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We first show that the master equations for massless perturbations of accelerating rotating black holes
can be transformed into the Heun’s equation. The quasinormal modes of the black holes can be easily
calculated in the framework of the Heun’s equation. We identify three modes for the tensor perturbations:
the photon sphere modes, which reduce to the quasinormal modes of Kerr black holes when the
acceleration parameter vanishes; the near-extremal modes, which branch from the first set and become
dominant when the spin is near extremal; and the acceleration modes, which are closely related to the
acceleration horizon. We calculate the frequency spectrum of the quasinormal modes in various spin and
acceleration parameters. We choose an angular boundary condition that keeps the angular function regular
at θ ¼ 0 and π, which is consistent with the boundary condition of the Kerr black hole. The conical
singularity caused by the acceleration influences this boundary condition. We find that the m0 ¼ 1 modes
have an anomalous behavior at particular accelerations.
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I. INTRODUCTION

Black holes are among the strangest and most fascinating
objects in the Universe. Their existence has been confirmed
by astrophysical observation [1,2]. In recent years, the
detection of gravitational waves has made it possible to
explore the strong regime of gravity around black holes in a
completely new way [3,4]. The gravitational waves pro-
duced by black hole binaries have three stages—the
inspiral, merger, and ringdown. The ringdown phase starts
when the black holes approach each other within the
photon sphere. In this stage, the black hole (BH) remnant
can be described by a perturbed state of a black hole
solution. The emitted gravitational waves have character-
istic decay timescales and are well described by the
quasinormal modes (QNMs) [5,6]. The QNM spectrum
can be used to perform “black hole spectroscopy” [7].
According to the no-hair theorem [8–10], the spectrum acts
as a fingerprint of the system and only depends on the
parameters of the background black hole.
Astrophysical black holes are naturally neutral and

rotating, which can be well described by the Kerr metric.
Binary rotating black holes have so far been the primary

sources of gravitational waves. Most research about
gravitational wave sources is limited to nonaccelerating
black holes, while astrophysical processes can produce
accelerating black holes. In particular, the emission of
gravitational waves tends to have a preferred direction,
which results in the black hole remnant having a recoil
acceleration after the merger. This process is called the
black hole superkick [11–14]. Besides, cosmic strings,
which are linelike topological defects emerging during
first-order phase transitions [15,16], can break or fray to
produce a pair of accelerating black holes [17,18].
Analysis of accelerating black holes could produce more
information about the early Universe and astrophysical
environments.
A natural choice to describe accelerating rotating black

holes is the spinning C metric. This metric describes two
causally separated black holes accelerating away from each
other by a force corresponding to the tension of a cosmic
string [19,20]. With an appropriate choice of coordinates,
this metric can be used to cover only one of the black holes.
The spinning Cmetric has two conical singularities because
of the acceleration. It has been shown that the conical
singularity can be removed by adding an external electro-
magnetic field [21]. The C metric has been used to describe
the accelerating supermassive black holes [22,23], where
the gravitational lensing effect of the C metric is studied.
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In addition, the scalar QNMs of the charged C metric have
been examined in [24,25]; the scalar QNMs of the spinning
C metric have been analyzed in [26]. Although these two
metrics are completely different, their QNM spectra share
many similarities. They both have three distinct sets of
modes: the photon sphere modes, the acceleration modes,
and the near-extremal modes. Their acceleration modes are
all closely related to the acceleration horizon. However, the
gravitational QNMs of the C metric have not been consid-
ered yet.
In this work we are going to study the gravitational

quasinormal modes of the spinning C metric in detail. To
obtain the QNMs, we first show that the perturbation
equations for the spinning C metric with any spin weights
can be transformed into the Heun’s equation [27,28]. Then
we develop two numerical methods to calculate the QNMs.
Using the Heun’s equation form of the perturbation
equations makes the numerical computation quicker and
more precise. Moreover, these two methods are not limited
to the gravitational case. They can be used to compute the
QNMs of the spinning C metric with any spin weights. We
also identify three distinct sets of quasinormal modes for
the gravitational perturbation. Following the convention of
the scalar QNMs, we call them the photon sphere modes,
near-extremal modes, and acceleration modes. The spin and
acceleration parameters’ influences on the QNMs are
carefully analyzed, including the near-extremal cases.
We choose an angular boundary condition that keeps the
angular function regular at θ ¼ 0 and π, which reduces to
the boundary condition of the Kerr black hole when the
acceleration parameter vanishes. We find that the s ¼ −2;
l ¼ 2; m0 ¼ 1modes have an anomalous behavior with this
boundary condition.
This paper is organized as follows. We review the

spinning C metric and rederive the master equations for
the massless perturbations in Sec. II. In Sec. III, we
first prove that the master equations can be transformed
into the Heun’s equation. Then we introduce the two
numerical methods we used to calculate the QNMs.
We show the numerical results of the gravitational
QNMs in Sec. IV. Section V is devoted to conclusion
and discussion. We set c ¼ G ¼ 1 throughout the paper
for brevity.

II. PERTURBATIONS OF THE
SPINNING C METRIC

A. Background spacetime

The spinning C metric belongs to the general
Plebański-Demiański family [21,29]. It describes a pair
of causally separated BHs that accelerate uniformly in
opposite directions [19]. Using the Boyer-Lindquist-
type coordinates, the spinning C metric can be expressed
as [20]

ds2 ¼ 1

Ω2

�
−
1

Σ
ðQ − a2Psin2θÞdt2

þ 2asin2θ
Σ

½Q − Pðr2 þ a2Þ�dtdφ

þ Σ
Q
dr2 þ Σ

P
dθ2

þ sin2θ
Σ

½Pðr2 þ a2Þ2 − a2Qsin2θ�dφ2

�
; ð1Þ

where the functions Ω, Σ, P and Q are given by

Ω ¼ 1 − Ar cos θ; Σ ¼ r2 þ a2 cos2 θ;

P ¼ 1 − 2AM cos θ þ a2A2 cos2 θ;

Q ¼ ð1 − A2r2Þðr2 − 2Mrþ a2Þ: ð2Þ

The parameters M, A, and a stand for the BH mass,

acceleration, and spin, respectively. This metric reduces to

the C metric for a ¼ 0, to the Kerr metric for A ¼ 0, and

to the Rindler metric when M ¼ a ¼ 0 [19,30]. The

spinning C metric has a Kerr-like ring singularity at

r ¼ 0; θ ¼ π=2. There are three null hypersurfaces at

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; rA ¼ 1

A
; ð3Þ

which are called the event horizon, Cauchy horizon,

and acceleration horizon, respectively. We only consider

the area rþ < r < rA, which implies Q > 0, P > 0

for θ∈ ½0; π�.
There exist conical singularities at the axis θ ¼ 0 and

θ ¼ π, corresponding to the existence of deficit angles.
These singularities cannot be removed simultaneously,
unless some external fields are introduced [21,31]. Here
we specify φ∈ ½0; 2π=PðπÞÞ to remove the conical singu-
larity at θ ¼ π. The metric can then be interpreted as a Kerr-
like BH being accelerated along the axis θ ¼ 0 by the
action of a force that corresponds to the tension of a cosmic
string [19,29].
In the following discussions, it is convenient to introduce

the surface gravities κ and angular velocities ωH on various
horizons. They are defined by

κðriÞ ¼
Q;r

2ðr2 þ a2Þ
����
r¼ri

; ð4Þ

ωHðriÞ ¼
a

r2i þ a2
: ð5Þ

The surface gravities are unique up to a normalization of
the associated Killing vector.
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B. Master equations for the
massless perturbations

The spinning C metric is a Petrov type D vacuum
metric [32]. The perturbation equations for it can be
obtained by using the Teukolsky equation in the context
of the Newman-Penrose formalism [33,34]. Surprisingly,
the perturbation equations of the spinning C metric can
also be separated, as proved in [35]. Here we rederive the
equations in the signature ð−;þ;þ;þÞ and correct some
typos in [35]. For the spinning C metric, we adopt the
following null tetrad

lμ ¼ Ω2

�
r2 þ a2

Q
; 1; 0;

a
Q

�
;

nμ ¼ 1

2Σ
ðr2 þ a2;−Q; 0; aÞ;

mμ ¼ Ωffiffiffiffiffiffi
2P

p ðrþ ia cos θÞ

�
ia sin θ; 0; P;

i
sin θ

�
;

m̄μ ¼ Ωffiffiffiffiffiffi
2P

p ðr − ia cos θÞ

�
−ia sin θ; 0; P;−

i
sin θ

�
: ð6Þ

They satisfy

lμnμ ¼ −1; mμm̄μ ¼ 1; ð7Þ

while all other scalar products are zero. The choice
of the null tetrad has 6 degrees of freedom. We
first use 4 degrees of freedom to choose a null tetrad
satisfying

Ψ0 ¼ Ψ1 ¼ Ψ3 ¼ Ψ4 ¼ 0;

κ ¼ σ ¼ ν ¼ λ ¼ 0; ð8Þ

so that the Teukolsky equation holds. Here Ψ0, Ψ1, Ψ3

and Ψ4 are the Weyl scalars. κ; σ; ν and λ are the spin
coefficients.1 These are the scalar quantities used in the
Newman-Penrose formalism [34], and their definitions are
shown in Appendix A. The remaining 2 degrees of
freedom are used to set the spin coefficient ϵ ¼ 0.
Therefore, using the null tetrad from Eq. (6), the only
nonzero Weyl scalar is

Ψ2 ¼ ð1þ iaAÞMρ30; ð9Þ

where

ρ0 ¼ −
Ω

ðr − ia cos θÞ : ð10Þ

The nonzero spin coefficients are

ρ ¼ ρ0ð1 − iaA cos2 θÞ;

α ¼ π − β� þ
ffiffiffiffiffiffi
2P

p
Ar sin θ

ðr − ia sin θÞ ;

μ ¼ Q
2Ω2Σ

ρ;

π ¼ −
ffiffiffiffi
P

p ðr2A − iaÞ sin θffiffiffi
2

p ðr − ia cos θÞ2 ;

τ ¼
ffiffiffiffi
P

p ðr2A − iaÞ sin θffiffiffi
2

p
Σ

;

γ ¼ μþQ;rΩþ 4QA cos θ
4ΩΣ

;

β ¼ −
ffiffiffiffi
P

p

2
ffiffiffi
2

p cot θ

�
ρ�

Ω
þ A cos θ

�

þ Ω
2

ffiffiffi
2

p ð ffiffiffiffi
P

p Þ;θ
ðrþ ia cos θÞ : ð11Þ

The Teukolsky equations for massless perturbations of
any spin weights s can be cast into a compact form [36,37],

f½D − ρ� þ ϵ� þ ϵ − 2sðρþ ϵÞ�ðΔþ μ − 2sγÞ
− ½δþ π� − α� þ β − 2sðτ þ βÞ�ðδ� þ π − 2sαÞ
− 2ðs − 1Þðs − 1=2ÞΨ2gΨ ¼ 0 ð12Þ

for s ¼ 1=2; 1; 3=2, 2 and

f½Δ − γ� þ μ� − γ − 2sðγ þ μÞ�ðD − ρ − 2sϵÞ
− ½δ� − τ� þ β� − α − 2sðαþ πÞ�ðδ − τ − 2sβÞ
− 2ðsþ 1Þðsþ 1=2ÞΨ2gΨ ¼ 0 ð13Þ

for s ¼ −1=2;−1;−3=2;−2. D;Δ; δ; δ̄ are directional
derivatives defined by

D≡ li∇i; Δ≡ni∇i; δ≡mi∇i; δ̄≡ m̄i∇i: ð14Þ

Ψ represents the perturbation field with different spin
weights. Its definition is shown in Table I, where the
symbols for different fields are the same as those in [33],
except that H0, H1 stand for the components H000, H111 of
the Rarita–Schwinger field [38].
To obtain the perturbation equations for the spinning C

metric, we choose the null tetrad from Eq. (6) and substitute
Eqs. (8)–(11) into the Teukolsky equations. The resulting
equations can be combined into a master equation:

½ð∇μ − sΓμÞð∇μ − sΓμÞ þ 4s2Ψ2�ψ ¼ 0; ð15Þ

where we have defined a connection vector,1Only here κ; ϵ; δ; γ; α; β stand for the spin coefficients.
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Γt ¼ Ω2

Σ

�
1

Q
½MðA2r4 þ a2Þ

þ rð1þ a2A2Þðr2 − 3Mrþ a2Þ�

þ ia
P
½ð1þ a2A2Þ cos θ − AMð1þ cos2θÞ�

�
;

Γr ¼ −
Ω
Σ

�
1

2
ΩQ;r þ 2A cos θQ

�
;

Γθ ¼ 2AΩPr sin θ
Σ

;

Γφ ¼ −
Ω2

Σ

�
aQ;r

2Q
þ i

cos θð2P − 1Þ
Psin2θ

þ i
AMðcos2θ þ 1Þ − A2a2 cos θ

Psin2θ

	
: ð16Þ

ψ in Eq. (15) is a redefined field quantity. Its definition is
also shown in Table I.
The master equation can be separated by writing [35]

ψðt; r; θ;φÞ ¼ Ω1þ2se−iωteimφRðrÞSðθÞ; ð17Þ

where ω is the quasinormal frequency and m is the
azimuthal number. Since the exponent mφ should have
the period 2π and φ has been redefined to remove the
conical singularity, m must be of the form m ¼ m0PðπÞ,
where m0 is an integer.
The separated radial equation is

Q−s d
dr

�
Qsþ1

dRðrÞ
dr

�
þ VradðrÞRðrÞ ¼ 0; ð18Þ

with

VradðrÞ ¼ −2rA2ðr −MÞð1þ sÞð1þ 2sÞ

þ ½ðr2 þ a2Þω − am�2
Q

− 2is

�
−
amQ;r

2Q
þ ωMðr2 − a2Þ
r2 − 2Mrþ a2

−
ωrð1þ a2A2Þ

1 − A2r2

	
þ Alm: ð19Þ

Alm is the separation constant. For A ¼ 0, the radial
equation is equivalent to the perturbation equation of the
Kerr black hole [33]. The only differences are the defi-
nitions of the separation constants, and they are related by

Alm ¼ −AKerr
lm − a2ω2 þ 2amω; ð20Þ

where AKerr
lm is the separation constant in [33].

Defining u ¼ cos θ, the separated angular equation can
be expressed as

d
du

�
Pð1 − u2Þ dSðuÞ

du

	
þ VangðuÞSðuÞ ¼ 0; ð21Þ

where

VangðuÞ ¼ −
½ð1 − u2Þω̃þ ð1þ ã2Þsu − Ãsð1þ u2Þ −m�2

Pð1 − u2Þ
−

4msu
1 − u2

− uP;u þ sð1 − ã2Þ − Alm: ð22Þ

The definitions of ã; Ã; ω̃ are

ã¼Aa; Ã¼AM; ω̃¼ aω: ð23Þ

In order to compute the QNM frequencies, we need to solve
the eigenvalue problems of Eqs. (18) and (21) with
appropriate boundary conditions. The physically motivated
boundary conditions for the radial part are

RðrÞ∼
8<
:ðr− rþÞ−s−i

ω−mωH ðrþÞ
2κðrþÞ ; r→ rþ;

ðrA− rÞi
ω−mωH ðrAÞ

2κðrAÞ ; r→ rA:
ð24Þ

These conditions correspond to the fact that the waves
propagate only inward at the event horizon and only
outward at the acceleration horizon. We also require the
solution to be finite at the interval boundaries of θ, which
gives the boundary conditions

SðθÞ∼
(
ð1− cosθÞ12jsþ m

Pð0Þj; θ→ 0;

ð1þ cosθÞ12j−sþ m
PðπÞj; θ→ π:

ð25Þ

The conical singularities cause the boundary conditions to
be different from the Kerr case [39]. The additional
coefficient 1=P of m represents the deficit angle. After
the redefinition of φ, the boundary conditions become

TABLE I. Spin weight s, field quantity Ψ in Eqs. (12) and (13),
and field quantity ψ in Eq. (15).

s Ψ in Eqs. (12) and (13) ψ in Eq. (15)

0 Φ Φ
1=2 χ0 χ0
−1/2 χ1 ρ−10 χ1
1 ϕ0 ϕ0

−1 ϕ2 ρ−20 ϕ2

3=2 H0 H0

−3/2 H1 ρ−30 H1

2 ψ0 ψ0

−2 ψ4 ρ−40 ψ4
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SðθÞ∼
(
ð1− cosθÞ12jsþm0

PðπÞ
Pð0Þj; θ→ 0;

ð1þ cosθÞ12j−sþm0j; θ→ π:
ð26Þ

We can see that the conical singularity at θ ¼ π is
removed.

III. SOLUTION TO THE PERTURBATION
EQUATIONS

In this section, we show that Eqs. (18) and (21)
can be transformed into the Heun’s equation. Then we
use two numerical methods to obtain the QNMs. The
first is the continued fraction method. The second is
the shooting method. Both methods rely on trans-
forming the perturbation equations into the Heun’s
equation and can be used to compute QNMs with any
spin weights.

A. Transformation of the perturbation
equations into Heun’s equation

Heun’s equation is a second-order differential equation
with four singular points [27,28]. It can be expressed as

d2w
dz2

þ
�
γ

z
þ δ

z − 1
þ ϵ

z − z0

�
dw
dz

þ αβz − q
zðz − 1Þðz − z0Þ

w ¼ 0; ð27Þ

with γ þ δþ ϵ ¼ αþ β þ 1. This equation has Frobenius
solutions in the neighborhood of a singular point. The
recursion relation between the expansion coefficients can
be written in an analytic three-term form. The perturbation
equations for the Kerr-de Sitter black hole have been
transformed into Heun’s equation by Suzuki, Takasugi,
and Umetsu in [40]. Based on that, the numerical
calculation to obtain the QNMs becomes more rapid
and precise [41,42]. Here we show that the perturbation
equations for the spinning C metric can also be trans-
formed into Heun’s equation.

1. Angular perturbation equation

The angular perturbation equation Eq. (21) has five
regular singularities at u ¼ −1; 1; uþ; u− and ∞, with
u� ¼ 1

Ã�
ffiffiffiffiffiffiffiffiffiffi
Ã2−ã2

p . By using the new variable

z ¼ ðuþ 1Þð1 − u−Þ
2ðu − u−Þ

; ð28Þ

the angular equation becomes

d2SðzÞ
dz2

þ
�
1

z
þ 1

z − 1
þ 1

z − zþ
−

2

z − z∞

�
dSðzÞ
dz

−
VangðzÞSðzÞ

2ã2ðuþ − u−Þzðz − 1Þðz − zþÞ
¼ 0: ð29Þ

This equation has regular singularities at z ¼ 0; 1; zþ;∞
and z∞, with zþ ¼ ðuþþ1Þð1−u−Þ

2ðuþ−u−Þ and z∞ ¼ 1−u−
2
. The above

equation can be further simplified to the form

d2SðzÞ
dz2

þ
�
1

z
þ 1

z − 1
þ 1

z − zþ
−

2

z − z∞

�
dSðzÞ
dz

þ
2
4−A2

1

z2
−

A2
2

ðz − 1Þ2 −
A2
3

ðz − zþÞ2

þ 2

ðz − z∞Þ2
þ A0

1

z
þ A0

2

z − 1
þ A0

3

z − zþ

−
1
z∞

þ 1
z∞−1 þ 1

z∞−zþ
z − z∞

3
5SðzÞ; ð30Þ

where A0
1; A

0
2 and A0

3 are given in Appendix B. The regular
singularity at z ¼ z∞ can be factored out by the following
transformation:

SðzÞ ¼ zA1ðz − 1ÞA2ðz − zþÞA3ðz − z∞ÞfðzÞ; ð31Þ

where

A1 ¼
1

2

���� − sþ m
PðπÞ

����;
A2 ¼

1

2

����sþ m
Pð0Þ

����;
A3 ¼

1

2

�
sþm



ã4 þ ã2 − 2Ã

�
Ãþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ã2 − ã2

p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ã2 − ã2

p
Pð0ÞPðπÞ

−
ω̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ã2 − ã2
p

�
: ð32Þ

Then, fðzÞ satisfies Heun’s equation,

d2fðzÞ
dz2

þ
�
γa
z
þ δa
z − 1

þ ϵa
z − zþ

�
dfðzÞ
dz

þ αaβaz − qa
zðz − 1Þðz − zþÞ

fðzÞ ¼ 0; ð33Þ

with
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γa ¼ 2A1 þ 1;

δa ¼ 2A2 þ 1;

ϵa ¼ 2A3 þ 1;

αa ¼ 1þ A1 þ A2 −
ω̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ã2 − ã2
p

þ mðã4 þ ã2 − 2Ã2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ã2 − ã2

p
Pð0ÞPðπÞ

;

βa ¼ 1þ sþ A1 þ A2 −
2AmM

Pð0ÞPðπÞ ;

qa ¼ zþð2A1A2 þ A1 þ A2Þ þ 2A1A3 þ A1

þ A3 þ A2
1 þ

1

2
−

1

2ã2ðuþ − u−Þ
�
Alm

− ð1 − ã2 −mÞs − 1

2
ð1 − ã2Þ

�
sþ m

PðπÞ
�

2

þ m2

PðπÞ − 2

�
sþ m

PðπÞ
�
ω̃

	
: ð34Þ

We can see that γa þ δa þ ϵa ¼ αa þ βa þ 1.
The boundary condition, Eq. (25), is transformed into

fðzÞ ∼
�
1; z → 0;

1; z → 1:
ð35Þ

2. Radial perturbation equation

The radial perturbation equation has five regular singu-
larities at r ¼ rþ; rA;−rA; r−, and ∞, respectively. By
using the new variable

x ¼ r − rþ
r − r−

rA − r−
rA − rþ

; ð36Þ

Equation (18) is transformed into an equation with regular
singularities at 0; 1; x−;∞ and x∞, with

x−¼
−rA− rþ
−rA− r−

rA−r−
rA−rþ

; x∞¼ rA− r−
rA−rþ

: ð37Þ

The regular singularity at x ¼ x∞ can be factored out by the
transformation

RðxÞ ¼ xB1ðx − 1ÞB2ðx − x−ÞB3ðx − x∞Þ2sþ1gðxÞ; ð38Þ
where

B1 ¼ −s − i
ω −mωHðrþÞ

2κðrþÞ
;

B2 ¼ i
ω −mωHðrAÞ

2κðrAÞ
;

B3 ¼ i
ω −mωHð−rAÞ

2κð−rAÞ
: ð39Þ

Then, gðxÞ satisfies Heun’s equation,

d2gðxÞ
dx2

þ
�
γr
x
þ δr
x − 1

þ ϵr
x − x−

�
dgðxÞ
dx

þ αrβrx − qr
xðx − 1Þðx − x−Þ

gðxÞ ¼ 0; ð40Þ

with

γr ¼ 2B1 þ 1þ s;

δr ¼ 2B2 þ 1þ s;

ϵr ¼ 2B3 þ 1þ s;

αr ¼ 2B1 þ 3sþ 1;

βr ¼ 2B2 þ 2B3 þ 1;

qr ¼ x−½ðB1 þ B2Þð1þ sÞ þ 2B1B2� þ ðB1 þ B3Þð1þ sÞ

þ 2B1B3 þ
1

ð1 − ArþÞð1þ Ar−Þ
�
−Alm

þ ð1 − A2a2Þð1þ sÞð1þ 2sÞ − i
2asðm − 2aωÞ

rþ − r−

−
8imB3ωHðrAÞr−
ðrþ − r−ÞκðrAÞ

þ 16A2MaB2B3ωHðrþÞ
κðrþÞ

þ 16MB3ðB1 þ sÞωHðrAÞ
aκðrAÞ

	
: ð41Þ

We can see that γr þ δr þ ϵr ¼ αr þ βr þ 1.
The boundary condition, Eq. (24), becomes

gðxÞ ∼
�
1; x → 0;

1; x → 1:
ð42Þ

B. Continued fraction method

The continued fraction method (Leaver method) [39] is
one of the most precise methods to compute QNMs [6]. It
can be used to find high-accuracy QNMs up to a moderate
range of overtones n [41,43,44]. After we get the Heun’s
equation form of the perturbation equations, we can
directly use the continued fraction method to compute
the QNMs. Considering the angular perturbation equation,
a Frobenius solution satisfying the boundary condition (25)
can be expressed as

SðzÞ ¼ zA1ðz − 1ÞA2ðz − zþÞA3ðz − z∞Þ
X∞
n¼0

anzn; ð43Þ

where z is defined by Eq. (28). According to the last
section, the series fðzÞ ¼ P∞

n¼0 anz
n should satisfy Heun’s

equation, Eq. (33). Then the expansion coefficients an are
defined by a three-term recurrence relation,
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c10a1þc20a0¼ 0;

c1nanþ1þc2nanþc3nan−1¼ 0; ðn≥ 1Þ ð44Þ

where

c1n ¼ zþðnþ 1Þðnþ γaÞ;
c2n ¼ −ðzþ þ 1Þn2 − ½zþðγa þ δa − 1Þ

þ γa þ ϵa − 1�n − qa;

c3n ¼ n2 þ ðγa þ δa þ ϵa − 3Þðn − 1Þ
þ αaβa − 1: ð45Þ

Here we choose the initial coefficient to be a0 ¼ 1.
The infinite series in Eq. (43) converges only if the

corresponding solutions an for the recurrence relation (44)
are minimal. This condition is equivalent to the condition in
terms of the continued fraction [39,41], given by

0 ¼ c20 −
c10c

3
1

c21 −
c1
1
c3
2

c2
2
−ðc1

2
c3
3
=c2

3
−���Þ

;

≡ c20 −
c10c

3
1

c21−
c11c

3
2

c22−
c12c

3
3

c23−
� � � : ð46Þ

Given specific M, a, A, s, m, Eq. (46) is an equation for ω
and Alm. The angular number l can be specified by using
Eq. (20) and the continuity of Alm as a function of A.
Similarly, the solution for the radial perturbation equation
can be expressed as

RðxÞ¼ xB1ðx−1ÞB2ðx−x−ÞB3ðx−x∞Þ2sþ1
X∞
n¼0

bnxn; ð47Þ

where x is defined by Eq. (36). The expansion coefficients
bn are defined by the three-term recurrence relation

d10b1þd20b0¼ 0;

d1nbnþ1þd2nbnþd3nbn−1¼ 0: ðn≥ 1Þ ð48Þ

We also choose the initial value to be b0 ¼ 1. The
coefficients d1n; d2n; d3n are

d1n ¼ x−ðnþ 1Þðnþ γrÞ;
d2n ¼ −ðx− þ 1Þn2 − ½x−ðγr þ δr − 1Þ

þ γr þ ϵr − 1�n − qr;

d3n ¼ n2 þ ðγr þ δr þ ϵr − 3Þðn − 1Þ
þ αrβr − 1: ð49Þ

The convergence condition is given by

0 ¼ d20 −
d10d

3
1

d21−
d11d

3
2

d22−
d12d

3
3

d23−
� � � : ð50Þ

We can get ω and Alm by solving Eqs. (46) and (50)
simultaneously. Moreover, the continued fraction method is
very powerful at computing overtones. The n-th overtone is
usually found to be the most stable numerical root of the
n-th inversion of the radial continued fraction [39,43].

C. Shooting method via the Heun function

The shooting method is a well-known numerical
approach to solving differential equations. It was first used
by Chandrasekhar and Detweiler to compute the black hole
QNMs [45]. The idea is that we integrate the perturbation
equation from the boundaries with an initial value for the
QNM frequency and match the numerical solutions at an
intermediate point. If the QNM frequency ω is an eigen-
value, the solutions are linearly dependent and the
Wronskian of the two solutions should vanish. The
QNM frequencies are the corresponding roots.
To use this method, we usually need to construct the

series approximation at boundaries to get the initial values
and integrate the equation to get the numerical solution. But
for Heun’s equation, this process can be largely simplified.
The solution to Heun’s equation is called the Heun
function, which has been analyzed thoroughly. Hatsuda
pointed out that we could directly use the Heun function to
compute the QNMs [42]. We follow this idea and use
Mathematica’s built-in Heun function to compute the QNM
frequencies.
The Heun function Hlðz0; q; α; β; γ; δ; zÞ denotes the

solution of Eq. (27) that corresponds to the exponent 0 and
value 1 at z ¼ 0. Considering the angular perturbation
equation, the solution satisfying the boundary condition
Eq. (35) at z ¼ 0 is

finðzÞ ¼ Hlðzþ; qa; αa; βa; γa; δa; zÞ; ð51Þ

whereHlðzþ; qa; αa; βa; γa; δa; zÞ is the Heun function and
Hlðzþ; qa; αa; βa; γa; δa; 0Þ ¼ 1. Similarly, the solution
satisfying the boundary condition at z ¼ 1 is

foutðzÞ¼Hlð1− zþ;αaβa−qa;αa;βa;δa;γa;1− zÞ: ð52Þ

At a midpoint zm, we construct the Wronskian determinant

Det ¼
���� finðzmÞ ∂zfinðzmÞ
foutðzmÞ ∂zfoutðzmÞ

����: ð53Þ

For the radial equation, we can also construct the
Wronskian determinant by the same process. ω and Alm
can be obtained by setting these two determinants to zero.
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IV. NUMERICAL RESULTS

In this section, we explore the QNM spectrum of the
spinning C metric. We mainly focus on gravitational,
quadrupolar QNMs (s ¼ −2; l ¼ 2). Thesemodesmay have
astrophysical relevance, because the l ¼ 2, m ¼ 2 mode
dominates the ringdown stage for Kerr black holes [46,47].
The two numerical methods mentioned above are used to
compute the results. We justify our results by a direct
comparison of the calculated QNM frequencies and separa-
tion constants from these methods. We further cross check
the results with [24,26] for s ¼ 0 and with [39,43] in the
limitA → 0. These results are shown in Appendix C. During
the numerical computation, the massM is fixed to 1 and all
the physical quantities are expressed as dimensionless forms.
No unstable fundamental quasinormal mode is found in
this paper.
For scalar perturbations (s ¼ 0), it is obvious that −ω�

and A�
lm are the frequency and separation constant for the

mode with the azimuthal number −m if ω and Alm are the
eigenvalues for the mode with m from a symmetry of
Eqs. (18) and (21) and the boundary conditions (24)
and (25). From our numerical results, we find that this

symmetry remains for QNMs with any spin weights
s except the m0 ¼ �1 cases. The quasinormal modes of
the Kerr black hole possess the same symmetry for all
modes [39]. For simplicity, we only consider the modes
whose real part of ω is positive in the limit of A → 0 or
a → 0 henceforth.
The numerical results in [26] show that there exist three

distinct sets of scalar QNMs in the spinning C metric. We
also find three sets of QNMs for the gravitational pertur-
bations, but they have different properties from the scalar
QNMs. Following their convention, we label these three
sets of QNMs as photon sphere (PS) modes, near-extremal
(NE) modes, and acceleration (A) modes. Here we mainly
present the results for the fundamental modes. The funda-
mental QNM is the one that has the largest imaginary part
and thus decays most slowly. This mode is usually labeled
by the overtone number n ¼ 0. The modes with smaller
imaginary parts are labeled as n ¼ 1; 2;… in sequence. In
Fig. 1, we show all these three sets of QNMs for s ¼ −2;
l ¼ 2; m0 ¼ 0 as a function of the parameter a or A. The
blue solid line is the photon sphere mode, which is
the dominant mode among most of the parameter space.
The yellow dashed line represents the near-extremal mode.

FIG. 1. Real (left) and imaginary (right) parts of the fundamental modes for all three sets with s ¼ −2, l ¼ 2, m0 ¼ 0. The upper
panels show the frequencies as a function of a with fixed A ¼ 0.05. The real parts of the NE mode and A mode vanish, and we do not
show them in the upper left panel. We only show part of the NE mode because its imaginary part decreases drastically when a decreases.
The bottom panels show the frequencies as a function of A with fixed a ¼ 0.99. We can only reach A ¼ 0.83 during our numerical
computation. The extremal value of A is 0.876. Similarly, the imaginary part of the A mode decreases drastically with A increasing, and
we only show part of it.
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We can see that this mode dominates the spectrum in the
extreme limit a → 1. The green dot-dashed line is the
acceleration mode. It is the most distinguishable one. Their
imaginary parts are almost linearly dependent on the
acceleration parameter A, and they decay most slowly
when A is small. In the following sections, we introduce
these three sets of QNMs in detail.

A. Photon sphere modes

There is a well-known geometric correspondence
between high-frequency quasinormal modes of black holes
and properties of null geodesics that reside on the photon
sphere. In the eikonal limit (m ∼ l), the QNM of stationary,
spherically symmetric black holes are directly related to the
frequency and the Lyapunov exponent of the null geodesics
near the photon sphere [48,49]. For Kerr black holes, the
correspondence between the QNMs frequencies and the
orbital and precessional frequencies of the spherical photon
orbit has been shown in [48,50]. All the QNMs we obtained
in this section reduce to the PS modes for Kerr black holes
in the limit A → 0, and we call them PS modes too.
We calculate the fundamental PS modes’ frequencies for

the gravitational perturbations with l ¼ 2. There are five
different modes m0 ¼ �2;�1, 0 for the angular number
l ¼ 2. The influences of spin and acceleration are both
investigated. We first set a fixed and analyze the influences
of the acceleration parameter A. As mentioned in Sec. II A,
the max value of the acceleration parameter A is 1

rþ
. The

results are shown in Figs. 2–4. The acceleration parameter
has distinct influences on the quasinormal modes with
different m0, especially for the m0 ¼ 1 modes. Then we set
A fixed and analyze the influences of the spin parameter a.
We show the results in Figs. 5–7. The QNMs we obtain in
this section return to the QNMs of Kerr black holes
when A → 0.
Figure 2 shows the frequencies for a ¼ 0, which stands

for the accelerating Schwarzschild black hole. When

a ¼ 0, the angular perturbation equation (21) becomes
independent of ω. The separation constant becomes a real
number and can be obtained by solving the angular
perturbation equation directly. When A → 0, the C metric
becomes the Schwarzschild metric. The QNMs approach
the Schwarzschild case, and modes with different m0

become degenerate. The black points in Fig. 2 represent
the n ¼ 0 fundamental mode of the Schwarzschild black
hole. When A increases, the real parts of m0 ¼ 2;−1;−2
modes increase to a maximum and then decrease, while the
real part of m0 ¼ 0 mode monotonically decreases. All the
imaginary parts of m0 ¼ 2; 0;−1;−2 modes increase with
A increasing. As a ¼ 0, the frequencies have an additional
symmetry—they are symmetric about the imaginary axis.
From the symmetry of the perturbation equations and the
boundary conditions, it is obvious that the −ω� and Alm are
also the eigenvalues if ω and Alm are eigenvalues for the
mode having the azimuthal number m. Therefore, the
m0 ¼ �2 modes coincide. The QNM of m0 ¼ 1 has an
abnormal behavior. This is due to the conical singularity.
The deficit angle changes with the increment of A. Thus,

the boundary condition (26) is not smooth and sþm0
PðπÞ
Pð0Þ

changes signs at PðπÞ
Pð0Þ ¼ 2 for s ¼ −2; m0 ¼ 1. This makes

the m0 ¼ 1 mode very different from other modes and be

not smooth at PðπÞ
Pð0Þ ¼ 2. We can also see that the m0 ¼ 1

mode has the largest imaginary part when A is small.
In Figs. 3 and 4, we show the results for larger a. When

A → 0, the QNM frequencies coincide with the Kerr
results. The no-zero a results in the variance of frequencies
for different m0. For a ≠ 0, the dominant mode changes,
and them0 ¼ 2 mode becomes the dominant one when a is
large enough.
When A approaches the extreme value (Nariai-type

extremal condition), all PS modes’ imaginary parts tend
to 0, but their real parts tend to a finite value around
mΩHðrþÞ. The real parts of m0 ¼ −1;−2 modes change

FIG. 2. Real (left) and imaginary (right) parts of n ¼ 0 PS modes for s ¼ −2, l ¼ 2, m0 ¼ 2; 1; 0;−1;−2 with a ¼ 0. The black point
represents the fundamental mode of the Schwarzschild black hole. The extremal value of A is 0.5. The vertical line represents the value

of A that satisfies PðπÞ
Pð0Þ ¼ 2.
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their signs during this procedure. A similar phenomenon
appears when we increase the spin parameter a as shown in
Fig. 7. These are due to a dragging effect from the
acceleration and rotation. No fundamental quasinormal
mode of the Kerr black hole changes the sign of its real
part as a increases. So does the fundamental mode of the C
metric when A increases, which is shown in Fig. 2. This
phenomenon has also been observed for the Kerr-de Sitter
case [41]. In the Nariai-type extremal limit, the imaginary
parts of the PS modes can be approximated by

ImðωPSÞ ≃ −ðnþ 1=2Þ½κðrþÞ þ κðrAÞ�=2; ð54Þ

which is consistent with the analytic approximation of the
scalar perturbations [51].
Figures 5–7 are results with A fixed. In Fig. 5, the

acceleration parameter A is set to be 10−4. Therefore, the
influence of the acceleration is very small, and the results
are almost the same as the Kerr case. From these figures, we
can see that the increment of spin parameter a tends to

increase the real parts of positive modes (m0 ¼ 2, 1, 0) and
decreases the real parts of negative modes (m0 ¼ −1;−2).
The influence of a on the imaginary parts is more complex
and highly dependent on the parameter A. When A is large,
as shown in Fig. 7, the imaginary parts of positive modes
decrease first and then increase, while the negative modes’
imaginary parts keep decreasing. The m0 ¼ �2 modes
have the same frequencies at a ¼ 0 because of the
symmetry. Similarly, the m0 ¼ 1 modes show an anoma-
lous behavior.

B. Near-extremal modes

The spectrum of quasinormal modes bifurcates, and a
new distinct set of modes arises when the Cauchy and event
horizon approach each other. This phenomenon has been
found in the spectrum of nearly extremal Kerr BHs for
some specific ðl; mÞ pairs [52–54]. For the Kerr black hole,
one set of modes has a vanishing imaginary part while the
other set’s imaginary part remains a finite value in the
extremal limit a → 1. They are called the zero-damping

FIG. 3. Real (left) and imaginary (right) parts of n ¼ 0 PS modes for s ¼ −2, l ¼ 2, m0 ¼ 2; 1; 0;−1;−2 with a ¼ 0.5. The extremal

value of A is 0.535. The vertical line represents the value of A that satisfies PðπÞ
Pð0Þ ¼ 2.

FIG. 4. Real (left) and imaginary (right) parts of n ¼ 0 PS modes for s ¼ −2, l ¼ 2, m0 ¼ 2; 1; 0;−1;−2 with a ¼ 0.9. The extremal

value of A is 0.696. The vertical line represents the value of A that satisfies PðπÞ
Pð0Þ ¼ 2.
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and damped modes in [53]. For the spinning C metric, we
focus on the m0 ¼ 0 modes, whose zero-damping modes
and damped modes are very distinguishable. The funda-
mental PS modes for m0 ¼ 0 are all damped, as shown in
Figs. 5–7. The zero-damping modes appear when a
increases, and are called the near-extremal modes here.

The near-extremal modes form0 ¼ 0 have vanishing real
parts. Figure 8 shows the imaginary parts of the first two
modes of this new family of modes. We can see that these
modes’ imaginary parts truly go to 0 from the left panel
of Fig. 8. At the limit a → 1, we can approximate these
modes by

FIG. 5. Real (left) and imaginary (right) parts of n ¼ 0 PS modes for s ¼ −2, l ¼ 2, m0 ¼ 2; 1; 0;−1;−2 with A ¼ 10−4.

FIG. 6. Real (left) and imaginary (right) parts of n ¼ 0 PS modes for s ¼ −2, l ¼ 2, m0 ¼ 2; 1; 0;−1;−2 with A ¼ 0.2.

FIG. 7. Real (left) and imaginary (right) parts of n ¼ 0 PS modes for s ¼ −2, l ¼ 2, m0 ¼ 2; 1; 0;−1;−2 with A ¼ 0.4.
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ωNE ≃ −i½κðrþÞ − κðr−Þ�ðnþ lþ 1Þ=2: ð55Þ

In the right panel of Fig. 8, we show the frequencies of the
NE modes with the spin parameter a fixed. We can see that
the imaginary parts also seem to approach zero with the
acceleration parameter A increasing. However, when A
approaches the extremal value, the PS modes also approach
zero as shown in the previous figures. The numerical
stability of the NE modes becomes much weaker. We
can only calculate the results until A ¼ 0.93. Similar modes
have also been found in the spectrum of Reissner-
Nordström (RN) de Sitter BHs and charged accelerating
BHs [24,55].

C. Acceleration mode

Acceleration modes are quasinormal modes that are
highly dependent on the acceleration parameter. Their
appearance is due to the acceleration horizon of the spinning
Cmetric. Acceleration modes’ imaginary parts have a linear
dependence on A and a very weak dependence on a. These
modes have been found in the scalar spectrum of charged or
spinning C metric [24,26] and share similarities with the de
Sitter (dS) modes for the RN-dS BHs [55]. For the
gravitational perturbations, we also identify these modes.

The numerical results are shown in Figs. 9 and 10. We only
show the positive modes for simplicity.
In Fig. 9, we fix the acceleration parameter A to be 0.05

and study the influences of the spin parameter a. We can see
that the imaginary parts are almost independent of a and are
all around −0.15. The m0 ¼ 1 mode decays most slowly,
probably because of its special behavior under the angular
boundary conditions. When m0 ≠ 0, the real parts of the
acceleration modes get small nonzero values. They are
almost linearly dependent on a.
Figure 10 shows the results with a fixed. When A

increases, the m0 ¼ 0 mode still has vanishing real parts,
while the real parts of m0 ¼ 1, 2 modes increase. It is
obvious that their imaginary parts are linearly dependent on
the acceleration parameter A, which is also the surface
gravity κRA at the acceleration horizon of Rindler space.
Similarly, the m0 ¼ 1 mode is the dominant one. The
imaginary parts of acceleration modes withm0 ≥ 0,m0 ≠ 1
can be approximated by

ImðωAÞ ≃ −κRA½nþ lþ 1þm0ðPðπÞ − 1Þ� ð56Þ

for small A. The imaginary parts of m0 ¼ 1 modes can be
approximated by

FIG. 8. Imaginary parts of n ¼ 0 and 1 NE modes for s ¼ −2, l ¼ 2, m0 ¼ 0. The left panel shows ImðωNEÞ as a function of a with
A ¼ 0.05. The right panel shows ImðωNEÞ as a function of A with a ¼ 0.999. We can only reach A ¼ 0.93 during our numerical
computation. The extremal value of A is 0.957.

FIG. 9. Real (left) and imaginary (right) parts of n ¼ 0 A modes for s ¼ −2, l ¼ 2, m0 ¼ 2, 1, 0 with A ¼ 0.05.
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ImðωAÞ ≃ −κRA½nþ lþ Pð0Þ� ð57Þ

for small A.
Compared with the other two sets, the numerical stability

of this family is much weaker. We fail to find these modes
when A is too small or too large.

V. CONCLUSION AND DISCUSSION

In this paper, we focused on the gravitational quasinor-
mal modes of the spinning C metric. We showed that the
perturbation equations for the spinning C metric for
massless perturbations with any spin weights can be
transformed into Heun’s equation. The continued fraction
method and shooting method were used to obtain the
separation constant and the quasinormal mode frequency.
The transformation of the equation makes the numerical
calculation quicker and more precise.
We identified three distinct sets of quasinormal modes.

The influences of the spin and acceleration on the quasi-
normal frequencies were analyzed, including the extremal
cases. The first set is the photon sphere modes, which
dominate against the other modes for most of the parameter
space. The acceleration parameter has very distinct
influences on the quasinormal modes with different m0.
With the increase ofA, the real parts of theQNM frequencies
with negative azimuthal numbers change signs. We also
found that the s ¼ −2; l ¼ 2; m0 ¼ 1modes have an anoma-
lous behavior. This is because the acceleration changes the
angular boundary conditions. When the acceleration param-
eter approaches to its extremal value, the imaginary parts of
these modes become vanishing. The second set is the near-
extremal modes, which branch from the first set when the
spinning parameter a increases. This family of modes
becomes dominant in the extremal limit a → 1. The last
set is the acceleration modes. They are closely related to the
acceleration parameter and decay most slowly when A is
small. Empirical formulas were given to approximate these
modes in the low acceleration or extremal limits.
There are still some unsolved problems with the QNM

spectrum of the spinning C metric, such as a more detailed
analysis of the spectrum of the near-extremal spinning C

metric or the spectrum of the electromagnetic perturbation.
Although we only analyzed the gravitational quasinormal
modes of the spinning C metric, our methods can calculate
QNMs of all the perturbations of the spinning C metric
(including the C metric).
The C metric has been used to approximate the accel-

erating black hole in [22,23]. Herewe extended the previous
works and analyzed the gravitational QNM spectrum of the
spinning C metric. From our numerical results, we can see
that small acceleration can still have a relatively large effect
on the QNM frequencies of spinning C metric. If an
accelerating rotating black hole can be described by the
spinning C metric, this phenomenon can be used to detect
the acceleration of the black hole. However, there are still
some problems with the spinning C metric. First, the C
metric is not strictly asymptotically flat. The generators of its
null infinity are not complete [56]. In addition, the C metric
has two conical singularities, and one of them cannot be
removed. This is the sacrifice of accelerating the black hole
without the introduction of external fields. How to precisely
define gravitational waves in such spacetime is still an open
question. We need further study to have a better under-
standing of the spinning C metric.
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APPENDIX A: NEWMAN-PENROSE
FORMALISM

The NP formalism is a special case of the tetrad
formalism, where the tensors of the theory are projected
onto a vector basis. Here we introduce the definitions of the

FIG. 10. Real (left) and imaginary (right) parts of n ¼ 0 A modes for s ¼ −2, l ¼ 2, m0 ¼ 2, 1, 0 with a ¼ 0.2.

QUASINORMAL MODES OF GRAVITATIONAL PERTURBATION … PHYS. REV. D 109, 084049 (2024)

084049-13



quantities used in Sec. II B. For more details, interested
readers may refer to [32–34].
Assume that we choose a null tetrad fl; n;m; m̄g. For the

signature ð−;þ;þ;þÞ, the normalization convention is

lana ¼ −1; mam̄a ¼ 1; ðA1Þ
while all other scalar products are zero. The primary
quantities used in the NP formalism are twelve spin
coefficients, five Weyl-NP scalars, and ten Ricci-NP
scalars. Since we consider the vacuum case, all Ricci-NP
scalars vanish, and we do not show their definitions here.
The spin coefficients are defined by

κ ≡ −malb∇bla; τ ¼ −manb∇bla;

σ ≡ −mamb∇bla; ρ≡ −mam̄b∇bla;

π ≡ m̄alb∇bna; ν≡ m̄anb∇bna;

μ≡ m̄amb∇bna; λ≡ m̄am̄b∇bna;

ϵ≡ −
1

2
ðnalb∇bla − m̄alb∇bmaÞ;

γ ≡ −
1

2
ðnanb∇bla − m̄anb∇bmaÞ;

β≡ −
1

2
ðnamb∇bla − m̄amb∇bmaÞ;

α≡ −
1

2
ðnam̄b∇bla − m̄am̄b∇bmaÞ: ðA2Þ

The Weyl-NP scalars are defined by

Ψ0 ≡ Cabcdlamblcmd; Ψ1 ≡ Cabcdlanblcmd;

Ψ2 ≡ Cabcdlambm̄cnd; Ψ3 ≡ Cabcdlanbm̄cnd;

Ψ4 ≡ Cabcdnam̄bncm̄d: ðA3Þ
In many situations, like the Petrov type D vacuum

spacetimes [32], the Newman-Penrose formalism simpli-
fies dramatically. Many of the quantities vanish when we
choose some specific null tetrad. This simplification makes
it easier to do calculations than using the standard form of
Einstein’s equations.

APPENDIX B: COEFFICIENTS
IN THE EQUATIONS

In this appendix, we show the coefficients in Eq. (30):

d2SðzÞ
dz2

þ
�
1

z
þ 1

z − 1
þ 1

z − zþ
−

2

z − z∞

�
dSðzÞ
dz

þ
"
−
A2
1

z2
−

A2
2

ðz − 1Þ2 −
A2
3

ðz − zþÞ2

þ 2

ðz − z∞Þ2
þ A0

1

z
þ A0

2

z − 1
þ A0

3

z − zþ

−
1
z∞

þ 1
z∞−1 þ 1

z∞−zþ
z − z∞

#
SðzÞ: ðB1Þ

The coefficients A0
1; A

0
2; A

0
3 are

A0
1 ¼ −

Alm

Kþ
−
2ðã2 þ ÃÞK−

Pð0ÞPðπÞ

þm2½−1þ 3ã4 þ 4Ãð−1þ Ãþ 2LÞ�
2Pð0ÞPðπÞ3

þ 2m2ã2ð−3þ 2Ãþ 4LÞ
2Pð0ÞPðπÞ3

þ 2mðã2 − Ãþ LÞ þ ð1 − ã2ÞK−

Pð0ÞPðπÞ s

þ 1 − 4Lþ 4Ã2 þ ã2ð−6þ ã2 þ 4LÞ
2Pð0ÞPðπÞ s2

þ 2ω̃

�
mK−

Pð0ÞPðπÞ2 þ
s
Kþ

	
; ðB2Þ

A0
2 ¼

Alm

K−
þ 2ðã2 − ÃÞKþ

Pð0ÞPðπÞ

þm2½1 − 3ã4 − 4Ãð1þ Ãþ 2LÞ�
2Pð0Þ3PðπÞ

þ 2m2ã2ð3þ 2Ãþ 4LÞ
2Pð0Þ3PðπÞ

þ 2mðã2 þ Ã − LÞ − ð1 − ã2ÞKþ
Pð0ÞPðπÞ s

−
1þ 4Lþ 4Ã2 þ ã2ð−6þ ã2 − 4LÞ

2Pð0ÞPðπÞ s2

þ 2ω̃

�
−

mKþ
Pð0Þ2PðπÞ þ

s
K−

	
; ðB3Þ

A0
3 ¼ −

4LAlm

Pð0ÞPðπÞ þ
8L2ðÃ − LÞ
ã2Pð0ÞPðπÞ

−
8m2

½Pð0ÞPðπÞ�3 ½ã
6ð−Ãþ LÞ þ 2ã4ðÃþ LÞ

− 4Ã2ðÃþ LÞ þ ã2ð3Ãþ LÞ�

þ 4Lð1 − ã2Þ
Pð0ÞPðπÞ s2 −

4ðmã2 − Lð1 − ã2ÞÞ
Pð0ÞPðπÞ s

þ 8mω̃ðLþ Ã − Ãã2 þ Lã2Þ
½Pð0ÞPðπÞ�2

−
4ð1 − ã2Þsω̃
Pð0ÞPðπÞ ; ðB4Þ

where

K� ¼ 1− ã2�2L; L¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ã2− ã2

p
: ðB5Þ
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APPENDIX C: COMPARISON
OF THE TWO METHODS

In this appendix, we show the numerical results for
QNMs obtained by the continued fraction method and the
shooting method.
The comparison of the gravitational perturbation results

computed by these two methods is shown in Table II. We
can see that they agree with each other very well. From
our numerical calculations, we find that the continued
fraction method is faster and more stable. The efficiency

of the shooting method highly depends on the choice
of the initial values. When the initial values depart
from the true results too far, the time of computation
increases dramatically. It also fails in some extremal cases
as shown in Table II. In addition, we show some results
for s ¼ 0 scalar perturbations in Table III. They are
consistent with the results obtained in [24,26]. We also
show the results for s ¼ −2 gravitational perturbations
with A ¼ 10−10. The results agree with the Kerr QNMs
very well [43].

TABLE II. The comparison between the gravitational quasinormal modes computed by two methods with different parameters. We
only present the fundamental mode with l ¼ 2 for each set. In some extremal cases, the shooting method fails to get the results.

Parameters Families Azimuthal number Continued fraction method Shooting method

m0 ¼ 2 0.4823156711 − 0.0892117509i 0.4823156711 − 0.0892117509i
a ¼ 0.2 m0 ¼ 1 0.3026513887 − 0.0867337232i 0.3026513887 − 0.0867337232i
A ¼ 0.1 PS m0 ¼ 0 0.3534844386 − 0.0885607886i 0.3534844386 − 0.0885607886i

m0 ¼ −1 0.3862871232 − 0.0900322898i 0.3862871232 − 0.0900322898i
m0 ¼ −2 0.4082687782 − 0.0909585115i 0.4082687782 − 0.0909585115i

a ¼ 0.2 m0 ¼ 2 0.2037690459 − 0.0000502429i � � �
A ¼ 0.505 PS m0 ¼ 1 0.1019309535 − 0.0000502427i � � �

m0 ¼ 0 0.0000502527 − 0.0000502422i � � �
a ¼ 0.2 m0 ¼ 2 0.0000408386 − 0.0304060717i 0.0000408386 − 0.0304060717i
A ¼ 0.01 A m0 ¼ 1 0.0000204331 − 0.0298001931i 0.0000204331 − 0.0298001931i

m0 ¼ 0 −0.0300063368i −0.0300063368i
a ¼ 0.999, A ¼ 0.1 NE m0 ¼ 0 −0.0666019203i −0.0666019203i
a ¼ 0.999999, A ¼ 0.1 NE m0 ¼ 0 −0.0021160230i −0.0021160230i

TABLE III. Numerical results for s ¼ −2 QNMs with A ¼ 10−10 or for s ¼ 0 QNMs. The results computed by both methods are all
the same except for the A ¼ 10−10 cases, where the shooting method fails. We stop comparing the results from the two methods for
brevity. The subscript stands for the overtone number. The s ¼ −2 QNMs are well consistent with the Kerr case. The scalar QNMs we
show here were calculated in [24,26]. Our results agree with them.

Parameters Families Azimuthal number QNM frequencies Separation constant

s ¼ −2 m0 ¼ 2 0.3870175385 − 0.0887056990i −3.742360877 − 0.058957785i
l ¼ 2 m0 ¼ 1 0.3804322549 − 0.0887983009i −3.873766302 − 0.029315246i
a ¼ 0.1 PS0 m0 ¼ 0 0.3740317881 − 0.0888980902i −4.000628538þ 0.000316649i
A ¼ 10−10 m0 ¼ −1 0.3678117862 − 0.0890036975i −4.123144955þ 0.029946687i

m0 ¼ −2 0.3617677061 − 0.0891137673i −4.241505977þ 0.059581772i
s ¼ 0, l ¼ 1 PS0 m0 ¼ 1 0.3032499295 − 0.0973670415i −2.184342759
a ¼ 0, A ¼ 0.03 A0 −0.0618960744i −2.184342759
s ¼ 0, l ¼ 0 NE0 −0.0002230478576i 3.358418504 � 10−8
a ¼ 1 − 10−7 NE1 m0 ¼ 0 −0.0004460958815i 1.333343335 � 10−7
A ¼ 0.05 NE2 −0.0006691440726i 2.995847651 � 10−7
s ¼ 0, l ¼ 0 A0 −0.002000027032i 2.666696125 � 10−6
a ¼ 0.5 A1 m0 ¼ 0 −0.004000173569i 4.666918426 � 10−6
A ¼ 0.002 A2 −0.006000441735i 8.000919614 � 10−6
s ¼ 0, l ¼ 0 PS0 0.002228495959 − 0.001796566429i −0.2596500358þ 7.026 � 10−7i
a ¼ 0.3 PS1 m0 ¼ 0 0.001049501306 − 0.005389700536i 0.3217182425þ 1.4275 � 10−6i
A ¼ 0.508 PS2 0.001049338537 − 0.008982834229i 0.3217247589þ 2.3788 � 10−6i
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