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Certain versions of mimetic gravity have recently been claimed to present potential covariant theories of
canonically modified spherically symmetric gravity, motivated by ingredients from loop quantum gravity.
If such an equivalence were to hold, it would demonstrate general covariance of a large class of models
considered in loop quantum gravity. However, the relationship with mimetic gravity as presented so far is
incomplete because it has been proposed only in preferred space-time slicings of uniform scalar fields.
Here, several independent arguments are used to show that neither an equivalence nor a covariance claim
are correct for models of loop quantum gravity. The framework of emergent modified gravity is found to
present a broad setting in which such questions can be analyzed efficiently. As an additional result, the
discussion sheds light on the coexistence of different and mutually inequivalent approaches to an
implementation of the gravitational dynamics within loop quantum gravity.
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I. INTRODUCTION

Canonical quantum gravity is expected to change the
structure of space-time by incorporating general quantum
effects such as fluctuations or discreteness. The dynamics
of general relativity, no longer unfolding on a continuous
Riemannian geometry, is then likely to be modified, giving
rise to potential new phenomena in particular at high
curvature, such as at the big bang or in black holes.
However, the definition of physical effects relevant for
the expanding Universe or horizons requires certain geo-
metrical notions that work well in the classical continuum
but become less clear, at least according to the present stage
of knowledge, in fundamentally discrete theories.
Investigations of potential physical effects of proposals
for quantum gravity therefore aim to strike a balance
between including sufficiently many interesting dynamical
modifications while trying to stay close enough to the
classical space-time structure in order to apply familiar
notions of curvature scalars or geodesic properties. An
important tool in such effective descriptions is given by
space-time metric tensors or line elements, suitably modi-
fied by supposed quantum effects.
While effective line elements can be used to apply

classical definitions to proposed quantum solutions, they
are not always available because they implicitly assume
that expressions used for modified metric tensors indeed
enjoy proper tensor transformations under coordinate
changes. This condition ensures that the line element is,

as required, invariant under coordinate transformations and
therefore presents an unambiguous description of space-
time geometry. In models of canonical quantum gravity,
however, the underlying equations for gauge transforma-
tions that classically are equivalent to coordinate changes
are usually modified. It is then not guaranteed that modified
metric components obey the condition required for a well-
defined line element. In more general terms, it is far from
clear whether canonical quantum gravity or its effective
models can be consistent with general covariance at least in
regimes in which one tries to apply the usual notions of
curvature scalars or horizons that are based on the existence
of an invariant line element.
In models of loop quantum gravity, the covariance ques-

tion has been analyzed in some detail, resulting in several no-
go results for previously proposed formulations [1–5]. It is
therefore surprising that a recent analysis [6] concludes that
some of the models that had already been ruled out as
noncovariant or even anomalous may be described in an
equivalent way by certain versions ofmimetic gravity, which
are generally covariant. However, the arguments presented
there are incomplete because they demonstrate a relationship
between canonical equations in models of loop quantum
gravity and tensor equations derived from mimetic gravity
only in a preferred set of slicings. This set of slicings is
defined by uniform scalar fields that by definition occur in
mimetic gravity, but are included by hand on the canonical
side in order to perform simple deparametrizations of the
constrained dynamics. The relationship can be extended to
the general theories, then holding for any slicing, only if one
of the following two assumptions is met: (i) Gauge trans-
formations of the modified canonical theory are compatible
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with slicing changes or coordinate transformations in space-
time, or (ii) the mimetic version reduced to alternative gauge
choices with nonuniform scalar field in someway resembles
Hamiltonians expected from the procedures of loop quantum
gravity. The first assumption is precisely the property that
had already been ruled out for some of the same models, for
instance in [1], without using the connection to mimetic
gravity. The second assumption has beenmade implicitly but
not evaluated further in [6].
We will show that the claimed equivalence of mimetic

gravity and models of loop quantum gravity, as well as
general covariance of the latter, can quickly and easily be
disproved because the same constructions could be applied
to versions of Hořava–Lifshitz gravity [7] that are known
not to be covariant and are physically inequivalent to
mimetic gravity. Nevertheless, given the importance of
the covariance question in models of canonical and loop
quantum gravity, it is of interest to provide a detailed
analysis in order to determine where exactly the equiv-
alence fails, tracing it back to specific terms in the
Hamiltonian constraint of spherically symmetric general
relativity and its possible modifications. We will present
these details in Sec. II. In Sec. III, we will perform a related
analysis within the framework of emergent modified
gravity [8,9] in which it is possible to derive all compatible
covariant modifications up to a given order in derivatives.
Before our Conclusions, Sec. IV places our results in the
context of different approaches within loop quantum
gravity.

II. COVARIANCE WITHIN
MIMETIC GRAVITY

The constructions in [6] make use of the Lagrangian,

S½g;ϕ; λ� ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p �
Rþ L½ϕ�

þ λðð∇μϕÞð∇μϕÞ þ 1Þ�; ð1Þ

where

L½ϕ� ¼ L
�∇μ∇μϕ; ð∇μ∇νϕÞð∇μ∇νϕÞ�; ð2Þ

and λ is a Lagrangemultiplier, as a special version ofmimetic
gravity [10–14]. Mimetic gravity had previously been used
for models of loop quantum cosmology [15], where it had
been found not to provide an equivalence [16,17] if more
complicated features beyond purely isotropic models were
included. It would therefore be surprising if mimetic gravity
could be used as a complete equivalence for general spheri-
cally symmetric models, as claimed in [6].
The four-dimensional action is then reduced to a canoni-

cal formulation of spherically symmetric configurations by
assuming a space-time metric according to the line element,

ds2¼−N2dt2þðEφÞ2
Ex ðdxþMdtÞ2þExðdϑ2þ sin2ϑdφ2Þ;

ð3Þ

with the lapse function N, the shift vector M, and a spatial
metric expressed in terms of densitized-triad components
Eφ and Ex (assumed positive, fixing the spatial orientation)
as used in models of loop quantum gravity [18–20]. The
scalar field and Lagrange multiplier are assumed to depend
only on t and x in order to respect spherical symmetry. The
resulting scalar-tensor theory is covariant under coordinate
transformations or slicing changes that preserve spherical
symmetry.

A. Gauge fixing and Legendre transformation

In the next step of [6], gauge-fixing conditions are
introduced. A preferred slicing is defined by uniform scalar
fields, such that ϕðtÞ is no longer allowed to depend on x.
Locally, this choice is always possible in a covariant theory.
The mimetic condition,

0 ¼ gμνð∇μϕÞð∇νϕÞ þ 1 ¼ −
ϕ̇2

N2
þ 1; ð4Þ

then determines the lapse function, which also depends
only on t. Locally, one may choose t ¼ ϕ such that N ¼ 1.
The scalar terms in the reduced action can then be evaluated
explicitly in terms of derivatives of the triad components,
for which we will provide more details in Sec. IV. The
result is that a generic spherically symmetric gauge-fixed
action takes the form,

S¼ 1

2G

Z
dtdxNEφ

ffiffiffiffiffiffi
Ex

p �
−2XYþY2þ L̃ðX;YÞþ1

2
Rð3Þ

�
;

ð5Þ

where Rð3Þ is the spatial Ricci scalar,

Rð3Þ ¼ ðExÞ0ðEφÞ0
ðEφÞ3 −

ððExÞ0Þ2
4ExðEφÞ2 −

ðExÞ00
ðEφÞ2 þ

1

Ex ; ð6Þ

and we have

X¼ Ėφ− ðMEφÞ0
NEφ ; Y¼ Ėx−MðExÞ0

2NEx : ð7Þ

The function L̃ is determined by the original function L
of mimetic gravity. The construction relies on a coincidence
in the gauge used, which implies that extrinsic-curvature
components of a spherically symmetric metric, which
imply the terms −2XY þ Y2 in the action using Gauss-
Codazzi relationships, can be expressed uniquely through
the same two functions, X and Y, that determine the
independent scalar contributions to a spherically symmetric
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mimetic theory with a dependence of the form (2). We will
return to this observation in Sec. IV.
There is also a class of deformations in [6] parameterized

by a real number η for purposes of realizing different
models of dilaton gravity with actions,

Sη ¼
1

2G

Z
dtdxNEφ

ffiffiffiffiffiffi
Ex

p �
−2XY þ ð1 − ηÞY2

þ L̃ðX; YÞ þ 1

2
Rð3Þ
η

�
; ð8Þ

where

Rð3Þ
η ¼ðExÞ0ðEφÞ0

ðEφÞ3 − ð1−ηÞ ððExÞ0Þ2
4ExðEφÞ2−

ðExÞ00
ðEφÞ2þ

ηþ1

ðExÞ1−η :

ð9Þ

Although we will not be interested in dilaton gravity in the
present paper, it is useful to keep the parameter η for our
covariance analysis.
The action functional determines momenta,

πφ ¼ 2G
δSη
δĖφ ¼

ffiffiffiffiffiffi
Ex

p
ð∂XL̃ − 2YÞ ð10Þ

and

πx ¼ 2G
δSη
δĖx ¼

Eφ

2
ffiffiffiffiffiffi
Ex

p �
∂YL̃ − 2X þ 2ð1 − ηÞY� ð11Þ

canonically conjugate to Eφ and Ex, respectively. A
Legendre transformation leads to the Hamiltonian,

Hη ¼ −
1

2G

Z
dxN

ffiffiffiffiffiffi
Ex

p
Eφ

�
L̃ − X∂XL̃ − Y∂YL̃þ 2XY

− ð1 − ηÞY2 þ 1

2
Rð3Þ
η

�

þ 1

2G

Z
dxðMðExÞ0πx þ ðMEφÞ0πφÞ: ð12Þ

Varying by M, the second line implies the diffeomor-
phism constraint, and if N had not been gauge fixed, the
first line would imply the Hamiltonian constraint.
The case of L̃ ¼ 0 should correspond to vacuum spheri-

cally symmetric gravity. A direct calculation indeed yields

YL̃¼0 ¼−
πφ

2
ffiffiffiffiffiffi
Ex

p ; XL̃¼0 ¼−
ffiffiffiffiffiffi
Ex

p

Eφ πx−
1−η

2
ffiffiffiffiffiffi
Ex

p πφ; ð13Þ

and therefore,

2XL̃¼0YL̃¼0 − ð1 − ηÞY2
L̃¼0

¼ πφπx
Eφ þ 1 − η

4Ex π2φ; ð14Þ

which produces the correct momentum-dependent terms
for the Hamiltonian constraint used, for instance, in [9]
if η ¼ 0.

B. Modifications and violations of covariance

Continuing for now with L̃ ¼ 0, the reduced gauge-fixed
theory is equivalent to vacuum spherically symmetric
general relativity and therefore covariant. The procedure
outlined in [6] then attempts to map modifications of the
canonical theory, such as periodic dependences on the
momenta as motivated by loop quantum gravity, to suitable
nonzero L̃. In this way, models of loop quantum gravity are
mapped to specific versions of gauge-fixed action princi-
ples for spherically symmetric configurations. Without
further discussion, it is then claimed that the original
theories must be covariant because they are strictly related
to mimetic gravity, which is covariant.
However, taken at face value, the correspondence only

shows that models of loop quantum gravity are equivalent
to certain gauge-fixed action principles for spherically
symmetric configurations. It does not follow that the gauge
fixing can be relaxed while maintaining the correspon-
dence. To be sure, there are scalar fields on both sides, used
for deparametrization in models of loop quantum gravity
and included as dynamical matter on the mimetic side. But
the specific contributions of scalar fields to constraints or
actions are never compared with each other. It is therefore
unclear whether the specific dynamical dependence of the
mimetic action on ϕ via L, whose tensorial nature is
important for general covariance, is equivalent to the form
in which the scalar field is implemented on the canonical
side for models of loop quantum gravity. Without careful
adjustments, which have not been made when deparame-
trizing the models, it is highly unlikely that the scalar terms
match and complete all conditions for general covariance.
In an alternative viewpoint, one may use the covariant
mimetic theory in order to define what the scalar couplings
of the canonical theory should look like in any gauge for it
to be covariant. The main question, whether the required
scalar terms have a good chance of resembling what is
usually considered a model of loop quantum gravity, will
be discussed in Sec. IV.
On the mimetic side, there are two versions of canonical

spherically symmetric reductions, first the symmetry reduc-
tion by itself and then the reduction on a preferred slicing
given by uniform ϕ. For simplicity, we will call the former
the ðE; π;ϕÞ-theories and the latter the ðE; πÞ-theories (both
for various L̃) since in this case ϕ has been eliminated by
gauge fixing. While the ðE; π;ϕÞ-theories are clearly
covariant, as symmetry reductions of four-dimensional
covariant theories, the correspondence with models of loop
quantum cosmology envisaged in [6] only considers the
ðE; πÞ-theories. We will first see whether a covariance
argument in the sense of slicing independence can be made
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for these theories with generic L̃, for which the equivalence
to spherically symmetric gravity is not available.
Starting with a spatial slice Σ with initial values E0, π0,

and ϕ0 of an ðE; πÞ-theory, it can always be embedded in a
corresponding ðE; π;ϕÞ-theory with the same L̃ in which Σ
is realized as a spatial slice Σ0∶ϕ ¼ ϕ0 with ϕ0 constant. On
this slice, we may impose the same initial values E0 and π0
for the gravitational fields and choose the momentum of ϕ
such that the Hamiltonian constraint is satisfied. (The
diffeomorphism constraint does not depend on the momen-
tum since ϕ ¼ ϕ0 is constant on the initial slice, such that
ϕ0πϕ ¼ 0). Since all ðE; π;ϕÞ-theories are covariant, we
know that its solutions determine space-time geometries,
such that there are transformations to a different slice Σ00 on
which we have new values E1, π1, ϕ1 and scalar momenta
obtained from the original values on Σ0. For a covariance
argument, we would then like to restrict field values on Σ0
to just the gravitational fields and conclude that the trans-
formation could be interpreted as a slicing change in the
ðE; πÞ-theory. However, this is not possible because there is
no guarantee that the new field ϕ1 on Σ00 is constant, as
required by definition of the gauge-fixed ðE; πÞ-theory.
In fact, it can be shown explicitly that, in general, ϕ

cannot be constant on a new slice obtained by a coordinate
transformation. Consider a general coordinate transforma-
tion ðt; xÞ → ðt̃; x̃Þ, with new coordinates indicated by a
tilde. If we express the original coordinates (in which ϕ0 ¼
∂ϕ=∂x ¼ 0 on the given slice), as function of the new ones,
tðt̃; x̃Þ and xðt̃; x̃Þ, we have

∂ϕ

∂x̃
¼ ϕ̇

∂t
∂x̃

þ ϕ0 ∂x
∂x̃

¼ ϕ̇
∂t
∂x̃

: ð15Þ

If ∂t=∂x̃ ≠ 0 then in the new coordinate system we haveeϕ0 ≠ 0 (taking the spatial derivative in the new coordinate
system, as referred to by the tilde). Therefore, this gauge
is not contained in the ðE; πÞ-theories, in contrast to what
is implicitly assumed by using covariance statements for
the gauge-fixed mimetic theory. In the new coordinate
system, the Hamiltonian (12) for a general function L̃ is
no longer recovered because the latter descends from
the ∇μϕ-dependent L in (1), and extra terms appear in
the new gauge if L̃ ≠ 0. [See Eqs. (31) and (32) to be
discussed in Sec. IV.]
We conclude that slicing independence or covariance of

mimetic gravity and its spherically symmetric reduction
does not imply slicing independence of the gauge-fixed
theory which is formulated only for the gravitational fields.
For some L̃, the gauge-fixed theory may be covariant as in
the case of L̃ ¼ 0, but checking covariance for nonzero L̃
requires additional conditions that have not been consid-
ered in [6] for models of loop quantum gravity. We will fill
this gap in the remainder of this paper, showing that
covariance is, in fact, violated.

C. Quadratic theories and Hořava-Lifshitz gravity

A function L̃ðX; YÞ ¼ aX2 þ bXY þ cY2 can be used to
generate an arbitrary quadratic dependence of the
Hamiltonian on momenta. To see this, we simply evaluate
the contribution,

L̃ − X∂XL̃ − Y∂YL̃þ 2XY − ð1 − ηÞY2

¼ −aX2 þ ð2 − bÞXY − ð1 − ηþ cÞY2

¼ −a
Ex

ðEφÞ2 π
2
x þ

�
1 − b=2 − að1 − ηÞ� πxπφ

Eφ

þ �ð1 − bÞð1 − ηÞ − c − að1 − ηÞ2� π2φ
4Ex : ð16Þ

For suitable a, b and c (irrespective of η), any quadratic
dependence on the momenta can be generated.
However, it is well known that the dependence of the

Hamiltonian on momenta or of the action on extrinsic
curvature is restricted by covariance. Quadratic momenta
without higher time derivatives imply classical theories.
Without symmetry reduction, the quadratic dependence of
the action on extrinsic curvature Kab is completely deter-
mined asKabKab − ðKa

aÞ2, which in a spherically symmetric
reduction implies the specific coefficients of π2φ, πφπx, and
π2x seen in (14): In a triad basis, Kab has the components Kx
and Kφ where Kx ¼ πx and 2Kφ ¼ πφ [19]. Therefore,
supplying density weights by using the spatial metric qab,ffiffiffiffiffiffiffiffiffiffi

det q
p

Ka
a ¼ Ki

aEa
i ¼ KxEx þ 2KφEφ; ð17Þ

and

ffiffiffiffiffiffiffiffiffiffi
det q

p
KabKab ¼

1ffiffiffiffiffiffiffiffiffiffi
det q

p Ki
aEb

i K
j
bE

a
j

¼ ðExÞ3=2
Eφ K2

x þ 2
Eφffiffiffiffiffiffi
Ex

p K2
φ: ð18Þ

The combination,

ffiffiffiffiffiffiffiffiffiffi
det q

p �
KabKab − ðKa

aÞ2
�

¼ −4
ffiffiffiffiffiffi
Ex

p
KxKφ − 2

Eφffiffiffiffiffiffi
Ex

p K2
φ; ð19Þ

is indeed proportional to (14). The possibility of using an
unrestricted quadratic L̃ in gauge-fixed reduced theories of
mimetic gravity does not respect the required conditions on
coefficients.
It is in fact possible to generalize spherically symmetric

theories while keeping them covariant, as seen in two-
dimensional dilaton gravity. The coefficients in (14) are
unique for the reduction of general relativity to spherical
symmetry. They may be changed within two-dimensional
covariant theories, but still not arbitrarily so, as it would be
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suggested by a general quadratic L̃. We will discuss
restrictions on covariant two-dimensional theories in the
next section and now show that the generality of quadratic
L̃ can be used to construct a correspondence between
gauge-fixed reduced mimetic gravity and Hařava–Lifshitz
theories that are known not to be covariant.
In four-dimensional space-time, a class of Hořava–

Lifshitz gravity theories [7] is defined by the action,

SλHL ¼ 1

16πG

Z
d4xN

ffiffiffiffiffiffiffiffiffiffi
det q

p �
KabKab − λðKa

aÞ2

þ 1

1 − 3λ
Rð3Þ

�
; ð20Þ

where qab and Kab are metric and extrinsic-curvature
tensors defined on the slices of a foliation. For λ ¼ 1,
the theory is a restriction of general relativity to the
foliation, but for λ ≠ 1 there is no such correspondence
to a covariant theory. If we repeat our reduction of the
K-terms to spherical symmetry, we obtain

ffiffiffiffiffiffiffiffiffiffi
det q

p �
KabKab − λðKa

aÞ2
�

¼ ð1 − λÞ ðE
xÞ3=2
Eφ K2

x − 4λ
ffiffiffiffiffiffi
Ex

p
KxKφ

þ 2ð1 − 2λÞ Eφffiffiffiffiffiffi
Ex

p K2
φ: ð21Þ

For every λ, there is a L̃ such that this combination of Kx
and Kφ has a correspondence with gauge-fixed reduced
mimetic gravity according to [6]. Since generic Hořava-
Lifshitz theories are not covariant, this correspondence
cannot be used to prove covariance in other cases, such as
models of loop quantum gravity. Moreover, the correspon-
dence does not imply physical equivalence of the formally
related theories.
If we consider only two-dimensional theories of Hořava–

Lifshitz type, there is no need to use the reduction (21). A
general two-dimensional theory of this form can then be
defined with K-terms proportional to

K2
φ þ λ1

KxKφ

Eφ þ λ2
K2

x

ðEφÞ2 ; ð22Þ

with two parameters, λ1 and λ2. In spherical symmetry,
there are three independent spatial scalars quadratic in the
momenta, constructed by referring to the density weight
zero for Kφ and Ex and density weight one for Kx and Eφ.
Gauge-fixed reduced mimetic theories with quadratic L̃ are
sufficiently general to include even these theories. There
are no restrictions that could suggest any potential imple-
mentation of conditions for general covariance through the
correspondence.

III. COVARIANCE FROM EMERGENT
MODIFIED GRAVITY

We have seen that the gauge-fixed reduced theory of
mimetic gravity with action (5) is covariant if L̃ ¼ 0 because
it then equals a gauge fixing of vacuum spherically sym-
metric gravity, which clearly has a covariant extension to
arbitrary slicings. This conclusion remains true if we use (8)
with arbitrary η because L̃ ¼ 0 implies that the scalar field
does not couple to gravity at all; it is merely used to define a
slicing. If the scalar field does not couple to gravity, the
generic hypersurface deformations discussed in Sec. II B
can always be performed such that ϕ remains unchanged,
and in particular constant, when transforming to a new
slicing. Slicings of an ðE; πÞ-theory can then always be
embedded in slicings of an ðE; π;ϕÞ-theory, which are
covariant. The action (8) with L̃ ¼ 0 therefore defines a
covariant two-dimensional theory even though, for non-zero
η, it modifies the classical relationship between coefficients
of the momentum terms (14) as well as the spatial Ricci
scalar (9).
We are again seeing an example of the fact that two-

dimensional covariant models allow for more freedom than
spherically symmetric reductions of four-dimensional
covariant theories. According to [21], any Hamiltonian
constraint of the form,

H ¼ −
1

2G

Z
dxN

�
α

Eφffiffiffiffiffiffi
Ex

p K2
φ þ 2α

ffiffiffiffiffiffi
Ex

p
KxKφ

þ αΓ
Eφffiffiffiffiffiffi
Ex

p ð1 − ΓφÞ2 þ 2ᾱΓ
ffiffiffiffiffiffi
Ex

p
Γ0
φ

�
ð23Þ

with

Γφ ¼ −
ðExÞ0
2Eφ ; ð24Þ

defines an anomaly-free canonical theory in two dimen-
sions, provided the Ex-dependent functions α, ᾱ, αΓ and ᾱΓ
obey

ðᾱαΓ − αᾱΓÞðExÞ0 þ 2ðᾱ0ᾱΓ − ᾱᾱ0ΓÞEx ¼ 0: ð25Þ

This equation can be solved by the parametrization,

ᾱ ¼
ffiffiffiffiffiffi
jβj

p
b1 ð26Þ

α ¼
ffiffiffiffiffiffi
jβj

p
b1b2 ð27Þ

ᾱΓ ¼ sgnðβÞ
ffiffiffiffiffiffijβjp
b1

ð28Þ

αΓ ¼ sgnðβÞ
ffiffiffiffiffiffijβjp
b1

�
b2 − 4

d log b1
d logEx

�
; ð29Þ
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in terms of three functions, b1, b2 and β. The structure
function in the Poisson bracket of two Hamiltonian
constraints is then multiplied by β. Recently, these theories
have been shown to be not only anomaly-free but
also generally covariant [9] provided the radial component
of the spatial metric of a compatible space-time line
element is given by jβj−1ðEφÞ2=Ex rather than the classical
ðEφÞ2=Ex. The signature of the space-time metric is
determined by sgnðβÞ, being Lorentzian if β > 0 and
Euclidean if β < 0 [22]. Moreover, a term of the form
NEφVðExÞ with an arbitrary dilaton potential VðExÞ can be
added to the integrand of the Hamiltonian constraint (23)
without introducing anomalies or violating covariance.
There is therefore a large class of covariant two-

dimensional theories that do not have extensions to
covariant four-dimensional theories, all quadratic in
momenta. The canonical theory defined by (8) with (9)
is a simple example of these models in which ᾱ ¼ 1 ¼ ᾱΓ
and α ¼ αγ ¼ 1 − η are constant, while the dilaton poten-
tial VðExÞ can be used to account for the power ðExÞη−1 in
the last term of (9). This result confirms that any gauge-
fixed reduction of mimetic gravity with L̃ ¼ 0, eliminating
scalar couplings to gravity, defines a covariant two-
dimensional theory. In terms of the parametrization by β,
b1 and b2, the condition ᾱ ¼ ᾱΓ implies that sgnðβÞ ¼ b21,
or β > 0 and b1 ¼ 1. Since both ᾱ and ᾱΓ equal one in
this case, we obtain β ¼ 1. The second condition,
α ¼ αγ ¼ 1 − η, then equates b2 with the constant 1 − η.
With β ¼ 1, there is no signature change and the classical
expression ðEφÞ2=Ex can be used as the radial metric
component for all η. It is important to note that this result
must be derived from the constraint brackets and covari-
ance conditions. In general, it cannot be taken for granted.
For nonlinear L̃, the Hamiltonian contains a term of the

form K2
x or higher orders, which is not included in (23) and

cannot be made compatible with general covariance as
shown by the results of emergent modified gravity. This
term in (22) is therefore the crucial difference between
symmetry properties of Hořava-Lifshitz gravity and dilaton
gravity in two dimensions. The attempted relationship with
models of loop quantum gravity constructed in [6] con-
siders terms of the form sinðΔ1KxÞ where Δ1 may depend
on Ex and Eφ. In a Taylor expansion, this function includes
K2

x-terms as well as higher orders in Kx, violating covari-
ance. Terms of the form sinðΔ2KφÞ, again with a possible
dependence of Δ2 on Ex (but not on Eφ) can be made
covariant, but, as shown in [9], only by a canonical
transformation that introduces the sine function by hand.
Specific properties of this function, often related to funda-
mental properties of loop quantum gravity, therefore cannot
have physical implications on the level of effective space-
time geometries. Finally, covariance of these modifications
requires the presence of K0

φ-terms in the Hamiltonian
constraint or coupling terms of Kφ to ðExÞ0, which have

not been included in [6] and do not conform with the
mimetic correspondence.

IV. APPROACHES WITHIN LOOP
QUANTUM GRAVITY

Given the challenging nature of implementing a con-
sistent quantization of the gravitational constraints and
finding physically relevant solutions, different approaches
have been developed within loop quantum gravity in order
to address this problem. Since the intention is to find
more tractable procedures, some of these methods lead
to potential shortcuts toward a physical solution space.
However, since they forgo a full implementation of the
constraints, their brackets, and geometrical conditions, such
methods are not guaranteed to imply viable solutions unless
their consistency can be checked by independent means.
The prime example, referred to also in [6], is depar-

ametrization, in which one reformulates the constraints
classically, often based on special matter ingredients, and
quantizes only a Hamiltonian operator with respect to a
fixed matter clock, rather than a complete Hamiltonian
constraint that could be applied with different gauge or
clock choices. In the full theory of loop quantum gravity,
this viewpoint has been espoused for instance in [23,24]. A
necessary consistency question is whether this approach,
which builds on a fixed gauge, can be compatible with
gauge-independent properties. Evaluations of this question
are hard because they require a partial or complete undoing
of the fixed gauge or clock choice, but they can be
performed at least in spherically symmetric models.
The results of the present paper can be interpreted as

ingredients of just such an evaluation. General covariance,
one of the main topics studied here, is by definition a
question about how different gauge choices can be related
to one another in a specific way that resembles coordinate
transformations applied to a metric tensor. This question
cannot be addressed on a reduced phase space or with a
fixed gauge, but it is possible to ask whether reduced or
gauge-fixed models have extensions within a specific
framework that are compatible with general covariance.
The answer to this questions depends on which specific

framework is used to formulate possible extensions of a
deparametrized or gauge-fixed model. In our analysis, we
used the framework of models of loop quantum gravity,
which can be defined as modified spherically symmetric
theories in which the classical quadratic dependence on the
gravitationalmomenta has been replaced bynonpolynomial,
and usually trigonometric functions. This definition is
motivated by the ubiquitous and, in fact, eponymous use
of holonomies in loop quantizations. It aims to model
intricate quantum constructions as performed for instance
in [25–33] in a simpler setting of modified classical
expressions, using some of the same functional ingredients
in definitions of the constraints. As we have seen, this
approach is subject to strong covariance conditions that, in
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particular, rule out the possibility of embedding themodified
constraints of [6] in this framework.
The covariance claims made in [6] were based on a

different strategy: Terms inspired by loop quantum gravity
were used only in the preferred gauge based on depar-
ametrization of the canonical theory. The corresponding
Hamiltonian can be related to the Hamiltonian of a mimetic
theory in the preferred slicing defined by spatially constant
ϕ used as time, ϕ ¼ t. Since the mimetic side of this
correspondence by construction has a covariant extension
in which the gauge fixing is undone, it may be used as a
covariant theory. In this viewpoint, therefore, models of
loop quantum gravity as a framework are replaced by
models of mimetic gravity. Since these are two different
frameworks, it may well be that a covariant extension exists
only in one version, here using mimetic gravity. However,
since mimetic theories then replace models of loop quan-
tum gravity, it remains to be analyzed to what degree these
extensions can be interpreted as related to loop quantum
gravity in slicings or gauges other than the preferred one.

Another important question is whether such an extension is
unique, which would be required for an equivalence claim.
These questions can be addressed in a straightforward

manner because they merely requires a Hamiltonian analy-
sis of spherically symmetric mimetic gravity for unre-
stricted scalar fields. It should not come as a surprise that
the new equations are much longer than the neat expres-
sions found in the preferred slicing because they also
contain terms with ϕ0, ϕ00 as well as ϕ̇ and ϕ̈. The mimetic
condition no longer implies a direct relationship between N
and ϕ̇ but instead amounts to a condition onN,M as well as
ϕ̇ and ϕ0. Detailed properties of these equations can then be
used to discuss whether they may be motivated by loop
quantum gravity. If this is not the case, the appearance of
loop-like Hamiltonians in the preferred slicing would
merely be a coincidence but could not be considered a
generic feature of the covariant extension.
This discussion requires the following expressions: The

mimetic dependence of the action on the scalar field as used
in [6] refers to two terms,

gμ̄ ν̄ð2Þ∇μ̄∇ν̄ϕ ¼ gμ̄ ν̄ð2Þð∂μ̄∂ν̄ϕ − Γᾱ
μ̄ ν̄∂ᾱϕÞ ¼ −

ϕ̇ −Mϕ0

2N2Ex

�
2Ex Ė

φ

Eφ − Ėx

�

−
ϕ̇

2N2Ex

�
MðExÞ0 − 2Ex

Eφ ðMEφÞ0 þ 2Ex

N
ðMN0 − ṄÞ

�
−
ϕ̈ − ðN2Ex=ðEφÞ2 −M2Þϕ00 − 2Mϕ̇0

N2

þ ϕ0

2N2Ex

�
2Ex

�
Ṁ −M

Ṅ
N

�
þ 2Ex N

0

N

�
Ex

ðEφÞ2N
2 þM2

�
− 2Ex ðEφÞ0

Eφ

�
Ex

ðEφÞ2N
2 þM2

�

þ ðExÞ0
�

Ex

ðEφÞ2N
2 þM2

�
− 4ExMM0

�
; ð30Þ

and

Y ¼ −gμ̄ ν̄ð2Þ
∂μ̄Ex

2Ex ∂ν̄ϕ ¼ Ėxϕ̇ −MððExÞ0ϕ̇þ Ėxϕ0Þ − ðN2Ex=ðEφÞ2 −M2ÞðExÞ0ϕ0

2N2Ex ; ð31Þ

where gð2Þ is used to denote the two-dimensional metric of the t − x hypersurface and the barred indices correspond to only
the ðt; xÞ-components. The latter expression is directly used in [6] as one of the independent expressions in the function L
(or L0 after reduction to spherical symmetry), called Y in the spherically symmetric reduction. The second function in L0 is
given by

X¼−gμ̄ ν̄ð2Þ∇μ̄∇ν̄ϕ−gμ̄ ν̄ð2Þ
∂μ̄Ex

2Ex ∂ν̄ϕ¼ ϕ̇−Mϕ0

N2

Ėφ

Eφþ
ϕ̇

N2

�
Ėx

2Ex−
ðMEφÞ0
Eφ þMN0− Ṅ

N

�

þ ϕ̈− ðN2Ex=ðEφÞ2−M2Þϕ00−2Mϕ̇0

N2
−

ϕ0

2N2Ex

�
2Ex

�
Ṁ−M

Ṅ
N

�
þ2ExN

0

N

�
Ex

ðEφÞ2N
2þM2

�

−2Ex ðEφÞ0
Eφ

�
Ex

ðEφÞ2N
2þM2

�
þðExÞ0 2Ex

ðEφÞ2N
2−4ExMM0

�
: ð32Þ

It is easy to see that (32) and (31) reduce to (7) in the preferred slicing of spatially constant ϕ. The mimetic condition can
then be used to eliminate ϕ̇, and X and Y are directly related to the extrinsic-curvature components of a spherically
symmetric metric, independent of the scalar field. In other slicings, however, the full X and Y remain scalar dependent, and
the mimetic condition does not seem to imply noteworthy simplifications. As a consequence, X and Y in the mimetic
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function L no longer equal components of extrinsic
curvature. Therefore, there is no choice of L in such a
slicing that would turn the classical quadratic dependence
on the gravitational momenta into a dependence through
trigonometric functions, as seen for instance in the reduced
action,

S½g;ϕ;λ�¼ 1

2G

Z
dtdxNEφ

ffiffiffiffiffiffi
Ex

p �
−2

�
Ėφ−ðMEφÞ0

NEφ

�

×

�
Ėx−MðExÞ0

2NEx

�
þ
�
Ėx−MðExÞ0

2NEx

�
2

þ1

2
Rð3Þ

þ1

2

�
L0ðX;YÞþλðgμ̄ ν̄ð2Þð∇μ̄ϕÞð∇ν̄ϕÞþ1Þ��; ð33Þ

for a nonuniform slicing.
The methods of loop quantum gravity can then be used

to suggest modifications of the Hamiltonian only in a
preferred slicing, which is tantamount to saying that in this
viewpoint, loop quantum gravity is defined only on a
preferred slicing of space-time. On other slices, the
paradigm of loop quantum gravity is replaced by theories
of mimetic gravity. Moreover, this definition of loop
quantum gravity can only be made in the presence of a
scalar field, which is used crucially in order to define the
slicing by non-zero field values. There would be no vacuum
theory of loop quantum gravity.
An independent concern is that the mimetic extension is

far from being unique, starting with specific modifications
of the deparameterized canonical theory. (See also [34].)
In [6], a unique mimetic extension was derived for
mimetic gravity in which L depends only on two local
scalar invariants, ∇μ∇μϕ and ð∇μ∇νϕÞð∇μ∇νϕÞ, reduced
to X and Y in spherical symmetry. Mimetic gravity can be
formulated with an infinite number of higher-order invar-
iants with different contractions of n factors ∇μϕ, or ∇μ̄ϕ
as well as ∇ν̄Ex in a restriction to spherical symmetry.
Any term that reduces to at most one derivative of Ex in
spherical symmetry could play the role of Y in the
preferred slicing, but it would imply an inequivalent
mimetic extension of the deparametrized canonical theory.
Moreover, the mimetic condition is not strictly required
for these constructions because it is trivialized by the
gauge choice ϕ ¼ t, and can therefore be replaced by this
choice and then generalized to non-mimetic theories, such
as those of Horndeski type. Since such covariant exten-
sions of deparameterized canonical theories are not
uniquely defined by the deparameterized theory, they
cannot be considered equivalent descriptions.

V. CONCLUSIONS

We have demonstrated that the constructions given in [6]
fail to give a faithful description of models of loop quantum
gravity. By restricting the covariant theory of mimetic

gravity to a preferred slicing, the resulting models not only
lose reliable access to covariance properties within the
paradigm of loop quantum gravity, they are also nonunique
and obscure important dynamical features of the related
theories. If a theory is known to be covariant, it may well be
analyzed in a preferred slicing without losing any physical
information. However, if a theory such as loop quantum
gravity, whose covariance status is unclear, is related to a
canonical theory in a preferred slicing, it is impossible to
draw conclusions about any equivalence between the
theories. This statement is clearly demonstrated by the
example of Hořava-Lifshitz gravity. In this example, a
specific form of the four-dimensional action principle
replaces the framework of models of loop quantum gravity,
but conceptually it gives rise to the same equivalence
question.
Full equivalence between two general frameworks in

which actions or Hamiltonians are specified by indepen-
dent principles, which defines the desired kind of equiv-
alence in the present context, can only be obtained if a
comparison of equations in a preferred slicing is accom-
panied by a detailed analysis of gauge transformations. If
gauge transformations on both sides of the correspondence
are equivalent and equations of motion agree in a preferred
gauge or slicing, the theories are equivalent in their
dynamics as well as symmetry properties. For instance,
models of emergent modified gravity can be related to
mimetic gravity because they are covariant by construction,
but the correspondence then requires using the correct
emergent space-time metric that must be derived from
gauge properties. [In spherical symmetry, the radial com-
ponent of the emergent metric need not equal ðEφÞ2=Ex.]
Models of loop quantum gravity, by contrast, cannot be
equivalent to covariant theories unless additional terms
(such as K0

φ) are included as suggested by emergent
modified gravity.
The mimetic correspondence proposed in [6] does not

imply a strong equivalence because there is only one full,
nongauge fixed theory in this case, given by a mimetic
action. The proposal simply defines the non-gauge fixed
version of a deparametrized model of loop quantum as
being the same as the constructed mimetic theory. This
procedure constitutes a definition but not the derivation of
an equivalence. Moreover, as demonstrated here, the
resulting theory is far from being unique even if a specific
set of loop modifications is used in the deparametrized
theory.
The constructions in [6] and other examples in loop

quantum gravity attempt to evade a detailed discussion of
anomaly freedom, covariance, and gauge transformations by
using the canonical theory in deparametrized form, sche-
matically replacing constraint equations C ¼ 0 with equa-
tionsC ¼ PwhereP represents terms linear in the momenta
of matter fields. It is then argued that all gauge trans-
formations of the complicated gravitational terms in C can
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be replaced by simple gauge transformations generated by
expressions linear in momenta. However, terms linear in
momenta do not reproduce the brackets of hypersurface
deformations required for general covariance or slicing
independence in a canonical theory. These brackets can be
reproduced faithfully only by the full C − P (if matter terms
are desired). Consistency conditions then rule out arbitrary
modifications such as spherically symmetric contributions to
the Hamiltonian constraint that are not linear in Kx. As a

corollary, the failed correspondence analyzed here therefore
demonstrates that deparametrization is not a reliable way to
construct generally covariant modified theories of gravity.
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