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The recent detection of a stochastic signal in the NANOGrav 15-year dataset has aroused great interest in
uncovering its origin. However, the evidence for the Hellings-Downs correlations, a key signature of the
gravitational-wave background (GWB) predicted by general relativity, remains inconclusive. In this paper,
we search for an isotropic nontensorial GWB, allowed by general metric theories of gravity, in the
NANOGrav 15-year dataset. Our analysis reveals a Bayes factor of approximately 2.5, comparing the
quadrupolar (tensor transverse, TT) correlations to the scalar transverse (ST) correlations, suggesting that
the ST correlations provide a comparable explanation for the observed stochastic signal in the NANOGrav
data. We obtain the median and the 90% equal-tail amplitudes asAST ¼ 7.8þ5.1

−3.5 × 10−15 at the frequency of
1=year. Furthermore, we find that the vector longitudinal (VL) and scalar longitudinal (SL) correlations are
weakly and strongly disfavored by data, respectively, yielding upper limits on the amplitudes: A95%

VL ≲
1.7 × 10−15 and A95%

SL ≲ 7.4 × 10−17. Lastly, we fit the NANOGrav data with the general transverse (GT)
correlations parametrized by a free parameter α. Our analysis yields α ¼ 1.74þ1.18

−1.41 , thus excluding both the
TT (α ¼ 3) and ST (α ¼ 0) models at the 90% confidence level.

DOI: 10.1103/PhysRevD.109.084045

I. INTRODUCTION

Apulsar timing array (PTA) is dedicated to the detection of
gravitational waves (GWs) with frequencies in the nanohertz
range by regularly monitoring the spatially correlated fluc-
tuations caused by GWs on the time of arrivals (TOAs) of
radio pulses emitted by an array of pulsars [1–3]. There
are three major PTA projects: the European PTA (EPTA) [4],
the North American Nanoherz Observatory for GWs
(NANOGrav) [5], and the Parkes PTA (PPTA) [6]. Over
the course of more than a decade, these projects have
been monitoring the TOAs from dozens of millisecond
pulsars with an observation cadence ranging from weekly
to monthly. These PTAs along with the Indian PTA
(InPTA) [7] constitute the International PTA (IPTA) [8,9].

Meanwhile, theChinese PTA (CPTA) [10] and theMeerKAT
PTA (MPTA) [11] are relatively new PTA collaborations that
use the sensitive new telescopes, FAST and MeerKAT.
Recently, NANOGrav [12,13], EPTAþ InPTA [14,15],

PPTA [16,17], and CPTA [18] have independently
announced compelling evidence for a stochastic signal in
their latest datasets. These datasets demonstrate varying
levels of significance in supporting the presence of
Hellings-Downs (HD) [19] spatial correlations as predicted
by general relativity. While the PTAwindow covers a broad
range of possible sources [20–33], the exact origin of
the observed signal remains under active investigation,
whether from astrophysical phenomena or cosmological
processes [34–42]. A variety of sources can potentially
explain the PTA signal [43–45], including the GW
background (GWB) generated by supermassive black
hole binaries [46–48], domain walls [49,50], cosmic
strings [51–53], phase transitions [54–58], and scalar-
induced GWs [59–65] accompanying the formation of
primordial black holes [66–68].
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Identifying a GWB as predicted by general relativity
hinges on the observation of its quintessential quadrupolar
characteristics, specifically the HD spatial correlations
within PTA data. To achieve this goal, it is crucial to
conduct a consistency test to confirm that the signal
exhibits clearly quadrupolar characteristics [69], thereby
ruling out other reasonable explanations such as the
monopolar or dipolar correlations. While the NANOGrav
15-year dataset strongly disfavors individual monopole and
dipole signals and exhibits a slight disfavoring tendency
toward HDþmonopole and HDþ dipole models [13], it is
important to note that this does not exclude the possibility
of alternative GW polarization modes allowed in general
metric theories of gravity. In fact, a most general metric
gravity theory can have two scalar modes and two vector
modes in addition to the two tensor modes, each with
distinct correlation patterns [70–75]. It is worth noting that
earlier studies [76–79] have tentatively reported evidence
for scalar transverse (ST) correlations. To determine
whether the observed PTA signal indeed originates from
a GWB as predicted by general relativity, it is imperative to
fit the data with all plausible correlation patterns. In this
paper, we perform the Bayesian search for the stochastic
GWB signal, modeled by a power-law spectrum with a
varying power-law index. Our analysis considers all six
polarization modes in the NANOGrav 15-year dataset.

II. DETECTING NONTENSORIAL
GWBS WITH PTAS

Pulsar timing experiments take advantage of the regular
arrival rates of radio pulses emitted by extremely stable
millisecond pulsars. GWs can perturb the geodesics of
these radio waves, leading to fluctuations in the TOAs of
radio pulses [1,2]. The presence of a GW will result in
unexplained residuals in the TOAs, even after compensat-
ing for a deterministic timing model that accounts for the
pulsar spin behavior and the geometric effects caused by
the motion of the pulsar and the Earth [1,2]. Through
regularly monitoring TOAs of pulsars from an array of the
highly stable millisecond pulsars [3], and analyzing the
expected cross-correlations among pulsars in a PTA, it
becomes possible to extract the GW signal from other
systematic effects, such as the clock errors.
The cross-power spectral density of timing residuals

induced by a GWB at the frequency f for two pulsars, a
and b, can be expressed as [70–72]

SabðfÞ ¼
X

P

h2c;P
12π2f3

ΓP
abðfÞ: ð1Þ

Here, hPc ðfÞ represents the characteristic strain, and the
summation encompasses all six possible GW polarizations
that can be inherent in a general metric gravity theory,
specifically denoted as P ¼ þ;×; x; y; l; b. The symbols

“þ” and “×” refer to the two spin-2 transverse traceless
polarization modes; “x” and “y” correspond to the two
spin-1 shear modes; “l” designates the spin-0 longitudinal
mode; and “b” identifies the spin-0 breathing mode. The
overlap reduction function (ORF) ΓP

ab for a pair of pulsars is
given by [70,71]

ΓP
abðfÞ ¼

3

8π

Z
dΩ̂ðe2πifLað1þΩ̂·p̂aÞ − 1Þ

× ðe2πifLbð1þΩ̂·p̂bÞ − 1ÞFP
a ðΩ̂ÞFP

b ðΩ̂Þ; ð2Þ

where p̂ is the direction of the pulsar with respect to the
Earth, La and Lb are the distance from the Earth to the
pulsar a and b respectively, and Ω̂ is the propagating
direction of the GW. Additionally, antenna patterns FPðΩ̂Þ
are expressed as

FPðΩ̂Þ ¼ ePijðΩ̂Þ
p̂ip̂j

2ð1þ Ω̂ · p̂Þ ; ð3Þ

where ePij stands for the polarization tensor corresponding
to polarization mode P [70,71]. As per the conventions
established in [80], we define

ΓTT
ab ðfÞ ¼ Γþ

abðfÞ þ Γ×
abðfÞ; ð4Þ

ΓST
abðfÞ ¼ Γb

abðfÞ; ð5Þ

ΓVL
ab ðfÞ ¼ Γx

abðfÞ þ Γy
abðfÞ; ð6Þ

ΓSL
abðfÞ ¼ Γl

abðfÞ: ð7Þ

For the tensor transverse (TT) and ST polarization modes,
the ORFs exhibit a notable property of being nearly
independent of both distance and frequency, which can
be analytically computed by [19,70]

ΓTT
ab ðfÞ ¼

1

2
ð1þ δabÞ þ

3

2
kab

�
ln kab −

1

6

�
; ð8Þ

ΓST
abðfÞ ¼

1

8
ð3þ 4δab þ cos ζabÞ; ð9Þ

where δab represents the Kronecker delta symbol, ζab
denotes the angular separation between pulsars a and b,
and kab ≡ ð1 − cos ζabÞ=2. Note that ΓTT

ab is commonly
referred to as HD correlations, which are closely associated
with the quadrupolar nature of GW signals. In contrast,
analytical expressions for the vector longitudinal (VL) and
scalar longitudinal (SL) polarization modes are not readily
available. Therefore, we rely on numerical methods to
compute these functions. In this work, we adopt the pulsar
distance information collected in Table 2 of [81] to estimate
the ORFs. It is worth noting that the ORFs for TT and ST
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polarization modes only differ by the presence or absence
of the term κab ln κab. To generalize these ORFs, we adopt a
parametrized form, following a similar approach as
described in [79],

Γab ¼
1

8
ð3þ 4δab þ cos ξabÞ þ

α

2
κab ln κab: ð10Þ

Here, the parameter α allows us to seamlessly transition
between the TT mode (when α ¼ 3) and the ST mode
(when α ¼ 0). For later convenience, we refer to this
parametrization as the “general transverse” (GT). See
Fig. 1 for a visualization of various ORFs considered in
this work.
Since current PTA data is not able to distinguish between

various spectral shapes of the GWB energy density [34,43],
we employ a power-law energy density spectrum in our
analysis. This leads to the following expression:

SabðfÞ ¼
X

I¼TT;ST;VL;SL

ΓI
ab

A2
I

12π2

�
f
fyr

�
−γI

f−3yr ; ð11Þ

where AI is the GWB amplitude of polarization mode I,
fyr ¼ 1=year, and γI corresponds to the spectral index for
the polarization mode I that we treat as a free parameter.
The dimensionless GW energy density parameter per
logarithm frequency for the polarization mode I is related
to AI by, [82],

ΩI
GWðfÞ ¼

2π2

3H2
0

f2h2c;I ¼
2π2f2yr
3H2

0

A2
I

�
f
fyr

�
5−γI

; ð12Þ

where H0 ¼ 67.4 km s−1 Mpc−1 [83] is the Hubble
constant.

III. DATA ANALYSIS

The NANOGrav 15-year dataset [12] comprises data
from 68 pulsars. Following [13], we use 67 pulsars with
timing baselines that exceed three years. The timing
residuals for each pulsar, obtained by subtracting the timing
model from the TOAs, can be expressed as [84]

δt ¼ Mϵþ Faþ n: ð13Þ

The term Mϵ serves to accommodate inaccuracies that can
arise during the subtraction of the timing model, where M
represents the design matrix of the timing model, and ϵ is a
vector that denotes minor deviations of the timing model
parameters. The term Fa encompasses all low-frequency
signals, including both the red noise that is intrinsic to each
pulsar and the common red noise signal shared among all
pulsars, such as a GWB. Here, F corresponds to the Fourier
design matrix, which features components of alternating
sine and cosine functions. Given the timespan T, a is a
vector that signifies the amplitude of the Fourier basis
functions, and these functions are associated with specific
frequencies of f1=T; 2=T;…; Nmode=Tg. Similar to
NANOGrav [13], we employ 30 frequency components
to account for the intrinsic red noise specific to each pulsar,
and these are characterized by a power-law spectrum.
Additionally, we utilize 14 frequency components for the
GWB signal. The final term n is responsible for modeling
the timing residuals stemming from white noise, including
a scale parameter on the TOA uncertainties (EFAC), an
added variance (EQUAD), and a per-epoch variance
(ECORR) for each backend/receiver system [84].
Similar to NANOGrav [13], we adopt the JPL solar

system ephemeris (SSE) DE440 [85] as the fiducial SSE.
Our Bayesian parameter inference follows a procedure
closely aligned with the one outlined in [86,87]. The
model parameters and their associated prior distributions
are summarized in Table I. In our analyses, we keep
the white noise parameters fixed at their maximum like-
lihood values to reduce the computational costs. We use
ENTERPRISE [88] and ENTERPRISE_EXTENSION [89] software
packages for the calculation of likelihood and Bayes factors.
The Bayes factors are calculated using the product-space
method [90–93]. For Markov chain Monte Carlo sampling,
we utilize the PTMCMCSAMPLER [94] package. To expedite
the burn-in process for the chains,we employ samples drawn
from empirical distributions to handle the red noise param-
eters of the pulsars. These distributions are constructed
based on posteriors obtained from an initial Bayesian
analysis that exclusively incorporates the pulsars’ red
noise, excluding any common red noise processes, as carried
out in [87,95].

FIG. 1. Various ORFs examined in this work. Here, the GTb
model refers to the GT model with α ¼ 1.74. The Bayesian
reconstruction of normalized inter-pulsar correlations, as adapted
from NANOGrav’s analysis [13], is depicted by the gray violins.
It is important to emphasize that the longitudinal modes, VL and
SL, depend on both pulsar distance and GW frequency. The
illustration here specifically presents the scenario where fLa ¼
fLb ¼ 100 for the VL and SL modes.
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IV. RESULTS AND DISCUSSION

Table II summarizes the Bayes factors for different
models compared to the TT model that incorporates the
full HD spatial correlations. The Bayes factor of the ST
model relative to the TT model is 0.40� 0.03, indicating
that there is no statistically significant evidence supporting

or refuting the ST correlations over the HD correlations
in the NANOGrav 15-year dataset. We obtain the median
and the 90% equal-tail amplitudes asAST¼ 7.8þ5.1

−3.5 ×10−15

at the reference frequency of fyr. The posterior distributions
for the amplitude AST and the power-law index γST are
illustrated in Fig. 2.
The Bayes factor of the VL model versus the TT

model is 0.12� 0.02, implying the VL correlations are
slightly disfavored in comparison to the HD correlations.
Furthermore, the Bayes factor of the SL model compared
to the TT model is 0.002� 0.001, strongly disfavoring
the SL correlations compared to the HD correlations.
Consequently, we establish upper limits for the amplitudes
asAVL ≲ 1.7 × 10−15 andASL ≲ 7.4 × 10−17. Note that the
constraint on the amplitude for the SL model is around two
orders of magnitude tighter than that from other polar-
izations, mainly due to the strong autocorrelations inherent
to the SLmode. The posteriors for theVL and SLmodels are
also shown inFig. 2.Notably, the power-law indexes derived
from different polarizations, namely γST, γVL, and γSL,
exhibit broad consistency. We also observe that the disfa-
vored longitudinal modes remain slightly unfavorable when
considered in combination with the TT mode. Specifically,
we find BFTTþVL

TT ¼ 0.49 and BFTTþSL
TT ¼ 0.27.

We also consider a TTþ ST model that simultaneously
incorporates both the TT and ST correlations. The Bayes
factor between the TTþ ST model and the TT model is
0.943� 0.005, indicating that there is no significant
evidence supporting or refuting the ST correlations in

TABLE I. Parameters and their prior distributions used in the analyses.

Parameter Description Prior Comments

White Noise

Ek EFAC per backend/receiver system Uniform [0, 10] Single-pulsar analysis only
Qk½s� EQUAD per backend/receiver system Log-uniform ½−8.5;−5� Single-pulsar analysis only
Jk½s� ECORR per backend/receiver system Log-uniform ½−8.5;−5� Single-pulsar analysis only

Red Noise

ARN Red-noise power-law amplitude Log-uniform ½−20;−11� One parameter per pulsar
γRN Red-noise power-law spectral index Uniform [0, 7] One parameter per pulsar

GWB Process

AI GWB amplitude of polarization I Log-uniform ½−18;−11� One parameter for PTA
γI Power-law index of polarization I Uniform [0, 7] One parameter for PTA

TABLE II. The Bayes factors for various models compared to the TT model that considers the full HD spatial correlations derived
from the product-space method. Here, the GTb model stands for the GT model with α ¼ 1.74. For all models, we use the power-law
spectrum for the GWB with a varied power-law index parameter. The digit in parentheses gives the uncertainty on the last quoted digit.

Model ST VL SL GTb TTþ ST TTþ VL TTþ SL TTþMono GTbþMono
TTþMono
þDipole

GTbþMono
þDipole

BF 0.40(3) 0.12(2) 0.002(1) 3.9(3) 0.943(5) 0.489(6) 0.266(4) 0.548(6) 2.3(6) 0.255(4) 0.26(6)

FIG. 2. Bayesian posteriors for the amplitude, A, and power-
law index parameter, γ, obtained in the ST, VL, and SL models.
We show the 1σ, 2σ, and 3σ contours in the two-dimensional plot.
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addition to the HD correlations. The contour plot and the
posterior distributions of the TT and ST components in the
TTþ ST model are depicted in Fig. 3. The presence of
the peak around−14.5 for the amplitude log10 AST confirms
that the NANOGrav data do not rule out the possibility of
an ST signal in the data.
To gain further insights into the optimal correlations that

best describe the data, we also fit the NANOGrav 15-year
dataset with a parametrized ORF (the GT model) as defined
in Eq. (10). The posterior distribution for the free parameter
α is displayed in Fig. 4. Our analysis yields a value of
α ¼ 1.74þ1.18

−1.41 , thus excluding both the TTand ST models at
the 90% confidence level. However, it is worth noting that
the TT and ST models remain consistent with the
NANOGrav 15-year dataset at the 3σ confidence level.
Furthermore, the Bayes factor between the GTb model,
which is the GT model by fixing α to the best-fit value of
1.74, and the TT model is 3.9� 0.3, confirming that
NANOGrav can be better described by the correlations
with α ≃ 1.74 than by the HD correlations with α ¼ 3.
Furthermore, we calculate the Bayes factor comparing the
TTþ ST model and the GTb model as BFTTþST

GTb ¼ 0.24,
indicating a preference for the GTb model over the
TTþ ST model.
More comprehensive model comparisons can be

obtained when considering the presence of a monopole
or dipole signal, as shown in both Table II and Table III.
Particularly, from Table III, it is evident that even when
accounting for these additional signals, the GTb model
consistently outperforms other polarization models.
In summary, our analysis indicates that the NANOGrav

15-year dataset can be effectively described by either the

TT correlations or the ST correlations, with no compelling
evidence strongly favoring one over the other. The best-
fitting model, GT with α ≃ 1.74, might result from the
potential impact of model misspecification, either in pulsar
noise termsor the choice ofmodel correlations.Nevertheless,
the current PTA data cannot provide a definitive verdict on
the spatial correlations within the stochastic signal, thereby
posing a challenge for the unequivocal detection of the GWB
predicted by general relativity through PTAs. Future work
may need to consider the potential impact of cosmic variance
in this quest [96–101]. We anticipate that future PTA data
with a longer observation timespan and a larger number of
pulsars will provide the necessary insights to pinpoint the
origin of the observed stochastic signal.
It is noteworthy that the official NANOGrav collabora-

tion independently conducted a study on transverse modes
in their 15-year dataset, with their findings appearing
on the arXiv shortly after ours [102]. Their analysis
revealed strong Bayes factors supporting a correlated
signal. Notably, the data did not exhibit a strong preference
for either correlation signature, with Bayes factors around
∼2 when comparing TT to ST correlations and ∼1 for
TTþ ST correlations against TT correlations alone. These
outcomes align closely with our findings, indicating robust
consistency. However, certain differences between our
analyses emerge. The official NANOGrav collaboration
performed dropout analysis tests, which we did not under-
take. They identified J0030þ 0451 and J0613–0200 as

FIG. 3. Same as Fig. 2 but for the TTþ ST model.

FIG. 4. Bayesian posteriors for the α parameter in the GTmodel
with a parameterized ORF as defined by Eq. (10). The two
vertical dashed lines correspond to the ST (α ¼ 0) and TT
(α ¼ 3) ORFs, respectively.

TABLE III. The Bayes factors between various models by a
conversion from Table II, e.g., BFTTþST

GTb ¼ BFTTþST
TT =BFGTbTT .

BFTTþST
GTb BFTTþST

TTþmono BFGTbþmono
TTþmono BFGTbþmonoþdipole

TTþmonoþdipole

0.24 1.72 4.2 1.02
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primarily responsible for the ST significance. Upon exclud-
ing these pulsars, they observed a significant increase in the
Bayes factor for HD, accompanied by a notable reduction
in the Bayes factor for ST. In contrast, our study extends
beyond theirs by including searches for longitudinal
polarization modes [VL in Eq. (6) and SL in Eq. (7)],
aspects not explored in their analysis. Furthermore, we
delved into a GT polarization mode characterized by the α
parameter [see Eq. (10)], an avenue untouched by the
official NANOGrav collaboration’s investigation. Our find-
ings indicate that the data can be best described by the GT
correlations with α ≃ 1.74.

Note added. A similar study by the NANOGrav collabo-
ration [102], which explores transverse polarization modes
in their 15-year dataset, was posted on arXiv one day after
our manuscript. While the results regarding the ST mode

from Ref. [102] are largely consistent with our findings, it
is worth highlighting that our study investigates the SL,
VL, and GT models that were not examined in Ref. [102].
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