, DkRABCD[”]’

D*0’K 4.

Dy, D*F 3, D*olK .

In particular, the only allowed positive boost weight terms
are of the form D*0)K, and D*0)K, with p > 0, and
D¥0% ¢ with p > 1. This will be the crucial fact that allows
us to manipulate the terms in H.

E. Manipulating terms order by order

Let us return to H. We use the above procedures to
eliminate any nonallowed terms up to O(IV). Once doing
SO, we can write it as a series in /,

N—-1
H=H"+Y""H® + o(V). (119)
n=1

We can take 9, derivatives of (114) and (116) in order to
eliminate d)dfy for p > 1 and g = 0, 1. However, we
cannot naively take o, derivatives because these expres-
sions are evaluated on the horizon r = 0. Instead, we must
take successive o, derivatives of (112) and (115), and then
evaluate them on r = 0, possibly using substitution rules
already calculated for lower order derivatives. This will
involve taking care of the terms in the ellipsis in (116),
which are given in full in Appendix A 3. However, these
only ever involve lower order derivatives, for which we
already have substitution rules and hence do not cause an
issue. Therefore, we can eliminate all d, and d, derivatives
of w up to order O(IV).

This just leaves 0, derivatives of K4 to be eliminated, for
which we look at V/F 5,

V/}FA/; = —26,KA +DAI//+DBFAB + 21_{BKAB +2KBI_<AB
— P —KyK — KK + Fypp® +---. (117)

Substituting this into (112) gives us an expression which
we can use to eliminate d,K, on the horizon. Taking 9,
derivatives of (117) again allows us to eliminate higher o,
derivatives of K, because the terms in the ellipsis only
involve lower order derivatives. This completes the reduc-
tion of Maxwell terms.

Combining the Maxwell terms with the metric and scalar
field terms already reduced through the HKR procedure,
we are left with a small set of “allowed terms,”

DOV K 45,
Dol .

DFp,, D*0lK 4p,

D*ay ¢, (118)

|
By construction, the H") are quadratic in positive boost
weight terms. Furthermore, H ) are the terms calculated

from the leading order part of the equation of motion in
(100),

1 1
HO = KypK'® + S 1 (§)KaK" +5(9,¢)>. (120)

We proceed by induction order by order in /. Our
inductive hypothesis is that we have manipulated the terms
in H up to O(I"™) into the form
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1 m—1 m—1 ; m—1
H = aL [ﬁ ab (\/EZ lng(n)v):| + (KAB + Z lnXI(“;> (KAB + Z lnx(n)AB)
n=0 n=0

n=0
1 m—1 () | m—1 - 1 m—1 . 2
+§c1(¢)<KA +ZZ”XA )(K +;znxn ) +§<av¢+’;z"x")
m—1
+Dy Y YA Zl" )+ o(IV), (121)

where the H") may have gained extra terms compared to (119) but are still quadratic in positive boost weight terms.
By (120), this is true for m=1 with ¢ =x = x
some 1 <m <N -—1.
We now consider H"). It is quadratic in positive boost weight quantities. However, we have reduced the set of allowed
positive boost weight quantities. Therefore, we can write it as a sum

=XO0 =y©®4 =0 So assume it is true for

HM = " (DMOY P (D02 Py) Ok, sy py ooy e (122)
kyi.ky.p1.pa.P1.Py

where Py, P, € {Ksp,K4.0,¢} and Qy i, »,.p,.p,.p, 1S some linear combination of allowed terms. Note that we have
dropped A, B, ... indices here for notational ease, and they can be contracted in any way.

We now move the D’;a{? ! derivatives off the leading positive boost weight factor in each term in the sum. The method of
doing so is identical to the HKR procedure detailed in Sec. 3.5 of [15] but with Py, P, in the place of factors of K, so we
shall not repeat it here. It produces extra total derivative terms, with the end result being

H(m): Z Pl(DaPZ)Qka1P?+a|:

k.p.Py,P, \/_ (\/_g ):| + DAY(m)A’ (123)

with ¢ and Y4 quadratic in positive boost weight quantities. It also produces terms that are higher order in /. These are
still quadratic in positive boost weight quantities so can be absorbed into Y M1 +1 I"H™,

We now split the sum over P, € {K 5, K4.0,¢}, write the remaining sums as 2X"A48 ¢ (4)X("™A and X, and
substitute this into (121),

1 m m—1 ) m—1
H=0, |:_'ua” <\/'EZ lng(n)v>:| + (KAB + Z lnxiﬁ) <KAB + Z lnX(n)AB) + 2lmKABX(m)AB

n=0 n=0
1 m—1
+ei(d (KA + Z rx > <KA +)° l”X(”)A) + Imey () K 4 XmA
n=0
m—1 2 m N—1
<av¢ - Z 1nx ) + 1M, pX W + Dy Yy YA L N 4 O(I). (124)
n=0 n=m+1
We now complete the three squares to bring /" X("AB, ) N-1 e
[mX(mA and ["X™) into the sums. The extra terms SHKR ZSEDK"‘ZWG"L- (125)

produced are O(I"+!) because X\) = X" = x©0 =0 "

L e ¢ ‘Weisht i . o
and are quadratic in p051 1ve boost weight quantities, so This completes the generalization of the HKR entropy

can be absorbed into Y¥-! | "H(). This completes the
inductive step.
This can be repeated until all terms up to O (V) are of the Sukr(v) = 4x / d9=2x\ [ushigr (126)
correct form. Substituting this back into the definition of H Cv)
in (103), we can now write E,, |, in the desired form (94)
with which satisfies 6>Sygg > —O(IV).
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F. Further modification of the entropy

We now further modify this to generalize the entropy
defined by Davies and Reall in our companion paper [12].
Performing on Sykgr the same steps used to get to (88),
we have

d"2x/u(wo)

Stkr (v0) = 477/

C(vo)

« /°° do[W? + DY + 0 (v),  (127)

where W? = (Kap + Xap) (K + X4P) + 7 ¢1(¢) x
(Ky+X4)(K*+ X)) +1(0,0+X)>. We have sup-
pressed all x dependence and switched notation to v
and v to match [12]. The obstruction to this integral being
non-negative up to O(IV) is D,Y*(v). Despite being a
divergence term, it does not integrate to zero because it is
evaluated at the integration variable v, whereas the area

element \/p(vg) is evaluated at vy. Define

H(v)
/4(%)7

a(vo, v) =

(128)

which measures the change in the area element from v, to
v. Then, if we try to integrate D,Y*(v) by parts, we get]2

/ d?2x\/u(vg) / " doD,YA(v)

Vo

/0 dv ddz\/“_. (09, 0)D4Y*(v)
/ dv/d"z\/—YA v)Da™" (g, v)
- /C a2\ /u(vg) / dv¥A (v)D, log a(ve. v).  (129)

Vo

Now, Y4 (v) is quadratic in positive boost weight quantities
and so is a sum of terms of the form (D*19}' P,) (D*20}* P,)
Q(v) where, as before, Py, P, € {K 5, K4, 0,¢} and Q(v)
is some linear combination of allowed terms. Therefore,
this integrand closely resembles the terms we manipulated
in the previous section, except with factors of
Dy log a(vy, v). We will show that these terms can still
be absorbed into the positive definite terms in (127). We
will do this via a similar induction over powers of /.

Our inductive hypothesis is that we have manipulated
Sukr(vo) up to O(I™) into the form

"2All cross sections C (v) are diffeomorphic to each other, and
thus we write them all as C for this section.

SHKR(UO) ==

iv<4n /C . d4-2x ﬂ(y)a;;,(y)>

d=2x\/ (o)

C

+ 4n d

X /oo dv [(KAB + Z0B) (K ap + Zuag)
Vo

+=c1(P)(Ka + Za) (KA + Z2)

(0,0 +Z,)> +R,, + O(IN)} (vo, v),
(130)

l\)l'—l\)l'—

where Z4E (v, v), Z4 (v, v), and Z,, (vy, v) are O(I) and at
least linear in positive boost weight quantities, and
R,,(vg, v) is of the form

m 1}0’ (Dklaglpl)

Z I

n=m  ky.ky,py.p2.P1.Ps
X (D200 P3) Qs ko pr popy Prmn (V05 ), (131)

and, in particular, Z4B (v, v), Z&(vo,v), Z,,(vo,v), and
Ok, ky.py.poPr Pymn (0, ) is each a linear combination of
terms, where each term is a product of factors of two
possible types: (i) allowed terms evaluated at » and
(ii) D?loga(vy, v) with ¢ > 1 (D4 evaluated at time v).
If a factor of type (ii) is present, then the term is bilocal;
otherwise it is local. All covariant derivatives D are
constructed from u,5(v), and all Py, P, terms are evaluated
at v.

By (127) and (129), the base case m = 0 is satisfied with
ZaB =xAB 74 = XA, Zy =X, and Ry =Y"D,loga.
Assuming true for m, the obstruction to proceeding is
the order /" terms in the sum in R,,, which are of the form
I"(Dk oy Py) (D202 P,) Q(vg, v). We aim to remove the
DF19Y" from each term and then complete the square.

We first reduce k; by 1 in each term via a spatial
integration by parts,

/dd_zx\/ﬂ(vo)/m dvo(D"9}' P,)(D"9}” P,)Q
C Vo
= —/oodv d?2x\/u(v)(DR100' P))

c

Vo

x D]a~'(D*a}*P,)Q]

- / A2y u(wo) /m dv(D"~1o Py)
C

Vo

x [(D’Q“aZZPZ)Q + (DR Py) DO

_ (D*a"P,)QD log a}, (132)
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where in the last step we used aD(a”') = —-Dloga.
We repeat to bring k; to O in all terms, leaving us with
terms of the form ["(d)'P,)(D*d}*P,)Q, with Q still
made exclusively from local allowed terms and factors
of D?loga(vy, v).

We now aim to reduce p; to 0 by v integration by parts.
However, to avoid surface terms we must treat local and
bilocal terms separately.

1. Bilocal terms

Bilocal terms have at least one factor of D7 log a(vy, v).
Their » integration by parts follows simply

/m dv (a0 P,)(D*a%2 P,) OD4 log a(vq, v)

vy

= (00"~ P))(D*3}? P,) QDY log a(vy. v)]32

- /°° dv(af' ™' Py)a, [(D*a%* P,) @D log a(vq, v)].

Vo

(133)

The boundary term vanishes at » = co because we assume
the black hole settles down to stationarity, and so positive
boost weight quantities vanish. The boundary term also
vanishes at v = v, because a(vg,vy) =1 and hence
D?log a = 0. In the remaining v integral, we can commute
the 0, past any D derivatives using the formula

[0, Daltp, 5, = ZﬂCD(DDKAB,- —DuKpg, —Dg Kyp)

i=1

X Ip, .. B,_\CB,,..B, (134)
which will produce additional terms proportional to some
D¥ K. Commuting 9, past D7 will leave D?d, log a, which
initially looks like a new type of bilocal term; however, one
can calculate that

d,loga = *BK 4p, (135)

and so this term is actually proportional to D?K. Similarly,
in 0,0, any v derivative of D4 log a can be dealt with by
commuting and then using ([135]), and any nonallowed
terms such as 9,8 or 0,,¢ can be swapped out to O(IV)
using the equations of motion, which will generate addi-
tional terms in R,, of O(/"*1).

Therefore, we are left with two types of terms at order /"':
(i) terms that retain their factor of D? log a, which will be of
the form (95'~'P,)(D*o%*P,)QD4log a(vy, v) (with pos-
sibly changed k, p,, and Q), and (ii) terms that had D? log a
hit by d,, which will be of the form (DX K) (a2~ P,)Q for
some k" and Q. This second type of term can potentially
be local.

The v integration by parts can be repeated on terms of
type (i) until p, is reduced to 0, producing more terms of
type (ii) along the way (which will have varying p;’s). To
terms of type (ii) we move the D¥ derivatives off of K via
the same spatial integration by parts as in (132). This brings
them proportional to K, and hence, after relabeling this K
as P and the old P, as P,, they also effectively have p,
reduced to 0.

2. Local terms

Local terms are of the form (d)'P,)(D*d}>P,)Q(v)
with Q(v) made exclusively from allowed terms evalu-
ated at v. We can no longer simply do a v integration by
parts on this because there is no D?loga to make the
boundary term vanish at v = v,. However, we can
manipulate these terms in the same fashion as in the
HKR procedure, namely, by noting there exist unique

numbers a j such that

(07 Py) (D0} P,)Q

Pitpy-l )
=av{%ay {ﬁ > %(051*”2‘1"101)<D"aé-‘1P2>Q1}
J=1

N (136)

where the ellipsis denotes terms of the form (d7'P,)
(D¥0*P,)Q with py+pr <p;+p, or p; =0 or
p>» = 0. The proof follows identically to Appendix A.2
of [15] but with P, P, in the place of factors of K. The
new Q are still local, but do include terms like 2,0
which will involve nonallowed terms. However, these can
be swapped out to O(IV) using the equations of motion,
generating more O(I"*!) in R,,.

We repeat this procedure on the terms in the ellipsis with
p1+ P> < p1 + py until eventually p; =0 or p, =0
for all terms. This must eventually happen because
p1 + p, must decrease by at least 1 if the new p; #0
and p, # 0, and hence p; + p, eventually falls below 2,
meaning one of p; and p, must be 0. Therefore, we can
write all local terms as a sum of terms of the form

Q) ay{ﬁ 0,;[\/ﬁ0”(v)]} with 67 local and quadratic in

positive boost weight quantities, (ii) P;(D*d}*P,)Q(v),
and (iii) (0)' P;)(D*P,)0(v).

We have successfully reduced k; = p; =0 to O in
terms of type (ii). For terms of type (iii), we can
relabel P, <> P, and then remove the D* derivatives
from P; by using spatial integration by parts, as in
(132). This will introduce bilocal factors of D?loga,
but this is fine: the resulting terms will all be of the
desired form P,(D*o0P,)Q(vy.v), ie., they also
have k] = P =0.
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Let us look at what happens to terms of type (i) when
they are placed in the integral,

Lﬂﬂnﬂﬁﬁzmmm&%mw@ﬂw@

0

—— [, (Vullo )|
2 ([esvitiew)]

(137)

V=1

where in the first equality we set the boundary term at
v = oo to zero because we assume the black hole settles
down to stationarity. These are the terms which will modify
our definition of the entropy.

3. Completion of the induction

To summarize, we have rewritten all order [™ terms
in R, as

_%(l"’ Cd‘”chf”(v))) + 1" Cdd_zx\/ﬂ(vo)

X/ dv Z Py (D*07P2) Ok p.p, P, (V0,0),
Yo k,p,Py,Ps

V=1

(138)

where Qy , p, p,(vg. v) is a linear combination of allowed
terms evaluated at » and factors of D?loga(vg,v)
with g > 1.

Similar to Sec. VII E, the final step in the induction is to
split the sum over P, €{K,p,K4,0,¢} and write the
remaining sums as 20" Z48, I"c,($)Z*, and I"Z. We then
absorb them into the positive definite terms in (130) by
completing the squares and setting Z48 | = Z4E + (748,
ZA =74 +1"Z* and Z,,,| = Z,, + ["Z. The remain-
der terms will be O(I"*!) [because ZAB, etc. are O(1)],
quadratic in positive boost weight (because Z4Z, etc. are
linear), and linear combinations of local allowed terms

and factors of D7log a (because Z4E, etc. are such linear

combinations). Furthermore, Z48,, 74 ,, and Z,,,
retain  these  properties.  Finally, we  label
6,41 = 0y, +1"c". Thus, the induction proceeds.

We continue the induction until m = N, at which point
Ry is O(IV). Therefore, the entropy defined by

S(v) = Cdd‘zx\/y(v)s”(v) (139)

with s% = sfjxg + o} satisfies a nonperturbative second
law up to O(IV).

G. Gauge (non)invariance of entropy

Through the above procedure we have constructed an
entropy S(v) that depends on the local geometry of the

“constant time” slice C(v) and satisfies a nonperturbative
second law for Einstein-Maxwell-scalar EFT. Furthermore,
its entropy density s” differs from the BDK entropy density
sppk defined in Sec. VIIC by terms that are quadratic in
perturbations around a stationary black hole. Thus, the facts
that the BDK entropy reduces to the Wald entropy in
equilibrium and satisfies the first law [8] imply they also
hold for S(v). Therefore, S(v) satisfies many of the
properties we should expect in a definition of the entropy
of a black hole.

However, we should ask, is this definition of the entropy
gauge invariant? There are two types of gauges in our
theory: the choice of electromagnetic gauge and our choice
of coordinates.

By construction, s” only depends on Maxwell quantities
through F,,, which is invariant under a change of electro-
magnetic gauge. Therefore, the entropy S(v) is independent
of electromagnetic gauge.

As for coordinate independence, our procedure was
performed in affinely parametrized GNCs with r =v =
0 on a given spacelike cross section C of A/ (the GNCs
can be defined starting from any horizon cross section,
so the restriction r = v = 0 is not restricting the choice
of cross section considered). However, as discussed in
Sec. III' A, such affinely parametrized GNCs are not
unique: we can reparametrize the affine parameter on
each horizon generator by o' = wv/a(x*). This will
produce a new foliation C’(v') of the horizon. We
should not expect S§'(v) = S(v) for all v, because
S'(v') and S(v) measure the entropy of the different
surfaces C’'(v') and C(v). However, we should hope that
§'(0) = S(0) because C'(0) = C(0) = C. Therefore, we
should investigate how our entropy density s’ trans-
forms under such a gauge transformation at r = v = 0.

By construction, s” can be split into two parts: Sppr
and the modification terms that are quadratic or higher
order in positive boost weight terms. A proof that s§,
is gauge invariant on C is beyond the scope of this
paper, and we will just assume it holds here. Why
should we expect it to be gauge invariant? Well, it is the
generalization of the Iyer-Wald-Wall entropy density
from Einstein-scalar EFT to Einstein-Maxwell-scalar
EFT. It is proved in [9] that the Iyer-Wald-Wall entropy
density is gauge invariant on C to linear order and can
be made gauge invariant nonperturbatively by adjusting
the nonunique higher order terms. We expect the proof
can be extended to the Einstein-Maxwell-scalar EFT
case. However, to delve into the covariant phase space
formalism of the proof would divert somewhat from the
material here.

Thus, we will solely concern ourselves with the quad-
ratic or higher order modification terms. The gauge
invariance of these terms for the HKR entropy in the
Einstein-scalar case was discussed in Sec. 4 of [15],
which found they are gauge invariant on C up to and
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including order /4. This was done by noting that, by the
HKR construction, ¢(")? consists of terms with n derivatives
that are of the form o' Py(D*0?*Py)Q, s, p, With
Py,P,e{K,p,0,¢}. Using that the overall boost weight
is 0, we can classify the allowed terms that can appear
up to four total derivatives. The result is that only
KAB? [_(AB’ arI_(AB9 a‘b¢’ ar¢v a%(ﬁv ﬂAB’ and €A1 i can
appear, all of which are gauge invariant on r = v =0
using the transformation rules given in Sec. 2.1 of [9].

The same analysis follows in the Einstein-Maxwell-
scalar EFT here, with the differences being P, P, €
{Kp.K4.0,0} and Q,; ,, ,, can additionally consist of
allowed Maxwell terms. The result is that K4, K4, and
0,K , can appear up to and including order /*, all of which
are still gauge invariant on r = v = 0. Therefore, s is
gauge invariant to the same order as in the Einstein-scalar
EFT case. As in that case, there are nongauge-invariant
terms like 4, D40,¢, and D, K that can appear at higher
orders in /.

H. Discussion of the second law
for a charged scalar field

We can ask, can we generalize our proof of the second
law to the EFT of gravity, electromagnetism, and a
charged scalar field as defined in Sec. V E? Our starting
point in the above was the BDK entropy defined in
Sec. VIIC, which satisfies a linearized second law.
However, such an entropy is only defined for a real
uncharged scalar, and its generalization to a charged
scalar does not exist in the literature. Proving such a
generalization exists is beyond the scope of this paper as
it would involve delving into phase space formalism, and
therefore this section is merely a discussion. However, it
seems reasonable that such a generalization would exist,
in which case the following completes the generalization
of the proof of the second law.

In the analysis of the real scalar field EFT, we could
use positive boost weight quantities as a proxy for order
of perturbation around a stationary black hole because in
Sec. VC we proved all such quantities vanish on the
horizon in equilibrium. However, in the charged scalar
case things are more subtle because while, e.g., d,¢p may
vanish in one electromagnetic gauge, it does not in
another.

In our proof of the generalized zeroth law for a
charged scalar in Sec. VE, we were able to prove in
a particular choice of gauge that all positive boost weight
quantities vanish on the horizon in equilibrium. However,
that gauge was defined by the Killing vector symmetry
which is no longer present in the dynamical setting of the
second law, so we cannot use it directly. What we can
infer, however, is that positive boost weight quantities
made from gauge-invariant quantities like F,, vanish on
the horizon in equilibrium in all gauges. Similarly,

positive boost weight components of the gauged deriv-
atives

(0

b, —iAA,)...(0, —idA, )P (140)
vanish because if they vanish in one gauge then they
vanish in all gauges.

We can apply these facts to a choice of gauge particularly
suited to our affinely parametrized GNCs. By a suitable
gauge transformation, we can always achieve [9]

A = rmdv + Adx? (141)
for some function 5(r, v, x*) regular on the horizon. 5 and
A, have boost weight 0. In this gauge

Xl =00F ol AN =01"Foulys 0,445 =Foaly
(142)

for p >0, g > 1, and hence all positive boost weight
derivatives of 1 and A, can be written as positive boost
weight derivatives of F,, on the horizon. Similarly,

agag(ﬁ']\/ = (av - iﬂAv)p(ar - MAr)q(MN’ (143)
and hence all positive boost weight derivatives of ¢ can
be written as positive boost weight components of (140)
(or their d, derivatives) on the horizon. Therefore, in
this gauge all positive boost weight quantities still
vanish on the horizon in equilibrium and hence can
still be used as a proxy for perturbations around a
stationary black hole.

In this gauge, the leading order two-derivative part of
E,, |y can be written as

1
0
~EW) |y =0, [ﬁ

1
+ 5 €1 (|p|*)h*B0,Ap0,Ap + |0,¢. (144)

(V)| + Kk

For the higher derivative terms, let us now assume that
we can generalize the BDK entropy to the charged scalar
case. That is, we assume we can write

-E,, (145)

1
=0, |—— 0, (s} Dast| + -
N . L/ﬁ L (VHSgpk) + Das™ | +

for some real entropy current (sip,s?) and where the
ellipsis denotes terms that are quadratic in positive boost
weight quantities.

We can now generalize the HKR procedure as follows.
We first reduce, up to O(IV), to a set of allowed terms given
by the following:
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Allowed terms: pyp. T €Ay Ay D*Rypcp [u], D¥B,, D¥0VK a5, D*0lK u5.
D¥p, D¥oVA,, D¥0lA,, Dol ¢, Dol e, D¥ol ¢*, DXolqp*. (146)

The reduction of the metric terms follows straightforwardly in the same way as vacuum gravity by using the E,(g) =0(l)

equations of motion. We can eliminate mixed » and r derivatives of ¢ by using E(®) = O(l) and evaluating E () in affinely
parametrized GNCs in this gauge,

EO®) =20,0,¢p + DADy¢p + K40, + D pep + K40, — 2iAA D yp — idpDA Ay — idngp — iApAApcp — BPAA D + - -,
(147)

where the ellipsis denotes terms that vanish on the horizon. The reduction of the Maxwell terms is achieved by using the
equation of motion

! = (|¢|2)VUF/H/ + Fﬂl/vy[cl(|¢|2)] - 4€yuaﬁFaﬁvD[C2(|¢|2)] + ll[ﬁb*@uqﬁ - ¢(§)/4¢)*] = 0(1) (148)

and by substituting our choice of gauge y = 5 + 0,3, K, = 0,A, — rD,n, K4 = 0,A, into our affinely parametrized GNC
expressions for V¥F,, given in Appendix A 3. These allow us to eliminate v and r derivatives of  and mixed v and r
derivatives of A,.

In particular, the only positive boost weight allowed terms are D0, K, with p > 0 and D¥0)A,, D*0% ¢, and D*0) ¢p*
with p > 1. Therefore, we can rewrite all the terms in the ellipsis in (145), which we label H, up to O(I") as a sum of terms
of the form

(Dh107" Py) (D01 P,)Q (149)

with Py, P, €{K,p,0,A4,0,¢,0,¢"}, and where Q is made from allowed terms.
Now, since (s§pi, s*) is real, the overall sum of these terms H is real. Hence we can pair each of these terms up with its
complex conjugate (or itself if it is real) and write H as

H= Y [(D"9P)(D"0*Py) Qs sy py.po.pyp, + (DA P (D00 PYQ 4 )] (150)
ky.ky.p1.pa.P1.Py

with Py, P, € {Kyp,0,A4, 0,0}
We now generalize our inductive hypothesis (121) to

m—1 m—1 m—1
H = a |: <\/‘Zln n 1)>:| <KAB+zlnX,(4rg) <KAB+ZZHX(71)AB>
n=0 n=0
1 2 . ny (1) A = ny(n)A — ny(n — ny(n ’
+5cillel )(a@,AA%—ZlXA >(avA +) o xea) 4 a,)¢+;zx<> ay¢+;zx<>

n=0 n=0
m—1 N—-1
+DAZZ"Y ML I HD + o), (151)

where the H"), XX;;, etc. are real. To proceed the induction we manipulate the terms in H” exactly as in Sec. VII E, except
we always keep complex conjugates paired up and perform identical operations on them. This will ensure that when we get
to the equivalent of (124) we can split the sum over P, € {K43,0,A,,0,¢} and get

1 m—1 m—1 ; m—1
=0, [ﬁ 0, (\//;Z lng(n)v):| + (KAB + Z lnX/(M;) (KAB + Z lnX(n)AB> + ZZmKABX(m)AB
n=0

n=0 n=0
1 m—1 ; m—1
+5e1(gP) <8L,AA +3 X >> <6L,AA +y° l”X(”)A) +1me, (|p]?)0,AX <a &+ Z 1 >
n=0 n=0
m—1 * N—
x <av¢ +y znx<n>> + Im9,pXm* 4 Mg p*X(m) 4 D, ZZ”Y + Z I"H™ + O(IV), (152)
n=0 n=m+1
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and thus we can still absorb the order /™" terms into the
positive definite terms by completing the squares. The
remainder terms are real, and thus the induction can proceed.

Generalizing the further modifications of Sec. VIIF
would follow similarly.

Thus, we can get a nonperturbative second law for a
charged scalar field if we assume a BDK entropy exists in
such a scenario. The procedure outlined here does not
produce an entropy that is manifestly electromagnetic
gauge-independent like in the real scalar field case.
However, it seems reasonable this could be achieved if
the hypothesized BDK entropy was gauge invariant. One
could take a more careful approach to the gauge field, for
example, by keeping derivatives of ¢ in terms of gauged
derivatives (D4 — idA,), (0, — idA,), etc.

VIII. DISCUSSION

This paper adds another brick in the wall of proving the
laws of black hole mechanics for higher derivative theories
of gravity. To summarize where it leaves us, we have a
zeroth law, first law, and second law for the EFT regime of
higher derivative theories of gravity, electromagnetism, and
areal scalar field. The dynamical black hole entropy which
is constructed along the way is independent of electro-
magnetic gauge for theories with any number of derivatives
and is purely geometric for theories with up to six
derivatives (order [*). Tt reduces to the standard factor of
the area in two-derivative GR and reduces to the Wald
entropy in equilibrium for any number of derivatives. In
addition, we have shown the zeroth law continues to hold if
the scalar is charged, and there is strong motivation to think
the second law would hold. This suggests a more general
result involving theories of gravity with any matter fields
that satisfy the NEC at two-derivative level may be
provable. For example, it would be interesting to extend
the result to Yang-Mills fields.

Our proofs of the zeroth and second laws are perhaps not
as general as we would like them to be. For the zeroth law
we required our solution to be analytic in / and excluded

|

certain horizon topologies. For the second law we required
our horizon to be smooth. Recent work [19] has considered
the case of nonsmooth horizons and suggested there may be
additional contributions to black hole entropy motivated by
quantum entanglement entropy. They also demonstrate that
certain terms in the entropy current defined above can
diverge when integrated over nonsmooth features on the
horizon. Furthermore, our definition of the entropy is
dependent on our choice of GNCs above order /4, which
raises question about the uniqueness of black hole entropy.
Therefore, there is still work to be done in this area.

ACKNOWLEDGMENTS

I thank my supervisor H. S. Reall for many invaluable
comments and suggestions on this paper. I would also like
to thank J. Santos and S. Bhattacharyya for helpful dis-
cussions, particularly around the zeroth law for the charged
scalar field. I am supported by an STFC studentship.

APPENDIX

1. Evaluation of Eio) on the horizon

We would like to evaluate

ES'O) [(I)J] = g(lﬂva [cl (¢) F‘r/i - 4C2(¢)F7§€1/}y5:| (Al)

in Killing vector GNCs on the horizon. The metric in
Killing vector GNCs is given by

g = 2dedp — pX(p, x€)d7? + 2pw, (p, x©)dzdx?

+ hap(p, x©)dxAdxB. (A2)
On the horizon it is simply
9ly—o = 2dzdp + hypdx*dx®. (A3)

We can calculate the Christoffel symbols on the horizon in
this metric. The nonzero components are

1 1 1 )
F;TZEX’ F:A :_EwA’ FAB :_Ea/)hABv Firr:—_x,
1 1 1
FZA = ECUA, F/A,T = Ea)BhAB, F}?B = EapthhAC, FIIA?C = F?}C[h]? (A4)
where I'3-[h] is the Christoffel symbol built out of the induced metric /4.
Now, for notational convenience, let
Ha/i =C (¢)Faﬁ - 402(¢)F76€aﬁy6' (AS)

Note this is antisymmetric. Then we can evaluate
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Eg'()) [CI)J] 0 = gaﬂvaHrﬂ

= v‘L'H‘rp + hABvAHTB
=-I%H,, - T%H,, + h*8(0,H 5 - T\ H,p — T ;H,,),

where in the last line we used the fact that everything is
independent of 7. Substituting in the Christoffel symbols
computed above, we get some cancellations with the result
being

0
ES[@)] o hB(0sH g — T5gH )

= hABDAHrB ’ (A7)

where D, is the covariant derivative with respect to /45 and
only acts on A, B, ... indices. Finally,

H‘L‘A = C1(¢)FTA - 4c2<¢)Fy5€1Ay5

= ¢1(¢)Fop — 8 ()€l F 5,

(A8)

where we used our convention €45 = €,.45. Therefore,

EV[@))| = Da e (6)Fop — Bea(@)e§Fic] . (A9)

p=0

2. Zeroth law for a charged scalar field
in the case ¢*|,_, =0

We now deal with the case excluded in Sec. VE, in
which ¢ vanishes identically on the horizon. Moreover,
we assume ¢ vanishes on the horizon up to and including
order " for some m > 0, i.e., ¢ |p:0 =0.

The proof in Sec. VE breaks down for the following
reasons: in the base case of our induction we can no longer
extract A\ l,—o = 0 from the equation A ly=0 =0,
and similarly in the inductive step, we can no longer prove
AW |,—o = 0. These were essential steps for the induction to
proceed because they were used to prove the positive boost
weight quantities dy, ...0A"()ZA,U vanish on the horizon at
each order [see Eq. (76)]. Without this fact, we cannot
ignore the higher derivative parts of the equations of motion
Eﬂ [(I)[Jk_l]} and EY [CD[J]‘_”] at each order in /.

The solution comes from the fact that E,, and E, are
electromagnetic gauge invariant. This means any appear-
ance of A, is either inside a F,, or arises from a term of
schematic form (D”¢)* D¢, in which case it will appear in
the combination 6“(15*0%,,00(15. In the former case, we can
use the methods from Sec. V C to show it vanishes at each
order in the induction. In the latter case, we will show that

(A6)

the vanishing of ¢! on the horizon implies positive boost

weight quantities involving 0¢*0”A,0°¢ also vanish to

sufficiently high order for the induction to proceed.
From E [q)so)” »—0 = 0 and Ei? [q><J0>]| »—0 = 0 we can

still deduce F\| p—0 = 0and 0,X| _, = 0, respectively,
and so we still have the generalized zeroth law holding at
order [°. This means () is constant. We split the analysis
into two cases: (1) k@ # 0 and (2) ¥ = 0.

a. Case 1: k) #£0

To proceed, we prove a lemma:

Lemma 1. If ¢ vanishes on the horizon up to and
including order /", and k(0 £ 0, then all derivatives of ¢
vanish on the horizon up to and including order /™.

Proof. Clearly all tangential derivatives 070% , ¢
vanish on the horizon up to and including order /™. To
investigate the remaining p derivatives, we will inspect the
scalar field equation of motion, E[®;] = 0. At order /°, this
is E© [(DSO) | = 0. Equation (66) has the explicit form for
EO)[®,]. We can evaluate it in Killing vector GNCs in our
choice of electromagnetic gauge and find

EO[®,] = (X = 2ilA,)0,¢ + pX 02

+ p2hAB(I)AO)Bag¢ + ctcy, (AIO)

where the ellipsis denotes terms that are proportional to ¢
or its spatial derivatives 611 4 @. Therefore, plugging this
A,

and ¢(¥|,_, =0 into E©) [d>(10)]| o = 0 gives

(X© =2i24)9,40)|,_y = 0. (A11)

We have that X0 _
assumed is nonzero. Therefore, 0/,(15(0) |,—o = 0. Inductively
assuming 6§¢(0>|p:0 =0 for all k < s for some s > 1, we

substitute (A10) into 05 E©) @]

o = 2«9 which is a constant we have

)0 = 0 to get

[(s +1)XO) - 21',1A£°)} FHPO| =0,  (A12)
and so d5"'p¥)| _, =0. Hence all derivatives of ¢©

vanish on N, which proves the case m = 0. This means
any appearance of ¢ is at least order / on the horizon.
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Now assume m > 1. Inductively, let us assume all
derivatives of ¢ vanish on the horizon up to and including
order [" for some n, 0 < n < m. Therefore, any appearance
of ¢ or its derivatives in E;[®,]|,_, is at least order /"*!.

The Lagrangian L is electromagnetic gauge invariant,
therefore wherever a ¢ or its derivatives appears, it must be
multiplied by ¢* or its derivatives, and vice versa. This
means that every term in E[®,], which is the equation of
motion arising from varying ¢*, must be at least linear in ¢
or its derivatives.

Therefore, E[®,]|,_ 0 is already O(I"*!), and its order

1"+ part is E© >[g,3y, ) 1 gt D) )]|,—o- This is 0 by the

equations of motion, and using (A10) and p("*V| _, =0
similar to above, we get

(x0) —

0,4 V|,_y =0, and similarly we can suc-

cessively look at OZE(()) [g,(,%),A,(,O),l”+1¢("+1>}|p:0 =0 to

deduce a5 *D| _, = 0. Therefore, all derivatives of ¢
vanish on NV up to and including /"*! and so the induction
proceeds. u

This lemma implies that if ¢» vanishes to all orders on the
horizon, then all its derivatives vanish on the horizon.
Therefore, a term of the form 0“¢*0bAﬂ6C¢ would iden-
tically vanish on the horizon, and so A, could only appear
inside an F,,. But in this case there would be no new
positive boost weight quantities to deal with over the real
scalar field case, and the equations of motion would look
identical. Hence, the generalized zeroth law would follow
trivially from the real scalar field proof above.

Therefore, let us assume that gb(’"“) is the lowest order at
which ¢ does not identically vanish on the horizon, i.e., that
P"|,_o =0 and ¢V (x4)|,_, is nonzero for some x*.
Then by the above lemma, all derivatives of ¢ vanish on the
horizon up to and including order /™, and so any appear-
ance of ¢ is O(I"™*!) on the horizon. But this means the
problematic terms of the form 6“(/5*0%,,66(/5 are already at
least order /2"*2, and so will not appear in our induction
until that order.

To make this precise, we take our inductive hypothesis to
be 0, XH1| o =0, F&5| g = 0and AF"7 ) =o0.
This is true for the base case k = 1 because we proved
above that 9, X

2i7A)0,¢"N|,_ = (A13)

This implies

,_o =0 and F\%|,_, =0, and wivially

AW y—o = 0 for n < 0 by analyticity in /.

Assuming the hypothesis holds, we would like to study
E4l,—0 and E.|,_, at order I¥. By gauge invariance, any
appearance of A, not inside an F,, will come multiplied by
0“¢p*0’¢ and so can only involve A[k_zm_z] Therefore,
separating out the dependence on A, and F,,, we have the
following:

atorder [*, E, [CD,] = EE ) g, ,[ﬁ], F;[l]ﬂ,ﬂk] ,A;[f_zm_z]] =0

(Al14)

for I = (zA) or I = z. Additionally, the highest order pieces
g,(,]f,),F,(j,c,),gb(k),A,(,k_M_z) can only appear in E ) because

they will already come with IX,

at order I*,

k k—2m—2
Ej[®,] |p_o = B gt Fub. o9, AL

k—1] — _ k—2m—3
+ZIE, g F L gl AT (ALS)

The first two inductive hypotheses 9, X*~1| »—0 = 0and

| ,—0 =0 imply positive boost weight quantities

involving gL];_l],F ka_l], and ¢*~1! vanish on the horizon

by Secs. V C and V D. Furthermore, as discussed around
Egs. (74)—(76), combining them with the third hypothesis
Alk=2m=3)) ,—0 = 0 will imply all positive boost weight

quantities involving A[k 2m=3] yvanish on the horizon.

Therefore, for the components I = (zA) and [ =7 we
see that the higher derivative parts still vanish on the
horizon because they are proportional to positive boost
weight components when we make the coordinate trans-
formation p = r(x*~Uv 4 1), 7 = L5 log (k%1 + 1) and

only involve the fields g,[ﬁ, U F k 1] ¢k 1] A[k 2m=3] Thus,

we need only look at EP 7 | p=0 for these components.
First up, E[®)]],_o, is

at order [*,

Er[q)J} |p:0 = 2/12[’(|¢(M+1)|2A£k—2m_2)

+lkh(0)ABDgo)[c1(0)F$;> —802(0)620)C ic)] 0.
(A16)

Integrate this against vV'4(?) over C(z) to get
220K / 4425/ hO | plm D AR — o (A17)
C(r)

where the integral over the second term vanished because it

was a total derivative. We have 0,A% "7

p=0 =
—FEZ_Q'" 2 |)=o =0 by our inductive hypothesis, so
A=) |,—o is a constant. Hence we can take it out of

the integral to get

Agk_zm_2)|p=o /C ( )dd‘zx\/m |pm 2

(A18)
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However, ¢ +1) is the lowest order piece of ¢ that does not
identically vanish on the horizon, and so the integral is
nonzero. Therefore, Al2m=2) l,=0 = 0.

Plugging this back into (A16), let us now integrate it
against VAOAY over € (7). In a similar fashion to the

P,y =0 case, we get
|

1
at order ¥, Ex[@)]],—0 = 2
1
3 c1(0) <F§2h(0)BC -
(k=2m—2)

Substituting in A; l,—o =0and F 5’2 |)—0 = 0 we get
0, XM »—0 = 0, and thus the induction proceeds and we
have proved the generalized zeroth law.

b. Case 2: k¥ =0

Finally, we deal with the case x(© = 0. Moreover, we
assume «") = 0 for some n > 0. The proof now gets rather
technical and mostly involves chasing powers of /. The
physical relevance of this proof is questionable as we are
heavily relying on analyticity in /, however we include it for
completeness.

In this case we cannot apply Lemma 1. Our aim is still to
prove A | ¢|,—0 = 0. Suppose we have an obstruction to this,

mthatA ]|p 0= ObutA WD) |p o 7 0 for some N. We will
try to find a contradlctlon In the previous cases we used the
22A,|¢)? term in EV
order. However, it is order /2" tN*3  therefore we first need
to be able to run the induction all the way up to that order
before we can hope to conclude ANVTY | p—0 =0.IfN <nit

turns out we can prove a lemma that allows us to do this.
Before stating and proving the lemma, it is worth
emphasizing some logic we will use repeatedly below.

| ,—o to prove A; vanished at each

Suppose we have proved d,X!| p—0=0and F Li“ p—0 =0
for some s > 0. Then we can change to affinely para-
metrized  coordinates via p=r(klv 1), 7=
ﬁlog(zcmv + 1) in which all positive boost weight quan-

tities involving g,[f,]/, F ,[f,l, gb[“'], and A,[f ] vanish on the horizon

except from 0y, ...0y, 0ZA[5]. But earlier we calculated

(—«lshya

oA, =
=0 (kbly + 1)a+!

Pl (A21)
Therefore, if K" = 0 and A™|,_ = 0, then 974}, is at

least order [2"tD+N+1 Taking 0, derivatives does not
change the order on the horizon, and so we will not

Fgg>5g) FE® — 0,

(a Al )) (aBA )> 0

(A19)

/ d42x\/ h! 61
C(2)

and thus FQZ) l,—o = 0.
Finally, we look at E.4[®,]|,_ at order /*. This is

_7lkan(k) —%ilkﬂAE—k_zm_z) <¢(m+l)*aA¢(m+l) _ ¢(m+l)aA¢(m+l 2lﬂA |¢ (m+1) |2>

(A20)

[

explicitly mention them in the analysis going forward.
Furthermore, we can calculate that the nonpositive boost
weight quantities made from ¢, namely, 0?9029l with
b > a have the following form on the horizon:

b! a —da
FobPll| = o (KM) (K[qlv i 1>b

aﬁfﬁm |p=0'
(A22)

Therefore, if we also happen to know that 02(/)[1\’ 0] | pe0 =0,

then 0202¢)| _, is at least order [#(*+)+No+1,
Onto the lemma:
Lemma 2. 1f |, _o =0, k" =0, AM|,_, =0, and

AN |p o # 0 with N < n then

m 2m+N+2]
aAX[z +N+2] |p:0 =0, F[ m+N+2] |p 0 =0,

and VY p > 1ahplm=rWDl| = o0. (A23)

Proof. If A£°>|p:0 #0, i.e.,, N=—1, then the proof
follows in the same way as Lemma 1. This is because
Eq. (All) becomes —21/1A pcp
we can still conclude 6p¢ | p—0 = 0. Similarly in (A12)
and (A13) we still find the p derivatives of ¢ vanish, and so
can conclude 9} ¢!"| ,—0 =0V p as (A23) requires. We
then wivially get 9,X2"+2)| =0 and FZ"*| =0
from the induction detailed in the rest of case 1 (and we get

our contradiction that A£0)|

that ¢+ £ ),
Therefore, let N > 0. We now proceed by induction on
0 < k < m with hypothesis

)|,—o = 0. from which

»—0 = 0 if there is some m such

2k+N+1
F‘[L'A ]‘p=0 = 0’

and Vp > 1ahpl-rWtDl| ;=0

an[2k+N+1] |p=0 =0,
(A24)

For the base case k = 0, we note that AN l,—o = 0 and
0,X™| _o = 0 because "l = 0 and N < n. This implies
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all positive boost weight quantities made from ® vanish
on the horizon. Therefore, at order IN*!, the higher
derivative pieces in E|,_o and E4|,_, vanish, and using
the same method as the real scalar field case we can prove
XN =0 and FNT =0
PPl o =0V p>1 trivially.

So let us assume the hypothesis holds for k. For I = (zA)
and I = 7 we study

Furthermore,

at order [2KtN+2Z,

0 2k+N-+2
E/[®))],-0 = E @)

2k+N+2

+1 Y rEY @Y (A25)
s=1

We again change coordinates via p = r(x2**¥+1ly 4 1),

T = ety log(kZ Ny 1), in which [ = (7A) and

I = 7 are proportional to positive boost weight compo-
nents. As discussed above, the only positive boost weight

quantity made from <I>[12k+N+1] that does not vanish on the
horizon by the induction hypotheses is dZAq,,ZHNH]. By

gauge invariance, if an A, appears, so must a 0“0l gp.
Therefore, the only positive boost weight terms left must
have the combination

(07107 ") (91 A,)... (91 A, ) (05207 ¢p)  (A26)
for some M > 1, with b, > a;, b, > a,, and overall boost
weight a; +a, —b; — by + M + > g; > 1. But by (A21),

(A22), and the inductive hypothesis [which implies
N, = k—b(N + 1)], on the horizon this is of order

2k+2+ <a1+a2+Zqi> (n+1)+(M—b;—by)(N+1)

>2k+2+ <a1+a2—b1—b2+M+Zqi)(N+l)

>2k+2+N+1. (A27)
Therefore, since the higher derivative terms in (A25)
come with at least one extra power of [/, the remaining
positive boost weight quantities (A26) cannot appear until
order ?*N+4 Hence the higher derivative terms can be

safely ignored at order [**¥*2 and we can get
0, XPKEN+| = 0and F kN2 ,—o = 0 using the same
method as the real scalar field case (k < m so the A ¢*¢
terms do not appear in E§O> at this order). Furthermore, we

can repeat this at order [2*VF3 to get 9, XPHNVHI| ;=0

and F E;“”NH] l,—o = 0, which lets the first two inductive
hypotheses proceed.

Turning to the third hypothesis, we start with p = 1, i.e.,
we show 9, H1=W+1)| = 0. To do this, we study

at order K1,
k+1
E[®))|,—o = EO[@F ], + 1> 1 EV[@]]],,.
s=1
(A28)

As ever, make the coordinate change p = r(kMlv + 1), 7 =
ﬁlog(zc[k]v + 1) in the higher derivative terms. As dis-
cussed in Lemma 1, every term in E[®,] is at least linear in
¢ or its derivatives. @] p—0 =0 so it cannot appear
undifferentiated in the above. By (A22) and the inductive
hypothesis, zero boost weight derivatives (9,0,)?¢X are at
least order a(n+1)+k—a(N+1)+1>k+1 on the
horizon, and so cannot appear in the higher derivative terms
due to the extra factor of /. Furthermore, all positive boost

weight derivatives of ¢! also vanish on the horizon
because d,X| »—0 = 0. This leaves negative boost weight

derivatives of ¢, however, since E[®;] is overall zero boost

weight, these must come multiplied by positive boost

weight factors. The only <I>[Jk] positive boost weight quan-

tities that are nonvanishing on the horizon are a?,AEf‘], hence

we are left with combinations of the form

(0507¢)(01'A,).... (9 A,) (A29)

with b > a and M > 1 and overall non-negative boost
weight a —b + M + Y g; > 0. But on the horizon this is
of order

k+1+<a+2qi>(n+1)+(M—b)(N+1)

> k4 1+ <a—b+M+Zq,~)(N+1)

>k+1, (A30)

and so once again cannot appear in the higher deri-
vative terms at order /*! due to the extra factor of I.
Therefore, we can safely ignore these terms and just look at

EO [k ,—0» Which gives

at order [Ft1,

E[®))], o= _zwkﬂA£N+1>ap¢(k+1-(w+1))| =0,
(A31)

therefore 9, H1=WH)| ;=0 as desired. Now

induct on the number of p derivatives, i.e., assume
opplkr1=pV+Dl| ) =0 for all p<s for some s> 1.
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Then look at (V,)*E[®,] =0 on the horizon at order

[k+1=s(N+1) Change coordinates and note that the result has
overall boost weight —s. Once again, it can be shown that
the higher derivative terms can be ignored by calculating
the order of the terms like (A29) that can appear and using
the inductive hypotheses. We end up with

at order/k+1=s(N+1)

(V,,)SE[(DJ] |p=0 — _zl'/”kJrl—x(NJrl)AE_N'*‘l)a;;Jrl

% ¢(k+l—(s+l)(N+l))|p:0 -0, (A32)

and therefore 95"1gtH1=6TDWVH)| 1 '— 0. This com-
pletes the induction over p derivatives, which completes
the overall induction.

We can run the
an[2m+N+l] |

induction until k=m to get
=0, FE) =0, and V p>
105 plm=pVEDI| = 0. We cannot go a full step further
because ¢™*V| _; is not necessarily vanishing in

at order [2m+N+3, E.[®)] -

n l2’"+N+3h(°>ABD£‘0) {cl(O)F(z'ﬁNH) ~ 8¢, (0)620)CF(2m+N+3)] —o.

However, we can now repeat the same analysis as case 1 by integrating against V(%) over C(7) to get Al

which contradicts our assumption that ATA”rl =0 # 0.

EQ[® mH]Hp o at order /"*! and so Eq. (A31) would
be much more complicated. However, we can go one order

further in E;[®,]|,_, for I =7z and I = (7A) because the

problem terms (A26) now do not appear until order /2" +N+4

in the higher derivative terms, and the A ¢*¢ terms do not

appear in ESO)

an[2m+N+2] |p=0 _

until order [>"+N*+3. Hence we can prove
0, FEmEN T2l ,—o = 0, which completes
the lemma. [

If ¢ vanishes to all orders on the horizon (i.e., we can
take m — o), then we see d4X|,_, and F4|,_, also vanish
to all orders and so the generalized zeroth law holds.
Therefore, let us assume that (1) (x 4)| =0 is nonzero for
some x“. Let us try to go one step further in the induction
and look at E.[®,]|,_, at order "*N*3. The higher
derivative terms still vanish because terms of the form
(A26) do not appear until order >"*N+* as discussed

above. However, A |¢|2|p_ lz”'Jr’\““3A§NH)|q§(’”+1)|2|p=O

and so appears in EY [‘I)J] |,=0>

_ 21212m+N+3A£N+1) |¢(m+l) |2

B C (A33)

(N+1)
|p 0*0

Lemma 2 only holds for N < n, and hence this contradiction only applies up to N = n — 1. Therefore, we can conclude

one of the following must be true from the logic so far: (a) AL"]

which case the generalized zeroth law holds.

| =0 = 0 or (b) Al »—0 # 0 and ¢|,_o = 0 to all orders in

Taking forward (a), if k vanishes to all orders (i.e., we can take n — oo0) then so does A,, which would prove the
generalized zeroth law. Therefore, we assume x("*!) = 0, in which case we can prove another lemma:

Lemma 3. If ¢l |p:0 =0, A[Tn] |/,:0 =0, k"

an[2m+n+2]| v =0 F[z’"+”+2]
p: b

=0, and K("+1>|p:

TA |/):0 =Y,

o # 0, then

and Vp > 1ahplm-rintll] _; =0. (A34)

Proof. This proof follows using the same steps as the proof of Lemma 2 with N = n except we use the nonvanishing of
k(1) rather than AV+D to conclude the vanishing of p derivatives of ¢. For example, (A31) becomes

at order I¥+1,

E[(I)J} |p=0 _ lk+1 (X(n+1)

_ 2ilA£”+]))6p¢<k+1_("+1)) =0 =0 (A35)

X (1) »—0 18 proved to be constant in the base case of the main induction and is nonzero because ] »—0 # 0. Therefore,

we can conclude 0 ¢ (k+1- ”+1))|p:

o = 0. Higher p derivatives follow similarly. [

We see once again that if ¢ vanishes to all orders on the horizon then the generalized zeroth law holds. Therefore, we are

left with the final case to deal with: ¢I"| _y =0, ¢V (x4)| _; is nonzero for some x*,

k=0, kD] 5 #0, and

AL"] | »—0 = 0. We perform our final induction on this case, which has hypothesis

an[k+2m+1] |p=0 =0,

Fk+2m+1] |p o= -0,

=0 (A36)

for k > n + 1. The base case k = n + 1 follows from Lemma 3, from which we also have V p > 1, af,’ d)[m‘”(”“)] | p—0 = 0.
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We now assume the hypothesis holds for k. For I = (zA) and I = 7, we study

k+2m+2
at order lk+2m+2’ E, [(I)J] |/):0 _ EEO) [(I)[Jk+2m+2]]|p:0 +1 Z ZS_IESS) [(I)[Jk+2m+1]”/):0' (A37)

s=1

Change coordinates via p = (2" 1y 1), 7 = o log (27 1y 4 1), in which 1 = (7A) and I = 7 are propor-

tional to positive boost weight components. As in Lemma 2, the only positive boost weight quantities made from <I>[Jk+2m+”
that do not necessarily vanish on the horizon by the induction hypotheses are in the combination

(0507 ¢*) (01 A,).... (01 A, ) (97207 ) (A38)

for some M > 1, with b, > a,, b, > a,, and overall boost weight a; + a, —b; —b, + M + > q; > 1. But by (A21),
(A22), and the inductive hypotheses, on the horizon this is of order

2m—|—2+<a1—l—az—bl—bz—&—Zqi)(n—&—1)+Mk22m+2+n+l+M(k—n—l)22m+2+k, (A39)

where in the last step we used M > 1 and k > n + 1. Therefore, we can once again ignore the higher derivative terms in
(A37) because they come with an additional power of /.
Hence,

at order [<+2m+2, E,[®)] = 2/121k+2m+2A5k)|¢(m+1)|2
p:

4 (k2m2 0480 [Cl () F&2m2) _ g, (0)e0C FilngerZ)} -0 (A40)

Identical to case 1, we integrate this against V4 and then against VAOAY 1o get AY| »—0 = 0and F 51?2'“2) =0 = 0,
respectively.
Finally,

1
at order lk-&-2m+27 ETA [(I)j] |,0:0 — _ E lk+2m+20Ax(k+2m+2)

1
-5 ilk+2m+2,1A£k) <¢(m+1)*aA¢(m+1) — ¢(m+1)aA¢(m+1)* _ 2i/1A1(40) |¢(m+1) |2>

1 "
~5e1(0) (F%WBC .y ) perami2 pm) (A41)

into which we substitute A"| p—0 =0and F (ktam+2)) -0 = 0 to get 9,X*2m+2)| _ ;= 0. Hence, the induction proceeds
and we have proved the generalized zeroth law.

3. Full expressions for V/F, op In affinely parametrized GNCs

The components of V/F op 10 affinely parametrized GNCs are as follows:

VPF,5 = 0,w + D*K, + Ky + r(—D*yf, + p*0,K s — DABPF 45 — p*Paw — K*0,5,
+ KAKPa — D*paw — 2K K 4P Pp) + r*(=ad,y — P oy — FAPB40,pp
+ D' BPK s + D aKy — D BPKpfs + K afn — 0Py — Koy — K Bay
+ 2K Bappyr) + 1 (=K a0,y — K* P50, p s + K*Pap®0, 5 + K* a0, ), (A42)

VPF,3 = =0, + D Ky + KB, — Ky + r(p*0,K 4 — 2K KPP + K*0,54 + KK*ps). (A43)
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VPF 3 =—=0,Ky = 0,Ks + DPFpp + 2K 5 K? +2KPK o — Pa — KKy — KoK + F 4%

_ _ _ 1 _ _
+ r<—FBCKABﬂc + DBB\Kp + KuBBpy — 0,Pay + EKB,BA,BB + F 2K pp

— DBpgK, + FuP0,pp — KapPps — ZKA05> + r? (EBI_(ABOC + KBK 4pp P

1_ _ _ _ _
+ EKBﬂBanBA — KKja— KK ,f°B — KapP0,pp — KAara> :

(A44)

These were calculated using the symbolic algebra program CADABRA [20-22]. To get Eq. (117), we use (110) to eliminate

0,K, in (A44).
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