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Inspiral and plunging orbits in Kerr-Newman spacetimes
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We present the analytical solutions for the trajectories of particles that spiral and plunge inward of the
event horizon along the timelike geodesics following general nonequatorial paths within Kerr-Newman
spacetimes. Our studies encompass both bound and unbound motions. The solutions can be written in
terms of the elliptical integrals and the Jacobian elliptic functions of manifestly real functions of the Mino
time. They can respectively reduce to the Kerr, Reissner-Nordstrom, and Schwarzschild black holes in
certain limits of the spin and charge of the black holes, and can be compared with the known ones restricted
in equatorial motion. These explicit solutions may have some implications for the gravitational wave

emission from extreme mass-ratio inspirals.
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I. INTRODUCTION

Recent detections of gravitational waves emitted from the
merger of binary systems have confirmed Einstein’s century-
old prediction as a consequence of general relativity [1-3].
The capture of the spectacular images of supermassive black
holes M87* at the center of M87 galaxy [4] and Sgr A* at the
center of our galaxy [5] leads to another scientific achieve-
ment of a direct evidence of the existence of black holes. The
black hole is one of the mysterious stellar objects, and it is the
solution derived from the Einstein’s field equations [6,7]. In
astrophysics, extreme mass-ratio inspirals (EMRIs), which
consist of a stellar mass object orbiting around a massive
black hole, have recently received considerable attention.
The goal is to analyze gravitational wave signals to accu-
rately test the predictions of general relativity in its strong
regime. Gravitational wave signals generated through
EMRIs, which are key sources of low frequency gravitational
waves and to be observed in the planned space-based Laser
Interferometer Space Antenna (LISA), provides an oppor-
tunity to measure various fascinating properties of super-
massive black holes [8—12].

The present work is motivated by EMRIs, which can be
approximated as a light body travels along the geodesic of
the background spacetime of a massive black hole. In
particular, the recent studies in [13,14] have been devoted
to inspirals of the particle on the equatorial plane asymp-
totically from the innermost stable circular orbits (ISCO) of
Kerr black holes. They also derive a simple expression for
the equatorial radial flow from the ISCO relevant to the
dynamics of the accretion disk. These exact solutions may
have applications to the generated gravitational waveforms
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arising from EMRIs [10] as well as constructing theories
of black hole accretion [15-19]. Additionally, the work
by [20,21] broadens the investigation of equatorial motion
to encompass generic nonequatorial orbits in Kerr black
holes. In the family of the Kerr black holes due to the
underlying spacetime symmetry the dynamics possesses
two conserved quantities, the energy E,, and the azimuthal
angular momentum L,, of the particle. Nevertheless, the
existence of the third conserved quantity, discovered in the
sixties and known nowadays as Carter constant, renders
the geodesic equations as a set of first-order differential
equations [22]. Later, the introduction of the Mino
time [23] further fully decouples the equations of motions
with the solutions given in terms of the elliptical funct-
ions [24,25]. In our previous paper [26], we have studied
the null and timelike geodesics of the light and the neutral
particles respectively in the exterior of Kerr-Newman black
holes. We then obtain the solutions of the trajectories
written in terms of the elliptical integrals and the Jacobi
elliptic functions [27], in which the orbits are manifestly
real functions of the Mino time and also the initial
conditions can be explicitly specified [28]. In this work,
we will mainly focus on the infalling particles into the Kerr-
Newman black holes in general nonequatorial motion.
Theoretical considerations, together with recent observa-
tions of structures near Sgr A* by the GRAVITY experi-
ment [29], indicate possible presence of a small electric
charge of central supermassive black hole [30,31]. Thus, it
is of great interest to explore the geodesic dynamics in the
Kerr-Newman black hole [32].

Layout of the paper is as follows. In Sec. II, a mini
review of the timelike geodesic equations is provided with
three conserved quantities of a particle, the energy, azimu-
thal angular momentum, and Carter constant. The equa-
tions of motion can be recast into integral forms involving

© 2024 American Physical Society
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two effective potentials. In particular, the roots of the radial
potential determine the different types of the infalling
trajectories of particles to black holes [33]. Section III
focuses on the parameter regime of the conserved quantities
to have triple roots giving the radius of the innermost stable
spherical orbits (ISSO) [34]. The analytical solutions of the
infalling orbits are derived for the case that the particle
starts from the coordinate r slightly less than that of the
ISSO. The two additional infalling orbits of interest are
determined by the roots of the radial potential, consisting of
a pair of complex roots and two real roots. In Sec. 1V, we
consider bound motion with one of the real roots inside the
horizon and the other outside the horizon. In this case, the
particle motion is bound by the turning point from the real
root outside the horizon. In Sec. V we will consider
unbound motion, in which both real roots are inside the
event horizon. The exact solutions for plunging trajectories
are given and illustrative examples for such trajectories are
plotted. In VI the conclusions are drawn. For the clarity of
notation and the completeness of the paper, Appendices A
and B provide some of relevant formulas derived in the
earlier publications [26,35].

II. EQUATION OF MOTION
FOR TIMELIKE GEODESICS

We start from a summary of the equations of motion for
the particle in the Kerr-Newman black hole exterior. We
work with the Boyer-Lindquist coordinates (¢, r, 6, ¢). The
spacetime of the exterior of the Kerr-Newman black hole
with the gravitational mass M, angular momentum J, and
angular momentum per unit mass a = J/M is described by
the metric

A in’6
ds* = _E (d[ — asin2€d¢)2 + & Krz + a2)d¢ - Cldl]z
z 5 2
+5dr? + Zd6?, (1)

where ¥ = r2 4+ a%cos?6 and A = 2 —2Mr + a*> + Q°.
The roots of A(r) = 0 determine outer/inner event horizons

ry/r_ as
ro =M+ \/M*—(Q*+d?). (2)

We assume that 0 < a®> + Q% < M? throughout the paper.

For the asymptotically flat, stationary, and axial-symmetric
black holes, the metric is independent of ¢ and ¢. Thus, the
conserved quantities are energy E,, and azimuthal angular
momentum L, of the particle along a geodesic. These can
be constructed through the four momentum p#* = mu* =
mdx* /do,,, defined in terms of the proper time o,, and the
mass of the particle m as

Em =P (3)

Additionally, another conserved quantity is the Carter
constant explicitly obtained by

C, = 22(u?)? — a’cos?0(E,,)* + L2,cot?0 + m>a*cos®0.

(5)
Together with the timelike geodesics, u*u, = m?, one obtains
the equations of motion
> dr
——— ==+ /R , 6
o= £ VR (6)
Y do
—— = 1,v/0,,(0), 7
m dGm 0 m( ) ( )
Xdp a 1 .
mdo, A (P + a®)y,, — aky,) — R (ay,sin0 — 4,,),
(8)
Ldt rP4ad,, _—
Za_ A [(I‘ +a )7m_alm] _a<a7m51n H_Am),

©)

where we have normalized E,,,, L,,, and C,, by the mass of the
particle m

a

’ /1m = ’ M E_n; (10)

E, Ly,
Ym ="
m

m
The symbols =, = sign(u") and +, = sign(u?) are defined

by the 4-velocity of the particle. Moreover, the radial potential
R,,(r) in(6) and angular potential ®,,(6) in (7) are obtained as

Rm(r) = [<r2 +a2)ym - a/lm]z - A[’?m + (aym _Am)z + rZL

(11)
0,,(0) = n,, + a*y2,cos?0 — 12,cot?0 — a*cos’0.  (12)

As well known [23], the set of equations of motion (6)—(9) can
be fully decoupled by introducing the so-called Mino time 7,,
defined as

dxt X dx*

dr,, mdo,,

(13)

For the source point x/ and observer point x#, the integral
forms of the equations above can be rewritten as [28]

Tm = Tmi — Imr = Gm(i’ (14)
¢m - ¢mi = 1m¢ + ﬂmeqBv (15)
by = by = Ly + a2ymeta (16)
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where the integrals /1, 1,4, and I, involve the radial
potential R,,(r)

r 1
I,,,,E/ —dr, (17)
Ti ir Rm(r)

The radial potential R,,(r) is given by a quartic poly-
nomial and the types of its roots play essential roles in the
classification of different orbits. In the previous work
[26,35], we have shown the exact solutions to some of
the cases of both null and timelike geodesics. For the
present work, we will mainly focus on the infalling orbits of

ral(2Mr — 0¥ m — ak,,] the bound and the unbound motion at the black hole
Ing = / T A \/m dr, (18) exterior. In this context, we will consider three types of
" " " such orbits in the subsequent sections. The discussion of
F 2y A4 (OMr— O + a®Vr — ad the angular potential ®(@) and the integrals involved has
I, = / rywA + @Mr = OO0~ + @)y = aln] dr. been presented in Ref. [26]. For the sake of completeness,
i £ AR, (1) we will provide a short summary in Appendix A.
(19) Before ending this section, let us introduce a few
notations that will be used in the subsequent sections.
The angular integrals are Related to R,,(r) we define the integrals
0 1 1= },
G E/ ) (20) / Dar=itf. n=12. (@
0; :l:ﬁ ®m (9)
0 29
6; Lo m 1, = / d =il]. 24
- T (r_rj:) m(r>
[0 cos’O
G = 0, 101/, (0) do. (22) In terms of I, I,, and /. we can rewrite (18) and (19) as
LV Em follows
A 2 2
o [, )0 ()+o
v el | K el NI s el ERCHIE (25)
2 2 +0?
ey =t Lo ey ) e
mt\tm 1_7%1 ro—r_ + M + M +\tm
02 a(f,—) + Q?
(=2 | - ||+ 2+ D) |+ @ - Qe (26)

III. INSPIRAL ORBITS IN BOUND MOTION

According to previous studies of radial potential [26], by
examining different ranges of the parameters 4,, and 7, for
bound motion (y,, < 1), itis clear that there are two distinct
categories of infalling motion that traverse the horizon and
enter the black hole. One is that the particle starts from
ri < Fisso» Where the radius of the ISSO orbit 7y, is within
the parameters located at A and B in Fig. 1, spirals and
then plunge into the horizon of the black holes [36,37].

|

The other one is starting from r; < r,,4, with the parameters
of C and D in Fig. 5, and plunge through the horizon of the
black holes.

We first consider the particle starts from r; < rigo-
The solutions along the r direction can be obtained from
the inversion of (14) with the integral 7, in (17), where the
radial potential (11) is given in the case of the triple root
located at the ISSO radius, namely r,,, = 7,3 = ¥4 = Fissor
and the initial r is set at r; < 7y, So, from the integral (14)
and (17), we can have the Mino time 7,, as the function of r
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Nm

FIG. 1. The main graphics shows the parametric plot of
A (Fisso) Versus 1, (Figso)- The triple roots ri, are the solutions
of the equations R}, (r) = R}, = R,,(r) = 0. The inset illustrates
the behavior of the radial potential R,, with the parameters
located at A and B. The case of B has 7,, = 0, which is an
example of equatorial motion.

() -2 [\/r—rml \/rl-—rmlJ
T (7r) = — .
rlsso ml)\/l_ym Fisso = T Fisso = T
(27)
The particle moves toward the horizon with v, = —1.
Thus, the inverse of (27) leads to
I _ Tl + risso[X1<Tm)]2 28
A o)
where
I Vl_ygn(risso_rmo i = Tmi
X' (z,) = Ty — | ——  (29)

m
2 Fisso — Ti

The solution (28) of the coordinate r involves the triple root
Iisso Of the radial potential, which can be determined as
follows.

From the double root solutions R(r) = R'(r) = 0 [26],
two constants of motion in the case of spherical orbits are
given by

[rrnss(M F'mss Qz) - azM]Ym - A( mss)\/rrznss(ygz - 1) + Mrmss
AmSS B a(rmss - M) ' (30)
Nmss = a2<rm’:snsi M)2 {rmss(Mrmss - QZ)(az + Q2 - Mrmss)ygn + 2(1Mrmss - QZ)A(rmss)ym\/rrznss(y 1) + Mrmss
10 (M = 0°) = (M) = @ = 1)+ M. G1)

The subscript “ss” means the spherical orbits with s = &, which denotes the two types of motion with respect to the relative
sign between the black hole’s spin and the azimuthal angular of the particle (see Sec. III C of [26]). Together with the two
relations above, an additional equation from R”(r) = 0 determines the triple roots. We have found the radius of riy,
satisfying the following equation

_Mr?sso ( 1550) + 4(

Viw)? =0, (32)

— 02 2
ISSO Q ISSO + a i/IlSSO as

where

Fms = r?sso( Tisso Q2) 771;90[ 1990(risso - 3M) + 2Q2]rizsso + azrlizsso‘ (33)
We proceed by evaluating the coordinates ¢,,(z,,) and t,,(z,,) using (15) and (16), which involve not only the angular
integrals G, and G,,,, but also the radial integrals (18) and (19). With the help of (25) and (26), we first rewrite (18) and

(19) as

2
M I (z,)]. (34)

m 2
Ym 2Ma (Vm) Q I] (T ) _
o 2M

m¢(Tm): /—1—]/3” ro—r_ ry — M

r_ -
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Iint (Tm> =

Ym am?
VI1=p2 | re—r-

2 a )ﬂ + Q2

<”+ ‘z%) ( ‘%) I (z)
0 a() + 0

‘(r— ‘m) ( o))

+2MI(z,,) + Ié(rm>} + (4M?* = %)y T, (35)

For the present case of the triple roots, the calculation of the integrals is straightforward and one can express I/, and I, in

terms of elementary functions,

rml)(risso_rl(rm)) I

nh™! (re - —
. \/<risso—ri><r'<fm>—rm]> Po 09

Tisso — rI(Tm) 1

I{ (Tm> =YV I- y}%nriSSOTm =+ 2tan™! m - Il,-’ (37)

Tm + (rml + 3risso)tan_]

1—y2 1
I (ey) = YT, 4
Tisso — 't \/(ri_rm1>(risso_
Ié(’l'm) _ r[(Tm)(rml - risso) + risso(?’risso - rml)

2

It is worthwhile to mention that 7/, , Z{ , 7} are obtained
by evaluating 7%, 14, I} at r = r; of the initial condition,
that is, 7. (0) = 11(0) = 14(0) = 0. The solutions of ¢’ (z,,)
and #/(z,,) can be constructed from L,y (18), G,y (21)
and /,,; (19) and G,,, (22) through (15) and (16). Together
with the solutions along r and € directions in (28) and (A2),
they are infalling motions of the general nonequatorial
orbits in the Kerr-Newman exterior. An illustrative example
is shown in Fig. 2 with the parameters of the case A in
Fig. 1. The particle starts by inspiraling around r;, and
then plunges into the black hole’s horizon.

For the particle initially at r; = ri,, the solution (28)
gives r(t) = riy, obtained from X/ — —co in (29) when
r; = Figo, Meaning that the particle will stay in spherical
motion with the ri, radius. However, for r; < ri, of our
interest, as r reaches the outer horizon r,, it takes finite

FIG. 2. An illustrative example of nonequatorial orbit with
parameters A of Fig. 1. In this case, the particle starts from r; <
I'isso and inspirals into the black hole after many azimuthal and
longitudinal revolutions. From the top view one notices the very
different time scales of the spiralling and plunging phases.

Tisso — rI(Tm)

rl(Tm) —Tmil

-7} (38)

|
Mino time 7,. Nevertheless, because of the tanh™!
function in (36), Iiisso — o0 as r — r,, giving the coor-
dinate time ¢ — oo and the azimuthal angle ¢ — o
observed in the asymptotical flat regime. The above
expressions can be further reduced to the Kerr black
hole case by sending Q — 0 in [20]. As for the
contributions to the evolution of the angle ¢ in (15)
from the integrals involving the radial potential R,,(r),

one can write the tanh~' function in I (z,) by log
_ 1log(1+x)
~ 2log(l-x)"

ing terms in (34) directly proportional to z,, are the same
in [20]. Together with (AS5) of the integrals involving the
0 potential ®,,(0), the variables z; and z, defined in [20]
can be related to the roots of ©,,(0) by z3 = u,,, and
73 = u,_a*(1 —y2), leading to k2 = o=, which gives the

function through tanh~!(x) Then, the remain-

same expression in [20] from (AS5).

One of the interesting cases is considering the equatorial
motion by taking 6 =7 and #,, — 0 limits in the results
above. The particle starts from the coordinate r slightly less
than the radius of innermost circular motion ri,. In
particular, G,,, =17, and the solution of ¢}, in (15)
simplifies to [26,35]

G (r) = I{mp(fm(r)) + AT (1) + P (39)

where Ifn¢ is given by (34). In addition, one can replace
Mino time z,, by the coordinate r through Eq. (27). Then
the infalling solution of the angle ¢,, on the equatorial
plane can be expressed as a function of r,

084043-5
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Qz) (aym B lm)

m

- ygn)(risco - r) (risco -

= Fm rizsco/lm + (2Mrisco -
"=

r-‘r)(risco

- r—)(risco - rml)

_ 2 (2Ma7m -r_A ) - Qz(aym _ﬂm) tanh_l (r+ B ml)(rlsco r)
e =T (Fiseo }"+ \/(1 }/m rml)(risco - l"+) (rlqco )( rml)
+ 2 (2Ma7m - r—&-’lm)r— - Qz(aym - lm) tanh" (r - ml)( Fisco — }’) (40)
Fp =7 (risco_r—)\/(l _7%1)(r—_rml)(risco_r—) (rwco )(r_rml)
Likewise, for the equatorial orbits, Eq. (16) with G,,, = 0 gives
tn(r) = L (T) + 11, (41)

where 1!, has been calculated in (35). Substituting 7/, to replace r, we find

(rml +3risc0+4M) -1

Tisco = 1

t{n(r) :_ym\/(r_rml)(rizsco_r)+ym

l_ym

V1-7i

tan
r—r,

(2Mrisco - Qz)a(aym - /1m>

_2\/ ) rizsco(rizsco+a2)7m +
(

- r+)(risco -

1 _y%n)(risco - I’) (risco

r—)<risc0 - rml)

_ 2(2M7‘+ - Q2) 2Myn1r+ - (Cllm + szm) tanh—] \/<r+ B ml)(rlsco B I")
ry —r_ (risco_u)\/(l—yfn)(u—rml)(risco—u) (rleO )( _rm1>
22Mr_ - Q?) 2Myr— = (ady + Q%Y ) o e =) (Fiseo — 1)

h 42

* rp—r_ (risco—r_)\/(l—y%,,)(r_—rml)(risco—r_)tan (rISCO_ )(r_rml) ( )

As for the initial conditions one can determine ¢/,; and 7/,
by 1},,(z0(r)) + Antiy(r) and I},(z,) vanishing at the
initial r;. The corresponding trajectories are shown in
Fig. 3, with the additional parameter Q apart from a of
the black holes. This generalizes the solution in [13] for the
Kerr black holes, where the particle starts from r < rj, at

t,n(r) = —oo and inspirals to the event horizon. In the limit
of Q=0 where r,, =0, 1—y2 > 2M/3risc0, and
(Fisco = 7+ ) (Fico — =) = 2o — 2Mrigeo + @*,  the  first

term of Eq. (40) reduces to the corresponding term

x

FIG. 3. Illustration of the orbit on the equatorial plane with the
parameters of B in Fig. 1. The particle starts from r; < r, and
inspirals into the black hole horizon.

Fisco— T+

/= of ¢,,(r) in [13]. Together with ¢, = ,/—=
defined in [13], one can make the replacement

1 1 Tisco
— 12k —2Mri, + a*’

- 1§CO

ry —r_ ~ t (43)
to reproduce the tanh™! terms.

One of the limiting cases that can significantly simplify
the above expressions is to consider the extremal limit of
the Kerr black hole, a - M. For Q — 0 giving r,,; =0,
and for the extremal black holes, the ISCO radius for
direct orbits is on the event horizon. Here we focus on
the extremal retrograde motion with ri., = 9M, 4, =
—22+/3M/9 and y,, = 5v/3/9. Notice that in the extremal
black holes, r, and r_ collapse into the same value. Then
the solutions can be reduced into the known ones [13,14]

2\/§ e

O Py v e
Lo [OM=r)r(AM=5r\ 1172
fnlr) = 2 < ) 2 M\/9M—r
155\f oM —
(45

084043-6
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Another limiting case is considering the Reissner Nordstrom (RN) black hole. Since a — 0 leading to the spherically
symmetric metric, the general motion can be studied by considering equatorial motions. The coefficients of the tanh~! terms
of the above expressions (40) all vanish. The expressions of ¢/, (r) and #/,(r) can be simplified as

2, r— Ty
Ph(r) = — \/ : 46
( ) Tisco = I'm1 (1_7/%n)(risco_r) ( )
H (r):—y \/(r_rml)(rizsco_r)_’_Ym(rml+3risco+4M)tan_1 Tisco — 1
" ) Vi =T
2\/ F'—Tm Tiscolm
(1 _}/31)<risco r) (rISCO )(risco_r—)(risco _rml)
_ 2 (ZMI” - Qz)z}’m tanh‘l (I"+ B rml)(risco - I")
Fi =TI (Figo — 74)V/ (1 = ro = Fpt)(Fisco = 7'4) (Fisco = P ) (= Fn)
2 2Mr_ — Q2 - -
i ( r——Q ) 14 tanh-! (r— ml)( Tisco r)' (47)
P4 =T (Fisco — \/ 1- ym 1)(risco - I"_) (rlSCO r- )(I" - I"m])

Further simplification occurs in the extremal limit. For
M = +Q in the RN black holes, r. = M, and with

isco = 4M, 1, = 4M/5, A, = 2+/2M and y,, = 3v/6/8,
(46) and (47) can have such a simple form

Sr—4M
! - 48
$m(r) = i (48)
4M —r)(r—4M
trln(r) = —3\/3( r)gr /5)
25215 | AM -7 5r—4M
s MR s 12M —3r

(2M?* —1)2 \/(4M—r)(5r—4M)
(M =r)M3 3

42M2 1) M —r
I T D et T 49
[ S T A LYV (49)

Finally, in the limits of Q@ — 0 and a — 0 we have the case
of Schwarzschild black hole, with the spherical symmetric
metric. The horizons become r, — 2M and r_ — 0, and
the general motion can be considered in the equatorial
plane. Thus, with the further ISCO inputs in this case,
Fiseo = OM, A, = 2+/3M, and y,, = 2\/5/ 3, the solutions
become as simple as

() = =2V3 [ — (50)
(1) = 8642‘5@”, S NG
+44v2M tan™! oM =

|
We then recover the results of two recent publications
[13,14].

It is then of great interest to plot and observe how the
azimuthal angle ¢ depends on the evaluation of coordinate
r, as illustrated for a few exemplary cases in Fig. 4. In
particular, when the motion approaches the horizon, the
angle ¢ diverges for the spinning black holes whereas it
remains finite for nonspinning black holes. From Eq. (46)
for RN black holes and Eq. (50) for Schwarzschild
black holes, ¢ smoothly changes across the horizon.

200
— Kerr Newman
150 - — Kerr extremal
| “g o
Ag! I
¢y, 100 F
50 F
0 I 1 1 1 1
0 2 4 6 8 10

r/M

FIG. 4. The plots show the variation of azimuthal angle
APl = — ¢! as a function of r for the inspire bound motion
for various black-hole models, including Kerr-Newman
(Q=07M,a=0.7M,24,, =-3.84M,1n,, = OM), Kerr-extremal
(Q=0M,a=M,4, = —%M,nm =0M) and RN (Q = 0.7M,
a=0M,24, =32M,n, = OM). In the figure, the blue curve and
red curves illustrate the direct and retrograde orbits, respectively.
See the text for more discussion.

084043-7



YU-CHUNG KO, DA-SHIN LEE, and CHI-YONG LIN

PHYS. REV. D 109, 084043 (2024)

Thus, another usefulness of the obtained result in (40)
is to examine the behavior of ¢ across the horizon. The
divergence in the azimuthal angle arises from the
tanh™! terms and the straightforward calculations shows
that ¢!, ~In(r — r,). However, for the extremal Kerr-
Newman black holes where r, = r_ = M, the additional
divergence in the coefficients of the tanh™! terms in (40)
shifts the leading order divergence into that of ¢/ ~ 1/
(r—M) in (44), apart from the In(r — M) divergence.
However, for the extremal Kerr black holes, ¢!, ~1/
(r — M) from (44), where the In(r — M) divergence dis-
appears. The dramatic difference in the behavior of the
azimuthal angle ¢ across the horizon has been found on
equatorial infalling trajectories in Kerr black holes [13,14].
The same types of phenomena are also seen on infalling
trajectories of general nonequatorial orbits in Kerr-Newman
black holes. Notice that in all cases, the coordinate time
t — oo as r — r_. This finding may have some implications
for the gravitational wave emission measured by an observer
far away from the black holes [10] as in the study of another
interesting trajectories of homoclinic orbits in [35,38].

IV. PLUNGING ORBITS IN BOUND MOTION

Another bound orbit, in which particles eventually fall into
the black hole, is the motion with the parameters of C and D
inFig. 5. In this case, there are two real roots, being r,,; inside

80
60
&, 10
20
10t
0
r. 10 20 30 40 50
.
co
5k
D
s A
-6 -4 = — 4 6"
FIG. 5. The graphics shows the portion of parameter space

bound by the double root solution, r,, = r,3. The equation
R,,(r) = 0 with parameters in the blue zone have complex roots,
T'ma = T3, 50 that, a particle in this region, say C or D, and starts
from r; < ry will plunge directly into the black hole horizon. The
inset shows the behavior of the radial potential R,, (r) for the case
of the parameters located in C and D.

the inner horizon, r,,4 outside the outer horizon, and a pair of
the complex-conjugated roots r,,, = r} ;. Assuming that the
particle starts from r; < r,,4, it will either plunge directly into
the black hole or travel toward the root r,,4, return back and
plunge into the black hole, in the absence of any other real
root along its trajectory. This section is devoted to finding the
analytical solution for the orbit in this case of r,,, = 1},
and 7y > 1, > 1. > 1. > 1y

The solutions in the present cases are expressed in a
similar form as in the previous section. The integration of
(14) 1is straightforward, but elliptical integrals and the
Jacobi elliptic functions are involved for the representation
of the solutions [27]. We find after some algebra

1

e (Flpll) ~ Flplr) %)

(52)

where F(¢|k) is the incomplete elliptic integral of the first
kind. The two parameters of the elliptic integrals are

— cos—! By (rma = 1) = Ap(r —rm)
¢(r) B (Bm(rm4 - r) +Am(r_ rml)) (53)

and

KB — (rm4 - rml)z - (Am - Bm)2
4A,,B,, '

(54)

where we have used the short notations

Ay = \/(rm4 - rm2)(rm4 - rm3)’
Bm \/(rm3_rm1)(rm2_rml)' (55)

With the help of the Jacobian elliptic cosine function [27]
one finds the inversion of (52) as

()
(erm4 + Amrml) - (erm4 - Amrml)cn(XB(Tm)'kB)
(Bm +Am) - (Bm _Am)cn(XB(Tm)|kB)

(56)
where

XB(Tm): (1 _y%n)AmBme

—F(COS_I (Bm(rm4_ri) _Am(ri_rml)>

Bm(rm4_ri) +Am<ri_rml>

e).
(57)

Notice that A,, > B,, >0, 0 < k® < 1, and for r < r,,4,
—1 By (rma=ri)=Ap(ri=rm)

By (g =71:) A (ri=rm1)
function is the real-valued function.

< 1. The Jacobian elliptic cosine

084043-8



INSPIRAL AND PLUNGING ORBITS IN KERR-NEWMAN ... PHYS. REV. D 109, 084043 (2024)

The solutions of the coordinates ¢y, (z,,) and #;,(z,,) involve the integrals 75, and I}, given in (25) and (26). In the
present case, the integration of 15, 1129 , and Ii is direct, but the results have cumbersome representations:

1 B, —A 2(rps — i) VA
B(z,) = [ m Oy B(p ) 4 m Ry(BE; Y8 kB)| — T8
i( Bm(rm4_rj:)+Am(r:t ) VAmBm ) Bm( m4_r:|:) An1<r:t_ ml) 1( * m‘ ) -
(58)
Bms — At \ XB(7)  2(Fpa = Fui )VALB
1B _ m' m m'm m m m mZm p B. B _7B
l(Tm) ( Bm _Am > \/m+ A% —B;%n l(ﬂ > LT, ) 1; (59)
B —A 2 xB A - B VA,B,,
Ig(Tm) _ m¥'m4 m¥mi (Tm) +4 m¥m1 mT'm4 ( 2ml) 2 ( Tf kB>
B, — A, VARB, An— By, A, — By "
2’(rm4_rm )VAmBm 2
+ AmBm< A%n _1331 RZ(ﬁB>T§m|kB) _Igl (60)
In the formulas above, the parameters of the functions R; and R, are related with the roots of R, (r) as follows
ﬂi:_Bm(rm4_r:t>+Am(rj:_rml)’ ﬂB:Am_Bm (61)
Bnl(rm4_ri)_Am(ri_rml) Am+Bm
By (rma—r) = Ay(r—r 1))
Y8 = cos™! | 2 -z o, T2 = am(Xz(z,,)|k 62
(Bm<rm4_r)+Am(r_rml> " ( B( )| B) ( )

where am is the Jacobi amplitude function. The quantities Z% , 77, and Z5 are obtained by evaluating 1%, I7, and 15 at
r = r; of the initial condition, I8 (0) = I2(0) = 15(0) = 0. Finally, R, and R, are the integral of Jacobian elliptic cosine

function,
C[EeR du 1
Ry(a: 1K) :A 1 +acn(ulk) 1 —a? [H<a -1’ ¢’ > A k)} (63)

_ [F@k du
Rawal = [

2

1 a asin(¢)+/1 — ksin?(¢h)
Cat -1 {F@'k) k4 (1-k)a? (E(¢|k) - 1 + acos(¢) )}
1 o?
S ey <2k—az_ 1>R1(a;¢|k) (64)
[
in which
k) = Py (P 1 — ksin®(¢) + sin(¢) ,

Fpe- 6.4 = 2 ( 1 — ksin?(¢) — sin(¢)>

a? -1
N — 65 y
Pa k+ (1 —k)a? (65) ‘ @

In particular, for a = g2, 8 where —1 < a < 1, the sol-
utions are the real-valued functions.

We then apply the exact solution obtained above to the
parameters set C of Fig. 5. In this case, 4,, = 1,7,, = 7, and
7 = 0.98, with the black hole parameters a = 0.7 and
Q = 0.7. Fig. 6 shows that the particle stars from the initial  FJG. 6. Tlustration of an orbit off the equatorial plane with the
position r; =7.4M, 6, = /2, and ¢; =0 and it falls parameters of C in Fig. 5. In this case the particle starts from
almost directly into the black hole. r; < ry and plunges directly into the black hole horizon.

X
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From the above general formulas one obtains the case of the equatorial motion, in which 0 =

7 and n,, — 0. The bound

plunge solution of the coordinates 2 and t5 can be rewritten as the function of r as follows

P (r) = 154 (@ (1) + At (1) + i

- | G- =0, (60
(1) = Tn(Tm) + 1
B G e v wa G v ) LG
+2(rm4A 331 { (B mlm = ”“) +M]R1(ﬂ3;(ﬂ(7)|k3)
VA B, | m (W) + (442 = 02151}, (67)
where
Ty = (re= 2} T (68)
a(fe) +0° (B, = A, S v A
e e e R reerms o oemros R o v e oy LU L)

Figure 7 shows an exemplary orbit of this type using these
solutions.

The expression can also be converted into the solutions
of the Kerr and RN black holes by taking the respective
a — 0 and Q — 0 limit. For the Kerr black hole, one can
substitute straightforwardly Q = 0 and the root r,,; =0
into the definition of k% and B,, in (54) and (55), as well as

FIG. 7. TIllustration of an orbit on the equatorial plane with the
parameters of D in Fig. 5. The particle initiates its journey at point
r;, moves outward, reaches the turning point at r,4, and then
reverses its course, plunging back into the black hole.

(69)

Fo(r)|k?). (70)

the solutions (66) and (67). Nevertheless, in the RN black
hole the limits of @ — 0 but r,,; # 0 give huge simplifi-
cation. The formula (66) becomes

B(p) — _ Am
¢m( ) (1 _ym) B
k3>,

x F(cos‘1 < E
(71)

whereas the solution of 2 remains the same form as
in (67) in the corresponding limits. In the Schwarzschild
black hole where a, Q — 0, two event horizons, r, = 2M,
r_ =0 giving 7,,_ — 0, together with r,,; = 0, lead to the
further simplification from (71) and (67).

One usefulness of the analytical formulas is to explore
the changes of azimuthal angle ¢ as the motion crosses
the horizon. In particular for the equatorial motion, as
r—ry, the term of J,,, in (66) due to the function
of Ry(a;¢p|k) in (63) gives the logarithmic divergence,
namely ¢2 o« In(r —r,). However, in the extremal case
when r, =r_ = M, the extra divergence occurs in the

4= 1) = An(r = m1)>

4_r)+Am( ml)
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4 T T T T

B
Adp,
2+ i
— Kerr Newman

s — Kerr extremal |

— RN

r/M

FIG. 8. The plots show the Ag? as a function of r for bound
motion with the various black holes including Kerr-Newman
(0=0.7M,a=0.TM,4,, =M ,n,, =0), Kerr-extremal (Q = 0M,
a=M,2, =-M,n, =0)and RN (Q=0.7M,a=0M,1,, =M,
7, =0). In this plot, the red and blue curves illustrate the
examples of direct and retrograde orbits, respectively.

coefficient of J,,, —J,,. so that the leading order
divergence becomes ¢5 o« In(r—M). In the case of
a =0 for non spinning black hole, the coefficient of
T ms — T me vanishes and the angle ¢ smoothly changes
across the horizon. The corresponding plot is shown
in Fig. 8.

V. PLUNGING ORBITS IN UNBOUND MOTION

For unbound motion (y,, > 1), the particle may start
from the spatial infinity characterized by the constants of
motion with the azimuthal angular momentum 4,,, the
energy 7,,, and the Carter constant 7,,. In this section we
consider the parameters mainly in the E regime shown in
Fig. 9, in which the roots of the radial potential have the
properties, ryy = ryq and r; > ry > r_ > r,, > r,,;. This
means that there is no turning point in the black hole
exterior and the particle starting from the spatial infinity
will plunge directly into the black hole.

The main propose here is also to derive the exact
solutions for the coordinates (), 0% (), P%(z,),
and tY(z,,) (We have added the upper index U for the
unbound case). While the procedure is identical to that of
the previous two sections, special care is required due to
differences in the properties of the roots. The counterpart of
Eq. (52) becomes

ol =~ P OR) ~ ) )

(72)

where

U(r=rm)—BY(r—r
e (S,

(A% + B%)z B (rm2 - rml)2
4AYBY ’

kY = (74)

and

A% = \/(rmS - rm2)(rm4 - rmZ)’
Br(r]l:\/(rm3_rml)(rm4_rml)' (75)
Notice that AY and BY have different combinations of roots

compared to the bound case (55). The evolution of the
coordinate rY(z,,) is then

r(z,)
(B%rmZ - A%rml) + (BrlijlrmZ + A%rml)cn(XU(Tm)lkU)
(BY - AL) + (BY + AQen(XU (e, ) K0)
(76)

where

XU(Tm) =V (ygn - I)A%B%Tm

—F(cos‘l <A%(ri —Imi) _B%(ri_rmZ))
r

A%(ri - ml) +B£n](r1 _rmZ)

).

(77)

80

Am

FIG. 9. The graphics shows the portion of parameter space
limited by the double root solution, r,,3 = r,4 and r,,; < r,, <
r_ < r,. For the region of the parameter space for E and F, the
roots r,3 and r,,4 are complex, r,3 = 7, and r,,; < r,p < 7_.
The inset shows the details of the roots of illustrative cases E and
F in the main figure. See the text for more discussion.
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Once again, the specified conditions—BY > AY > 0, The missing pieces for a complete description of the
0 < kY <1,andr,, < r,, < r,togetherwiththeinequality =~ motions are the unbound version of Egs. (25) and (26), in
1 < Anlr=rm)=Bu(r=ru) which the integral (23) and (24) have been solved in

T An(r=rm )+ By (r=ry) Sec. IV. The results can be written as follows
cosine function in Eq. (76) remains a real-valued function.

< 1 ensure that the Jacobian elliptic

1 BY +AY
() =~ 2 7 o X )
Bm(r:t - rm2) +Am(r:t r ) \/AEEZ
2(r, — AUBY
n . (I"mz rml) . mBOm Rl(ﬁi/’TTUm kU):| _Ig" (78)
Bm(ri_rmZ)_Am(ri_rml) ,

IU o B%rm2 +A£n]rml XU(Tm) 2(rm2 - rml) V AUBU U. T kU IU 79
1 (Tm) = BU + AU \/W+ (BU>2 _ (AU) (ﬁ T| ) - i ( )

BU AU 2 XU BU AU /AUBU
Ig(fm) _ mrmé‘l' zrml (Tm) +4 mrm5+ ;n]rml (’"mz = ml) - (ﬂU TU|kU)
B, +A;, VAUBY By, + AL, (Bn)* = (AL)?

2P = ot ) VAYBY

where the functions R; and R, have been defined in (63) and (64) and the unbound version of the parameters now read as

v BU(re —rm) +AL(re = rm) BY + AL

-

fr— U _ @ 1

P = B = r) AL =)’ P T BU-AY ®1)
A= ron) = B = 1)

TU — -1 ml m2 TU _ XU U ) o)

o0 <AU(r—rm1)+BU(r—rm2) ’ o = am(XT(En) K5 (82)

As before, the initial conditions ZY , ZY, TV are obtained by evaluating 1Y, 1V, I¥ at r = r; of the initial condition. Also, for

a in the functions (63) R; and R,, we have now a = Y, ¥, where 0 < a < 1, which ensure that the solutions are real-
valued functions. Figure 10 illustrates the orbits with the parameters of E in Fig. 9, where 4,, = 0, ,, = 10, and y,, = 1.25.

Following the same steps of the previous sections, one can straightforwardly calculate the trajectories on the equatorial
plane. The solutions of ¢Y and ¢!, as the function of r can be written as follows

¢%( ) _Iz(ﬁ( ( ))—’_lmfm(r)—i_(p%i

Y 2Ma Ao ]
= ’Cm— _’Cm ——g\r)|, 83
ﬁn_l[u_rf 0-2240r) (83)
15(r) = 15,(z,) + 1Y,
ym 4M2 Br[rjlrmZ +A%rml B%er +A%rml
_ _ M
/—1 —7%1 {r —r (Vm— Vm+)+ B%+A% B%+A% + g(r)
- \/AUBU BU AU
zuzrml) - mrm5+ Il ) 4 MR, (BY; (r)[kV)
(Bh)* = (AD)? By, + A,
AUBUY?
/AT [ TP 3y )+ (a0 - 0200 . (54)
where
_ 0’
Vmi <rj: 2M ICmi’ (85)
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FIG. 10. Illustration of a general nonequatorial plunging orbit
exemplifies with the parameters E in Fig. 9. In this case #,, # 0
and the particle starts from spatial infinity and infalls directly into
the black horizon.

1)
Y VA
{ (B +Am)g(r)
X\ RU U
Bm<ri - rm2) +Am(r:t - rml)
2(rmZ - rml) V A%B%

[B%(ri - rmZ)]z - [A%(r:t - rml)]2

. m(ﬂ;’;w(rnkff)}, (36)

+

1

r)=—=F
RNz

Figure 11 shows the orbit of the particle with the parameters
in F in Fig. 9.

In the Kerr black hole, for Q — 0, the solutions are
given by taking r,,; = 0 to (83) and (84). In the RN black
hole for a — 0 but r,,; # 0, Eq. (83) can be significantly
simplified as

(w (r)|&Y). (87)

. @

FIG. 11. [Illustration of an equatorial inspiral orbit with the
parameters in the F region in Fig. 9 for 7,, = 0 where the particle
starts from spatial infinity and plunge directly into the horizon.

10
— Kerr Newman
5k — Kerr extremal
— RN
apd o
5}
1 1 1
2 4 6 8
r/M

FIG. 12. The plots show the AgpY as a function of r for
unbound infalling motion, with the various black hole including
Kerr-Newman (Q =0.7M,a =0.7M,2,, = M,n,, =0), Kerr
extremal (Q=0M,a=M,A,,=-M,n,, =0)and RN (Q = 0.7M,
a=0M,4, =M,n, =0). The blue and red curves show the
examples of direct and retrograde orbits, respectively.

Am
(o P—r—
(Ym - 1)AmBm

XF(COS_I (A%(r_rml) _B%(r_rm2)>
A%(r_rml) +B}I;1[(r_rm2)

kU).
(88)

In the Schwarzschild black hole, a, Q — 0 and the root
71 =0 further simplify the RN solution above.
Nevertheless, the solution of Y in various black holes
remains the same form as (84) after taking the proper limits.

The behavior of the azimuthal angle ¢ as the motion
crosses the horizon shares the same features as in bound
motion. In particular for the equatorial motion, as crossing
the horizon, the term of /C,,, in (83) due to the function of
Ri(a; k) in (63) gives the logarithmic divergence in
general Kerr-Newman black holes. However, in the
extremal case, the leading order divergence becomes
@B < In(r—M). In the case of a =0 for nonspinning
black hole, again the coefficient of K, — K, vanishes
and the angle ¢ smoothly changes across the horizon. The
corresponding plot is shown in Fig. 12.

VI. CONCLUSIONS

In this paper, we analytically derive the solutions of
infalling orbits in the context of general nonequatorial
motion in the Kerr-Newman black holes, considering both
bound and unbound motion. These solutions can be written
in terms of the elliptical integrals and the Jacobian elliptic
functions of manifestly real functions of the Mino time.
Various limits have been taken to show the respective
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solutions in Kerr, Reissner-Nordstrom, and Schwarzschild
black holes. In the case of the bound motion, we extend the
study of [13,14] on equatorial motion to consider that the
particle starts from r < riggo and then inspirals into the black
hole on general nonequatorial motion. In the limits of 0 — 0
and restricting on the equatorial plane, the obtained solutions
reduces to the ones in [13,14]. We also consider the other
types of the plunge motion, with the values ofy,,, 4,,, and 7,,,
shown in Fig. 5. In these cases, one has two real-valued roots
of the radial potential, one inside the horizon, r,,;, and the
other outside the horizon, r,,4. Thus, the particle starts from
r < r,4 and can either travel toward the r,,4, come back and
then plunge directly into the black hole or travel directly into
the black hole. As for the unbound state, we showed the
parameters y,,, 4,,, and 7,,, in Fig. 9. Interestingly, while the
two real-valued roots r,, and r,; are inside the event
horizon, the other two roots are complex conjugate pair,
I'm3 = I'n4. The particle starts from the spatial infinity and
will plunge directly into the black holes. The analytical
solutions allow us, in particular, to explore the behavior of the
variation of azimuthal angle ¢ as the equatorial motion
crosses the horizon. In general Kerr-Newman black holes, the
angle ¢ diverges as ¢,, < In(r — r,). However, in the
extremal case, the leading order divergence becomes
¢, x 1/(r—M). In the case of non spinning black hole,
the angle smoothly changes across the horizon. The dramatic
difference in the behavior of the azimuthal angle ¢ across the
horizon, which has been found in equatorial infalling orbits
in Kerr black holes [13,14], is also seen in Kerr-Newman
black holes in general nonequatorial orbits. This may have
some implications for the associated gravitational wave
emission observed far away from the black holes.

These exact solutions of the spiral and plunge motions
into the black hole are also of astrophysical interest due to
the fact that they have direct relevance to black hole
accretion phenomena. These explicit solutions may have

|

H(Tm) = COS_I <_V9,-\/ um+sn< _um—az(},é - 1)(Tm + I'/F),-gmél,-)

where Mino time

Tm = GmG = p(gm&r - gmé‘_) + ygi[(_l)pgmg - gmﬁi]

applications to the numerical accretion as well as extending
current theories of black hole accretion [15-18].
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APPENDIX A: THE ANGULAR POTENTIAL ©(0)
AND THE INTEGRALS G,,9; G5, AND G,

The detailed studies related to the ®,, potential in the 6
direction can be found in the papers [26,28,35]. Here we
summarize some of the relevant parts for the completeness
of presentation. The angular potential (12) for the particle
can be rewritten in terms of u = cos” @ and the equation of
motion requires ©,, > 0, which restricts the parameter

space of A,,, 1,,, and y,, (see Fig. 9 in [26]). The roots
of ©,,(6) =0 can be written as [28],

A 4+ A2 + 4d’ny, 2
_ m.0 n m.6 Ym—1 A= N + j'm
um,i - mo = a- —

2a® v —1

(A1)

with v,, = sign(y2, — 1), which give the boundaries of the
parameter space. For positive #,, and nonzero 4,, the par-
ticle starts off from the black hole exterior, 1 > u, >0
is the only positive root, which in turn gives two roots at
0+ = cos™! (= \/u7).0,,_ = cos™'(/uy). The particle
travels between the southern and northern hemispheres
crossing the equator at 6 = 7.

The solution of the coordinate 6,,(z,,) can be obtained by
an inversion of (14) [26,28]

Up 4
U,_) )’

(A2)

(A3)

and sn denotes the Jacobi Elliptical sine function. In (A3) p counts the times the trajectory passes through the turning points

and vy, = sign(%). The function G, is

1

gm9 ==

< . _1<COS(9>
F | sin
STy Vi

Up 4
Uy,

(A4)

The evolution of coordinates ¢,,(z,,) and t,(z,,) in (15) and (16) involves the integrals (21) and (22), which can

expressed as follows [26]

1

_um—az(},ﬁl - 1)

Gm¢ (Tm) =

H(unm am( (72— 1)t + 10Gs,)

um+ um+
— )| = ) —v9.Gmp.» A5
Mm—) Mm—) Ve[ gm¢1 ( )
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1 0;
Gy, = — H(um+;sin" <COS l) M'"—*) (A6)
' —um_a2 (}’%1 - 1) vV um+ Up—
2u u u
G S mt E —u. _a’(y2 —1 Dmt | Emt | ’ A7
mt(Tm) —Mm_az(]/%q — 1) (am( Up_da (Vm )(Tm +l/l9,-gm9;) u,_ u,_ V@,'gmt; ( )
2 0,
Gty = s E' <sin‘1 <COS ’) u—+) (A8)
VETE vy Vi) e
I
In the formulas above E and IT are the incomplete elliptic M X, 5 Y,
integral of the second and third kinds, respectively. Also the Fmi = — 2072, - 1) In ATy T AT (B8)
prime denotes the derivative with respect to the second " "
argument, M \/ X, Y,
Tma = — 2 Zm + ___Z%,“‘_y (B9)
. _ E(glk) — F(plk) 2(ym=1) 2 42
E'(plk) =0E(glk) =———F———.  (A9)
M Xﬂ’l Y}’I’L
rm3:—2( 5 _1)+z,,,—\/— 5 —z%,,—4z . (B10)
APPENDIX B: THE RADIAL POTENTIAL R,,(r) Tm "
AND ITS ROOTS X Yy
. ) . . _ Pt = — + 2ty =5 -, (Bl1)
As for the radial potential (11), it is a quartic polynomial. 2(y2, - 1) 2 4z,
We then rewrite R,,(r) as follows
where
R,(r)=S,*+T,r*+U,»+V,r+W,, (Bl
X”I
where the coefficients functions are given in terms con- o = \/ Quy +Q,_ —3 (B12)
stants of motion and parameters of the black hole as 2
Sm = 7%1 -1, (Bz) and
T, =2M (B3) Hm T\ | ()’
m ’ Q. =|——= =% — — B13
=y \/(3) () e
Up=a*(ys—1) = Q> =, — Ay, (B4)
with
V,=2M — An)? : B5
= 2M (@ = )+ 1) (B3) " TR n
Gy =—~7~Lms Xm=—7% ||\ 7= —Zn|——4
Wm = _a2’7m - Q2[(aym - lm)z + ’/lm]‘ <B6) 12 3 6 8
(B14)
Furthermore, it is useful to represent the radial potential
using its roots, namely X Y., and Z,, are the short notation for
Rm(r):(y%_1)(r_rml)(r_rmZ)(r_rm3)(r_rm4)' X :8UmSm_3T%’l (BIS)
m 2 k)
T31 B 4UmeSm + 8VmS3n
The different dynamical behaviors of the system are char- Y, = 253 ; (B16)
acterized by the positions of these roots. See Figs. 1,5, 9, and m
also Refs. [26,28]. The representation of roots of a quartic —3T% +256W,,S3, — 64V, T, S2 +16U,,T2S,,
. . . Z, = .
equation are well known, but cumbersome. We will write " 25684
them down for the sake of unifying notation and ensuring the (B17)

completeness of the work
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